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Classical many-body chaos with and without quasiparticles
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We study correlations, transport, and chaos in a Heisenberg magnet as a classical model many-body system. By
varying temperature and dimensionality, we can tune between settings with and without symmetry breaking and
accompanying collective modes or quasiparticles (spin waves) which in the limit of low temperatures become
increasingly long-lived. Changing the sign of the exchange interaction from a ferro- to an antiferromagnetic
one varies the spin-wave spectrum, and hence the low-energy spectral density. We analyze both conventional
and out-of-time-ordered spin correlators (decorrelators) to track the spreading of a spatiotemporally localized
perturbation—the wing beat of the butterfly—as well as transport coefficients and Lyapunov exponents. We
identify a number of qualitatively different regimes. Trivially, at T = 0, there is no dynamics at all. In the limit
of low temperature, T = 0+, integrability emerges, with infinitely long-lived magnons; here the wave packet
created by the perturbation propagates ballistically, yielding a light cone at the spin-wave velocity which thus
subsumes the butterfly velocity; inside the light cone, a pattern characteristic of the free spin-wave spectrum
is visible at short times. On top of this, residual interactions (nonlinearities in the equations of motion) lead to
spin-wave lifetimes which, while divergent in this limit, remain finite at any nonzero T . At the longest times, this
leads to a standard chaotic regime; for this regime, we show that the Lyapunov exponent is simply proportional to
the (inverse) spin-wave lifetime. Visibly strikingly, between this and the short-time integrable regimes, a scarred
regime emerges: Here, the decorrelator is spatiotemporally highly nonuniform, being dominated by rare and
random scattering events seeding secondary light cones. As the spin correlation length decreases with increasing
T , the distinction between these regimes disappears and at high temperature the previously studied chaotic
paramagnetic regime emerges. For this, we elucidate how, somewhat counterintuitively, the ballistic butterfly
velocity arises from a diffusive spin dynamics.

DOI: 10.1103/PhysRevB.103.174302

I. INTRODUCTION

The study of many-body chaos has gained new momentum
at the confluence of two developments. One is the ability to
access coherent quantum many-body dynamics in a variety
of experimental platforms [1–6]. The other is the nature of
information scrambling in quantum field theories of strongly
correlated condensed matter and gravity, including their pos-
sible interconnections [7–17].

A central quantitative measure of (quantum) chaos that
has emerged in this recent progress are out-of-time ordered
commutators (OTOCs) [18], which, in a class of quantum
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many-body systems, show exponential temporal growth and
or ballistic propagation akin to classical chaos also in quantum
systems [19–33]. Broadly speaking, these are found to either
have a sharp front propagating ballistically, e.g., in large N and
coupled Sachdev-Ye-Kitaev models [17,33,34], or show diffu-
sively broadening fronts as in random circuit models with and
without conservation laws [29–32,35], which is universally
captured by velocity-dependent Lyapunov exponents [33,36].

In parallel, the classical versions of OTOCs (alternatively
dubbed decorrelators) have been applied to study the spa-
tiotemporal chaos in classical many-body systems [37–41], in
part with the goal to elucidate their significance in the more
conventional realm of classically chaotic models, but also
to understand the semiclassical limit of many-body quantum
chaos. In the case of chaotic classical many-body systems
with short-range correlations, the study of the decorrelators
clearly reveals two complementary aspects of the butterfly
effect: (1) the exponential temporal growth of a localized (in
real space) infinitesimal difference in the initial conditions
characterized by the Lyapunov exponent, λ, and (2) its bal-
listic spread characterized by the butterfly speed, vb [37,38].

A natural question then pertains to the dependence and
relation between the above chaos timescales, λ−1, and length
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scales, vbλ
−1, on the thermodynamic and dynamic properties

of the system. This assumes particular importance with regard
to two central results about chaos in quantum-many body sys-
tems where it has been shown that: (1) in maximally chaotic
system, the Lyapunov exponent is universally bounded by the
absolute temperature as λmax = 2πkBT/h̄ [8], and (2) under
selected circumstances, the diffusion constant, D, of a con-
served charge and the chaos time and length scales are related
via D ∼ v2

b/λ.
The above two questions remain equally important in the

context of classical many-body systems, where it has recently
been shown that the maximal bound is generically violated in
the disordered phase of spin-rotation symmetric classical spin
systems and thermalized fluids where λ ∝ √

T is observed
[37–39,41]: the limits of temperature T → 0 and spin S → ∞
do not commute. In particular, in a classical spin liquid that
remains disordered down to T = 0, the above behavior was
found down to the lowest temperatures as well as DS ∼ v2

b/λ

for the spin diffusion [38].
The interplay of symmetries and finite temperature, how-

ever, is much richer in many-body systems, including the
possibility of spontaneous symmetry breaking at low temper-
atures through a thermal phase transition that is accessed by
lowering the temperature.

In this paper, we concern ourselves with the study of the
spatiotemporal chaos in a paradigmatic many-body system of
classical spins that is tuned through a spontaneous symmetry-
breaking magnetic phase transition at finite temperatures or
that at least exhibits a divergent correlation length at low tem-
peratures. In particular, we consider short-range interacting
spin rotation invariant Heisenberg Hamiltonians for classi-
cal spins sitting on a d-dimensional hypercubic lattice (with
d = 1, 2, 3),

H = J
∑
〈i j〉

Si · S j, (1)

where Si are unit vectors encoding classical three-component
spins at each lattice site, i, J is the nearest-neighbor exchange
constants for spins joined by bond 〈i j〉, and we study both
ferromagnetic, J < 0, and antiferromagnetic, J > 0, cases.
The dynamics we consider is precessional, i.e., given by the
Landau-Lifshitz equations of motion, Eq. (12) [42,43], which
are generated either by canonical Poisson brackets in the clas-
sical case or commutators for quantum systems.

Indeed, an advantage of this model system lies in such
a direct connection of the classical model to the quantum
system in the form of a semiclassical limit, where observables
tracking the chaotic properties can easily be constructed to
apply to both cases [37], providing a potentially more di-
rect connection of classical and quantum chaos than in other
situations.

We find that, in practice, even though the Heisenberg mag-
net in d = 1 has no true long-range order at any nonzero
temperature [44], that it is most convenient to focus our nu-
merical efforts on this case: Thanks to its divergent correlation
length in the limit of zero temperature, it does exhibit a regime
where for practical purposes, long-range order and long-lived
spin-waves exist [45], while large linear system sizes, up to
L = 4 × 104 spins, are numerically tractable. However, we

also present numerical data on systems in d = 2, 3 with a sim-
ilar number of spins but correspondingly smaller linear sizes.
Indeed, most of our results are generally consistent across
dimensions and in absence (d = 1, 2) or presence (d = 3)
of a true thermal phase transition. The situations where the
presence or absence of the phase transition is of essential
importance—as in the case of the temperature dependence of
the butterfly velocity (Fig. 12)—are discussed at their respec-
tive places.

We provide a systematic understanding of the following
questions: Are there distinct regimes for chaos in accordance
with these phases and, if so, what are their properties? How
can we characterize them through observables? What role do
quasiparticles, present in systems with spontaneously broken
symmetry, play? A first step toward answering these questions
was the study of the temperature dependence of chaos in
absence of phase transitions in a classical spin system [38].
There are, of course, numerous precursors to this paper which
have considered spatiotemporal chaos in classical many-body
systems, often focusing on high/infinite temperatures or with-
out a notion of temperature at all [46–51]. More recently,
many-body chaos was studied close to thermal phase transi-
tions in a scalar field theory [40], and in a classical XXZ spin
system in two dimensions [41], where a qualitatively different
behavior of the chaos quantities, vb and λ, was found at or
below/above the phase transition.

Using a combination of direct numerical simulations and
mode-coupling calculations for the spin waves and the decor-
relator, we reveal the features of the short-time emergent
integrability at low temperatures, ultimately giving way to
chaos at intermediate times, paving the way for the long-time
thermalization.

The chaotic behavior is quantitatively characterized via the
decorrelator, the specific measure at the center of this inves-
tigation, which we define in Sec. III A, Eq. (4). This is part
of a detailed introduction to the system and the observables
to be studied, to which Sec. III is devoted. Our narrative then
proceeds from low to high temperatures, as outlined in the
Abstract. The low-T ordered regime is the subject of Sec. IV.
There, we study in detail the spatiotemporal behavior of the
decorrelator which we use to characterize the many-body
chaos. We find that for short times, it is well described by
noninteracting spin-wave theory. In particular, we find ballis-
tic propagation of an initially localized perturbation, and an
initial power-law decay of the decorrelator consistent with
this ballistic spreading of spin waves. Remarkably, at low-
est temperatures, the butterfly velocity, i.e., the speed with
which the light cone advances, continues to be given by the
spread of a wave packet within a linear spin wave (LSW)
theory, even when the decorrelator overall is dominated
by the exponential growth characteristic of spatiotemporal
chaos.

Furthermore, at low temperatures, we find an intermediate
(in time) crossover regime of a scarred decorrelator. This is
sandwiched between the short-time integrable and the late-
time chaotic regimes. It arises through repeated scatterings of
the long-lived, well-defined propagating quasiparticles, which
seed secondary light cones. The superposition of many such
secondary light cones then generates the diffusive core of late-
time chaos. This diffusive core grows parametrically more
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FIG. 1. Different regimes of the decorrelator D(x, t ) for one-dimensional nearest-neighbor ferromagnets. Left panels: Short-time integrable
regime comparing the linear spin wave (top) to the full numerical simulations (bottom) at T = 0.04. Middle panels: Intermediate scarred regime
at T = 0.04 (top) and T = 0.10 (bottom). Right panels: Long-time regime, where repeated scattering results in diffusive scaling. Here, the
scaled decorrelator D(x, t ) = D(x, t )/

∫
dxD(x, t ) is shown on a logarithmic color scale. Gray lines are contours on a logarithmic grid between

10−1 and 10−14.

slowly than the (primary) ballistic light cone, inside which it
is located.

In Sec. V, we then present the behavior of the butterfly
velocity, characterizing the spatial propagation of chaos, and
the Lyapunov exponent, characterizing the exponential tem-
poral growth, as a function of temperature in d = 1, 2, 3.
We find that both characteristically change behavior at the
(finite-size) thermal phase transition. Whereas the Lyapunov
vanishes as a power law in temperature below the transition,
the velocity saturates to different finite values both in the
paramagnetic high-temperature and the magnetically ordered
low-temperature regime.

In Sec. VI, we then contrast the behavior of the ordered
magnet to the previously studied case of the spin liquid and
discuss the high-temperature paramagnetic phase, where dif-
fusive and ballistic behavior coexists. Most notably, we find
a direct relation, in the form of a proportionality, between
the Lyapunov exponent and a combination of a characteristic
velocity of the quasiparticles and their associated scatter-
ing rates. From kinetic theory, this leads to the relation
D ∼ v2

qpτqp ∼ v2
b/λ: the quasiparticle velocity plays the role

of the butterfly velocity. Finally, for the high-temperature
short-range correlated paramagnetic regime, we show how
the diffusive nature of the spin transport is consistent with
the ballistic spreading of the decorrelator front. This section
also makes contact with our previous study of chaos in a
cooperative paramagnet on the kagome lattice [38], which
exhibits scaling forms for chaotic observables down to T = 0,
and which is relevant to the high-temperature paramagnetic
phase of the hypercubic Heisenberg models studied here. We
conclude with a discussion in Sec. VII.

For the benefit of the reader interested in a qualitative im-
pression of our central results without having to wade through

the copious details, Sec. II provides a summary of these in the
form of what we hope is a visually compelling survey of the
behavior of decorrelators in various regimes.

II. OVERVIEW OF THE REGIMES

Here we present the different regimes of many-body chaos
that we have identified. To streamline the presentation, we
concentrate on the case of the d = 1 Heisenberg ferromagnet
and present corresponding figures for antiferromagnets, as
well as higher d , in later sections. All figures display the spa-
tiotemporal behavior of the decorrelator, Eq. (4), on different
timescales and at different temperatures.

A. Integrable regime

The left panels of Fig. 1 show the short-time spread of
the perturbation evaluated in two different ways. The top one
displays the results of linear spin-wave (LSW) theory, a com-
pletely noninteracting theory without scattering or chaos. The
lower panel displays the result of our numerical simulations.
The two plots agree in considerable detail (see Figs. 14 and
15 for sliced plots), exhibiting the following features: First,
there is a clear light cone, advancing with velocity 2|J|, be-
yond which the signal rapidly vanishes. The amplitude decays
as a power law t−1 within this light cone. Second, there is
considerable structure in the decorrelator, which reflects the
properties of the spin waves across the entire spectrum, as the
localized initial perturbation has finite weight in all of them.

B. Scarred regime

At longer times, rare scattering events become visible—
middle panels of Fig. 1. In these, secondary light cones appear
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at random points in space-time, which have ballistically prop-
agating edges in both directions. As an increasing number
of these overlap as time progresses, a distinctive scarred ap-
pearance emerges. In terms of the temporal evolution at a
fixed spatial point, the scarred regime denotes the crossover
behavior of a free decorrelator decaying as a power law (at
initial times) to a exponentially growing regime (at longer
times) through random scattering with the thermal spin waves
at that spatial location.

C. Diffusive regime

Eventually, the number of scattering events becomes so
large that a given point in space is under the influence of
many of them, leading to a statistical average. This can be
understood as a random walk of ballistically propagating wave
packets undergoing repeated scattering, resulting in diffusive
behavior. We demonstrate this scaling in the equipotentials of
the decorrelator following trajectories 〈x2〉 ∼ t in the lower
right panel of Fig. 1, where we remove the exponential tem-
poral growth by considering the logarithm of the decorrelator.
Note that the crossover between the scarred and the diffusive
regime can take place at rather late times: For T = 0.04 at
t = 1000, scars are still plainly visible even after averaging
over 103 initial states.

This diffusive regime grows at the expense of the other two
as T is raised. This connects to the analysis of the spin-liquid
regime presented in Ref. [38], where this is the only regime
present across all temperatures.

III. MODEL AND OBSERVABLES

In this section, we first introduce the central object of study
for much of this paper, namely, the decorrelator. We then
describe the thermal properties of our model system, followed
by setting the stage for the analysis of its dynamics.

A. The decorrelator

We start by introducing the decorreletor: It measures the
divergence of two copies in response to an infinitesimal per-
turbation applied to one of them, which can be chosen to be
spatiotemporally localized, as in the wing beat of the butterfly.
This is an instance of an out of time ordered correlator, and
was first introduced in Ref. [37] to study the classical many-
body chaos in a spin chain at infinite temperature.

Specifically, we label the two copies of the same spin sys-
tem I and II, which both evolve under the same Hamiltonian
through the equation of motion given by Eq. (12). We consider
an infinitesimal difference in the initial condition (i.e., at time
t = 0) of the two copies only at site i = 0:

δSi = SII
i − SI

i = εδi,0 = ε(n × Si,0)δi,0, (2)

where 0 < ε 	 1, and

n̂ = ẑ × S0(0)

|ẑ × S0(0)| . (3)

The decorrelator D(i, t ) [18,37–39,52], defined as the local
difference of the spin configuration of the two copies after a

time t ,

D(i, t ) = 〈(SII
i,t − SI

i,t

)2〉
T = 〈|δSi,t |2〉T , (4)

(where 〈· · · 〉T denotes averaging over a set of initial condi-
tions chosen from a canonical ensemble of spin configurations
at temperature T ), measures the temporal growth and spatial
spread of the difference in initial condition. In this sense, δSi,t

is the difference field that evolves spatially outward from i = 0
with time.

It will be useful to introduce the Fourier modes for the
various low-energy fields. In particular,

δSi = 1

N

∑
k

e−ik·riδSk, (5)

where δSk is the Fourier mode with with momentum k such
that the initial condition [Eq. (2)] becomes

δSk(t = 0) = ε. (6)

The decorrelator in Eq. (4) is now given by

D(i, t ) = 1

N2

∑
kk′

e−i(k+k′ )·ri 〈δSk(t ) · δSk′ (t )〉T , (7)

which contains the entire spatiotemporal information. We
shall also find it useful to introduce the space averaged decor-
relator defined by

I (t ) = 1

N

∑
i

D(i, t ) =
∑

k

〈δSk(t ) · δS−k(t )〉T , (8)

which, due to the averaging over the spatial information, such
as the beating patterns discussed above, conveniently allows
us to isolate the temporal evolution. This space-averaged
decorrelator is similar to the distance function studied in
Ref. [53] in the context of cellular automata.

We note that the question of the dynamics of a single mis-
aligned spin in a ferromagnetically ordered background was
investigated several years ago in Refs. [54,55]. While these
studies did find ballistic spread in the magnetically ordered
state, the high-temperature phase was assumed to be purely
diffusive. However, as shown in Ref. [37], the decorrelator
displays ballistic spreading even at infinite temperature.

B. The classical Heisenberg magnet

The model we study is the classical Heisenberg model, the
Hamiltonian of which is given by Eq. (1). In this paper, we
shall exclusively consider nearest-neighbor interactions on a
set of bipartite hypercubic lattices with varying dimensional-
ities: (1) one-dimensional chain, (2) two-dimensional square
lattice, and (3) three-dimensional cubic lattice. We consider
both ferromagnetic and antiferromagnetic interactions.

As the system is spin-rotation invariant, the three compo-
nents of the total magnetization,

ST =
∑

i

Si, (9)

are conserved along with the total energy E = J
∑

i j Si · S j .
The fate of these conservation laws influence the thermody-
namic and transport properties of the system across the entire
temperature regime.
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We also note that due to the conservation of both energy
and magnetization during the dynamics, generically, any ob-
servable computed from dynamical trajectories, such as the
decorrelator described above, is a function of the total magne-
tization ST and energy E (and any other conserved quantity).
A given ensemble, e.g., a thermal ensemble of initial states at
temperature T , then corresponds to averages over the corre-
sponding (thermal) distributions of the conserved quantities.
However, a microcanonical ensemble at fixed ST and E con-
tains equally valid information about the dynamical properties
of the model. In particular, this implies that a finite-size sys-
tem with a finite magnetization (even if the thermodynamic
limit would show a vanishing magnetization) can shed light
on the dynamics in a symmetry-broken state.

1. The thermodynamics: Phases and phase transitions

Our central tuning parameter is temperature. This allows us
to access regimes with short-range correlations, and (at least
effectively) long-range order.

At high temperatures, a spin rotation invariant thermal
paramagnet is always realized, where the spin correlations
are short ranged. At low temperature in d = 3, there is a
magnetic ordering transition at a critical temperature, TC [56].
By contrast, for d � 2, a thermal phase transition at a nonzero
temperature is absent [44]. Instead, the correlation length
diverges in the limit T → 0 in d = 1, 2. As a result, at suf-
ficiently low temperatures, the correlation length will always
exceed the size of any finite lattice. In such a regime, the
behavior of the system in many respects resembles that of
a symmetry-broken phase—i.e., a uniform magnetized phase
for the ferromagnetic interaction and a Neel order phase for
the antiferromagnetic interactions.

We illustrate this behavior in Fig. 2 for both the fer-
romagnet and the antiferromagnet model in d = 1, 2, 3 by
considering the behavior of the spin-correlation length ξ

versus temperature T . Note that, whereas both two- and three-
dimensional systems show a rather well-defined feature, in
one dimension there is a much smoother onset of the corre-
lations. We will return to this point in Sec. V.

To use the decorrelator in a meaningful way at a given,
common, temperature for both copies, I and II, of the system,
we need to make sure the energy difference of the two copies
due to the local perturbation is consistent with arising from a
typical thermal fluctuation. To ensure this, the energy differ-
ence should be small compared to the temperature:

|δE | =
∣∣∣∣∣
∑
j∈i=0

Ji jδSi=0 · S j

∣∣∣∣∣ ∼ Jε 	 kBT . (10)

This condition is fulfilled with the following order of lim-
its:

lim
T →0

lim
ε→0

. (11)

This is done in our calculations for both the linearized and
nonlinear equations [37].

2. Precessional dynamics and effective hydrodynamics

We are interested in the real-time many-body dynamics of
a spin system initialized in a state representative of a particular

FIG. 2. Finite-size correlations. Top: Spin-correlation length ξ

versus temperature T defined via fits to 〈SrSr′ 〉 = e−|r−r′ |/ξ . Note
that below the transition, correlations are not exponentially de-
caying on finite systems and ξ rather qualitatively tracks the
long-ranged nature. Bottom: Order parameter mord = (1/Ld )

∑
i Si or

(1/Ld )
∑

i(−1)iSi for the FM and AFM, respectively, versus temper-
ature T . Both for the FM (dashed) and AFM (solid) for systems in
1D (crosses) with L = 10 000, 2D (circles) with L = 400, and 3D
(squares) with L = 40.

temperature. The dynamics of the classical spin system is
generated by the spin-Poisson bracket,

{ f , g} =
∑

k

εabc ∂ f

∂Sα
k

∂g

∂Sβ

k

Sγ

k ,

where f and g are functions of the spins. This leads to the
equation of motion

∂t Si = J
∑

j

Si × S j, (12)

which is just the precession of the spins in the local exchange
field due to its neighbors.

The dynamics of the classical Heisenberg and related
models have been extensively studied in the literature both
numerically [42,57–61] as well as using hydrodynamic ap-
proaches [62,63]. At high temperatures, spin-spin dynamical
correlators are generally found to be diffusive [57,58,62]
whereas below the transition the dynamical spin structure fac-
tor reveals characteristic spin wave features both in 3D with a
true thermodynamic phase transition [59], and as a crossover
in 2D [60,61]. For 3D, in particular, the hydrodynamic the-
ory of spin waves [62] predicts that for the Heisenberg
ferromagnet at long wavelengths, the spin-wave dispersion is
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given by

ωk = ρs

mord
|k|2 − iw|k|4, (13)

where ρs is the spin stiffness constant, mord is the equilibrium
magnetization, and w is the strength of spin-wave scattering.
For the antiferromagnet, the low-energy spin waves in hydro-
dynamics obey

ωk =
√

ρs

χs
|k| − iD|k|2, (14)

where χs and D denote the spin susceptibility and diffusion
constant, respectively. The ballistic propagation of the LSWs
is correctly captured within the spin-wave theory as shown in
Appendix A. At this point, we note that at least in one dimen-
sion the long-time behavior of the dynamic correlations may
be dictated by nonlinear effects and need to be studied within
the theory of nonlinear fluctuating hydrodynamics [64].

Above TC , the conservation of the total magnetization ST

[Eq. (9)] in the symmetric phase and energy E implies that
for this short-range interacting system, both these currents
are conserved, leading to corresponding diffusion equations,
with diffusion constants Ds and DE , respectively. The diffu-
sion of these conserved quantities then captures the long-time
hydrodynamics of the high-temperature paramagnetic phase
[65–67].

In the following, we will, in particular, discuss how this
standard time-ordered diffusive dynamics is related to the
dynamics of an OTOC.

3. Dynamics of difference field

The decorrelator directly depends on the dynamical evo-
lution of the difference field δSi = SII

i − SI
i defined above.

Using the equation of motion [Eq. (12)] and writing SII
i =

SI
i + δSi [Eq. (2)], we obtain the equation of motion for the

difference, δSi,t , as

∂tδSi = JSi ×
∑
j∈i

δS j + JδSi ×
∑
j∈i

S j

+ JδSi ×
∑
j∈i

δS j, (15)

where we have dropped the superscript for clarity, SI
i (≡ Si ).

This shows that the δSi evolves in the background of the
dynamic spin field Si.

In the numerical simulations, we will mainly consider the
limit ε → 0, such that the second line in the equations of
motion for the difference field drops out, and all quantities
in the simulations are defined without factors of ε. This we
refer to as the linearized decorrelator, which is not to be
confused with the LSW analysis: The former preserves the
chaotic nature of the dynamics, while the latter does not.

IV. CHAOS AT LOW TEMPERATURE

We start our analysis of spatiotemporal chaos at low
temperatures where spin-rotation symmetry is spontaneously
broken in an ordered state. This goes along with the emer-
gence of the long-lived Goldstone mode. The items we discuss
are existence and nature of a short-time integrable regime

of noninteracting wave-packet propagation and a long-time
hydrodynamic chaotic regime. A central finding is the fact that
the Lyapunov exponent of this chaos is directly related to the
spin-wave scattering rate. In between those two regimes, the
scarred regime mentioned above appears.

For a ferromagnet (antiferromagnet on a bipartite lattice),
the ordering in question is uniform (Néel) order. The fol-
lowing discussion is centered on the ferromagnetic case. The
analysis for the antiferromagnet, which is largely analogous
albeit somewhat more complicated in terms of calculations, is
relegated to Appendix C.

As remarked above, despite the lack of true long-range
order in thermodynamic limit for d = 1, 2, for finite systems
the rapidly increasing correlation length at low temperature
leads to the effective appearance of local order capable of
supporting long-lived elementary excitations. Our discussion
therefore proceeds in terms of spin waves about an ordered
background, appropriate at least for timescales short com-
pared to the spin-wave life- and scattering time and length
scales smaller than the correlation length.

A. Equation of motion at low T

Our approach is to cast the equations of motion, Eq. (15),
into the form of a linear term corresponding to the propagation
of an integrable wave packet, subject to nonlinear scattering
processes. The analysis of the latter will underpin our central
result linking the spin-wave lifetime and the Lyapunov expo-
nent, Eq. (30).

Deep inside the symmetry-broken phase, we can expand in
small deviations from the collinear ordering pattern,

Si = ni

√
1 − L2

i + Li, (16)

where ni represents the direction of collinear order whereas Li

is the spin-wave amplitude (with ni · Li = 0) and the latter are
the gapless Nambu-Goldstone modes describing the lowest
energy long-wavelength excitations about the ground state.
For the ferromagnet (antiferromagnet), they have quadratic,
ω ∼ k2 (linear, ω ∼ k) dispersion (Appendix A). This sug-
gests that the low-energy dynamics of the difference field, δSi,
is best understood in terms of the interaction of spin waves. To
this end, we use Eq. (16) in the evolution equation [Eq. (15)],
to obtain

∂tδSi = ni ×
∑
j∈i

Ji jδS j + δSi ×
∑
j∈i

Ji jn j

+ Li ×
∑
j∈i

Ji jδS j + δSi ×
∑
j∈i

Ji jL j

− 1

2
L2

i ni ×
∑
j∈i

Ji jδS j − 1

2
δSi ×

∑
j∈i

Ji jn j L2
j

+ δSi ×
∑
j∈i

Ji jδS j, (17)

where we have used
√

1 − L2
i ≈ 1 − 1

2 L2
i , as appropriate for

low temperatures.
For the nearest-neighbor ferromagnet, J < 0, we can

choose, without loss of generality, ni = ẑ (and hence L ⊥ ẑ).
Therefore, from Eq. (17), we get, after Fourier transforming
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(see Appendix B for details):

∂tδSk = γkZ · δSk + 1

N

∑
q

Ak,q · δSk−q. (18)

For the first linear term in d = 1, 2, 3 dimensions,

γk = 2|J|
(

d −
d∑

i=1

cos ki

)
, (19)

and the matrix Z is given by Eq. (A5). This term corresponds
to the linearized equations of motion and accounts for the free
ballistic propagation of δSk.

The nonlinear second term represents the scattering of δSk
with the dynamic spin waves with the scattering determined
by the matrix

Ak,q = Ok,q + Mk,q. (20)

While the detailed forms are given by Eqs. (B2) and (A6),
we note that these scatterings imply that the different Fourier
modes of difference field, δSi(t ), scatter from the dynamic
spin-wave modes and this results in the mode-coupling route
to chaos at low temperatures as we shall see below. We would
like to point out that Ak,q is nonlinear in terms of the interact-
ing spin waves, i.e., the solution of Eq. (A3) [Eq. (A18)] for
the ferromagnet (antiferromagnet). From the explicit forms of
the scattering kernels, it is clear that the scattering vanishes
as k → 0 and hence the long-wavelength modes are more
long-lived, as expected for Goldstone modes.

B. The linearized decorrelator and emergent integrability

The full solution can be expressed in integral form as

δSk(t ) = δS0
k(t ) + G0

k(t )
∑

q

∫ t

0
dt ′ Ak,q(t ′) · δSk−q(t ′).

(21)

This can then clearly be used as the starting point of the
mode-coupling [68] expansions for the difference field at low
temperatures.

The free solution is obtained by setting Ak,q = 0. This is
given by the first term of Eq. (21) as

δS0
k(t ) = G0

k(t ) · δSk(0), (22)

where the free propagator G0
k(t ) is given by Eq. (A8). In this

case, each momentum mode is independent. However, they
interact with different spin-wave modes, eventually leading to
the coupling of the different modes. We now first develop the
form of the decorrelator from the free solution followed by
inclusion of scattering further down.

The explicit form of the free solution obtained from
Eq. (22) is given by

δSk = εzẑ + η[cos (|γ (k)|t + φ)x̂ + sin (|γ (k)|t + φ)ŷ],
(23)

where η =
√

(εx )2 + (εy)2 = ε
√

1 − |L0(0)|2 and hence pro-
portional to magnetization and φ = tan−1 (Ly(0)/Lx

0(0)).
Thus, in the thermodynamic limit, we have (see Appendix B

FIG. 3. Spatiotemporal behavior of the linearized decorrelator
for the nearest-neighbor ferromagnet in d = 1, 2, 3 (top to bottom)
given by Eq. (24) computed from linear spin wave (LSW) (left
panels), compared to the full numerical solution (right panels). The
decorrelator spreads ballistically, but does not grow exponentially in
the noninteracting solutions and not appreciably in the interacting
solutions at these short times.

for details)

D(i, t )

ε2
= (1 − m2

T

)2
δi,0 + m2

TFd (i, t ), (24)

where mT is the magnetization and F (i, t ) is a dimension-
dependent function given by

Fd (i, t ) =

⎧⎪⎨
⎪⎩

(Ji1 (2t ))2 (d = 1)

(Ji1 (2t ))2(Ji2 (2t ))2 (d = 2)

(Ji1 (2t ))2(Ji2 (2t ))2(Ji3 (2t ))2 (d = 3),

(25)

where i ≡ (i1, i2, · · · id ) denotes the position on a d = 1, 2, 3-
dimensional cubic lattice and Jν (t ) denotes Bessel function of
the first kind.

We plot [D(i, t )/ε2 − (1 − m2
T )δi0]/m2

T from Eq. (24) for
a one-dimensional cut along the Cartesian coordinate axes in
dimensions d = 1, 2, 3 in the left panels of Fig. 3 and compare
to the corresponding results of the numerical simulations (see
Appendix E) of the full spin dynamics in the right panels. The
striking similarity of the two provides crucial evidence of the
emergent integrability at low temperatures in the symmetry-
broken phase. We note that the time and length scales shown
here are chosen to be below the inverse Lyapunov time, λ−1,
and below the correlation length, ξ−1, and, thus the approxi-
mation of noninteracting spin waves in an ordered background
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FIG. 4. Constant time-slice plots for the linearized decorrelator
in the full simulations (left) and as given by Eq. (24) (right) for
d = 1 nearest-neighbor ferromagnet. Slices are scaled by t and offset
vertically by t for visual clarity, and plotted for t = 0.5, . . . , 25 in
steps of 0.5.

is expected to be good as potential scattering between spin
waves will be negligible in this regime.

At this linear order, the solution in Eq. (23) has the same
structure as the LSW solution (Appendix A) but with a local-
ized (in real space) initial condition. Therefore, the short-time
behavior of the decorrelator is nothing but akin to the spread
of an initially localized spin-wave packet. This, in the LSW
regime, is a ballistic phenomena without any exponential am-
plification in conformity with the full numerical calculation.
We further note the dimensionality dependence of the striking
beating structures visible in Fig. 3 and also reflected in the full
numerical dynamics, expected for interference of noninteract-
ing spin waves.

We provide a more detailed comparison of the above short-
time physics in the one-dimensional case via constant time
slices plotted in Fig. 4. For d = 1, besides the fine-structure
visible within the emergent light cone of the decorrelator,
we also observe a propagating peak—the primary packet of
decorrelation—traveling out at twice unit speed (in units of
|J|, which has been chosen to be unity in Fig. 3 and the rest of
this paper). Notice that this is also the case at T = ∞, how-
ever, the mechanism to generate the chaos and the butterfly
velocity is different, as there are no spin waves at infinite
temperature as shown by the analysis of the two-point spin
correlators, which are purely diffusive. A similar conclusion
is obtained for d = 2, 3, where, however, the wavefront of the
primary wave is anisotropic for the ferromagnet (see below)
as is evident from the structure of the Bessel functions.

Finally, by using the asymptotic form (appropriate for t �
ν, i.e., deep inside the light cone) of the Bessel function given
by

Jν (t ) ∼
√

2

πt
cos

(
t − νπ

2
− π

4

)
, (26)

we obtain power-law decay ∼t−d of Eq. (24) in agreement
with the full numerical simulations as an intermediate asymp-
totic behavior until scattering becomes important.

However, to understand the ballistic nature and the emer-
gence of a light cone, one needs to consider the asymptotic
scaling along rays of fixed velocity v = x/t . Using stationary
phase arguments, see Appendix D, this can be seen to result in
power-law decay for v � 2|J| and exponential decay for v >

2|J|. This sharp distinction defines a characteristic velocity in
the system. Since the free decorrelator is strictly nonchaotic,
we call the above velocity vLC = 2|J| the light-cone velocity
to distinguish it from the butterfly velocity, vb, that is nu-
merically estimated from the full decorrelator. We shall find
that the generically temperature-dependent vb(� vLC) satu-
rates the bound at lowest temperatures and long times (see
below).

This free solution is expected to properly capture the short-
time behavior (t 	 λ−1), where no significant exponential
growth of the decorrelator has taken place and hence λ ≈ 0.
In Sec. V and Fig. 11, we demonstrate that the time window
for the validity of the linear solution expands and tends to
diverge as the temperature is decreased to zero. We provide
a more detailed picture of this short-time integrability at low
temperatures via constant space slices in Appendix B, Fig. 14.

C. Long-time chaos through scattering with spin waves

We now turn to the effects of the spin waves, L, scattering
with the difference field, δSi. At times much longer than
the Lyapunov time, λ−1, chaos sets in, which is expected to
arise due to the scattering of spin waves. Indeed, we establish
that it is the scattering time of the spin waves which directly
determines the Lyapunov exponent.

At the outset, we note that at the lowest temperatures the
light-cone velocity, vLC, determined from the free decorrelator
above, continues to describe the progression of the light-cone,
i.e., vLC = vb, even at late times when scattering cannot be
neglected. This can be understood as follows. As the packet
of δSi propagates outward, it will eventually scatter off spin
waves in the background field, either being reflected back in-
side the light cone or splitting into two spin waves propagating
forward along the light cone and backward inside the light
cone, respectively. Thus, the leading edge, determining the
butterfly velocity, will always be dominated by the remaining
weight of the initial peak that was never reflected propagating
outward at the initial velocity given by Eq. (24). In other
words, infinitesimally near the light-cone edge, the linear form
of the decorrelator in Eq. (24) always remain valid and hence
correctly predicts the vb = vLC.

To demonstrate this, we show the late-time light cone for
the one-dimensional ferromagnet in Fig. 5 for a system with
L = 40 000 at T = 0.04 for times up to t = 20 000. We note
that here the inverse Lyapunov time is tλ = 1/λ ≈ 170, thus,
we are probing the dynamics deep into the chaotic temporal
regime (see below), and for spatial scales considerably larger
than the spin-spin correlation length ξ ≈ 20. Remarkably, we
still observe a perfectly linear light cone with a velocity de-
termined by the free decorrelator for the short-time dynamics
discussed above.
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FIG. 5. Late-time light cones. Spatiotemporal behavior of the
linearized decorrelator D(x, t ) with logarithmic color scale. Light
gray lines are logarithmic contours, defined from im(t ) with∑im (t )

i=0 log(D(i, t )/
∑

i log(D(i, t )) > k for k = 0.1, 0.25, 0.5, 0.75,
0.9, 0.99. 1D ferromagnet on a system of size L = 40 000 at
T = 0.04.

However, well within the light cone, repeated scattering
results in the rapid amplification of the signal at times greater
than λ−1 due to the nonlinear contributions denoted by the
mode-coupling term in Eq. (18). This temporal growth is most
directly seen in the space-averaged decorrelator, i.e.„ I (t ) as
given by Eq. (8). In fact, it is possible to show from Eq. (24)
that within linear theory I (t ) = ε2, i.e., a constant. Thus,
any deviation, in particular, an exponential growth of this, is
a direct indicator of the chaotic regime where scattering is
important. This is shown in the main panel of Fig. 6, which
for long times clearly exhibits exponential growth, I (t ) ∼ e2λt

with the Lyapunov exponent, λ. Indeed, we generally find that
the Lyapunov exponent based on the summed decorrelator
converges to the exponential form on times of order 1/λ.

FIG. 6. Onset of chaos. Temporal behavior of the linearized
decorrelator for the FM in d = 1 shown for T = 0.04 and L = 1000.
Main panel: Summed decorrelator I(t ) versus time t on a log-linear
scale demonstrating exponential growth I(t ) ∼ e2λt . Upper left in-
set: Decorrelator at the initial site D(i = 0, t ) on a log-linear scale
showing initial power law decay D(i = 0, t ) ∼ 1/t up to a time tλ ∼
1/λ ≈ 170 (indicated by gray vertical line) followed by the same
exponential growth D(i = 0, t ) ∼ e2λt . Lower right inset: Initial time
behavior of the summed decorrelator on a linear scale showing slow
initial growth for time t 	 1/λ.

In contrast, as mentioned above, the upper left inset shows
the decorrelator at the initial site of perturbation, i.e., D(i =
0, t ) where the initial t−1 power-law decay is clearly visible
till tλ ∼ 1/λ. After t∗, the exponential growth takes over with
the same Lyapunov exponent, λ, with which I (t ) grows.

Finally, the lower right inset shows the short-time behavior
of the summed decorrelator on a linear scale, showing only
slow initial growth, which a posteriori justifies our treatment
of spin waves as (almost) noninteracting in this regime.

1. Mode-coupling theory and the emergence of chaos

The mode-coupling theory for δSk introduced above
[Eq. (21)] can provide crucial insight into the temporal aspects
of the late-time chaos in terms of the properties of the spin
waves. This section is devoted to the derivation of the result
linking the Lyapunov exponent to the spin-wave scattering
rates via Eqs. (30) and (31).

Our analysis starts by expanding the integral Eq. (21) iter-
atively to obtain [using Eqs. (22) and (6)], a mode coupling
expansion of δSk(t ). The details are given in Appendix B.
From this, we readily obtain the leading order contribution
to the space-averaged decorrelator [Eq. (8)] given by

δSk(t ) · δS−k(t )

= ε2 + 1

N
εT ·

∑
q1

∫ t

0
dt1
[
A−k;q1 (t1)G0

−k−q1
(t1)

+ [G0
k−q1

(t1)
]T

[Ak;q1 (t1)]T
] · ε + · · · , (27)

where · · · refer to higher order terms. The first term is indeed
the constant contribution of the free decorrelator as discussed
above.

The first-order correction to this is due to scattering. The
scattering term contains two separate contributions corre-
sponding to the two terms in Eq. (20). For the first contribution
which is proportional to[

O−k;q1 (t1)G0
−k−q1

(t1) + [G0
k−q1

(t1)
]T

[Ok;q1 (t1)]T
]
, (28)

explicit calculation shows that this term is proportional to
εαεβ for α �= β. This stems from the general antisymmetric
structure of Lq [Eq. (B3)]. Hence, on taking the average over
the thermalized initial condition, this term vanishes, since
〈εαεβ〉T ∝ δαβ .

However, the second term gives a nonzero contribution of
the form

ε2m2
T

2N2

∑
q1,q2

∫ t

0
dt1
(
Lq1 · Lq1−q2

)[(
γk−q1 − γq1

)
× sin

(∣∣γk−q1

∣∣t)+ (γk+q1 − γq1

)
sin
(∣∣γk+q1

∣∣t)], (29)

which then is of the same form as the second term in Eq. (24),
albeit summed over the lattice points. We note that in deriving
the above expression we have not assumed free-spin waves.

At second order, there are three classes of terms which can
be schematically written as OO, OM, and MM. Again, due
to the averaging, the cross terms vanish. While the third term
is nothing but the higher order version of Eq. (29), the first
term is the subleading contribution with respect to Eq. (29).
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This provides the basis for neglecting all terms proportional
to O.

On dropping the terms proportional to O, which is valid
for thermal initial conditions, the dynamics of the difference
field [Eq. (18)] now becomes exactly equivalent to that of
interacting spin waves for a ferromagnet in Eq. (A3). Thus,
in spite of the complications of the scattering kernels, the
above calculations concretely show that the same structure of
coupling of the modes that gives rise to the spin-wave lifetime
also leads to chaos. We now can resum the series in Eq. (27)
within the usual mode dependent lifetime approximation, ex-
actly similar to spin waves [see Eq. (A12)]. This leads to
δSk(t ) · δS−k(t ) ∼ exp(2t/τk ), where τk is the lifetime of the
kth mode and we expect τk = τ−k from inversion symmetry.

However, note that, in the regime where spin-wave scat-
tering leads to chaotic behavior, the individual modes of the
exponentially growing difference field, δSi, cease to be well-
defined in the long-time limit. It is therefore not possible
to follow the exponential growth of a particular k mode in
isolation from that of the others. Then it is the combined effect
of all interacting modes which is measured in the summed
decorrelator, and its form is suggestively written as

I (t ) ∼
∑

k

e2t/τk . (30)

At long times, the actual Lyapunov exponent defined by
I (t ) ∼ e2λt will therefore be set by the lifetime of the short-
lived spin waves:

λ ∼ max
k

1

τk
. (31)

Recall that the limit of ε → 0 has been taken in the numerical
calculations to open a sufficiently long time-window (in fact,
infinitely long for the linearized calculations as described in
Appendix E) before the decorrelator saturates due to the finite
phase-space volume of the unit sphere.

The above mode coupling theory therefore connects the
chaos timescale and the lifetime of the quasiparticles in a
classical system. Similar results have been proposed recently
in the context of quantum many-body systems, particularly
Fermi liquids [69].

We emphasize that λ is then dominated by the short
scattering timescales which are necessarily away from the
ordering momentum, k = 0, where τk diverges for the Gold-
stone modes and hence the present finite λ is not inconsistent
with the very long-lived Goldstone modes at the longest
wavelengths.

D. Crossover between integrability and chaos:
The scarred regime

We next address the nature of the crossover between short-
time integrable and the long-time chaotic regimes. Note that
already in Fig. 5, some fine structure is visible in the decor-
relator at long times. To make this more visible, we study
the scaled decorrelator via Dscal(x, t ) = D(x, t )/I (t ), which
removes the dominating temporal growth and thus enhances
the spatial structure at given time. In Fig. 7, the scaled decor-
relator exhibits a scarred appearance due to the coexistence
of a multitude of secondary light cones at different spatial

FIG. 7. Scarred decorrelator of the 1D FM. (a) Spatiotemporal
behavior of the linearized normalized decorrelator D(x, t )/I(t ) on
a linear color scale. Same parameters as in Fig. 5, L = 40 000 and
T = 0.04. (b) Same on smaller spatiotemporal scales including linear
contours (solid lines) and fits (dashed lines) x2 ∼ t to the contours
assuming diffusive scaling.

and temporal scales. Using Eq. (21), we interpret these as
originating at points where the initially ballistic wave packet
of the difference field, δSx(t ), scatters with the dynamical
field of spin waves present at any finite temperature. For each
initial condition taken from a thermal ensemble, the space-
time position of these scatterings are random and at each
such scattering the initial wave splits into a reflected and a
transmitted branch with branching ratios determined by the
details of the scattering kernel. These scattering events take
the form of secondary light cones and both the reflected and
the transmitted branches undergo subsequent scatterings at
later times, thus seeding further light cones; eventually, these
overlap and merge, giving rise to the chaotic regime at the
longest times.

While the probability of scattering is low at short times
compared to λ−1 (see the discussion above), starting with
the seeding of the difference field at t = 0, they become in-
creasingly prominent and eventually trigger chaotic behavior
as explained above. The crossover between the integrable
regime at short times and the chaotic regime at long times
takes place via the rare scattering events with progressively
indistinguishable secondary light cones giving the regime a
scarred appearance.

An alternate way to visualize the crossover is to track
the maximum weight of the difference field in space-time
plane; for the one-dimensional ferromagnet, this is shown in
Fig. 8. For short times, the maximum of the decorrelator tracks
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FIG. 8. The position of the maximum xmax of the decorrelator
versus time t for T = 0.04 and T = 0.10. For short times, spin waves
propagate freely, and the maximum tracks the light-cone velocity,
whereas at later times spin waves scatter.

the light cone. However, at later times, the scattering events
nucleate growth of the decorrelator and hence increase the
number of subsequent scattering events, so the maximum then
moves closer to the origin, where more light cones overlap. In
Fig. 8, this is clearly visible for the higher temperature T =
0.1, where scattering is stronger. In contrast, at T = 0.04,
we observe free propagation for a significantly longer time
and, subsequently, repeated scattering events during which
the propagation direction of the main peak in the signal is
fully reversed. A given point in space, with the increase in
the number of secondary light cones, receives contributions
propagating outward or inward, whose statistics are those of a
random walk. Thus, in this regime, we expect the emergence
of a diffusive regime where almost all the weight of the decor-
relator is concentrated and only a very small weight travels
out in a ballistic manner.

We demonstrate this directly in the lower panel of Fig. 7,
where we show contours to the scaled decorrelator and diffu-
sive fits to the contour lines of the form x2 ∼ t . The results
show large fluctuations, strongly enhanced by the chaotic
growth, even for very large times due to the increasing lifetime
of the spin waves at decreasing temperatures.

We note in passing that this crossover is not the only
manifestation of the existence of quasiparticles. There exists,
in addition, a feature in the decorrelator at the initial site of
the perturbation, which shows power-law decay in time for
t � 1/λ before the exponential growth takes over. This is
absent in the case of the kagome spin liquid discussed further
down [38]. We also remark on the visible similarity of the
phenomena seen here and the recently discussed caustics in
many-body physics [70], where interactions result in high-
amplitude characteristic patterns.

At this point, we note that in practice we cannot probe the
scarred behavior in dimensions larger than 1 due to the very
long time and system sizes required to make this scattering
and the emergent diffusive core visible.

E. Bipartite antiferromagnet

The situation for the nearest-neighbor bipartite antiferro-
magnet turns out to be quite close to that of the ferromagnet.

FIG. 9. Spatiotemporal behavior of the linearized decorrelator
for the AFM in d = 1, 2, 3 (top to bottom) comparing the noninter-
acting spin wave theory (LSW) (left) to the full numerical dynamics
(right) in the short-time regime where exponential growth and spin-
wave scattering is negligible in the interacting dynamics.

Nonetheless, there are some striking differences between the
two, and we summarize the general features emphasising
these differences in the following paragraphs. The details
of the underlying calculations are relegated to Appendix C for
the case of a Neel state,

ni =
{ẑ ∀i ∈ A

−ẑ ∀i ∈ B,
(32)

where A and B represent the two sublattices.
The free decorrelator [expressions in Eqs. (C18) and

(C19)] is compared to the numerical solutions of the full
spin dynamics in Fig. 9 for short times. As in the fer-
romagnetic case, the two agree quantitatively, both in the
detailed spatiotemporal interference patterns and the ballis-
tically propagating peaks. We would like to note that for the
antiferromagnet, the free decorrelator at the origin—the initial
location of the difference field—decays much more slowly
compared to the ferromagnet, a behavior which is expected
from the long-time scaling in the stationary phase calculation,
see Appendix D.

However, the slow decay is soon swamped by the exponen-
tial amplification of the decorrelator as a whole. Indeed, these
nonlinear effects yield late time chaos like in the ferromag-
net, albeit with different temperature dependence as we show
below.
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FIG. 10. Shape of the wave fronts in 2D comparing the FM (left)
to the AFM (right) and the linear spin wave results (top) to the full
numerical simulations (bottom). All at t = 30, numerical simulations
for L = 200 and T = 0.1.

F. The integrable regime, and crossover to chaos, in d > 1

The visually most striking difference between the ferro-
magnet (FM) and antiferromagnet (AFM) is the shape of the
free decorrelator, plotted in Fig. 10 for d = 2 for LSW and
for the full numerical solutions. The FM (left panels) displays
a square shape with bright peaks at the corner. This structure
is readily inferred from the factorized form of Eq. (25). By
contrast, the AFM (right panels) free decorrelator comes in
the shape of an isotropic circle.

This difference is explained in terms of the origin of
contributions to the difference field in k space. For the fer-
romagnet, the explicit expression of the Bessel function as
well as the stationary phase solution of the integral expres-
sion [Eq. (B9)] shows that the integral is dominated by the
weight of lattice dependent modes away from the ordering
vector. This is related to the fact that the ferromagnetic spin
waves have a quadratic dispersion. However, for the anti-
ferromagnet, the stationary phase solution [Eqs. (C18) and
(C19)] is dominated, due to the linearly dispersing spin waves,
by the contribution from modes near the magnetic ordering
vector. While we do not have straightforward closed asymp-
totic expression for the integral form, the isotropy nonetheless
follows from the emergent rotational symmetry near these soft
modes. Indeed, a stationary phase approximation shows that
the isotropic light-cone speed, vLC = 2J

√
d , which matches

very well with the numerical calculation at low temperatures
as well as the full integral solution of the free decorrelator,
Appendix D.

This naturally raises the question about the persistence of
the square wave front at long times for the nearest-neighbor
ferromagnet. We note that upon increasing temperature, the
square gets replaced by an isotropic circular shape as the
order underpinning the existence of the quasiparticles ceases.

We note in passing that for the classical spin liquid on the
kagome lattice at low temperatures [38], the decorrelator is
also circular in spite of the microscopic symmetry being only
sixfold rotation symmetric.

Indeed, we cannot exclude that that nonlinear effects at
long times could restore isotropy. If this were the case, the
chaotic long-time decorrelator at low temperatures would also
become isotropic. A direct numerical verification of this is
beyond our present numerical capacities even for d = 2 on
account of the rapidly growing length/timescales. At any rate,
note that the decorrelator at these scales will be dominated
by the exponentially growing core. This, however, only grows
diffusively, in contrast to the ballistic spreading of the free
decorrelator. A parametrically separated coexistence between
a square form of the latter, and a circular one of the former, is
hence another possibility.

V. TEMPERATURE DEPENDENCE OF CHAOS
SCALES IN d = 1, 2, 3

We now collate our numerical results for the temperature
dependence of the central chaos scales, the Lyapunov
exponent and the butterfly velocity, for the hypercubic
lattices in d = 1, 2, 3, considering both the ferro- and the
antiferromagnet.

A. Lyapunov exponent

The Lyapunov exponent, Fig. 11, was obtained from a fit
to the time dependence of the decorrelator. The data shown
results from considering its behavior at the initial site D(x =
0, t ) ∼ e2λt . We account for the initial power-law decay in the
ordered regime (see Fig. 6) by only fitting after the crossover
time tλ ∼ 1/λ, where the behavior is clearly exponential. We
have corroborated these values by comparison to the spatially
integrated decorrelator I (t ) ∼ e2λt , which does not show the
initial power-law decay, yielding consistent exponents.

Generally, the Lyapunov exponent exhibits two distinct
regimes. In the high-temperature, short-range correlated
regime, there is little temperature dependence. This is not at
all surprising: The state of a system with a bounded local
energy spectrum changes only little when the temperature is
raised well above this bandwidth. In this regime, λ ∼ |J|, only
weakly dependent on the dimension, is thus determined by
the local microscopic physics dictated by the spin-exchange
energy-scale J .

The second, T -dependent regime is entered as correlations
start to develop on a scale set by J , with a crossover to a
well-developed low-temperature power-law regime, λ(T ) ∼
T α with α > 0. One may try to understand this decrease of
the Lyapunov exponent at lower temperatures from the reduc-
tion of the available phase space volume. As the energetic
constraints become active around the crossover temperature,
the entropy of the system is reduced, fluctuations decrease
overall, and the dynamics slows down. Indeed, even for the
cooperative paramagnet in d = 2 for which the correlation
length saturates to a small value in the low-T limit, there is
a power law λ(T ) ∼ T 1/2 [38]. Noticeably, in Fig. 11, while
the high- to low-temperature crossover is smooth for λ in
d = 1, 2, the transition for d = 3 leads to the appearance of
a kink for both the FM and the AFM.
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FIG. 11. Temperature dependence of Lyapunov exponent for the
FM (top) and the AFM (bottom). Fitting errors on the Lyapunov
exponents are smaller than the symbol size. Dashed gray lines are
power-law fits to the low-temperature behavior, λ(T ) ∼ T α , with the
best fit value and standard deviation given in the legend. Results
are obtained for systems with L = 10 000, L = 400, and L = 40 in
d = 1, 2, 3, respectively.

The actual value of the exponent of the low-temperature
scaling, α, itself depends both on the dimension and the sign
of the exchange constant J . Thus, unlike the thermodynamic
static properties, including the position of the transition,
which are equivalent for FM and AFM classically, their dy-
namic chaotic behavior and temperature scaling is different.
This is, of course, not unexpected, in view of their differing
respective (quadratic and linear) low-energy dispersions.

Given the correlations are longer ranged, and the long-
wavelength quasiparticles increasingly well-developed (and
strictly long-lived for d = 3 below the transition), a slowing
down of the dynamics compared to the cooperative paramag-
net is again unsurprising: The power α in Fig. 11 is greater
than 1/2 in all cases. However, Eq. (31) implies that chaos is
dominated by the short spin-wave lifetimes, i.e., not from the
vicinity of the Goldstone modes [Eqs. (13) and (14)]. This,
we believe, is also the reason why an evaluation of τk for long
wavelengths fails to account for the observed value of α in
Fig. 11.

B. Butterfly velocity

The temperature dependence of the butterfly velocity is
shown in Fig. 12. This is obtained from fits to the position
along lattice axes where the decorrelator exceeds a thresh-

FIG. 12. Temperature behavior of the butterfly velocity for the
FM (top) and the AFM (bottom) showing the low-temperature cor-
related and the high-temperature paramagnetic regime, separated
by a crossover (d = 1, 2) sharpening in the case of a true thermal
phase transition for d = 3. Results are obtained for systems with
L = 10 000, L = 200, and L = 40 in d = 1, 2, 3, respectively. Error
bars are 1σ standard deviations of the fits. Solid lines are extracted
from cuts along lattice axes, e.g., y = z = 0, dashed lines for 2D
along the diagonal x = y. Black diamonds are the results from the
free decorrelator vLC = 2

√
d for d = 1, 2, 3 expected to be valid for

T → 0.

old D0, e.g., xthr = vbt with D(xthr, t ) > D0 for D0 = 10−10.
The resulting velocity is independent of the threshold for
sufficiently small thresholds in the range we can probe, and
consistent with the propagation velocity of the main peak (see
Fig. 4). We, however, note that, as discussed above, for the FM
in the ordered regime it will be direction dependent, i.e., the
speed will be minimal along lattice axes and maximal along
the body diagonal due to the cubic form of the wave fronts.

In the high-temperature regime, note that a light cone
arises despite the absence of spin waves and their ballistic
propagation. In fact, the dynamic spin-spin correlator in this
regime is diffusive [37,38]. As for the Lyapunov exponent,
in this regime the butterfly speed is essentially constant and
determined by the strength of the exchange coupling.

In contrast, in the low-temperature regime, the spin waves
as shown above are well-defined quasiparticles even deep into
the chaotic regime. In particular, the light-cone velocity, vLC,
calculated in the previous section from the free decorrelator
agrees well with the butterfly velocity for the lowest measured
temperatures, particularly for the antiferromagnet where the
wave front is isotropic and along the body diagonal for the
FM where we predict vLC = 2

√
d , e.g., 2, 2.82, and 3.46 in
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d = 1, 2, 3. In all cases, we find vb � vLC throughout the
entire temperature range, both for FM and AFM.

For d = 3, there is a gradual hardening of the butterfly
velocity across the transition temperature. This is more promi-
nent for the antiferromagnet, where it seems to follow the
pronounced increase of the spin stiffness, which determines
the spin-wave velocity via Eq. (14). Reference [41] also stud-
ied the Lyapunov exponent and butterfly velocity across a
Berezinskii-Kosterlitz-Thouless (BKT) and Ising transition in
two-dimensional XXZ spin models, with similar results as
ours detailed above. Intriguingly, Ref. [41] did not detect any
sharp signature of phase transitions in the these measures of
chaos. Curiously, for the 3D FM, where the magnetic ordering
takes place through a continuous phase transition, a slight
nonmonotonicity in the butterfly velocity is seen in Fig. 12
while similar nonmonotonicity is not detected in its AFM
counterpart. However, similar nonmonotonicities were ob-
served in Refs. [40,41]. Our low-temperature mode-coupling
theory breaks down at the critical point, and accounting for the
presence (in FM) or absence (in AFM) of this nonmonotonic-
ity would require a systematic understanding of the interaction
of the decorrelation field with the long-wavelength critical
modes.

VI. COMPARISON BETWEEN ORDERED MAGNET
AND SPIN LIQUID

The role of ordering with the concomitant appearance of
quasiparticles can be crisply juxtaposed to the situation in
the case of the classical kagome spin liquid [38], where no
ordering occurs down to T = 0 on account of the geomet-
ric frustration of the spin interactions. Both the Lyapunov
exponent and the butterfly velocity show smooth crossovers
from the high-temperature paramagnetic regime (common to
both cases) to the low-temperature cooperative paramagnetic
or spin-liquid, regime. In this regime, both quantities vanish
algebraically with temperature, obeying the following relation
with the spin diffusion constant [38]:

D ∼ v2
b/λ. (33)

The coexistence of the diffusion constant, D, with the bal-
listic butterfly speed vb may at first sight seem somewhat
surprising. Below, we first provide a simple picture for how
these two different types of behavior can coexist naturally.
This yields a remarkable connection between the physics
of chaos, and that of hydrodynamics, linking spatiotemporal
chaos time- and length scales to the transport coefficient of a
conserved charge.

We then contrast this expression with the situation in a sys-
tem with quasiparticles, where the diffusion constant within
an kinetic theory set up appropriate for this situation, is given
in terms of a characteristic velocity associated with the quasi-
particles, vqp, and their scattering rate, λqp:

D ∼ v2
qp/λqp. (34)

Collecting our previous results implies that the butterfly veloc-
ity is simply replaced by the characteristic speed of ballistic
propagation of the quasiparticles, with λqp related to the Lya-
punov exponent via Eq. (31). Then, from our above discussion
we conclude that while antiferromagnet vqp indeed represents

FIG. 13. Left panel: Diffusion constants D± of the
(anti)symmetric correlators versus temperature T . Diffusion
constants are defined from the low q dependence of the structure
factor, S±(q, ω) =∑x

∫
t eiωt e−iqxC±(x, t ), via S±(q, ω) ∼ 1

ω2+κ (q)2 ,

with κ (q) = Dq2 depending quadratically on q around q = 0. Right
panel: Ratio v2

b/λ of the square of the butterfly velocity to the
Lyapunov exponent versus temperature T . The Lyapunov is defined
from D(x = 0, t ) ∼ e2λt .

the velocity of the long-wavelength spin waves as calculated
from the hydrodynamic theory, for the ferromagnet modes
away from the ordering modes set this scale. We note that
similar relations connecting butterfly velocities, diffusion, and
equilibration rates [71] and the relations between chaos and
hydrodynamics [72] are actively being explored in quantum
systems.

A. Coexistence of diffusive and ballistic correlators

For an insight into the form of Eq. (33), it is convenient
to define the average, and difference, combinations of the two
copies, SI

T , SII
T introduced to define the decorrelator in Eq. (4).

Both the total difference [Eq. (2)]

S−
T =

∑
i

δSi (35)

as well as the total average magnetization

S+
T = 1

2

∑
i

(
SI

i + SII
i

)
:=
∑

i

S+
i (36)

are conserved. Therefore the corresponding densities of δSi

and S+
i are expected to diffuse [it is straightforward to see

from Eq. (12) that the dynamics of the two densities, though
coupled with each other, are also local] with diffusion con-
stants (say) D− and D+, respectively. The diffusion of these
quantities can be studied through the respective two-point
correlators

C+(i, t ) = 〈S+
i,t · S+

0,0〉T (37)

and

C−(i, t ) = 〈δSi,t · δS0,0〉T , (38)

and we expect

C±(i, t ) ∼ 1√
D±t

e−x2
i /(D±t ). (39)

Indeed, for the kagome spin liquid, these two diffusion
constants are plotted as a function of temperature in Fig. 13
(left panel).

For our protocol, the diffusion of δSit suggests that the
difference field evolves as

δSi,t ∼ εni,t e−x2
i /(2D−t ), (40)
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FIG. 14. Short-time t behavior of D(x, t ) at fixed x for the 1D
ferromagnet: Full numerical simulations (points) versus results of
LSW (solid), Eq. (24). Top panels at x = 0, bottom panels at x =
10. Temperature for the simulations are T = 0.04 (left panels) and
T = 0.10 (right panels).

where is ni,t is a vector that encodes magnitude and direc-
tion of the fast local fluctuations in the difference field. This
describes the motion of the difference field throughout the

FIG. 15. Short-time t behavior of D(x = 0, t ) at fixed x for the
1D ferromagnet: Full numerical simulations (points) versus results
of LSW (solid), Eq. (24), and the asymptotic result 1/t (dashed).
Both panels at T = 0.04.

system starting from i = 0 at t = 0 such that

S−
T = ε (41)

for all times.
For a chaotic system, the growth of this difference field at

a given location, i, is expected to be exponential, exp(λt ), for
arbitrarily long times in the limit ε → 0. While the random
directions of ni,t ensure that Eq. (41) is obeyed, i.e., the
decorrelator, is expected to have a form

D(xi, t ) = ε2eλt e− x2
i

D−t = ε2e
λt
(

1− x2
i

v2
b t2

)
, (42)

where λ is the Lyapunov exponent and by definition the but-
terfly speed, vb = √

D−λ.
The constants D± refer to the diffusion of two different

conserved quantities and they need not be equal in general.
This is most prominent in the case that the diffusion is due to
a separate set of objects (particles/excitations) that carry one
of the two charges of symmetric and staggered spin-rotation
symmetry, O±(3). However, in the case the same objects
carry both the charges, then a Wiedemann-Franz type law can
emerge, but now relating the two diffusion constants,

D+
D−

= η, (43)

would be expected, where η is a constant which may depend
on the energy scales, as well as details, of the system under
consideration. In this case, the spin diffusion constant is

D+ ∝ D− ∼ v2
b

λ
, (44)

as advertised above, Eq. (33). The numerical verification of
these ideas is shown in the right panel of Fig. 13 for the
classical kagome spin liquid which exhibits no ordering at any
T , thereby allowing fits over a large range of T .

B. Diffusion and chaos with and without quasiparticles

We now return to the observation that a similar relationship
between the chaos and diffusion holds both for the symmetry
broken case, Eq. (34), as well as the spin liquid, Eq. (33).

In the case of the ordered phase, we obtained a relation
between the Lyapunov exponent and a timescale λ ∼ τ−1,
Eq. (31), where τ is an appropriately defined single-particle
lifetime of the low-energy quasiparticles, the spin waves.
These spin waves propagate with a velocity vqp ∼ J , which
subsumes the ballistic propagation of the perturbation wave
front, vb ∼ vqp. In this situation, the kinetic theory of dilute
gases yields a diffusion constant, D+ ∼ v2

qpτ ∼ v2
B/λ.

Note that, despite the visual similarity between Eqs. (34)
and (33), their underlying physics differs fundamentally:
There is no straightforward quasiparticle description for the
spin liquid, whose low-energy sector with its huge ground-
state degeneracy is completely unlike that of the ordered
magnet with its emergent integrability and long-lived quasi-
particles. In this sense, the emergence of the butterfly velocity
described in the previous subsection is an entirely sepa-
rate, and remarkable, feature of many-body chaos at low
temperature.
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In passing, we note that for the symmetric combination,
i.e., the average magnetization density, the fast local fluctua-
tions, however, cannot grow exponentially due to the already
large background present in the form of a local spin length.
Therefore, while the constraint (that can be derived from the
equation of motion for the spins)

∂t (S+
i · S+

i + δSi · δSi ) = 0 (45)

indicates that the symmetric part contains the same informa-
tion about the chaotic properties, e.g., the butterfly velocity
and the Lyapunov, as the decorrelator, we note that the signal
might in practice be hidden under the magnetic fluctuations
and impossible to extract from the symmetric part. However,
as noted in Ref. [52], in classical spin systems without spin
conservation (say a XYZ model), the initial difference of total
magnetization between the two copies grows exponentially.

VII. SUMMARY AND OUTLOOK

In summary, we have presented a study of chaos and its
temperature dependence in a family of model Hamiltonian
many-body system which allows considerable variation in
terms of choice of lattice, dimension, and interaction. This
provides access to different thermodynamic phases, such as a
disordered (paramagnetic), ordered [(anti)ferromagnetic], as
well as the critical regime separating these. This has in turn
permitted us to identify a number of distinct regimes char-
acterized by different natural degrees of freedom, transport
mechanisms, and concomitant velocity and timescales.

Our combined numerical and analytical investigations con-
cretely connect the signatures of many-body chaos in classical
spin systems, the Lyapunov exponent λ, and the butterfly
velocity vb, with the velocity vqp and scattering time τqp asso-
ciated with the spin waves, i.e., the quasiparticles in the phase
which spontaneously breaks spin-rotation symmetry. These
relations are directly manifested in the decorrelator, which
quantifies how two copies with weakly, and locally (in real
space), perturbed initial conditions diverge in time and space.

At low T and short times (t < λ−1) integrable behavior
emerges whose butterfly velocity and power-law temporal de-
cay are concretely captured within LSW theory. Interestingly,
the shape of the wave front may depend on the interactions,
being hypercubic in shape for the nearest-neighbor ferromag-
net in d > 1, while the antiferromagnet exhibits isotropic
hyperspherical behavior. This is quite a tangential point to
the present paper, but besides some early work [55], we
are not aware of a systematic study of the properties of
freely propagating disturbances across lattices as a function
of Hamiltonian parameters. Indeed, it would be an interesting
question how the symmetries of the considered lattices and
further-neighbor couplings affect the observed wave fronts.
We also leave open the fate of the shape of these wave fronts at
longer times when interactions become relevant, which might
be sufficient to restore isotropy even on these lattices.

The integrability, however, is only approximate and thus
a transient phenomenon, even though the corresponding
timescale, the spin-wave lifetime, τk (where k is the spin-
wave momentum), grows as the temperature is decreased.
The short-time integrable behavior thus gives way to fully
developed chaos as witnessed by the exponential temporal

growth of the decorrelator in addition to its ballistic spread
through an intermediate scarred region. We interpret this a
consequence of well-defined quasiparticles, namely, the spin
waves, transporting weight of the decorrelator ballistically
while undergoing repeated scattering events. This results in
random-walk-like behavior with a diffusive core of the decor-
relator on top of the exponential chaotic temporal growth.
The scarred regime still holds plenty of interest for further
study, for instance, regarding the detailed mechanism leading
to the generation of the secondary light cones, as well as
their statistical distribution in what appears to be a regime
dominated by rare events.

In the ordered low-temperature regime, the Lyapunov ex-
ponent also vanishes as a power law in temperature, albeit
with a different exponent which in turn depends on both
dimension and sign of the coupling; at the same time, the
butterfly velocity gets subsumed by the velocity of the ballis-
tically propagating quasiparticles and also saturates to a finite
value at low temperatures. We find that both the Lyapunov
and the butterfly velocity show characteristic features at the
phase transition, where the Lyapunov changes from essen-
tially constant in the paramagnetic regime to a power-law
decay, and the velocity shows a minimum for the ferromagnet
and a characteristic stiffening for the d = 3 antiferromagnet
reflecting the emergent spin stiffness.

We note that the same spin-wave scattering is responsible
for the thermalization of the weakly interacting gas of spin
waves. This notion of a dilute thermalized gas of spin waves
then forms the basis of the kinetic theory of transport at low
temperature. Indeed, the above picture is generic and forms
one of the central pillars of low-temperature transport theory
in symmetry-broken systems, and our work ties this in with
the nature of the concomitant many-body chaos.

Such a low-energy transport theory can be contrasted to
the low-temperature cooperative paramagnet, where quasipar-
ticles are absent but diffusive transport persists. There, the
transport coefficients are directly determined by the chaos
timescales and length scales, with both Lyapunov exponent
and butterfly velocity exhibiting a power-law temperature de-
pendence.

The present observation of the importance of chaos
time/length scales for hydrodynamics in the presence and
absence of quasiparticles quantitatively indicates an intrigu-
ing and important role of many-body chaos in the transport
of strongly correlated systems which we think are of much
broader significance in both classical and quantum many-
body systems. Indeed, the connection between classical and
quantum chaos presents one of the most fascinating aspects
of the field of many-body dynamics at present. While, for
the quantum setting, a number of results—under the headings
of bounds for chaos and relatedly, Planckian transport—have
been established, their fate in the semiclassical limit is a
subject of current investigation [73–75].

We would like to end with two open interesting questions
pertaining to two well-known frameworks of transport in
the context of symmetry breaking and thermal phase transi-
tions. The first pertains to the connection between the present
observations and the elegant theory of nonlinear fluctuat-
ing hydrodynamics [64] for the dynamic correlation function
which characterizes the long distance and timescaling of the
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low-energy modes in the broken symmetry phase. Application
of such approaches to classical spin systems in one dimension
are rather recent [63] and their connection to chaos remains to
be understood. The second is related to the similar connection
between our present approach and the theory of dynamic
critical phenomena [62]. While the characterization of chaos
near a critical point has been recently addressed in model
systems [40,41], a concrete connection to the different forms
of coarse-grained hydrodynamics and their possible relation-
ship with many-body chaos remains open. In either case, the
systematic understanding of the mode-coupling theory for the
difference field, as developed here, and its similarity with the
spin-wave dynamics can serve as a starting point of such an
understanding.
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APPENDIX A: SPIN-WAVE ANALYSIS

Here, we provide details of the spin-wave analysis for the
nearest-neighbor classical ferromagnets and antiferromagnets
in d = 1, 2, 3. From the equation of motion [Eq. (12)], we get,
by using the form of the spins in Eq. (16), the dynamics of the
spin waves as

∂t Li = [ni
[
1 − L2

i /2
]+ Li

]×
∑

j

Ji j
[
n j
[
1 − L2

j/2
]+ L j

]
.

(A1)

1. Nearest-neighbor ferromagnet

For the ferromagnet, J < 0, the ground state is given by
ni = ẑ (and n̂ ⊥ L). The transverse fluctuations are described
by

∂t Li = −|J|ẑ ×
[∑

j∈NNi

L j −
∑
j∈NNi

Li

]

+ |J|
2

z ×
[

L2
i

∑
j∈NNi

L j − Li

∑
j∈NNi

L2
j

]
, (A2)

which in Fourier space becomes

∂t Lk = γ (k)Z · Lk + 1

N

∑
q

Mk,q · Lk−q, (A3)

where

Li = 1

N

∑
k

e−ik·ri Lk, (A4)

Z =
⎛
⎝0 −1 0

1 0 0
0 0 0

⎞
⎠, (A5)

and

Mk,q = − (γk−q − γq)

2N

∑
q′

Lq′ · Lq−q′Z, (A6)

where γk is given by Eq. (19). The linear solution is obtained
by considering the bare Green’s function

G0(ω, k) = [iω − γ (k)Z]−1 (A7)

or

G0(k, t ) =

⎛
⎜⎝

cos(|γk|t ) − sin(|γk|t ) 0

sin(|γk|t ) cos(|γk|t ) 0

0 0 1

⎞
⎟⎠, (A8)

leading to

Lq;t = G0(q, t ) · Lq;0, (A9)

which, written explicitly (in real space), is of the form

Lx
i = 1

N

∑
q

e−iq·ri
[
Aqei|γ (q)|t + Bqe−i|γ (q)|t ], (A10)

Ly
i = −i

N

∑
q

e−iq·ri
[
Aqei|γ (q)|t − Bqe−i|γ (q)|t], (A11)

where

Aq = Lx
q;0 + iLy

q;0

2
and Bq = Lx

q;0 − iLy
q;0

2
.

Therefore, Mk,q represents three spin-wave modes scat-
tering, i.e., the leading scattering term. Within a k-dependent
relaxation time approximation, we can rewrite Eq. (A3) as

∂t Lk =γ (k)Z · Lk − 1

τk
Lk, (A12)

where τk is the lifetime of a spin wave. This is similar to the
Landau-Lifshitz-Gilbert equation.

2. Nearest-neighbor bipartite antiferromagnet (Neel order)

For a Néel state [Eq. (32)], as in the ferromagnetic case,
Eq. (A1) gives

∂t Li,A = J ẑ ×
[

2dLi,A +
∑

j

L j,B

]
(A13)

−J

2
ẑ ×

∑
j

[
L2

i,AL j,B + Li,A

∑
j

L2
j,B

]
(A14)

and

∂t Li,B = −J ẑ ×
[

2dLi,B +
∑

j

L j,A

]
(A15)

+J

2
ẑ ×

∑
j

[
L2

i,BL j,A + Li,B

∑
j

L2
j,A

]
. (A16)
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Now, defining

L± = LA ± LB, (A17)

we get, after Fourier transforming,

∂t

[
Lk+
Lk−

]
= Z

[
0 γk

(4dJ − γk ) 0

][
Lk+
Lk−

]

+ 1

N

∑
q

[M+
k,q −N−

k,q
−R+

k,q M−
k,q

][
Lk−q;+
Lk−q;−

]
, (A18)

M+
k,q = 1

4N
(γk−q − γq)

∑
q1

(
Lq1

+ · L−
q−q1

)
Z, (A19)

M−
k,q = 1

4N
(4Jd − γk−q − γq)

∑
q1

(
Lq1

+ · L−
q−q1

)
Z,

(A20)

Nk,q = γk−q − γq

8N

∑
q1

[
Lq1

+ · L+
q−q1

+ Lq1
− · L−

q−q1

]
Z,

(A21)

Rk,q = γ̃k−q + γ̃q

8N

∑
q1

[
Lq1

+ · L+
q−q1

+ Lq1
− · L−

q−q1

]
Z.

(A22)

From this, again, similar to the FM case, for the free spin
waves, we get

∂t L0
k± = ∓(γ̃k ∓ 2dJ ) ẑ × L0

k∓, (A23)

where

γ̃k = 2J
d∑

i=1

cos(k · δ) = 2dJ − γk. (A24)

This gives

∂2
t L0

k+ = −�2
k L0

k+, (A25)

where

�k = 2J (d2 − (γ̃k/2J )2)1/2. (A26)

Therefore, we have

L0
k+ = Akei|�k|t + Bke−i|�k|t , (A27)

L0
k− = − i

ρk

[
Ckei|�k|t − Dke−i|�k|t], (A28)

where Ck = ẑ × Ak, Dk = ẑ × Bk, and

ρk =
√

d − γ̃k/2J

d + γ̃k/2J
. (A29)

The above equations can be solved to get Ak and Bk. From
this, we find that it is useful to define

U0
k+ = L0

k+, (A30)

U0
k− = ρk ẑ × L0

k− = ρkZL0
k−, (A31)

which diagonalizes the propagator in spin-space. Thus, we get[
U0

k+(t )

U0
k−(t )

]
=
[

g0
k h0

k

−h0
k g0

k

][
U0

k;+(0)

U0
k;−(0)

]
, (A32)

where

g0
k =

⎡
⎣cos(|�k|t ) 0 0

0 cos(|�k|t ) 0
0 0 1

⎤
⎦ (A33)

and

h0
k =

⎡
⎣sin(|�k|t ) 0 0

0 sin(|�k|t ) 0
0 0 0

⎤
⎦. (A34)

We rewrite Eq. (A32) as

U0
k(t ) = G0

k(t ) · U0
k(0). (A35)

To understand the effect of scattering, it is useful to rewrite
Eq. (A18) as

∂t Uk = χk · Uk + 1

N

∑
q

�1
k,q · Uk−q, (A36)

where

χk =
[

0 �k
−�k 0

]
(A37)

describes the free evolution and

�1
k,q =

[
M̄+

k,q N̄−
k,q

R̄+
k,q M̄−

k,q

]
(A38)

is the scattering matrix with elements given by

M̄+
k,q = − 1

4N
(γk−q − γq)

∑
q1

[
Uq1+ · Uq−q1;−

ρq−q1

]
Z, (A39)

M̄−
k,q = ρk(γ̃k−q + γ̃q)

4Nρk−q

∑
q1

[
Uq1+ · Uq−q1;−

ρq−q1

]
Z, (A40)

N̄k,q = −γk−q − γq

8Nρk−q

∑
q1

[
Uq1+ · Uq−q1;+

+ Uq1− · Uq−q1;−
ρq1ρq−q1

]
, (A41)

R̄k,q = ρk(γ̃k−q + γ̃q)

8N

∑
q1

[
Uq1+ · Uq−q1;++Uq1− · Uq−q1;−

ρq1ρq−q1

]
.

(A42)

This describes the scattering of the spin waves and leads to
their finite lifetime.
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APPENDIX B: DECORRELATOR FOR THE FERROMAGNET

From Eq. (17), for the ferromagnet with ni = ẑ, the equation of motion for the difference field reads

δtδSi = −|J|ẑ ×
[∑

j∈NNi

δS j −
∑
j∈NNi

δSi

]
− |J|

[
Li ×

∑
j∈NNi

δS j + δSi ×
∑
j∈NNi

L j

]
+ |J|

2
z ×

[
L2

i

∑
j∈NNi

δS j − δSi

∑
j∈NNi

L2
j

]
.

(B1)

The Fourier transformation [Eq. (5)] of the above equation leads to (with Lk = (Lx
kx̂ + Ly

kŷ)) Eq. (18), within Eq. (20),

Ok,q = (γk−q − γq)Lq, (B2)

where

Lq(t ) =
⎛
⎝ 0 0 Ly

q
0 0 −Lx

q
−Ly

q Lx
q 0

⎞
⎠ (B3)

and Mk,q is given by Eq. (A6). The decorrelator can then be calculated from Eq. (7).

1. Free solution

Neglecting scattering, the explicit form of the linear equation [first term on the right and side of Eq. (18)] of motion of δSi is
given by

∂tδSx
k = −γkδSy

k, (B4)

∂tδSy
k = γkδSx

k, (B5)

whose solution is summarized in Eq. (22). The initial conditions are obtained as follows. From Eqs. (2) and (3), we have Eq. (6)
such that

ε = ε
(−√1 − (L0(0))2

(
Lx

0(0)x̂ + Ly
0(0)ŷ

)+ (L0(0))2ẑ
)

|L0(0)| . (B6)

From this it follows that

η =
√

(εx )2 + (εy)2 = ε
√

1 − |L0(0)|2 (B7)

φ = tan−1
(
Ly(0)/Lx

0(0)
)
. (B8)

Therefore, using Eq. (23), the decorrelator reads

D(i, t )

ε2
= (1 − m2

T

)2
δi,0 + m2

T

(2π )2d

∫
BZ

dd k
∫

BZ
dd k′ cos[(|γ [(k)| − |γ (k′)|)t + (k + k′) · ri], (B9)

which can be rewritten as Eq. (24) by using

Jν (t ) = 1

2π iν

∫ π

−π

dk eit cos keiνk (B10)

and associated properties of the Bessel function of the first kind, Jν (x). In Eq. (B9), we have also used the relation in
thermodynamic equilibrium, |L0(0)|2 = 1 − m2

T .

2. Mode coupling and scattering of difference field with spin waves

The mode-coupling expansion for δSk(t ) is obtained by iterating Eq. (21) and is given by

δSk(t ) = G0(k, t )

[
1 + 1

N

∑
q1

∫ t

0
dt1 Ak,q1 (t1)G0(k − q1, t1) + 1

N2

∑
q1,q2

×
∫ t

0
dt1 Ak,q1 (t1)G0(k − q1, t1)

∫ t1

0
dt2 Ak−q1,q2 (t2)G0(k − q1 − q2, t2) + · · ·

]
· ε. (B11)

From Eq. (B11), the expansion of the decorrelator is obtained via an expansion of δSk(t ) · δSk′ (t ) whose perturbation series
is given by (27). Note that in deriving Eq. (27), we have used[

G0
k(t )
]T · G0

−k(t ) = 1. (B12)
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APPENDIX C: DECORRELATOR FOR THE BIPARTITE
ANTIFERROMAGNET

Next, we discuss the spread of decorrelations for the bi-
partite antiferromagnet. From Eq. (17), using Eq. (32) for a
bipartite antiferromagnet, we get

∂t Si,A = J ẑ ×
[

2d δSi,A +
∑
j∈i

δS j,B

]

+ J
∑
j∈i

[δSi,A × L j,B + Li,A × δS j,B]

− J

2
ẑ ×

∑
j∈i

[
L2

i,AδS j,B + δSi,AL2
j,B

]
(C1)

for sublattice A and

∂tδSi,B = − J ẑ ×
[

2d δSi,B +
∑
j∈i

δS j,A

]

+ J
∑
j∈i

[δSi,A × L j,B + Li,A × δS j,B]

+ J

2
ẑ ×

∑
j∈i

[
L2

i,BδS j,A + δSi,BL2
j,A

]
(C2)

for sublattice B. Introducing the symmetric and antisymmetric
modes for the difference field

δSk± = δSk,A ± δSk,B (C3)

similar to the antiferromagnetic spin waves in the section
above, Fourier transforming yields

∂t

[
δSk+
δSk−

]
= Z

[
0 γk

(4dJ − γk ) 0

][
δSk+
δSk−

]

+ 1

N

∑
q

[
A+

k,q A−
k,q

B+
k,q B−

k,q

][
δSk−q;+
δSk−q;−

]
. (C4)

The various scattering terms are given by

A+
k,q = 1

2 O+
k,q + M+

k,q, (C5)

A−
k,q = − 1

2 O−
k,q − Nk,q, (C6)

B+
k,q = 1

2P
−
k,q − Rk,q, (C7)

B−
k,q = 1

2P
+
k,q + M−

k,q, (C8)

where

O±
k,q = (γk−q − γq)L±

q , (C9)

P±
k,q = ± (γ̃q + γ̃k−q)L±

q , (C10)

with L±
q being given by equations similar to Eq. (B3) with L±

q
appropriately used for the two spin wave modes (see above);
and M±, N , and R are given by Eqs. (A20) and (A22).

1. The free decorrelator

Neglecting the scattering terms in Eq. (C4), the equation of
motion for the free decorrelator is

∂t

[
δS0

k+
δS0

k−

]
=Z
[

0 γk

(4dJ − γk ) 0

][
δS0

k+
δS0

k−

]
. (C11)

Again, due to the structure of the matrix Z [see Eq. (A5)],
the longitudinal component (along the ordering direction)
does not evolve. Explicitly solving Eq. (C11) for the trans-
verse components we get

δS0
K+(t ) = εzẑ + ε⊥ cos(|�k|t ) + ẑ × ε⊥ sin(|�k|t ) ρk,

(C12)

δS0
K−(t ) = εzẑ + ε⊥ cos(|�k|t ) + ẑ × ε⊥ sin(|�k|t )

1

ρk
,

(C13)

where �k and ρk are defined in Eqs. (A26) and (A29), respec-
tively. Now, similarly to Eq. (A31), we define �k as

�k ≡
[
�k;+
�k;−

]
=
[

δSk;+
ρk ẑ × δSk;−

]
, (C14)

with γ̃k and ρk being defined by Eqs. (A24) and (A29). The
free solution can now be written as

�0
k(t ) = G0

k(t ) · �0
k(0), (C15)

where G0
k is the free propagator defined in Eq. (A35) and

�k(0) = Vk · ε̄, (C16)

where

Vk =
[

1 0
0 ρkZ

]
, ε̄ =

[
ε

ε

]
. (C17)

We note that in case of the antiferromagnet, we have used
the initial conditions as given by Eqs. (6) and (B6). This
breaks sublattice symmetry by having the perturbation ini-
tially at sublattice A.

For sublattices A and B, the free correlators are then given
by

D0
A(i, t )

ε2
= (1 − n2

T

)
δi,0 + n2

T

2

∫
BZ

dd k
(2π )d

dd k′

(2π )d

[{
1 − 1

4

[
ρk + 1

ρk

][
ρk′ + 1

ρk′

]}
cos[(|�k| + |�k′ |)t] + (k + k′) · ri]

]

+ n2
T

2

∫
BZ

dd k
(2π )d

dd k′

(2π )d

[{
1 + 1

4

[
ρk + 1

ρk

][
ρk′ + 1

ρk′

]}
cos[(|�k| − |�k′ |)t] + (k + k′) · ri]

]
(C18)
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and

D0
B(i, t )

ε2
= n2

T

8

∫
BZ

dd k
(2π )d

dd k′

(2π )d

[
cos[(|�k| − |�k′ |)t + (k + k′) · ri]

[
ρk − 1

ρk

][
ρk′ − 1

ρk′

]]

− n2
T

8

∫
BZ

dd k
(2π )d

dd k′

(2π )d

[
cos[(|�k| + |�k′ |)t + (k + k′) · ri]

[
ρk − 1

ρk

][
ρk′ − 1

ρk′

]]
. (C19)

We note that the initial perturbation was put on sublattice A, as is evident from the above expressions and nT is the Neel order
parameter.

2. Scattering and chaos

Incorporating the scattering, the equation of motion in terms of the �k introduced in Eq. (C14) can be written as

∂t�k = χk · �k + 1

N

∑
q

�k,q · �k−q, (C20)

where χk, given by Eq. (A37), controls the free evolution and �k,q is the scattering kernel [that couples the different modes,
similar to Eq. (18)] given by

�k,q = �1
k,q + �2

k,q, (C21)

with �1
k,q given by Eq. (A38) and

�2
k,q = 1

2

[
Ō+

k,q Ō−
k,q

P̄−
k,q 0

]
(C22)

with

Ō+
k,q = (γk−q − γq)L̄+

q , (C23)

Ō−
k,q = 1

ρqρk−q
(γk−q − γq)L̄−

q , (C24)

P̄−
k,q = − ρk

ρq
(γ̃q + γ̃k−q)L̄−

q , (C25)

where now we have

L̄+
q (t ) =

⎛
⎝ 0 0 U y

q+
0 0 −U x

q+
−U y

q+ U x
q+ 0

⎞
⎠ (C26)

and

L̄−
q (t ) =

⎛
⎝ 0 0 0

0 0 0
U y

q− −U x
q− 0

⎞
⎠. (C27)

M̄±
k,q, N̄k,q and R̄k,q are given by Eqs. (A40) and (A42).
The calculation for �k now proceeds very similarly as in the ferromagnet, leading to the solution, cf. Eq. (21),

�k(t ) = �0
k(0) + G0

k(t ) ·
∑

q

∫ t

0
dt ′ �k,q(t ′) · �k−q(t ′), (C28)

where the free solution �0
k(t ) is given by Eq. (C15). This can be expanded in terms of the free solution as

�k(t ) = G0
k(t )

[
Vk + 1

N

∑
q1

∫ t

0
dt1 �k,q1 (t1) · G0

k−q1
(t1) · Vk−q + 1

N2

∑
q1,q2

∫ t

0
dt1 �k,q1 (t1) · G0

k−q1
(t1) · Vk−q1 ·

×
∫ t1

0
dt2 �k−q1,q2 (t2) · G0

k−q1−q2
(t2) + · · ·

]
· ε̄. (C29)

A diagrammatic representation similar to Eq. (B11) is obtained for both δS as well as the decorrelator (not shown).
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In particular, the summed decorrelator [Eq. (8)] of the antiferromagnet is given by

I (t ) = 1

2

∑
k

〈�k · Hk · �−k〉T , (C30)

where

Hk =
[

1 0
0 1

ρ2
k

]
. (C31)

Therefore,

�k · Hk · �−k

2
=ε2+ ε̄T

2N
·
∑

q

∫ t

0
dt1
[
VT

k · Hk · �k,q(t1) · G0
k−q(t1) · Vk−q+[Vk−q]T · [G0

k−q

]T · [�k,q]T · Hk · Vk

]
· ε̄+ · · · ,

(C32)

where we have used [
G0

k

]T · G0
k = 1 and VT

k · Hk · Vk = 1. (C33)

The leading order scattering term in Eq. (C32) is the term under the integral in the equation above. Using explicit calculations
gives

ε̄T · [VT
k · Hk · �2

k,q(t1) · G0
k−q(t1) · Vk−q + [Vk−q]T · [G0

k−q

]T · [�2
k,q

]T · Hk · Vk
] · ε̄ = 0. (C34)

Hence this, again like the ferrormagnet, reduces to the spin-wave equations and thereby explicitly connects the spin-wave lifetime
with the Lyapunov exponent, similar to Eq. (30).

APPENDIX D: ASYMPTOTICS OF THE FREE
DECORRELATOR

For the long-time asymptotics of the LSW result, we use
the following stationary phase techniques.

1. Nearest-neighbor FM

Isolating the relevant part of the result in the main text,
Eq. (24), we consider the asymptotic scaling at large t of

∫
BZ

dd k
∫

BZ
dd k′ cos[(|γ [(k)| − |γ (k′)|)t + (k + k′) · r].

(D1)

The asymptotic scaling therefore is contained in

I (t ) =
∫

dd k ei(|γ (k)|+vk)t ,

where we defined v = r/t . This at large t is amenable to a
stationary-phase approximation.

In the case of a FM, the dispersion relation is given by
γ (k) = 2J (d −∑d

i=1 cos(ki )). This is a smooth function of
k and has only isolated critical points. Thus, the asymptotic
large t scaling is simply t−d/2, which gives t−d when squared
as quoted in the main text for the scaling of the decorrelator.

We also note that for vi > 2J , there are no points of
stationary phase, thus, by the principle of the nonstationary
phase, the integral decays faster than any power law in t ,
which defines the light-cone velocity vLC = 2|J|√d along a
body-diagonal of the hypercubic lattice, or vi = 2J along the
direction of the coordinate axes. Notice that the hypercubic
appearance of the propagating fronts is evident as the integral
fully factorizes over x, y, z.

2. Nearest-neighbor AFM

The case of the AFM is more complicated. Considering
the results in Eqs. (C12) and (C13), we require the asymptotic
scaling of

I0(t ) =
∫

dd k ei�kt , (D2)

I1(t ) =
∫

dd k sin(�kt )ρ(k), (D3)

I2(t ) =
∫

dd k sin(�kt )
1

ρ(k)
, (D4)

where �(k) = 2J
√

d2 − (
∑

i cos(ki ))2 and ρ(k) =√
d−∑i cos(ki )
d+∑i cos(ki )

, and we specialized to the case of r = 0. We

note that by the same argument as for the FM for |v| > 2J
√

d ,
the integrals decay exponentially, which in contrast to the FM
is fully isotropic however.

We begin with the I0 term. This is already not fully trivial.
First, the dispersion is not a smooth function. However, eval-
uating the contribution due to the nondifferentiable part at the
center of the Brillouin zone,∫

dd k ei|k|t ∼ 1/t d , (D5)

we find this contribution to be subleading.
In addition, the points of stationary phase are not iso-

lated but rather form a d − 1-dimensional manifold defined
via

∑
i cos(ki ) = 0. In 1D, this does not change things and

we have the same scaling as for the FM, e.g., t−1 for the
decorrelator. In higher dimensions this complicates things.
Furthermore, while in 2D, generically, the critical points have
a nonvanishing Hessian, for special points, e.g., (kx, ky) =
(π, 0) the Hessian vanishes.
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We consider these contributions in turn. A (d-1) manifold
of normal saddles gives a contribution of the form∫

dd k ei(k−k0 )2t ∼ 1/
√

t . (D6)

In 2D we also have higher order saddles of the form∫
dkxdky ei(kx−π )2k2

y t ∼ log(t )/
√

t . (D7)

Thus, in 2D and 3D we obtain additional contributions
dominant compared to the normally expected t−d/2 scaling,
and there is no clear power-law behavior for the AFM in 2D
and 3D.

Next we consider the I1 and I2 terms. The additional pres-
ence of ρ(k) (1/ρ(k)) does not change the asymptotic scaling
for those critical points where ρ(k) (1/ρ(k)) attains a finite
value. Thus, we do not need to revisit the discussion of the
d − 1 manifold where

∑
cos(ki ) = 0, and only need to con-

sider the effect on isolated critical points.
In 1D, we need to additionally consider the points k = π

(k = 0), where ρ (1/ρ) diverge. For both of these points,
expanding in a Taylor series, the asymptotic scaling follows
from ∫

dk sin(|k|t )/|k| ∼ const.

In 2D, we need to treat the points (kx, ky) = (0, 0) and
(kx, ky) = (π, π ). Again expanding ρ(k) (1/ρ(k)) and �(k)
around these points in a polar coordinate system, the leading
contribution becomes∫

dkk sin(kt )/k ∼ 1/t . (D8)

In 3D, the same procedure expanding in spherical coordi-
nates around (0,0,0) and (π, π, π ) yields the same integral
and a 1/t2 contribution.

3. Comparison

Thus, for the FM, we generically obtain a power-law decay
in time, whereas for AFM we obtain a constant contribution
to the decorrelator in 1D which will dominate at long times,
and complicated crossovers between different scalings in 2D
and 3D.

In addition, the stationary phase calculation suggests a
cubic wave front for the FM and an isotropic one for the AFM
as borne out in the explicit calculations and full numerical
calculations.

APPENDIX E: NUMERICS

In this section, we provide details of the numerical sim-
ulations. The setup parallels our previous work [38], with
differences arising due to the broken spin rotational symmetry
and finite magnetization in the ordered regime.

1. Initialisation by Monte Carlo

We first generate equilibrium spin configurations sampled
from the canonical Boltzman distribution at temperature T
of the model, Eq. (1), via Monte Carlo simulations. In the

equilibration phase starting from a random spin configuration,
we perform 105 update sweeps, consisting of ten microcanon-
ical overrelaxation lattice sweeps followed by one heat-bath
sweep. After the equilibration phase, we take measurements
of the observables, e.g., the full spin configuration. Between
each measurement, we perform additional updates, consisting
of three over-relaxation sweeps combined with one heat-bath
sweep, either until 100 such combined updates have been
performed or until the spin configuration is decorrelated as
set by

∑
i Sold

i · Snew
i /N < 0.01 in the paramagnetic regime,

and
∑

i Sold
⊥,i · Snew

⊥,i /N < 0.01 in the low-temperature ordered
regime, where S⊥ is the normalised component perpendicular
to the order parameter.

2. Integration of the equations of motion

Starting from these spin configurations, we obtain the dy-
namics by integrating the equations of motion, Eq. (12), using
a eighth-order Runge-Kutta solver with a fixed time step. We
choose the time step such that at the final integration time,
the error of the conserved quantities, here the energy and
magnetization, is below 10−6, e.g., |E f − Ei| < 10−6.

3. The decorrelator

To compute the decorrelator, Eq. (4), we evolve each
configuration by integrating the equations of motion for the
original and the perturbed copy according to the prescription
in Eq. (2) for a fixed ε simultaneously, or by integrating the
equations of motion, Eq. (12), together with the linearized
equations for the difference field, Eq. (15). In the linearized
equations of motion the limit ε → 0 has been taken, such
that the initial condition for the difference field is simply
δSi = (n × Si,0)δi,0. The linearized decorrelator thus carries
no factor of ε2. This needs to be kept in mind when comparing
to the expressions explicitly containing these factors. We then
average 103 such trajectories to compute the thermal average.

We note that since the equations of motion preserve the
magnetization, the difference between the two copies is lim-
ited at low temperature by the ordered moment, as only
the transverse component of the spins can decorrelate which
has length of order

√
1 − m2. Similarly, in the linearized

equations of motion, the growth will be in the transverse
components as well. Thus, in principle, one may distinguish
the longitudinal (parallel to the ordered moment) and the
transverse (perpendicular to the ordered moment) components
of the decorrelator, which thus acquires a tensorial structure.
For the results presented in this paper, we have not addressed
this additional structure, considering the sum over all compo-
nents as defined in Eq. (4). This is indeed dominated by the
transverse components.

This ties into another advantage of the approach using the
linearized equations of motion. While the exponential growth
is still limited to the transverse components, it is not limited in
size or time, such that we obtain a clean exponential growth up
to arbitrary long times, rather than only over a finite window
as in the full nonlinear equations of motion between two
copies.

4. Role of finite magnetization

We discuss two additional complication due to the finite
magnetization. First, when comparing to a perturbed copy, one
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may be concerned that our perturbation, Eq. (2), does not pre-
serve the order parameter. Of course, for small ε this change
is also small. Still, we performed simulations with a modified
prescription, where two neighboring spins are rotated around
the order parameter by the angle ε instead, with no difference
in the results.

Secondl, the equations of motion result in a precession of
all spins around the magnetization vector. For the FM, the
order parameter is the total magnetization and thus constant
in time. However, for the AFM, the order parameter is the

staggered moment which is not exactly preserved under the
dynamical evolution. While the dynamics of the staggered
moment slows down as system size increases, to vanish in the
thermodynamic limit, it is present on finite systems. We have
therefore computed all observables for the AFM in a static
frame, and a dynamic frame defined by a rotation which is
chosen such that the staggered moment remains constant. This
is primarily important when distinguishing the longitudinal
and transverse components which depend on the orientation
of the order parameter rather than the total magnetization.
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