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Duality between two generalized Aubry-André models with exact mobility edges
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A mobility edge (ME) in energy separating extended from localized states is a central concept in under-
standing various fundamental phenomena, such as the metal-insulator transition in disordered systems. In
one-dimensional quasiperiodic systems, there exist a few models with exact MEs, and these models are beneficial
to provide exact understanding of ME physics. Here we investigate two widely studied models including exact
MEs, one with an exponential hopping and one with a special form of incommensurate on-site potential. We
analytically prove that the two models are mutually dual and further give the numerical verification by calculating
the inverse participation ratio and Husimi function. Our result may provide insight into realizing and observing
exact MEs in both theory and experiment.
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I. INTRODUCTION

Anderson localization (AL) [1], a fundamental quantum
phenomenon in nature, reveals that the single-particle states
can become localized due to disorder effect. The quantum
phase transition from the extended (metal) phase to the lo-
calized (insulator) phase can occur by increasing the disorder
strength in three-dimensional (3D) systems. Near the transi-
tion point, the mobility edges (MEs) can occur and separate
the extended and localized states [2,3]. ME lie at the heart
in understanding various fundamental phenomena, such as
the metal-insulator transition induced by varying disorder
strength or particle number density. Moreover, a system with
ME has strong thermoelectric response [4–6] and can be
applied to thermoelectric devices. MEs exist widely in 3D sys-
tems with random disorder, but for one and two dimensions,
the scaling theory [7] shows that all states are localized for
arbitrarily small disorder strengths, so no MEs exist.

Unlike random disorder, the quasiperiodic potential can
induce the extended-AL transition at a finite strength of
the potential even in the one-dimensional (1D) systems,
which bring about rich interesting physics, e.g., the exis-
tence of MEs even in 1D systems [8–12] and nonergodic
critical phases [13–15]. The most celebrated example with 1D
quasiperiodic potential is the Aubry-André (AA) model [16],
described by t (ψ j+1 + ψ j−1) + V cos(2πβ j + δ)ψ j = Eψ j ,
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where ψ j, t, V , and δ denote the wave-function amplitude at
site j, the nearest-neighbor hopping strength, the strength of
the quasiperiodic potential, and the phase parameter, respec-
tively, and β is an irrational number. The model exhibits a
self-duality for the transformation between real and momen-
tum spaces at V = 2t , leading to the extended-localization
transition with all the eigenstates of the model being extended
(localized) for V < 2t (V > 2t ). Thus, no ME exists for the
AA model. This model has been realized in ultracold atomic
gases trapped in incommensurate optical lattices, and the lo-
calization transition has been observed [17]. The existence
of the many-body localization phase in the AA model in the
presence of weak interactions has also been well established
in both theory [18–20] and experiment [21,22].

By introducing the exponential [8] or power-law [23] hop-
ping term, or breaking the self-duality of the AA model
[9,10,24–29], one can obtain the MEs in the system. However,
very few of them can provide the accurate expression of MEs
[8–10,24], and undoubtedly, these models with exact MEs are
beneficial to provide exact understanding of the ME physics
for both the noninteracting and interacting systems. In this
paper, we will focus on the two most commonly used models
with exact MEs and find their relation. One is [8]

E1an =
∑
n′ �=n

t1e−p|n−n′ |an′ + V cos(2πβn + δ)an, (1)

where p > 0, t1e−p|n−n′ | is the hopping rate between sites n
and n′ and V is the strength of the quasiperiodic potential.
The first term on the right-hand side represents an exponential
hopping, which is obviously different from the AA model,
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but this model will reduce to the AA model in the p → ∞
limit. J. Biddle and Das Sarma first analytically predicted and
numerically verified the exact expression of ME [8], which is

E1c = V cosh(p) − t1. (2)

The other widely studied model with exact MEs we
considered is [9]

E2bn = t2(bn−1 + bn+1) + 2λ
cos(2πβn + δ)

1 − α cos(2πβn + δ)
bn, (3)

where t2 represents the hopping strength between neighboring
sites, λ, and α [α ∈ (−1, 1)] represent the on-site modula-
tion strength and the deformation parameter, respectively, and
when α = 0, this model reduces to the AA model. The known
exact expression of the ME is [9]

E2c = 2 sgn(λ)(|t2| − |λ|)/α. (4)

Analytical and numerical results show that the ME expres-
sions (2) and (4) are independent of the systems boundary
conditions, sizes, and the specific value of the parameters
δ and β [8,9], which can also be seen from the following
calculation of the localization length. Thus, without loss of
generality, we take δ = 0, β = (

√
5 − 1)/2, and open bound-

ary conditions (OBC) in the following numerical calculations.
For convenience, we call the above-mentioned first (second)
model Model I (II). The two models have widely been used to
study the ME physics, e.g., the dynamical behavior of a sys-
tem with MEs [30], fate of MEs in the presence of interactions
[31–34], or non-Hermitian term [35–37].

In recent years, MEs have been observed in disordered
systems [38–40] and quasiperiodic systems [41–44] in ex-
periments based on ultracold atoms. In particular, the recent
work [44] has accurately realized the Model II (3) by using
synthetic lattices of laser-coupled atomic momentum modes,
and accurately detected the location of MEs in the absence
and presence of interactions.

This paper is motivated by two nontrivial questions raised
here. First, is there any nontrivial relation between the above
two models even if they seem to be quite different, and
whether the Model I can be accurately realized in experi-
ment? Second, can the localization lengths of the states in two
models can be exactly computed, which clearly necessitates
to go beyond the dual transformation applied to determine
the ME in the previous studies? Answering these questions
is important to unveil the fundamental properties of the two
important models. In this paper, we prove that the above two
generalized AA models [Eqs. (1) and (3)] have the mutually
dual relation, and further provide exact study of the local-
ization properties of the states. With the dual relation proved
in this paper, the recent experimental work [44] that realized
Model II (3) in momentum space could be regarded to have
also effectively realized Model I in real space.

II. ANALYTICAL AND NUMERICAL RESULTS

A. Analytical derivation for dual relations

We first analytically establish the duality between Model
I and Model II. We start from Model I (1) and introduce the

transformation,

a j = 1√
L

∑
m

bme−i2πmβ j, (5)

where L is the system size, and

bm = 1√
L

∑
j

a je
i2πmβ j . (6)

By using the transformation (5), Eq. (1) becomes

E1
1√
L

∑
m

bme−i2πmβn =
∑
n′ �=n

t1e−p|n−n′ | 1√
L

∑
m

bme−i2πmβn′

+V cos(2πβn)
1√
L

∑
m

bme−i2πmβn.

(7)

Here we have set δ = 0. Then, we rewrite the first term on the
right side of the equation

∑
n′ �=n t1e−p|n−n′ | 1√

L

∑
m bme−i2πmβn′

as 1√
L

∑
m bme−i2πmβn

∑
n′ �=n t1e−p|n−n′ |e−i2πmβ(n′−n), where∑

n′ �=n t1e−p|n−n′ |e−i2πmβ(n′−n) is the summation of a
geometric sequence, and one can obtain that it equals
2t1[−e−2p+e−p cos(2πmβ )]
1+e−2p−2e−p cos(2πmβ ) . Then, Eq. (7) can be written as

E1
1√
L

∑
m

bme−i2πmβn

= 1√
L

∑
m

bme−i2πmβn 2t1[−e−2p + e−p cos(2πmβ )]

1 + e−2p − 2e−p cos(2πmβ )

+V

2

1√
L

∑
m

(bm−1 + bm+1)e−i2πmβn.

Utilizing the above formula, one can directly obtain

E1bm = 2t1[−e−2p + e−p cos(2πmβ )]

1 + e−2p − 2e−p cos(2πmβ )
bm

+V

2
(bm−1 + bm+1). (8)

Let

t2 = V

2
, α = 2e−p

1 + e−2p
, (9a)

E2 = E1 + 2t1e−2p

1 + e−2p
, λ = t1(−e−3p + e−p)

(1 + e−2p)2
, (9b)

then, Eq. (8) is equivalent to Eq. (3). Therefore, Model I
[Eq. (1)] and Model II [Eq. (3)] are mutually dual, and their
relationship is established by Eqs. (9a) and (9b). A recent
experimental work [44] has realized Model II (3) in momen-
tum space and accurately detected the location of MEs, but
Model I has not been realized. By using Eqs. (9a) and (9b),
the experimental work [44] could be regarded to have also
effectively realized Model I in real space and detected the
location of MEs. In the following subsection, we discuss an
application of the dual relationship in theory.
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B. Localization lengths and mobility edges

We have analytically proven that the two models (Model
I and Model II) are mutually dual. Actually, we also built
a bridge between the models with the exponential hopping
and the nearest-neighbor hopping but with a special potential.
Typically, a model with the exponential hopping is not easy
to solve, but a model with the nearest-neighbor hopping can
be written as a tridiagonal matrix, whose ME expression can
generally be obtained by using a self-consistent theory [45]
or by calculating the localization length numerically by using
the recursive methods [46] and analytically by using Avilas
global theory [47]. The global theory can even analytically
give all states’ extended and localized properties, including
the localization lengths of localized states. Thus, we can in-
vestigate the model with exponential hopping by studying its
dual model and their dual relationship. As an example, we
will obtain the ME expressions of the two models by using
the Avila’s global theory [10,47,48] and the dual relationship
Eqs. (9a) and (9b). We note that the ME expressions have
been obtained in previous work [8,9], and we here calculate
them with the aim of displaying an application of the dual
relationship in dealing with the model with an exponential
hopping. In this process, besides the ME expressions, we also
obtain the localization length expression of Model II, which
will help us better understand this model.

We first represent Model II [Eq. (3)] in the transfer
matrix form (

bn+1

bn

)
= T n

(
bn

bn−1

)
,

where the transfer matrix T n is given by

T n =
(E2

t2
− 2λ

t2
cos(2πβn+δ)

1−α cos(2πβn+δ) −1
1 0

)
. (10)

Using the transfer matrix, one can define and compute the
Lyapunov exponent (LE),

γ (E ) = lim
n→∞

1

2πL

∫
ln ‖TL(δ)‖dδ,

where TL = ∏L
n=1 T n and ‖TL‖ denotes the norm of the matrix

TL. The LE can be exactly obtained by using Avila’s global
theory [47,48], and the details for the calculation are put in
the Appendix B. By the LE, we can obtain the localization
length ξ , which is the reciprocal of the LE, i.e.,

ξ (E ) = 1

γ (E )
= 1

ln

∣∣∣∣ |αE+2λ|+
√

(αE+2λ)2−4α2

2(t+√
t2−α2 )

∣∣∣∣
. (11)

When | |αE+2λ|+
√

(αE+2λ)2−4α2

2(t+√
t2−α2 )

| > 1(= 1), ξ is a finite
(infinite) value, and the corresponding state is localized
(decolized). Thus, the critical points and MEs are determined

by | |αE2c+2λ|+
√

(αE2c+2λ)2−4α2

2(t+√
t2−α2 )

| = 1, which can give the ME
expression [Eq. (4)] (see Appendix B). The ME expression
of Model II can also be analytical obtained by using a
self-consistent theory [45].

Naturally, combining Eqs. [(9a) and (9b)] and the expres-
sion Eq. (4) of Model II’s ME, one can obtain the expression

FIG. 1. (a) The IPR of different eigenstates as a function of the
corresponding eigenvalues E1 and quasiperiodic potential strength V
with fixed p = 1.5 and t1 = 1 in Model I, (b) The IPR as a function
of E ′

2 and 2t2 with fixed α = 0.4251 and λ = 0.1924 in Model II.
Here the values of α and λ are obtained from Eqs. (9a) and (9b) with
fixed p = 1.5 and t1 = 1. As Eq. (9b), here E ′

2 = E2 − 2t1e−2p

1+e−2p . The
blue and green dotted lines in (a) and (b) are obtained from Eq. (2).
Here we fix β = (

√
5 − 1)/2 and the size L = 500.

Eq. (2) of Model I’s ME. From the calculation process, one
can see that if the hopping term is exponential, the transfer
matrix will become very complicated and the analytical cal-
culation is not technically possible.

C. Numerical results

Now we display the numerical evidence for the dual re-
lation. The numerical results are obtained by calculating the
inverse participation ratio (IPR) [3] IPR(κ ) = ∑L

j=1 |ψκ, j |4,
where ψκ is the κth eigenstate. It is known that tends to zero
in the thermodynamic limit for extended states but approaches
to a finite value of O(1) for a localized state. Figure 1(a)
shows the energy eigenvalues and the IPR of the correspond-
ing eigenstates for Model I as a function of V under OBC.
The dotted line represents the ME given in Eq. (2). We see
that IPR values are approximately zero for energies above the
ME and are finite for energies below the ME. In Fig. 1(a),
we take p = 1.5 and t1 = 1, which can give α = 0.4251 and
λ = 0.1924 from Eqs. (9a) and (9b). Then, fixing t2, we can
diagonalize Model II and obtain its eigenvalues E2 and the
IPR of the corresponding eigenstates. Figure 1(b) shows the
IPR as a function of E ′

2 and 2t2, where E ′
2 = E2 − 2t1e−2p

1+e−2p as
Eq. (9b). Due to V = 2t2, we take the horizontal axis being
2t2 to compare with Fig. 1(a). One can see that the two energy
spectrum in Figs. 1(a) and 1(b) are exactly the same, but
the IPR values in Fig. 1(b) are finite for energies above the
ME and are approximately zero for energies below the ME,
which is contrary to Fig. 1(a), indicating that Model I and
Model II are mutually dual and their dual relationships satisfy
Eqs. (9a) and (9b).

Besides the IPR, we further introduce the Husimi function
[49–52] to gain a better intuition for the localization behavior
in both the real space and the momentum space. It is given by

ρ( j0, k0) = |〈 j0, k0|ψ〉|2. (12)

Here the Husimi function is the probability density
function for finding the system with state |ψ〉 in a
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FIG. 2. The Husimi function ρ( j, k) for the eigenstate corre-
sponding the lowest energy in (a) and (c) and highest energy in
(b) and (d). (a) and (b) correspond to Model I with p = 1.5, t1 =
1, and V = 0.5, (c) and (d) correspond to Model II with α =
0.4251, λ = 0.1924, and t2 = 0.25. Here we fix β = (

√
5 − 1)/2

and the size L = 500.

minimum-uncertainty state centered at j0 in coordinate space
and at k0 in momentum space. Note that whereas the momen-
tum is not a good quantum number here, the projection on the
selected k0 can be performed. Using the minimal uncertainty
state in real space [51],

〈 j| j0, k0〉 =
(

1

2πσ 2

)1/4

exp

[
− ( j − j0)2

4σ 2
+ ik0( j + j0/2)

]
,

where σ is taken as σ =
√

L
4π

and inserting
∑

j | j〉〈 j| in
Eq. (12), one can obtain the Husimi function as shown in
Fig. 2. From Fig. 2(a), we see that there exists one ver-
tical stripe for the lowest state of Model I indicating that
the considered state is localized in real space and extended
in momentum space. By contrast, Fig. 2(b) shows three
horizontal stripes symmetrically placed with respect to k = 0
for the highest state of Model I indicating that the state is
localized in momentum space and extended in real space.
Comparing Figs. 2(a) with 2(b), we see that there exists a
ME for Model I with p = 1.5, t1 = 1, and V = 0.5, and the
eigenstates are spatially localized and extended below and
above the ME. The same analysis applies to Model II [see
Figs. 2(c) and 2(d)], whose eigenstates are spatially extended
and localized below and above the ME, and it is consistent
with our conclusion that Model I and Model II are mutually
dual.

III. SUMMARY AND DISCUSSION

We have analytically proven that the two widely studied
models [Model I (1) and Model II (3)] with exact MEs are
mutually dual and obtained their dual relationships. We fur-
ther numerically verified our result by calculating the IPR and
Husimi function. Our conclusion will provide new insights
into the ME’s study in both theory and experiment. In theory,

studying the physical properties of one of the models, one
can deduce the corresponding properties of the other model.
On the other hand, we provide a new approach to study the
system with the exponential hopping, whose some properties
are difficult to investigated both numerically and analytically
but can be obtained from its dual model. As an example
of application, we have analytically obtained the localization
length and ME expressions of Model II by using the Avila’s
global theory and then given Model I’s ME expressions by
using the dual relation. The ME expressions of the two models
are consistent with the previous work [8,9]. In experiment, the
realization of Model I and the detection of the location of ME
can be replaced by detecting the location of Model II’s ME
in momentum space, which has been realized and detected
recently [44].
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APPENDIX A: DUALITY OF AUBRY-ANDRÉ MODEL

In this Appendix, we review the self-duality of the familiar
AA model, which is given by

Euj = t (u j+1 + u j−1) + V cos(2πβ j + δ)uj . (A1)

For convenience, we set δ = 0. We introduce the Fourier
transform of u j ,

u j = 1√
L

∑
k

uke−ik j, uk = 1√
L

∑
j

u je
ik j, (A2)

In the momentum space, the AA model can be written as

Euk = 2t cos(k)uk + V

2
(uk+2πβ + uk−2πβ ). (A3)

For a finite-size system, if we take periodic boundary con-
ditions (PBC), we need to approximate the irrational β by
β = M

L with M and L being coprimes. The momentum can
be relabeled by k = 2nπ M

L mod 2π with n = 1, 2, . . . , L, then,
Eq. (A2) becomes the transformation form [Eq. (5)] in the
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main text. We can rewrite Eq. (A3) as

Eun = 2t cos(2πβn)un + V

2
(un+1 + un−1). (A4)

where n is the index for the momentum sites with the interval
being 2π M

L . Here we show an example of setting β and L
in a finite-size system. In most studies β is chosen to be
the golden mean, i.e., β =

√
5−1
2 , which can be approached

by β = limm→∞(Fm−1/Fm), where the Fibonacci numbers
Fm+1 = Fm−1 + Fm with F0 = F1 = 1, taking M = Fm−1 and
the system size L = Fm to ensure the PBC. When taking an
OBC in numerical calculations, we can directly take an irra-
tional number β and still use Eq. (A4). Now the interval of the
momentum site can be considered as 2πβ. For a large system,
there is no obvious difference between the two, i.e., using the
approximation β = M

L under the PBC or using the irrational
number β under the OBC. In numerical calculations, one
needs to consider the boundary conditions and system sizes.
However, we do not consider them when making the dual
transformation. Thus, one can directly use the transformation
form Eq. (5).

APPENDIX B: DETAILS FOR LOCALIZATION LENGTH

In this Appendix, we give the details of the derivation of
Lyapunov exponents. For convenience, we set the hopping
strength t2 = 1. The transfer matrix (10) can be decomposed
into two parts T n = AnBn, where

An = 1

1 − α cos(2πβn + δ)
, (B1)

and

Bn =
(

B11 B12

B21 0

)
, (B2)

with B11 = E [1 − α cos(2πβn + δ)] − 2λ cos(2πβn + δ)
and B21 = −B12 = 1 − α cos(2πβn + δ). Then,

γ (E ) = γA(E ) + γB(E ), (B3)

where γA = limn→∞ 1
2πL

∫
ln ‖AL(δ)‖dδ with AL =∏L

n=1 An. By the ergodic theory, γA(E ) = 1
2π

∫ 2π

0

ln ( 1
1−α cos(δ) )dδ = − ln | 1+√

1−α2

2 | [53,54]. In Eq. (B3),

γB = limn→∞ 1
2πL

∫
ln ‖BL(δ)‖dδ with BL = ∏L

n=1 Bn.
Below we calculate γB relies on Avila’s global theory
[47]. We first complexify the phase, i.e., B11 = E [1 −
α cos(2πβn + δ + iε)] − 2λ cos(2πβn + δ + iε), B21 =
−B12 = 1 − α cos(2πβn + δ + iε). Then, let ε tend to
infinity, the matrix Bn becomes

Bn(δ + iε) = e2πεei(2πβn+δ)

2

(−αE − 2λ α

−α 0

)
+ o(1).

(B4)

Thus, we have γB(E , ε) = 2πε + ln

| |αE+2λ|+
√

(αE+2λ)2−4α2

4 | + o(1). By the global theory [47],

we obtain γB(E ) = ln | |αE+2λ|+
√

(αE+2λ)2−4α2

4 |. Plugging
γA(E ) and γB(E ) into Eq. (B3), we have γ (E ) =
ln | |αE+2λ|+

√
(αE+2λ)2−4α2

2(1+√
1−α2 )

|, which gives the localization
length as shown in Eq. (11). As our discussions in the main

text, MEs satisfy | |αE+2λ|+
√

(αE+2λ)2−4α2

2(1+√
1−α2 )

| = 1. Now we

set P = αE + 2λ, then, MEs satisfy |P| + √
P2 − 4α2 =

2(1 + √
1 − α2), which gives |P| = 2, i.e., |αE + 2λ| = 2,

which can give Eq. (4) in the main text.
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