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Barnett field, rotational Doppler effect, and Berry phase studied by nuclear
quadrupole resonance with rotation

H. Chudo ,1,* M. Matsuo ,2,1,3 S. Maekawa,1,2,3 and E. Saitoh1,4,5,6

1Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
2Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, 19 Yuquan Road,

Beijing 100049, People’s Republic of China
3Riken Center for Emergent Matter Science, Wako 351-0198, Japan

4Department of Applied Physics, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
5Institute for AI and Beyond, The University of Tokyo, Tokyo 113-8656, Japan

6Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

(Received 15 December 2020; accepted 26 April 2021; published 24 May 2021)

We report the observation of the Barnett field, rotational Doppler effect, and Berry phase using the rotating
nuclear quadrupole resonance (NQR) method. We have developed coil-spinning techniques that enable us to
systematically study the effects of rotation in setups involving rotation of the signal detector, rotation of the
sample, and simultaneous rotation of both the signal detector and sample. Applying these setups to NQR
measurements, we observe NQR line splittings in which the spectral structures are clearly distinct among the
setups. By analyzing these structures, we clarify the origin of the NQR line splittings and discuss the relationship
between the rotational Doppler effect, Barnett field effect, and Berry phase in terms of the rotational degrees of
freedom, such as the relative rotation and the sample rotation itself, and the observation frame of reference. We
also provide clear evidence of the difference between the rotational Doppler effect and the Barnett field and the
equivalence of the Barnett field and the Berry phase.
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I. INTRODUCTION

The interaction between the spin of an electron and me-
chanical rotation has played a crucial role in the development
of quantum physics. A century ago, the first experimental
proof that an electron spin has angular momentum was pro-
vided by experiments on the Barnett effect and Einstein–de
Haas effect [1–4]. These studies experimentally determined
the value of the g factor of an electron to be ∼2 prior to the
establishment of modern quantum physics. The Einstein–de
Haas effect has been exploited to determine the g factors of
electrons in various materials and the orbital component of
the magnetic moment [5,6].

Alongside recent advances in physics and technology, the
interaction between the spin of an electron and mechanical
rotation has once again attracted attention at the frontier of
contemporary physics, especially in terms of spintronics and
the physics of quantum geometric phases [7,8], such as Berry
phases. The Berry phase provides us with a new way to deal
with a cyclic time-dependent Hamiltonian and has also been
discovered in mechanical systems [9–12]. Concurrently, in
the field of spintronics, the Einstein–de Haas effect has been
exploited to mechanically manipulate microscale devices such
as cantilevers [13,14] and paddles [15,16] fabricated by using
nanotechnology. The Barnett effect has also been used to
generate a spin current from mechanical motion such as fluid
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flows [17–20] and surface acoustic waves [21,22] and to detect
the angular momentum compensation point [23,24].

The Barnett effect has also been observed in nuclear
spin systems [25–28]. The origin of the Barnett effect is
spin-rotation coupling [29], which is formulated from the rela-
tivistic quantum theory [19,30,31]. The spin-rotation coupling
is interpreted as an effective magnetic field, referred to as the
Barnett field B� = �/γ , where � is the angular velocity of
a rotating sample and γ is the gyromagnetic ratio [29,32,33].
As the Barnett field is an inertial field analog of the Coriolis
force in a rotating frame of reference, an observer must be in
the same rotating frame of reference as the rotating sample to
observe the inertial force.

We have observed the Barnett field acting on nuclei by us-
ing the specially designed NMR circuit depicted in Fig. 1(a),
which enables us to detect NMR signals in the same rotating
frame as a rotating sample [25]. The circuit consists of a
sample coil for detecting the NMR signal and a coupling coil
for transmitting the NMR signal from the rotating frame to
the laboratory frame. Using this circuit, we can observe the
NMR shift by a frequency of �/2π , which corresponds to the
rotational frequency, owing to the Barnett field. Furthermore,
using a similar circuit and a stationary sample, we can observe
the rotational Doppler effect [26]. This effect also causes
the NMR frequency to shift by the same frequency �/2π

corresponding to the rotational frequency. Furthermore, upon
rotating only the sample, the two effects cancel each other out,
resulting in no NMR shift [26].

However, because of the equality of the NMR shift arising
from the Barnett field and the rotational Doppler effect, Jeener
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FIG. 1. (a) Typical hardware for the present rotating NQR mea-
surements. (b) Unit cell of NaClO3. (c) Schematic illustration of the
energy level splitting due to the quadrupole interaction for nuclear
spin J = 3/2. (d) Temperature dependence of the NQR frequency
ωQ/2π .

criticized that the NMR shifts observed in the above two
setups, namely, with simultaneous rotation of both the sample
and the sample coil and rotation of only the sample coil, may
be explained solely by the sample coil rotation and thus that
rotating the sample is not essential; he denied the existence
of the Barnett field as an unnecessary hypothesis [34]. In the
NMR community, nuclear spins in a rotating material have
been considered to be decoupled from the rotational motion of
the material, and thus, the Barnett field has not been accepted
as the inertial force in a rotating frame of reference [28,34,35].
On the other hand, the Berry phase has been studied using
NMR and nuclear quadrupole resonance (NQR) and has been
accepted in the NMR community, even though both the Berry
phase and the Barnett field are gauge fields in a certain coor-
dinate frame of reference [11,36].

In this paper, we provide explicit experimental evidence
of the difference between the Barnett field and the rotational
Doppler effect by using a rotating NQR method. The NQR
line split into two lines upon rotation of only the sample coil,
while the NQR line split into three lines upon simultaneous
rotation of both the sample and the sample coil. These findings
indicate that the nuclear spin in the rotating material couples
with the external rotation and is affected by the inertial elec-
tromagnetic force, that is, the Barnett field. In addition, we
also demonstrate the equivalence of the Berry phase and the
Barnett field as a gauge field in a certain coordinate frame of
reference. We formulate the Barnett field, rotational Doppler
effect, and Berry phase in a unified way and straighten out the
relation between them.

II. EXPERIMENTAL METHODS

We chose a single crystal of a sodium chlorate (NaClO3)
as the sample for measurements because the linewidth in
the 35Cl NQR spectrum of NaClO3 is sufficiently narrow to
permit the effects of rotation to be evaluated using our current
experimental equipment (produced by JEOL), which has a
maximum rotational frequency of 22 kHz. Figure 1(b) shows
the crystal structure of NaClO3. The unit cell contains four
NaClO3 molecules. The principal axis of the electric field gra-
dient (EFG) at the Cl sites in the molecule is axially symmetric
along the bond joining Na and Cl atoms. In the crystal, the
principal axis of the EFG is directed along 〈111〉.

As the nuclear spin of 35Cl is J = 3/2 and has a quadrupole
moment, its energy levels split into two degenerate levels in
the uniaxial EFG as follows:

HQ = e2qQ

4J (2J − 1)

(
3J2

z − J2) = A

⎛
⎜⎝

3
−3

−3
3

⎞
⎟⎠,

(1)

where HQ is the quadrupole Hamiltonian and A is defined
as e2qQ/4J (2J − 1). The spin states of k = 3/2,−3/2 and
k = 1/2,−1/2 degenerate as shown in Fig. 1(c). Transitions
are possible between 3/2 ↔ 1/2 and −3/2 ↔ −1/2. Then,
the NQR frequency ωQ/2π can be expressed as 6A/h and
is 29.898 MHz at 30 ◦C. The gyromagnetic ratio γ /2π ,
quadrupole moment Q, and natural abundance of 35Cl are
+4.172 MHz/T, −8.2 × 10−26 cm2, and 75.77%, respec-
tively. The temperature dependence of the NQR frequency
is 4.95 kHz/K at around room temperature, as shown in
Fig. 1(d). Thus, we carefully controlled the temperature within
0.01 K during the measurements.

The single crystal was grown by slow evaporation from a
saturated aqueous solution of NaClO3. The crystal axis was
determined by x-ray diffraction. The edge of the as-grown
single crystal corresponded to the 〈100〉 direction. The ro-
tating axis was also along the 〈100〉 direction. Under these
conditions, the four Cl sites in the unit cell were equivalent,
and the angle θ between the principal axis of the EFG and the
rotation axis could be expressed as cos θ = √

1/3.
Figure 1(a) shows the hardware used for the present mea-

surements. The coil rotation was realized using a specially
arranged tuning circuit positioned in a high-speed rotor,
which was installed inside a stationary coil and isolated me-
chanically from the outer circuit. Electromagnetic coupling
between the outer and inner circuits was realized by the
mutual induction between the stationary coil and coupling
coil. Both coils were parallel to the rotation axis. In this
configuration, the rotational Doppler effect does not occur
between the stationary coil and the coupling coil, as shown
in the following. Additional details regarding the hardware
are provided in Refs. [25,26]. All of the experiments were
performed under zero magnetic field. The temperature during
the NQR measurements was maintained at 30 ◦C by control-
ling the temperature of the air flow that drove the high-speed
rotator.
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FIG. 2. (a) and (b) 35Cl NQR spectra at various values of the
rotational frequency (0–6 kHz) obtained under only sample coil
rotation with the coil (a) perpendicular and (b) parallel to the rotation
axis. The origin of the horizontal axis is the center of the NQR spectra
at � = 0, that is, ωQ/2π . (c) Rotational frequency dependence of the
NQR shift shown in (a). The solid line is intended to serve as a guide
to the eye. The slope of the line is 1.

III. EXPERIMENTAL RESULTS

A. Only coil rotation

In Figs. 2(a) and 2(b), we show the 35Cl NQR spectra
measured under only sample coil rotation. In this setup, the
sample was fixed in the laboratory frame of reference, and
no external field was applied to the sample. In spite of this,
the NQR spectrum splits into two lines with equal intensity,
as shown in Fig. 2(a), and each shift was ±�/2π , as shown
in Fig. 2(c). This splitting was caused by the relative rotation
between the sample and the sample coil because of the lack of
an external field acting on the sample. Thus, we call this the
rotational Doppler effect.

In the case of the longitudinal coil, as shown in Fig. 2(b),
in contrast, no line splitting was observed at rotational fre-
quencies up to 6 kHz. This result indicates that the rotational
Doppler effect does not appear in the configuration with the
coil axis parallel to the rotation axis. The line broadening
observed at rotational frequency above 4 kHz was caused by
the temperature distribution in the sample due to the friction
with the air. This temperature distribution was estimated to be
±0.02 K over the sample.

)b()a(

(c)

In
te

ns
ity

 [a
rb

. u
ni

ts
]

-20 0 20
Frequency [kHz]

10 kHz

8 kHz

6 kHz

4 kHz

2 kHz

0 kHz

20

15

10

5

0
N

Q
R

 s
hi

ft 
[k

H
z]

12840
/2  [kHz]

In
te

ns
ity

 [a
rb

. u
ni

ts
]

-20 0 20
Frequency [kHz]

10 kHz

6 kHz

8 kHz

4 kHz

2 kHz

0 kHz

FIG. 3. (a) and (b) 35Cl NQR spectra at various values of the
rotational frequency (0–10 kHz) obtained under simultaneous sample
and sample coil rotation with the coil (a) perpendicular and (b) paral-
lel to the rotation axis. The origin of the horizontal axis is the center
of the NQR spectra obtained at � = 0, i.e., ωQ/2π . (c) Rotational
frequency dependence of the shift of the satellite lines. The solid line
is intended to serve as a guide to the eye. The slope of the line is

√
3.

B. Simultaneous sample and sample coil rotation

In Figs. 3(a) and 3(b), we present the 35Cl NQR spectra
obtained under simultaneous rotation of both the sample and
sample coil for the transverse coil and the longitudinal coil,
respectively. For both the transverse and longitudinal coil
rotations, we obtained the same NQR spectra. These NQR
spectra are different from those in Figs. 2(a) and 2(b) that were
obtained under only coil rotation. The single line at � = 0
splits into three lines under the rotation, which were separated
by

√
3�/2π , as shown in Fig. 3(c). In both cases, there was

no relative rotation between the sample and sample coil, that
is, no rotational Doppler effect. Therefore, the line splitting
was caused by the Barnett field emerging along the rotation
axis owing to the sample rotation.

C. Only sample rotation

In Fig. 4, we show the 35Cl NQR spectra obtained under
only sample rotation. This setup involves both sample rotation
itself and the relative rotation. Figure 4(a) presents the NQR
spectra obtained for the transverse coil in the stationary frame
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FIG. 4. (a) and (b) 35Cl NQR spectra at various values of the
rotational frequency (0–10 kHz) obtained under only sample rotation
with the coil (a) perpendicular and (b) parallel to the rotation axis.
The origin of the horizontal axis is the center of the NQR spectra
obtained at � = 0, that is, ωQ. (c) Rotational frequency dependence
of the shifts presented in (a). The solid lines are intended to serve as
a guide to the eye. The slopes of the green and blue lines are 1 and√

3 − 1, respectively.

of reference. The NQR line splits into two, and each of the
resulting lines has a shoulder, as indicated by the open green
triangles and solid blue triangles, respectively. In contrast, as
shown in Fig. 4(b), for the longitudinal coil the NQR spectra
split into three lines, and the separation of the lines was
proportional to

√
3�/2π . The NQR spectra obtained for the

longitudinal coil were identical to those shown in Figs. 3(a)
and 3(b). The origin of the difference between the NQR
spectra shown in Fig. 4(a) and those shown in Figs. 4(b), 3(a),
and 3(b) was the occurrence of the rotational Doppler effect
in the former case. The rotational frequency dependence of
these four shifts in Fig. 4(a) is summarized in Fig. 4(c). The
dependence of the peak and shoulder frequencies on rotational
frequency is proportional to �/2π and (

√
3 − 1)�/2π , re-

spectively.

IV. THEORETICAL CALCULATIONS

A. Only coil rotation

We formulate the NQR spectra shown in Figs. 2(a) and 2(b)
in the following. The time evolution of the nuclear spin states

FIG. 5. (a) Definition of the coordinate axes for the calcula-
tions, the direction of rotation, and the principal axis of the EFG.
(b) Schematic illustration of the energy state splitting due to the
Zeeman interaction of the Barnett field in addition to the quadrupole
interaction. (c) The green and light and dark blue curves are
the simulations using Eqs. (17a)–(17d) or Eqs. (32a)–(32d) and
Eqs. (24a)–(24d) or (33a)–(33d) for the upper and lower NQR spec-
tra, respectively. The red curve in (c) is the experimental data shown
in Fig. 4(a) with a rotational frequency of 10 kHz.

can be written as

|k; t〉 = e
∫ t

0 dt ′HQ/ih̄ |k; 0〉 , (2)

where k denotes 3/2, 1/2, −1/2, or −3/2. We define the
operator for the rotational Doppler effect as follows:

e−iθJ ′
y e−i�tJ ′

z J ′
je

i�tJ ′
z eiθJ ′

y , (3)

where J ′
j denotes J ′

z or J ′
±. J ′

z and J ′
± are spin operators paral-

lel and perpendicular to the rotation axis, respectively. e±iθJ ′
y

expresses the rotation of the spin state |k〉 around the y axis
in terms of θ , which is the angle between the coil rotation
axis and the principal axis of the EFG in the crystal and is ex-
pressed as cos θ = √

1/3, as shown in Fig. 5(a). e−i�tJ ′
z J ′

je
i�tJ ′

z

represents the rotation of the observable J ′
j along the z axis

with a frequency of �/2π . This operator corresponds to the
rotation with the sample coil as the observer. The general
formula for the expected value of the time-dependent spin
state for a rotational Doppler effect can be expressed as

〈k′; t | e−iθJ ′
y e−i�tJ ′

z J ′
je

i�tJ ′
z eiθJ ′

y |k; t〉
= 〈k′; 0| e− ∫ t

0 dt ′HQ/ih̄e−iθJ ′
y e−i�tJ ′

z J ′
je

i�tJ ′
z eiθJ ′

y

× e
∫ t

0 dt ′HQ/ih̄ |k; 0〉
= e−(Ek′

Q −Ek
Q )t/ih̄ 〈k′; 0| e−iθJ ′

y e−i�tJ ′
z J ′

je
i�tJ ′

z eiθJ ′
y |k; 0〉 , (4)
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where Ek
Q is the eigenvalue ofHQ for spin state k.

In the case of a longitudinal coil [Fig. 2(b)], we define the
observable J ′

j to be J ′
z. Then, the observable can be calculated

as follows:

e−iθJ ′
y e−i�tJ ′

z J ′
ze

i�tJ ′
z eiθJ ′

y = e−iθJ ′
y J ′

ze
iθJ ′

y . (5)

The expected values can be calculated as

〈3/2; t | e−iθJ ′
y e−i�tJ ′

z J ′
ze

i�tJ ′
z eiθJ ′

y |1/2; t〉
= eiωQt 〈3/2; 0| e−iθJ ′

y J ′
ze

iθJ ′
y |1/2; 0〉 , (6a)

〈−3/2; t | e−iθJ ′
y e−i�tJ ′

z J ′
ze

i�tJ ′
z eiθJ ′

y |−1/2; t〉
= eiωQt 〈−3/2; 0| e−iθJ ′

y J ′
ze

iθJ ′
y |−1/2; 0〉 . (6b)

This result indicates that, in the case of the longitudinal
coil rotation, the expected value of a spin state rotates with
frequency ωQ/2π and the NQR signal does not exhibit any
shift. This result is consistent with the NQR spectra, as shown
in Fig. 2(b).

On the other hand, in the case of transverse coil rotation
[Fig. 2(a)], the observable J ′

j is J ′
±. Then, the operator can be

calculated as follows:

e−iθJ ′
y e−i�tJ ′

z J ′
±ei�tJ ′

z eiθJ ′
y

= e−iθJ ′
y e−i�tJ ′

z (J ′
x ± iJ ′

y)ei�tJ ′
z eiθJ ′

y

= e−iθJ ′
y [(J ′

x cos �t + J ′
y sin �t )

± i(−J ′
x sin �t + J ′

y cos �t )]eiθJ ′
y

= e−iθJ ′
y [(J ′

xe∓�t + J ′
ye∓(�t−π/2))]eiθJ ′

y

= e−iθJ ′
y [(J ′

xe∓�t ± iJ ′
ye∓�t )]eiθJ ′

y

= e∓�t (e−iθJ ′
y J ′

±eiθJ ′
y ). (7)

The expected values are given by

〈3/2; t | e−iθJ ′
y e−i�tJ ′

z J ′
+ei�tJ ′

z eiθJ ′
y |1/2; t〉

= eiωQt e−i�t 〈3/2; 0| e−iθJ ′
y J ′

+eiθJ ′
y |1/2; 0〉 , (8a)

〈−3/2; t | e−iθJ ′
y e−i�tJ ′

z J ′
−ei�tJ ′

z eiθJ ′
y |−1/2; t〉

= eiωQt ei�t 〈−3/2; 0| e−iθJ ′
y J ′

−eiθJ ′
y |−1/2; 0〉 . (8b)

This result indicates that, in the case of transverse coil
rotation, the NQR signal splits into two lines with an NQR
shift of ±�/2π and a center frequency of ωQ/2π . These NQR
intensities can be calculated from the transition probability as
follows:

| 〈3/2; 0| J+ |1/2; 0〉 |2= 3/4, (9a)

| 〈−3/2; 0| J− |−1/2; 0〉 |2= 3/4. (9b)

The NQR intensities of the two lines are equal. These
calculations satisfactorily reproduce the observed NQR spec-
tra shown in Fig. 2(a). The rotational Doppler effect arises
from the noncommutative property of J ′

± and e±i�J ′
z for the

transverse coil rotation as expressed in Eq. (7). It should be
noted here that the transition probability was calculated using
J± (not J ′

±), whose quantization axis is along the principal axis
of the EFG [Fig. 5(a)].

B. Simultaneous sample and sample coil rotation

We describe the NQR line splittings due to the Barnett field
shown in Figs. 3(a) and 3(b) in the following. In addition to
the EFG, when the Barnett field acted on the nuclei, the two
degenerate spin states of |±3/2〉 and |±1/2〉 split into four
spin states, as shown in Fig. 5(b). In the present case, H� of
the Zeeman interaction due to the Barnett field is much weaker
than HQ of the quadrupole interaction. Thus, the eigenstate
can be obtained by treating H� as a perturbation term [37].
As the Barnett field emerges along the rotation axis, H� can
be written as follows:

H� = −γ h̄B�(Jz cos θ + Jx sin θ ), (10)

where θ denotes the angle between the rotation axis and the
principal axis of the EFG. In this formula, the quantization
axis is along the principal axis of the EFG, and thus, Jz is also
along the principal axis of the EFG. For J = 3/2, the matrix
elements ofH� can be written as

− h̄�

2

⎛
⎜⎜⎜⎝

√
3 √

1/3 2
√

2/3
2
√

2/3 −√
1/3

−√
3

⎞
⎟⎟⎟⎠, (11)

where the columns and the rows are in the order of |3/2〉,
|1/2〉, |−1/2〉, and |−3/2〉. There is no coupling between the
states of ±3/2 and ±1/2 because H� is treated as a pertur-
bation, that is, H� 
 HQ. The ±1/2 block is diagonalized
using an unitary operator as follows:

R(α)H�R(−α) = −
√

3h̄�

2

⎛
⎜⎝

1
1

−1
−1

⎞
⎟⎠. (12)

Here R(α) is expressed as follows:

R(α) =

⎛
⎜⎝

1
cos α sin α

− sin α cos α

1

⎞
⎟⎠,

cos α =
√

2/3, sin α =
√

1/3. (13)

The eigenvectors of the diagonalized H� are in the order
of |3/2〉, |+〉, |−〉, and |−3/2〉, where |+〉 and |−〉 are
expressed as |+〉 = √

2/3 |1/2〉 + √
1/3 |−1/2〉 and |−〉 =

−√
1/3 |1/2〉 + √

2/3 |−1/2〉. Then, the single transition
splits into four as |+3/2〉 ↔ |+〉, |+3/2〉 ↔ |−〉, |−3/2〉 ↔
|+〉, and |−3/2〉 ↔ |−〉.

The time evolution of the nuclear spin states can be written
as

|k; t〉 = e
∫ t

0 dt ′HQ/ih̄e
∫ t

0 dt ′H�/ih̄ |k; 0〉 . (14)

We also define the operator for the Barnett field as

e−iθJ ′
y J ′

je
iθJ ′

y . (15)

Compared with Eq. (3), the e±i�tJ ′
z operator is absent owing

to the lack of relative rotation between the sample and sam-
ple coil. Instead of the e±i�tJ ′

z operator, the rotation effect
is reflected in the Barnett field. The general formula for the
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expected value of the time-dependent spin state for a Barnett
field can be expressed as

〈k′; t | e−iθJ ′
y J ′

je
iθJ ′

y |k; t〉
= 〈k′; 0| e− ∫ t

0 dt ′H�/ih̄e− ∫ t
0 dt ′HQ/ih̄e−iθJ ′

y J ′
je

iθJ ′
y

× e
∫ t

0 dt ′HQ/ih̄e
∫ t

0 dt ′H�/ih̄ |k; 0〉
= e−(Ek′

Q −Ek
Q )t/ih̄e−(Ek′

� −Ek
� )t/ih̄ 〈k′; 0| e−iθJ ′

y J ′
je

iθJ ′
y |k; 0〉 .

(16)

In the case of the longitudinal coil shown in Fig. 3(b), the
observable J ′

j is J ′
z. Then, the expected values are given by

〈3/2; t | e−iθJ ′
y J ′

ze
iθJ ′

y |+; t〉
= eiωQt 〈3/2; 0| e−iθJ ′

y J ′
ze

iθJ ′
y |+; 0〉 , (17a)

〈3/2; t | e−iθJ ′
y J ′

ze
iθJ ′

y |−; t〉
= eiωQt e−i

√
3�t 〈3/2; 0| e−iθJ ′

y J ′
ze

iθJ ′
y |−; 0〉 , (17b)

〈−3/2; t | e−iθJ ′
y J ′

ze
iθJ ′

y |+; t〉
= eiωQt ei

√
3�t 〈−3/2; 0| e−iθJ ′

y J ′
ze

iθJ ′
y |+; 0〉 , (17c)

〈−3/2; t | e−iθJ ′
y J ′

ze
iθJ ′

y |−; t〉
= eiωQt 〈−3/2; 0| e−iθJ ′

y J ′
ze

iθJ ′
y |−; 0〉 . (17d)

This result indicates that, in the case of longitudinal coil
rotation, the NQR signal splits into three lines with a shift of
±√

3�/2π and a center frequency of ωQ/2π . The transition
probability can be written as

| 〈3/2; 0| J+ |+; 0〉 |2= 1/2, (18a)

| 〈3/2; 0| J+ |−; 0〉 |2= 1/4, (18b)

| 〈−3/2; 0| J− |+; 0〉 |2= 1/4, (18c)

| 〈−3/2; 0| J− |−; 0〉 |2= 1/2. (18d)

The ratio of the NQR intensities with the frequencies
(−√

3� + ωQ)/2π , ωQ/2π , and (
√

3� + ωQ)/2π is 1:4:1.
The results satisfactorily reproduce the observed NQR spectra
shown in Fig. 3(b).

In the case of the transverse coil shown in Fig. 3(a), the
observable J ′

j is J ′
±. Then, the expected values are given by

〈3/2; t | e−iθJ ′
y J ′

+eiθJ ′
y |+; t〉

= eiωQt 〈3/2; 0| e−iθJ ′
y J ′

+eiθJ ′
y |+; 0〉 , (19a)

〈3/2; t | e−iθJ ′
y J ′

+eiθJ ′
y |−; t〉

= eiωQt e−i
√

3�t 〈3/2; 0| e−iθJ ′
y J ′

+eiθJ ′
y |−; 0〉 , (19b)

〈−3/2; t | e−iθJ ′
y J ′

−eiθJ ′
y |+; t〉

= eiωQt ei
√

3�t 〈−3/2; 0| e−iθJ ′
y J ′

+eiθJ ′
y |+; 0〉 , (19c)

〈−3/2; t | e−iθJ ′
y J ′

−eiθJ ′
y |−; t〉

= eiωQt 〈−3/2; 0| e−iθJ ′
y J ′

+eiθJ ′
y |−; 0〉 . (19d)

The result indicates that, in the case of transverse coil
rotation, the NQR signal also splits into three lines with an
NQR shift of ±√

3�/2π and a center frequency of ωQ/2π .
The transition probability is given by Eqs. (18a)–(18d). The

ratio of the NQR intensities with frequencies of (−√
3� +

ωQ)/2π , ωQ/2π , and (
√

3� + ωQ)/2π is 1:4:1. The results
reproduce the observed NQR spectra shown in Fig. 3(a).

As shown in Figs. 3(a) and 3(b), the two sets of observed
NQR spectra were identical. The reason for this is the absence
of the rotational Doppler effects owing to the lack of relative
rotation between the sample and sample coil.

C. Only sample rotation

We formulate the NQR spectra shown in Figs. 4(a) and 4(b)
in the following. The structures of the NQR spectra can be
explained in two ways. The first involves the combination
of the Barnett field and the rotational Doppler effect. In this
case, we first consider the NQR spectra due to the Barnett
field in the rotating frame of reference and then consider
the NQR spectra in the laboratory frame of reference, taking
into account the rotational Doppler effect due to the relative
rotation. The other involves the Berry phase. In this case, we
directly observe the spin dynamics in the rotating sample from
the laboratory frame of reference.

1. Barnett field and rotational Doppler effect

First, we consider the Barnett field in the same rotating
frame of reference as the sample. The NQR line splits into
three lines owing to the Barnett field, as shown in Figs. 3(a)
and 3(b). Then, we apply the rotational Doppler effect for
each resonance frequency. The time evolution of the nuclear
spin states is given by Eq. (14). The operator of the rotational
Doppler effect is as follows:

e−iθJ ′
y ei�tJ ′

z J ′
je

−i�tJ ′
z eiθJ ′

y . (20)

Here note that the sign of i�tJ ′z is opposite that in Eq. (3).
This difference arises from the difference in the direction of
relative rotation; Eq. (3) expresses the rotation of the sample
coil, whereas Eq. (20) expresses the rotation of the sample
itself. The general formula for the expected value of the time-
dependent spin state for the combination of the Barnett field
and the rotational Doppler effect can be written as

〈k′; t | e−iθJ ′
y ei�tJ ′

z J ′
je

−i�tJ ′
z eiθJ ′

y |k; t〉
= 〈k′; 0| e− ∫ t

0 dt ′H�/ih̄e− ∫ t
0 dt ′HQ/ih̄e−iθJ ′

y ei�tJ ′
z J ′

je
−i�tJ ′

z eiθJ ′
y

× e
∫ t

0 dt ′HQ/ih̄e
∫ t

0 dt ′H�/ih̄ |k; 0〉
= e−(Ek′

Q −Ek
Q )t/ih̄e−(Ek′

� −Ek
� )t/ih̄ 〈k′; 0| e−iθJ ′

y ei�tJ ′
z J ′

j

× e−i�tJ ′
z eiθJ ′

y |k; 0〉 . (21)

In the case of the longitudinal coil shown in Fig. 4(b), the
observable J ′

j is J ′
z. Then, the operator is calculated:

e−iθJ ′
y ei�tJ ′

z J ′
ze

−i�tJ ′
z eiθJ ′

y = e−iθJ ′
y J ′

ze
iθJ ′

y . (22)

The expected values are given by Eqs. (17a)–(17d). This result
indicates that, in the case of the longitudinal coil, the NQR
signal splits into three lines with an NQR shift of ±√

3�/2π

and a center frequency of ωQ/2π . The transition probability
is given by Eqs. (18a)–(18d). The ratio of the NQR intensities
with frequencies of (−√

3� + ωQ)/2π , ωQ/2π , and (
√

3� +
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ωQ)/2π is 1:4:1. This calculation satisfactorily reproduces the
observed NQR spectra as shown in Fig. 4(b).

In the case of the transverse coil shown in Fig. 4(a), the
observable J ′

j is J ′
±. Then, the operators can be calculated as

e−iθJ ′
y ei�tJ ′

z J ′
±e−i�tJ ′

z eiθJ ′
y = e±i�t (e−iθJ ′

y J ′
±eiθJ ′

y ). (23)

The expected values are given by

〈3/2; t | e−iθJ ′
y ei�tJ ′

z J ′
+e−i�tJ ′

z eiθJ ′
y |+; t〉

= eiωQt ei�t 〈3/2; 0| e−iθJ ′
y J ′

+eiθJ ′
y |+; 0〉 , (24a)

〈3/2; t | e−iθJ ′
y ei�tJ ′

z J ′
+e−i�tJ ′

z eiθJ ′
y |−; t〉

= eiωQt e−i
√

3�t ei�t 〈3/2; 0| e−iθJ ′
y J ′

+eiθJ ′
y |−; 0〉 , (24b)

〈−3/2; t | e−iθJ ′
y ei�tJ ′

z J ′
−e−i�tJ ′

z eiθJ ′
y |+; t〉

= eiωQt ei
√

3�t e−i�t 〈−3/2; 0| e−iθJ ′
y J ′

−eiθJ ′
y |+; 0〉 , (24c)

〈−3/2; t | e−iθJ ′
y ei�tJ ′

z J ′
−e−i�tJ ′

z eiθJ ′
y |−; t〉

= eiωQt e−i�t 〈−3/2; 0| e−iθJ ′
y J ′

−eiθJ ′
y |−; 0〉 . (24d)

This result indicates that, in the case of the transverse
coil, the NQR signal splits into four lines with NQR shifts
of [±(

√
3 − 1)�]/2π and ±�/2π . The transition proba-

bility is given by Eqs. (18a)–(18d). The ratio of the NQR
intensities with frequencies of (� + ωQ)/2π , [(

√
3 − 1)� +

ωQ]/2π , [−(
√

3 − 1)� + ωQ]/2π , and (−� + ωQ)/2π is
2:1:1:2. This calculation satisfactorily reproduces the ob-
served NQR spectra shown in Fig. 4(a). The NQR shifts
expressed in Eqs. (24a)–(24d) are simulated in Fig. 5(c). The
upper NQR spectrum in Fig. 5(c) represents line splitting due
to the Barnett field expressed in Eqs. (17a)–(17d). The lower
NQR spectrum in Fig. 5(c) is the resulting NQR spectrum af-
ter including the rotational Doppler effect [Eqs. (24a)–(24d)].

2. Berry phase

First, we provide a description of the Berry phase for the
experimental results shown in Figs. 4(a) and 4(b). In the
setup shown in Fig. 4, the nuclear precession in the rotating
sample is observed by an observer in the laboratory frame
of reference. In this case, the principal axis of the EFG is
rotating. This means that the quantization axis of the nuclear
spin system is also rotating. In this situation, a cyclic time-
dependent Hamiltonian should be resolved. In an adiabatic
limit, in which the rotational frequency is much less than that
of the EFG, that is, ωQ � �, the Hamiltonian can be approx-
imately reduced by introducing the Berry phase [11,38].

We consider the time-dependent Hamiltonian HQ(t ) as
follows:

〈k′; 0|HQ |k; 0〉 = 〈k′; 0|UU †HQUU † |k; 0〉
= 〈k′; t |HQ(t ) |k; t〉 . (25)

Here U = e−iθJ ′
y ei�tJ ′

z . Then, |k : t〉 = e−i�tJ ′
z eiθJ ′

y |k : 0〉
means that the spin state is tilted from the z axis by θ and
rotates about the z axis with frequency �/2π . According to
the Berry description, the spin state can be written as follows:

eiγk e
∫ t dsHQ/ih̄ |k; t〉 , (26)

where γk is the Berry phase and its accumulation is written as

γk′k = i
∫ t

0
dt ′ 〈k′; t ′| ∂

∂t ′ |k; t ′〉

= i
∫ t

0
dt ′ 〈k′; 0| e−iθJ ′

y ei�t ′J ′
z

∂

∂t ′ e
−i�t ′J ′

z eiθJ ′
y |k; 0〉

=
∫ t

0
dt ′ 〈k′; 0| e−iθJ ′

y ei�t ′J ′
z (�J ′

z )e−i�t ′J ′
z eiθJ ′

y |k; 0〉

= �t 〈k′; 0| e−iθJ ′
y J ′

ze
iθJ ′

y |k; 0〉
= �t 〈k′; 0| (J ′

z cos θ + J ′
x sin θ ) |k; 0〉 . (27)

Then, the matrix element can be expressed as

�t

2

⎛
⎜⎜⎜⎝

√
3 √

1/3 2
√

2/3
2
√

2/3 −√
1/3

−√
3

⎞
⎟⎟⎟⎠, (28)

where the columns and the rows are in the order of |3/2〉,
|1/2〉, |−1/2〉, and |−3/2〉. There is no coupling between
the states of ±3/2 and ±1/2 owing to the adiabatic limit
ωQ � �. The ±1/2 block is diagonalized using the unitary
operator defined in Eq. (13) as follows:

√
3�t

2

⎛
⎜⎝

1
1

−1
−1

⎞
⎟⎠. (29)

The eigenvectors of the diagonalized γk′k are in the order of
|3/2〉, |+〉, |−〉, and |−3/2〉.

The general formula for Berry’s description of the time-
dependent spin state is given by

〈k′; t | e− ∫ t dt ′HQ/ih̄e−iγk′ J ′
je

iγk e
∫ t dt ′HQ/ih̄ |k; t〉

= 〈k′; 0| e−iθJ ′
y ei�tJ ′

z e− ∫ t dt ′HQ/ih̄e−iγk′ J ′
je

iγk e
∫ t dt ′HQ/ih̄

× e−i�tJ ′
z eiθJ ′

y |k; 0〉
= e−i(γk′ −γk )e−(Ek′

Q −Ek
Q )t/ih̄ 〈k′; 0| e−iθJ ′

y ei�tJ ′
z J ′

j

× e−i�tJ ′
z eiθJ ′

y |k; 0〉 . (30)

In the case of the longitudinal coil shown in Fig. 4(b), the
observable J ′

j is J ′
z. Then, the operator is calculated as

e−iθJ ′
y ei�tJ ′

z J ′
ze

−i�tJ ′
z eiθJ ′

y = e−iθJ ′
y J ′

ze
iθJ ′

y . (31)

The expected values are written as

〈3/2; t | e− ∫ t dt ′HQ/ih̄e−iγk′ J ′
ze

iγk e
∫ t dt ′HQ/ih̄ |+; t〉

= eiωQt 〈3/2; 0| e−iθJ ′
y J ′

ze
iθJ ′

y |+; 0〉 , (32a)

〈3/2; t | e− ∫ t dt ′HQ/ih̄e−iγk′ J ′
ze

iγk e
∫ t dt ′HQ/ih̄ |−; t〉

= eiωQt e−i
√

3�t 〈3/2; 0| e−iθJ ′
y J ′

ze
iθJ ′

y |−; 0〉 , (32b)

〈−3/2; t | e− ∫ t dt ′HQ/ih̄e−iγk′ J ′
ze

iγk e
∫ t dt ′HQ/ih̄ |+; t〉

= eiωQt ei
√

3�t 〈−3/2; 0| e−iθJ ′
y J ′

ze
iθJ ′

y |+; 0〉 , (32c)

〈−3/2; t | e− ∫ t dt ′HQ/ih̄e−iγk′ J ′
ze

iγk e
∫ t dt ′HQ/ih̄ |−; t〉

= eiωQt 〈−3/2; 0| e−iθJ ′
y J ′

ze
iθJ ′

y |−; 0〉 . (32d)

174308-7



CHUDO, MATSUO, MAEKAWA, AND SAITOH PHYSICAL REVIEW B 103, 174308 (2021)

This result indicates that, in the case of the longitudinal
coil rotation, the NQR signal also splits into three lines with
an NQR shift of ±√

3�/2π and a center frequency ωQ/2π .
The transition probability is given by Eqs. (18a)–(18d). The
ratio of the NQR intensities with frequencies of (−√

3� +
ωQ)/2π , ωQ/2π , and (

√
3� + ωQ)/2π is 1:4:1. The result

satisfactorily reproduces the NQR spectra shown in Fig. 4(b).
In the case of transverse coil rotation as shown in Fig. 4(a),

the observable Jj is J±. Then, the expected values are given
by

〈3/2; t | e− ∫ t dt ′HQ/ih̄e−iγk′ J ′
+eiγk e

∫ t dt ′HQ/ih̄ |+; t〉
= eiωQt ei�t 〈3/2; 0| e−iθJ ′

y J ′
+eiθJ ′

y |+; 0〉 , (33a)

〈3/2; t | e− ∫ t dt ′HQ/ih̄e−iγk′ J ′
+eiγk e

∫ t dt ′HQ/ih̄ |−; t〉
= eiωQt e−i

√
3�t ei�t 〈3/2; 0| e−iθJ ′

y J ′
+eiθJ ′

y |−; 0〉 , (33b)

〈−3/2; t | e− ∫ t dt ′HQ/ih̄e−iγk′ J ′
−eiγk e

∫ t dt ′HQ/ih̄ |+; t〉
= eiωQt ei

√
3�t e−i�t 〈−3/2; 0| e−iθJ ′

y J ′
−eiθJ ′

y |+; 0〉 , (33c)

〈−3/2; t | e− ∫ t dt ′HQ/ih̄e−iγk′ J ′
−eiγk e

∫ t dt ′HQ/ih̄ |−; t〉
= eiωQt e−i�t 〈−3/2; 0| e−iθJ ′

y J ′
−eiθJ ′

y |−; 0〉 . (33d)

This result indicates that, in the case of transverse coil
rotation, the NQR signal splits into four lines with NQR
shifts of ±(

√
3 − 1)�/2π and ±�/2π . The transition prob-

ability is given by Eqs. (18a)–(18d). The ratio of the NQR
intensities with frequencies of (� + ωQ)/2π , [(

√
3 − 1)� +

ωQ]/2π , [−(
√

3 − 1)� + ωQ]/2π , and (−� + ωQ)/2π is
2:1:1:2. This result satisfactorily reproduces the observed
NQR spectra shown in Fig. 4(a). The NQR shifts expressed
in Eqs. (33a)–(33d) are simulated in Fig. 5(c). The upper
NQR spectrum in Fig. 5(c) represents line splitting due to the
Berry phase expressed in Eqs. (32a)–(32d). The lower NQR
spectrum in Fig. 5(c) is the resulting NQR spectrum after
including the rotational Doppler effect [Eqs. (33a)–(33d)].

V. DISCUSSION

As shown in Figs. 2(a), 2(b), 3(a), and 3(b), the NQR
spectra obtained under simultaneous sample and sample coil
rotation were completely different from those recorded un-
der only coil rotation. This finding demonstrates that the
rotational Doppler effect and the Barnett field are distinct
phenomena. Under the setup with simultaneous rotation of the
sample and sample coil, the NQR spectra split into three lines
and could be simply explained by introducing the Barnett field
into the rotating frame. This was also the case for the NQR
spectra obtained using the longitudinal and transverse coils.
The reason for this is that there is no relative rotation between
the sample and sample coil; thus, the time-dependent operator
e±i�tJ ′

z is not necessary.
In contrast, as shown in Figs. 2(a) and 2(b), under the

setup with only transverse coil rotation, the NQR spectra split
into two lines, whereas under longitudinal coil rotation the
NQR spectra did not change. This difference arises from the
noncommutative property of J ′

± and ei�tJ ′
z for transverse coil

rotation and the commutative property of J ′
z and ei�tJ ′

z for lon-
gitudinal coil rotation. It should be noted that longitudinal coil

in the rotating frame in the laboratory frame

Barnett field Berry phase

θ

Ω/γ

=EFG EFG
Ω

θ

FIG. 6. Illustration of the equivalence of the Barnett field and the
Berry phase.

rotation, in which the coil axis is parallel to the rotation axis,
does not cause the rotational Doppler effect. Consequently,
the coupling between the coupling coil and the stationary coil,
which transmits the NQR signal from the rotating frame to
the laboratory frame, does not cause rotational Doppler effects
because both the coupling coil and stationary coil are parallel
to the rotation axis.

In the case of only sample rotation, as shown in Figs. 4(a)
and 4(b), we have provided two explanations. The first is
based on the combination of the Barnett field in the rotat-
ing frame and the rotational Doppler effect and the second
involves the Berry phase. Both explanations account for the
observed NQR spectra shown in Figs. 4(a) and 4(b) owing
to the equivalence of the Barnett field and the Berry phase
accumulation, that is, e−(Ek′

� −Ek
� )t/ih̄ = e−i(γk′ −γk ), as shown in

Eqs. (21) and (30). The cause of this is the identical matrix
elements due to the equivalence of the perturbation of the
Barnett field in the rotating frame and the Berry phase ac-
cumulation in the adiabatic limit in the laboratory frame, as
shown in Eqs. (11) and (28). This relation is illustrated in
Fig. 6. The Barnett field and the Berry phase can be regarded
as a gauge field in the rotating frame and the laboratory frame,
respectively [35]. The difference in the NQR spectra between
Figs. 4(a) and 4(b) arises from the rotational Doppler effect,
which appears in only the case of the transverse coil. The re-
lation between the Barnett field, the rotational Doppler effect,
and the Berry phase effect is summarized in Table I.

According to our previous reports describing the NMR de-
tection of Barnett fields [25], the NMR lines shift by the same
frequency as the rotational frequency �/2π under simultane-
ous rotation of the sample and sample coil. Because in this
setup the rotation axis is parallel to the external field, there is
no accumulation of the Berry phase. The NMR shift originates
from the Barnett field due to sample rotation. This interpre-
tation is consistent with the present NQR results shown in
Fig. 3(a). Under only sample coil rotation [26], the NMR lines
also shift by the same frequency as the rotational frequency
�/2π . As the sample is stationary in this setup, no Barnett
field acts upon it. Therefore, the NMR shift arises from the
rotational Doppler effect. This interpretation is consistent with
the present results shown in Fig. 2(a). Although the two setups
provide NMR shifts of the same magnitude, they result in dif-
ferent NQR line splittings. These results indicate that the case
of simultaneous sample and sample coil rotation is fundamen-
tally different from that of only sample coil rotation. In the
case of only sample rotation, the Barnett field and rotational
Doppler effect cancel each other out, resulting in no NMR
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TABLE I. Variation of the physical phenomena arising from rotation depending on the experimental setup.

Setup Coil ‖ � Coil ⊥ �

Only coil rotation Rotational Doppler effect
Sample and sample coil rotation Barnett field Barnett field
Only sample rotation Barnett field Barnett field + rotational Doppler effect

= Berry phase = Berry phase + rotational Doppler effect

shift. As shown by the present NQR experiments, the forms
of the Hamiltonians are different between the quadrupole and
the Barnett field terms, which generates different NQR shifts,
resulting in no cancellation of the Barnett field and rotational
Doppler effects even in the setup involving only sample ro-
tation. Thus, the criticism in Ref. [34] that the NMR shifts
observed for only coil rotation and simultaneous sample and
sample coil rotation can be explained solely by the sample coil
rotation and therefore that rotating the sample is not essential
is demonstrated to be irrelevant.

VI. CONCLUSION

In conclusion, we have evaluated the role of the rota-
tional Doppler effect, Barnett field, and Berry phase in NQR
measurements under three setups: only sample coil rotation,
simultaneous sample and sample coil rotation, only sample
rotation. We have experimentally shown the difference be-
tween the Barnett field and the rotational Doppler effect and

the equivalence of the Barnett field in the rotating frame and
the Berry phase in the laboratory frame. We have also ex-
perimentally confirmed the existence of the Barnett field and
the rotational Doppler effect. The results indicate that, when
describing the effects of mechanical rotation on magnetic
resonance measurements such as NMR and NQR, one should
simultaneously take into consideration the Barnett field, the
rotational Doppler effect, and the Berry phase.
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