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Many-body localization: Transitions in spin models
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We study the transitions between ergodic and many-body localized phases in spin systems, subject to quenched
disorder, including the Heisenberg chain and the central spin model. In both cases systems with common spin
lengths 1/2 and 1 are investigated via exact numerical diagonalization and random matrix techniques. Particular
attention is paid to the sample-to-sample variance (�sr)2 of the averaged consecutive-gap ratio 〈r〉 for different
disorder realizations. For both types of systems and spin lengths we find a maximum in �sr as a function of
disorder strength, accompanied by an inflection point of 〈r〉, signaling the transition from ergodicity to many-
body localization. The critical disorder strength is found to be somewhat smaller than the values reported in
the recent literature. Further information about the transitions can be gained from the probability distribution of
expectation values within a given disorder realization.
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I. INTRODUCTION

Many-body localization has become in recent years one of
the most intensively growing areas of research in condensed
matter physics and beyond [1–8]. It denotes the absence of
thermalization in an isolated interacting quantum system in
the presence of typically strong disorder. In the opposite
ergodic phase the eigenstate thermalization hypothesis is ful-
filled stating that any appropriate subsystem of the isolated
total system (being in a pure state) is accurately described by
equilibrium statistical mechanics [9,10]. On the other hand,
the presence of interactions distinguishes many-body local-
ization from traditional Anderson localization [11,12].

In this work we revisit the transition from the ergodic to
the many-body localized phase in disordered Heisenberg spin
chains and compare it with the behavior of central spin models
also subject to quenched disorder. For both types of systems
we consider the spin lengths 1/2 and 1. We introduce a novel
and very useful tool to quantify the transition, namely, the
sample-to-sample variance of the averaged consecutive-gap
ratio and the underlying probability distribution. As we will
see in the following, a maximum of this variance signals, for
both of the above systems and both spin lengths, the tran-
sition between ergodicity and many-body localization. This
maximum is accompanied by an inflection point of of the
averaged consecutive-gap ratio 〈r〉, suggesting a close analogy
to classic phase transitions with 〈r〉 being an order parameter.
These central observations are summarized in Figs. 2 and 7 for
the Heisenberg chain and the central spin model, respectively.

An additional tool in the analysis of the transition from
the ergodic to the many-body localized phase is the probabil-
ity distribution of expectation values within a given disorder
realization. The corresponding data is contained in Figs 5
and 9.

This paper is further organized as follows: In Sec. II we
introduce the spin models to be studied and summarize the

underlying theoretical techniques. Our numerical results are
presented in Sec. III, and we close with a summary and an
outlook in Sec. IV.

II. MODEL AND APPROACH

A. Spin Hamiltonian

We study a periodic Heisenberg spin chain interacting with
an additional central spin and being subject to a uniaxial
quenched disorder field on each site of the chain,

H = J
K∑

i=1

�Ii · �Ii+1 + A

K
�S ·

K∑
i=1

�Ii + 2S
K∑

i=1

hiI
z
i , (1)

where the parameter J describes the coupling of the K chain
(or bath) spins �Ii = �Ii+K to their nearest neighbors. The cou-
pling to the central spin �S is parametrized by A, and the
random magnetic field hi is chosen from a uniform distribu-
tion within the interval [−h, h]. In what follows all spins will
have length S = I = 1/2 or S = I = 1.

For S = I = 1/2, the Hamiltonian (1) with A = 0, i.e., the
Heisenberg spin-1/2 chain with quenched on-site disorder, is
a workhorse of numerical studies of many-body localization
[13–44]. The factor 2S in front of the disorder term makes
contact to the usual parametrization for S = 1/2 and ensures
an appropriate scaling behavior of the Hamiltonian for larger
spin lengths. Specifically, when considering all spins as clas-
sical vectors of constant length (and not as operators), the
transformation S �→ qS, I �→ qI leads to H �→ q2H . Thus,
disorder-induced effects on the dynamics should occur at the
same disorder strength h. As we shall see in Sec. III, this
remains approximately true when switching between S = I =
1/2 and S = I = 1.

Recent work by Hetterich et al. [45] studied the full model
(1) for S = I = 1/2 concentrating on the case J = 1. As these
authors argue, dividing the interaction parameter A by the
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number of chain spins K , as done in Eq. (1), ensures that
the spectral bandwidth of that coupling term is approximately
independent of the system size. We will see in the following
that this stipulation indeed has advantages when comparing
data for different numbers of spins.

B. Random matrix theory

An important method to distinguish a many-body localized
phase from an ergodic phase is random matrix theory, which is
a theory for statistical fluctuations of energy levels of a given
quantum system [46]. A modern tool to analyze the energy
level statistics is the consecutive-gap ratio [47] defined as

rn = min{sn, sn−1}
max{sn, sn−1} = min

{
r̄n,

1

r̄n

}
, r̄n = sn

sn−1
, (2)

where sn = en+1 − en is the difference between two neighbor-
ing energy levels en+1, en. In the strictly many-body localized
(or integrable) phase, characterized by an extensive number
of independent conserved quantities, the differences sn obey
Poisson statistics, and the probability distribution for the ran-
dom variable r = rn can easily be determined to be [47]

p(r) = 2

(1 + r)2 . (3)

On the other hand, in the fully ergodic phase, a system of the
type (1) is generally assumed to be described by the Gaus-
sian orthogonal ensemble (GOE) of random matrices [46].
Here the analysis of small random matrices mimicking the
Hamiltonian predicts the pertaining probability distribution to
be [48]

p(r) = 27

4

r + r2

(1 + r + r2)5/2 , (4)

which can be seen as an analog of the classic Wigner surmises
for probability distributions governing the traditional random
variable s = sn [46].

As a consequence, the lowest moments of the probability
distribution (3) in the integrable case are given by

〈r〉p = 2 ln 2 − 1 ≈ 0.3863, (5)

〈r2〉p = 3 − 4 ln 2 ≈ 0.2274, (6)

�pr =
√

〈r2〉p − 〈r〉2
p ≈ 0.2796, (7)

with

〈·〉p =
∫ 1

0
dr[p(r)·], (8)

whereas in the ergodic situation (4) we have

〈r〉p = 4 − 2
√

3 ≈ 0.5359, (9)

〈r2〉p = 27

4
ln

(
1 + 2√

3

)
− 1

2
− 5

2

√
3 ≈ 0.3515, (10)

�pr ≈ 0.2536. (11)

C. Statistical data analysis

1. Disorder ensemble

Consider an ensemble of Q realizations of the local dis-
order field hi, i ∈ {1, . . . , K}. Each disorder realization, or
sample, labeled by α ∈ {1, . . . , Q} leads to a probability dis-
tribution pα (r) for the consecutive-gap ratio r ∈ [0, 1]. Given
an arbitrary function f (r), these distributions determine the
realization-dependent averages (or expectation values)

〈 f 〉α =
∫ 1

0
dr pα (r) f (r) (12)

with variances

(�α f )2 = 〈 f 2〉α − 〈 f 〉2
α. (13)

The disorder-averaged probability distribution p(r) at given
disorder strength (and other system parameters) is

p(r) = lim
Q→∞

1

Q

Q∑
α=1

pα (r), (14)

and a good numerical estimate for this quantity is

p(r) ≈ 1

Q

Q∑
α=1

pα (r), Q � 1, (15)

for sufficiently large Q. The disorder-averaged expectation
values of f (r) read

〈 f 〉p =
∫ 1

0
dr p(r) f (r) = lim

Q→∞
1

Q

Q∑
α=1

〈 f 〉α. (16)

2. Probability distribution for average within a sample

On the other hand, we can view the numbers x = 〈 f 〉α as
random variables according to the distribution

s(x) = 1

(2h)K

∫ h

−h
dh1 · · ·

∫ h

−h
dhK

× δ

(
x −

∫ 1

0
dr p(r; h1, . . . , hK ) f (r)

)
, (17)

where p(r; h1, . . . , hK ) = pα is the probability distribution
within a system with local disorder fields h1, . . . , hK forming
the disorder realization α. Thus, the disorder-averaged expec-
tation value of f (r) can be formulated as

〈 f 〉s =
∫

dx s(x)x = lim
Q→∞

1

Q

Q∑
α=1

〈 f 〉α = 〈 f 〉p, (18)

where the integration goes over all values of x = f (r) for
r ∈ [0, 1]. The distribution s(x) does not, in general, coincide
with p(r) even for x = f (r) = r. Moreover s(x) will of course
have a dependence on the function f , which we, however,
shall suppress in the notation.

The finite average

f̄ = 1

Q

Q∑
α=1

〈 f 〉α ≈ 〈 f 〉s, (19)

is, again for appropriately large Q, an approximation to the
expression (18). On the other hand, it is a sum of stochastically
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independent (and therefore uncorrelated) random variables
with identical probability distribution, so that the resulting
joint distribution is

π (x1, . . . , xQ) =
Q∏

α=1

s(xα ). (20)

Thus, the expectation value of f̄ is

〈 f̄ 〉π = 1

Q

Q∑
α=1

〈 f 〉s = 〈 f 〉s. (21)

3. Sample-to-sample variance

For the variance pertaining to the expectation value (21)
one finds

〈
( f̄ − 〈 f 〉s)2〉

π
=

Q∑
α,β=1

〈(〈 f 〉α − 〈 f 〉s)(〈 f 〉β − 〈 f 〉s)〉
π

Q2

= 1

Q2

Q∑
α=1

〈
(〈 f 〉α − 〈 f 〉s)2

〉
s = (�s f )2

Q
(22)

with

(�s f )2 = 〈( f − 〈 f 〉s)2〉s

= lim
Q→∞

1

Q

Q∑
α=1

(〈 f 〉α − 〈 f 〉s)2. (23)

Therefore, the fluctuations of the finite average (18) around
its expectation value (21) are characterized by the standard
deviation

�π f̄ =
√〈

( f̄ − 〈 f 〉s)
2〉

π
= �s f√

Q
(24)

and shows the familiar decay ∝1/
√

Q. This result follows of
course also from the Lindeberg-Levy central limit theorem
applied to the sum (19) of random variables. An approximate
expression for the variance (23) is

(�s f )2 ≈ 1

Q

Q∑
α=1

(〈 f 〉α − f̄ )
2
, Q � 1. (25)

Note that the variance (23) also occurs as a contribution to
the variance of f (r) calculated from the disorder-averaged
probability distribution (14),

(�p f )2 =
∫ 1

0
dr p(r)( f (r) − 〈 f 〉p)2 (26)

= lim
Q→∞

1

Q

Q∑
α=1

(�α f )2 + (�s f )2, (27)

as derived in Appendix A. Hence, the variance (26) with
respect to the averaged probability distribution (14) is the av-
erage of all variances within the disorder realizations around
their individual expectation value of f , plus the variance
(23) describing the fluctuations of these expectation values

around their mean. An approximate expression for the above
result is

(�p f )2 ≈ 1

Q

Q∑
α=1

∫ 1

0
dr pα (r)[ f (r) − f̄ ]2 (28)

= 1

Q

Q∑
α=1

(�α f )2 + 1

Q

Q∑
α=1

(〈 f 〉α − f̄ )2, (29)

where again Q � 1.

4. Variance of the variance

Let us now analyze the statistical fluctuations of the right-
hand side of the approximate quantity (25) for finite Q and
define

ḡ := 1

Q

Q∑
α=1

(〈 f 〉α − f̄ )2 = 1

Q

Q∑
α=1

(〈 f 〉2
α − f̄ 2

)
. (30)

An important difference between the above expression and the
quantity (19) is that above the summands depend, again via
Eq. (19), on all expectation values 〈 f 〉α , α ∈ {1, . . . , Q}, and
are therefore distributed according to the joint probability dis-
tribution (20). The expectation value of the random variable
(30) with respect to the latter distribution is (Appendix B)

〈ḡ〉π = Q − 1

Q
(�s f )2, (31)

which approaches the variance (23) for large Q. Note also that,
in contrast to Eq. (18), it holds

〈 f 2〉s =
∫

dx s(x)x2 = lim
Q→∞

1

Q

Q∑
α=1

〈 f 〉2
α 
= 〈 f 2〉p. (32)

It is now straightforward to establish that (Appendix B), anal-
ogously as in Eq. (22),

(�π ḡ)2 = (�s f 2)2

Q
+ O

(
1

Q2

)
, (33)

where

(�s f 2)
2 = (�s[(�s f )2])2. (34)

5. Consecutive-gap ratio

In what follows we will be mainly concerned with the
function f (r) = r where we have

(�sr)2 = lim
Q→∞

1

Q

Q∑
α=1

(〈r〉α − 〈r〉s)2

= lim
Q→∞

1

Q

Q∑
α=1

(〈r〉2
α − 〈r〉2

s

)
(35)

with

〈r〉s =
∫ 1

0
dx s(x)x = lim

Q→∞
1

Q

Q∑
α=1

〈r〉α = 〈r〉p, (36)

where s(x) is, in accordance with Eq. (17), the probability
distribution for the random variable x = 〈r〉α . Finally, as seen
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FIG. 1. The probability distribution (15) for the consecutive-gap ratio r of a Heisenberg chain (A = 0) of K = 18 spins of length I = 1/2
(left) and of K = 11 spins of length I = 1 (right) for different disorder strength h obtained from exact-diagonalization data. At small disorder
the system is ergodic and well described by the distribution (4) (red), while with increasing h a transition to the Poisson-type distribution (3)
(green) sets in.

in Eq. (34), the variance of the variance (35) is determined by

(�sr
2)

2 = 〈r4〉s − 〈r2〉2
s = 〈(r2 − 〈r2〉s)2〉s

= (�s[(�sr)2])2. (37)

III. NUMERICAL RESULTS

The Hamiltonian (1) obviously conserves the z component
of the total spin,

�J = �S +
K∑

i=1

�Ii , [H, Jz] = 0. (38)

Thus, in order to apply random matrix theory, the spec-
tra of each invariant subspace of Jz have to be analyzed
separately [46]. In this section we present accumulated
exact-diagonalization data from a separate evaluation of all
subspaces of Jz except for the four subspaces of smallest
dimension where |Jz| is maximal or differs from its maxi-
mal value by 1. The number of disorder realizations varies,
depending on system size, between several hundreds and
2 × 105.

A. Heisenberg chain

For A = 0 the central spin �S becomes obsolete, and for I =
1/2 and vanishing disorder h = 0 the resulting Heisenberg
chain is integrable via the Bethe ansatz [49]. However, this
is a rather isolated point in the phase diagram as seen in Fig. 1
showing the disorder-averaged probability distribution (15)
obtained from exact-diagonalization data of the Heisenberg

chain with spin lengths I = 1/2 and I = 1 at different disorder
strengths. For even small disorder such as h = 0.1J the system
shows ergodic statistics (4) while upon increasing h it changes
to the Poisson-type distribution (3). This transition occurs for
both spin lengths at about the same disorder strength, which
is a consequence of the scaling factor 2S = 2I in the disorder
term of the Hamiltonian (1). The fact that both spin lengths
show such a similar behavior is consistent with the assumption
that the system smoothly approaches its classical limit and
therefor corroborates semiclassical approaches to many-body
localization in spin chains [28,50]. In Fig. 2 we show the ex-
pectation value 〈r〉p = 〈r〉s as a function of disorder strength
for Heisenberg chains of different sizes along with the stan-
dard deviation �pr (top panels). The data shows a transition
between the ergodic phase at small h characterized by Eqs. (9)
and (11) to the values (5) and (7) of the many-body localized
phase. The bottom panels display the sample-to-sample stan-
dard deviation �sr according to Eqs. (25) and (35). As seen
from the figures, �sr amounts only to about 10% of �pr,
which demonstrates via Eq. (27) that (�sr)2 is only a tiny
contribution to the variance (�pr)2. On the other hand, �sr
shows a pronounced maximum (�sr)max which grows rapidly
with system size, as displayed in the insets of the lower pan-
els. Moreover, in close vicinity to the corresponding position
h = hmax, 〈r〉s has an inflection point at h = hinf . In Fig. 3
we have plotted both disorder strengths for I ∈ {1/2, 1} as
functions of systems size K , which shows that both quantities
seem to converge to a common value for large K . Thus, the
expectation value 〈r〉s and the standard deviation �sr show
as a function of disorder strength typical features of a phase
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FIG. 2. Top panels: The expectation value 〈r〉p as a function of disorder strength in Heisenberg chains of spin length I = 1/2 (left) and
I = 1 (right) for various system sizes and pertaining to numbers of disorder realizations. The error bars are determined by Eqs. (24) and (25).
Inset: The standard deviation �pr as a function of disorder strength. The horizontal lines indicate the expected values for GOE and Poissonian
statistics as given in Eqs. (5)–(11). Bottom panels: The standard deviation �sr according to Eq. (25) for the same parameters as in the top
panels. For a more detailed view on the data at large system sizes see also Fig. 4. The insets show the maximum of the standard deviation as a
function of system size where the error bars follow Eqs. (34) and (37).

transition with the former quantity playing the role of an order
parameter. The crossing points of the data shown in the top

FIG. 3. Finite-size transition data for the Heisenberg chain of
spin length I = 1/2 (left) and I = 1 (right). The panels show as a
function of system size K the position h = hmax of (�sr)max, the
position h = hinf of the inflection point of 〈r〉s, and the crossing
point h = hcr (K ) of two curves of the latter quantity with consecutive
system sizes K and K + 1. The dashed lines are linear fits to hmax and
hinf , and the shaded regions estimate the transition where hmax ≈ hinf .

panels of Fig. 2 are also often considered as indications for a
phase transition. Therefore, following Refs. [14,51], we also
plot in Fig. 3 the positions h = hcr (K ) where two curves of
〈r〉s with consecutive system sizes K and K + 1 cross. This
data set clearly deviates from hmax, hinf and grows to larger
disorder strengths, an observation known as the “drifting of
the critical disorder strength” with system size [14,27]. It is
an interesting speculation whether hmax ≈ hinf and hcr corre-
spond, for large systems, to two distinct transitions occurring
in the same systems.

For the finite-size data depicted in Fig. 3 we estimate the
transition point to hmax ≈ hinf ≈ 2.6J . . . 3.0J for spin length
I = 1/2, and hmax ≈ hinf ≈ 4.0J . . . 4.5J for I = 1. These val-
ues for the critical disorder strength for the transition from
the ergodic to the many-body localized phase are somewhat
smaller than those reported in other works [14,16,20,33,36],
which favor, for I = 1/2, values of h/J ≈ 4 or larger. How-
ever, some of these works [14,16,33] concentrate on chains
with an even number of spins and the subspace with total
spin Jz = 0, whereas here we also take into account odd
numbers of spins and all subspaces except for those with
|Jz| ∈ {IK, IK − 1}. Moreover, we introduce a new criterion
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FIG. 4. The sample-to-sample standard deviation �sr along with
the square root of variance of the variance (37) as a function of
disorder strength h for Heisenberg chains of spin length I = 1/2
(top panels) and I = 1 (bottom panels). The data sets are remark-
ably close to each other, in particular at small disorder strength
h.

to locate the transition given by the position of (�sr)max. On
the other hand, the fact that the transition occurs for I = 1
at larger disorder strength compared to I = 1/2 is consis-
tent with observations made in Ref. [41]. Figure 4 shows
the standard deviation �sr along with the square root of
“variance of the variance” (37) as a function of disorder
strength for both spin lengths I = 1/2 and I = 1. Remarkably,
both quantities are very close to each other, especially at
small disorder strength h. This observation should be taken
as an indication that the underlying probability distribution
s(x) is rather narrow since both quantities become strictly

equal, �sr = �sr2 = 0, for a δ-type distribution. This con-
jecture is confirmed by the data of Fig. 5 which displays
the probability distribution (17) for the realization-specific
average 〈r〉α with the disorder strengths being the same as in
Fig. 1. The probability distribution is much narrower than the
distribution p(r) and broadens significantly in the transition
region. The latter result is similar to an obsevation by Pal
and Huse [14] who found near the transition a maximum in
the width of the probability distribution of a long-ranged spin
correlator. We also note that a closer analysis of the data
of the lower panels of Fig. 4 suggests that �sr extrapolates
to zero for K → ∞ deep in the ergodic phase (h/J ≈ 1) as
well as deep in the many-body localized phase (h/J � 6).
This would mean that the probability distribution (17) would
develop into a δ function in this limit and the above range
of disorder strengths, which is consistent with the data of
Fig. 5. Note that the statement limK→∞ �sr = 0 implies,
according to Eq. (27), that the variance (�pr)2 is entirely
given by the averaged variances within the individual disorder
realizations.

B. Central spin model

The central spin model is defined by putting J = 0 in the
Hamiltonian (1). This system is also integrable via an appro-
priate Bethe ansatz and known as the Gaudin model [52,53].
Compared to the Heisenberg chain, the coupling to the central
spin provides an alternative mechanism of introducing inter-
action among the bath spins, which are subject to a random
magnetic field.

Figure 6 shows data analogous to Fig. 1 now for central
spin models of spin length S = I = 1/2 and S = I = 1. For

FIG. 5. The probability distribution (17) for the realization-specific average 〈r〉α for disordered Heisenberg chains of spin length I = 1/2
(left) and I = 1 (right). The disorder strengths h in both panels are the same as in Fig. 1.
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FIG. 6. The probability distribution (15) for the consecutive-gap ratio r of a central spin model (J = 0) of N = K + 1 = 11 spins of length
S = I = 1/2 (left) and of N = K + 1 = 10 spins of length S = I = 1 (right) for different disorder strength h. Similarly as for the Heisenberg
chain, the data follows for small but finite disorder approximately the GOE distribution (4) (red), while with increasing h a transition to the
Poisson-type distribution (3) (green) sets in.

small disorder, the system clearly deviates from the Poisson-
type distribution (3) and shows level repulsion. However,
differently from the case of the Heisenberg chain, the level
statistics do not fully reach the Gaussian orthogonal ensem-
ble but change back before to an integrable or many-body
localized phase. Figure 7 displays data for the central spin
model analogous to Fig. 2 for the Heisenberg chain. Com-
paring the top panels of both figures suggests a transition
from the (approximately) ergodic to the many-body localized
phase at the inflection point h = hinf � 1, which is consistent
with the findings of Ref. [45] for A, h � J . Here the fact that
the transition occurs at about the same disorder strength for
different system sizes depends on the scaling factor 1/K in
front of the second term in the Hamiltonian (1). Also the
sample-to-sample standard deviation �sr plotted in the bot-
tom panels of Fig. 7 behaves similarly as for the Heisenberg
chain: For large enough system sizes this quantity develops
a maximum (�sr)max near h = hinf whose value increases
monotonically with system size, as shown in the insets. Thus,
we have qualitatively the same situation as for the Heisenberg
chain. Moreover, as can be seen in Fig. 8, the square root of
the variance of the variance (37) closely follows, similarly
as for the Heisenberg chain, the standard deviation �sr as a
function of disorder strength for both spin lengths I = 1/2
and I = 1. This is consistent with the probability distri-
bution (17) for the realization-specific average 〈r〉α shown
in Fig. 9. As already seen in the case of the Heisenberg
chain, the probability distribution is much narrower than the
distribution p(r) and becomes significantly broader in the
transition region.

IV. SUMMARY AND OUTLOOK

We have compared the transitions between ergodic and
many-body localized phases in disodered Heisenberg chains
as well as central spin models composed of spins of length
1/2 and 1. A useful tool we introduce is the sample-to-sample
standard deviation �sr of the expectation value 〈r〉α of the
consecutive-gap ratio in an individual disorder realization
(sample) α. This quantity assumes, for both types of sys-
tems and spin lengths, a maximum as a function of disorder
strength, accompanied by an inflection point of 〈r〉. These
are typical features of a phase transition where the latter
quantity plays the role of an order parameter. The critical
disorder strength deduced from these observations turns out
to be smaller than those reported in the recent literature.

Further information about the transitions is contained in
the probability distribution of the expectation values within a
given disorder realization. We expect the study of this prob-
ability distribution and its moments to be a useful tool in the
investigation of phenomena related to many-body localization
also in other systems.
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FIG. 7. Top panels: The expectation value 〈r〉p as a function of disorder strength in central spin models of spin length S = I = 1/2 (left)
and S = I = 1 (right) for various system sizes and pertaining to numbers of disorder realizations. The error bars are determined by Eqs. (24)
and (25). Inset: The standard deviation �pr as a function of disorder strength. The horizontal lines indicate the expected values for GOE and
Poissonian statistics as given in Eqs. (5)–(11). Bottom panels: The standard deviation �sr according to Eq. (25) for the same parameters as
in the top panels. For a more detailed view on the data at large system sizes see also Fig. 8. The insets show the maximum of the standard
deviation as a function of system size.
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FIG. 8. The sample-to-sample standard deviation �sr along with
the square root of variance of the variance (37) as a function of dis-
order strength h for central spin models of spin length S = I = 1/2
(top panels) and S = I = 1 (bottom panels).

APPENDIX A: VARIANCE OF f FROM
DISORDER-AVERAGED PROBABILITY DISTRIBUTION

The variance calculated from the disorder-averaged proba-
bility distribution is given by

(�p f )2 =
∫ 1

0
dr p(r)[ f (r) − 〈 f 〉p]2 (A1)

= lim
Q→∞

1

Q

Q∑
α=1

∫ 1

0
dr pα (r)( f (r) − 〈 f 〉p)2

= lim
Q→∞

1

Q

Q∑
α=1

(〈 f 2〉α − 〈 f 〉2
α

)

+ lim
Q→∞

1

Q

Q∑
α=1

(〈 f 〉2
α − 〈 f 〉2

p

)

= lim
Q→∞

1

Q

Q∑
α=1

(�α f )2 + (�s f )2. (A2)
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FIG. 9. The probability distribution (17) for the realization-specific average 〈r〉α for disordered central spin systems of spin length S =
I = 1/2 (left) and S = I = 1 (right). The disorder strengths h in both panels are the same as in Fig. 6.

APPENDIX B: VARIANCE OF THE VARIANCE

The expectation value 〈ḡ〉π is given by

〈ḡ〉π = 1

Q

(
Q∑

α=1

〈〈 f 〉2
α

〉
π

− 1

Q

Q∑
α,β=1

〈〈 f 〉α〈 f 〉β〉
π

)

= Q − 1

Q

(〈 f 2〉s − 〈 f 〉2
s

) = Q − 1

Q
(�s f )2. (B1)

Using 〈
(〈 f 〉2

α − f̄ 2 − 〈ḡ〉π )(〈 f 〉2
β − f̄ 2 − 〈ḡ〉π )

〉
π

= δαβ

(〈 f 4〉s − 〈 f 2〉2
s

) + O

(
1

Q

)
, (B2)

it follows that

(�π ḡ)2 =
Q∑

α,β=1

〈
(〈 f 〉2

α − f̄ 2 − 〈ḡ〉π )(〈 f 〉2
β − f̄ 2 − 〈ḡ〉π )

〉
π

Q2

= (�s f 2)2

Q
+ O

(
1

Q2

)
, (B3)

where

(�s f 2)
2 = 〈 f 4〉s − 〈 f 2〉2

s = 〈( f 2 − 〈 f 2〉s)2〉s

= (�s[(�s f )2])2. (B4)
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