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To develop a dislocation-based statistical continuum theory of crystal plasticity is a major challenge of
materials science. During the last two decades, such a theory has been developed for the time evolution of a
system of parallel edge dislocations. The evolution equations were derived by a systematic coarse graining of the
equations of motion of the individual dislocations and later retrieved from a functional of the dislocation densities
and the stress potential by applying the standard formalism of phase field theories. It is, however, a long-standing
issue if a similar procedure can be established for curved dislocation systems. An important prerequisite for
such a theory has recently been established through a density-based kinematic theory of moving curves. In this
paper, an approach is presented for a systematic derivation of the dynamics of systems of curved dislocations
in a single-slip situation. In order to reduce the complexity of the problem, a dipolelike approximation for the
orientation-dependent density variables is applied. This leads to a closed set of kinematic evolution equations of
total dislocation density, the geometrically necessary dislocation densities, and the so-called curvature density.
The analogy of the resulting equations with the edge dislocation model allows one to generalize the phase field
formalism and to obtain a closed set of dynamic evolution equations.
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I. INTRODUCTION

Plastic deformation of crystalline materials is largely con-
trolled by the motion of dislocations, that are line-type
topological lattice defects. Since the typical dislocation den-
sity in deformed metals is in the order of at least ρ ∼
1014 m−2, the average spacing between dislocation lines is less
than 100 nm. This means that already micron-sized samples
contain a vast amount of strongly interacting dislocations.
As a consequence, to model the plastic deformation of crys-
talline materials in terms of dislocations, one has to handle
the problem with statistical physics methods. However, there
are two caveats for the direct application of methods from sta-
tistical physics to dislocation systems: (i) dislocation motion
is strongly dissipative, and (ii) dislocations are flexible lines,
inhibiting their treatment as point particles.

The development of a statistical continuum theory of dis-
locations was initially motivated by the occurrence of size
effects [1] in the plastic response of samples with charac-
teristic dimensions on the order of 10 μm or less. Attempts
to incorporate internal length scales into phenomenological
continuum theories by considering so-called strain gradients
[2–5] did not yield a satisfying solution for general loading
cases. Another key issue to be addressed is the ubiqui-
tously observed dislocation pattern formation during plastic
deformation. Since the early 1960s several theoretical and
numerical attempts have been suggested, initially based on
analogies with other physical problems like spinodal decom-
position [6], internal energy minimization [7], or chemical
reaction-diffusion systems [8,9]. Since, however, they are not
directly linked to the specific properties of individual disloca-

tions, they are fundamentally phenomenological approaches.
Dislocation patterning was also an important motivation for
the development of the discrete dislocation dynamics (DDD)
method [10–13]. But, due to the long-range dislocation-
dislocation interaction the simulations are computationally
extremely expensive and the study of dislocation patterning
with DDD is still limited to specific problems like irregular
clusters or veins [12–14]. Recently, El-Azab and coworkers
[15,16] used a continuum formulation based on vector dis-
location densities in large-scale numerical simulations, which
seem to feature the evolution of dislocation patterns. However,
this pseudocontinuum variant of DDD is a numerical rather
than a theoretical model of dislocation patterning.

The two caveats for developing a statistical continuum
theory of dislocations named in the first paragraph have
been approached largely independently from each other so
far. The consequences of the dissipative nature of dislo-
cation motion have been thoroughly explored in strongly
simplified quasi-two-dimensional systems of straight parallel
edge dislocations, where dislocations are treated as signed
point particles moving in a plane. By a systematic coarse
graining of the evolution equations of individual dislocations
[17–25] a continuum theory was developed during the last
20 years, that has been successfully compared to discrete
dislocation dynamics (DDD) simulations [19,26–28]. By now,
it can be considered as a well-established theory for the
two-dimensional (2D) problem it addresses. It was moreover
shown that the model can be also formulated as a specific
phase field theory [20,23,29,30]. In contrast to many other
phase field theories, the phase field functional in this case
could be strictly derived from the statistical theory, and is not
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obtained on phenomenological grounds. The most important
feature of the theory is that it predicts dislocation patterning
although it was not “designed” for it [23,28,31].

The fact that dislocations are moving flexible lines en-
tails the following question: What are suitable continuum
variables allowing for a closed system of conservation laws
for dislocation systems? This has been answered in a pri-
marily kinematic theory of curved dislocations, which was
developed by Hochrainer et al. [32–36]. The kinematics were
initially derived in a higher-dimensional space, containing the
line direction as independent variable. A multipole expansion
of the theory leads to a formulation in terms of alignment
tensors, which, in the case of only planar dislocations on
parallel glide planes, is equivalent to a Fourier expansion.
The resulting conservation laws may be used to derive “ki-
netic” theories from a thermodynamic potential with standard
methods from irreversible thermodynamics. This yields forms
of driving forces [37], naturally generalizing those found in
the quasi-two-dimensional theory. A thermodynamic potential
in terms of alignment tensors has been suggested by Zaiser
[38] based on a local density approximation of the interaction
energy. However, this potential has not been derived from the
microscopic kinetics, and, though the form is very similar,
when specialized to the straight dislocation case, it does not
reproduce the potential derived in Ref. [23].

In this paper we provide a synthesis of the quasi-2D and the
three-dimensional (3D) curved dislocation theory for a single-
active-slip system, by deriving the thermodynamic potential
within a dipole-type Fourier approximation of the higher-
dimensional variables. In the first part of the paper, the 2D
continuum theory and the (2 + 1)D theory of the kinemat-
ics of curved dislocations in parallel slip planes are shortly
summarized. In the main part of the paper, it is shown that
within a dipole-type approximation a closed thermodynami-
cally consistent continuum theory of the evolution of curved
dislocations can be established.

II. 2D DISLOCATION DYNAMICS

Before we start to discuss the problem of the dynamics
of curved dislocations, let us shortly summarize the contin-
uum theory of straight parallel edge dislocations. The main
physical ideas presented here will serve as a basis for deriving
generalized dynamic equations in the 3D case.

In this section we assume that dislocations are parallel
with the y axis of a Cartesian coordinate system and their
Burgers vector points in the x direction. In such a case we
can distinguish two types of dislocations, “positive” ones with
Burgers vector (b, 0, 0), and “negative” ones with (−b, 0, 0).
Since dislocation positions can be characterized by their in-
tersection point with the xz plane, the problem is essentially
2D. The evolution of the system on the level of the densities
of dislocations with different sign (ρ+ and ρ−) is described by
balance equations that ensure conservation of the total number
of dislocations of both types:

∂tρ± + ∂x[ρ±v±] = f (ρ+, ρ−), (1)

where v+ and v− are the average velocities of the positive
and negative dislocations in the slip plane, and f (ρ+, ρ−)
is a source term [23]. Since both the multiplication and the

(a) (b) (c)

FIG. 1. (a) Sketch of situation when positive (red) and negative
(blue) sign dislocations move locally with the same velocity and the
relative velocity of the two types of dislocations is zero (vm = 0), so
the configuration moves as a “rigid structure.” This means that if κ �=
0, then there is a corresponding nonzero plastic strain rate according
to Eq. (6). (b) When v+ = −v− then there are relative displacements
between positive and negative dislocations but vd = 0. (c) A general
case when both vm and vd are nonzero. The shown example is the
superposition of (a) and (b).

annihilation of dislocations are consequences of their glide
motion, the source term has to be proportional to the plastic
deformation rate γ̇ . The latter is given by Orowan’s law as

γ̇ = b(ρ+v+ − ρ−v−), (2)

and the source term has to be of the form

f (ρ+, ρ−) = |γ̇ |�(ρ+, ρ−), (3)

with an appropriate function �. Explicit forms for the source
term have been suggested in Refs. [26,31]. For this work,
however, the specific form of the source term is not relevant.

By adding and subtracting the two equations in (1) one
obtains

∂tρ + ∂x[ρvd + κvm] = |γ̇ |�(ρ, κ ), (4)

∂tκ + ∂x[ρvm + κvd] = 0, (5)

γ̇ = b(ρvm + κvd ), (6)

where ρ = ρ+ + ρ− is the statistically stored dislocation
(SSD) density, κ = ρ+ − ρ− is the geometrically necessary
dislocation (GND) density, and vm = (v+ − v−)/2 and vd =
(v+ + v−)/2 are the “mean” and “difference” or “drift” ve-
locities, respectively [31]. Figure 1 provides a sketch on the
physical meaning of these quantities.

Equations (4) and (5) together with (6) represent the
kinematics of straight parallel edge dislocations. When con-
structing dynamic equations the question is how the velocities
vm and vd depend on the microstructure represented by the
densities ρ and κ . Previously, Groma et al. [23] performed
the systematic coarse graining of the equation of motion of
individual dislocations to derive dynamic evolution equations
for ρ and κ that read as

∂tρ + M0b∂x(κτ ∗ + ρτ d ) = 0, (7)

∂tκ + M0b∂x(κτ d + ρζ (τ ∗)) = 0, (8)
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FIG. 2. The ζ (τ ∗) mobility function [23].

with the mobility function (see Fig. 2)

ζ (τ ∗) =
{

κ2

ρ2 τ
∗, if |τ ∗| � τ y

τ ∗ − sτ y
(
1 − κ2

ρ2

)
, if |τ ∗| > τ y.

(9)

Herein, s = sgn(τ ∗) and stress terms were introduced that can
be calculated from ρ and κ and their spatial derivatives [23].
The term τ ∗ is the sum of the “mean-field” stress τmf and the
“back stress” τ b,

τ ∗ = τmf + τ b. (10)

The mean-field stress is the resolved shear stress in the glide
plane due to the long-range stresses of the GNDs and external
loading. The back stress τ b and the “diffusion stress” τ d read
as

τ b = −Gb
D

ρ
∂xκ, (11)

τ d = −GbA ∂xρ, (12)

where G = μ

2π (1−ν) is an elastic constant (μ and ν are the
shear modulus and Poisson’s ratio, respectively), D and A
are dimensionless constants, and τ y = αμb

√
ρ is the local

yield stress with α being the dimensionless Taylor coefficient
in accordance with the Taylor hardening law. It is important
to note that if τ ∗ is smaller than the local yield stress, the
mobility is proportional to the square of the ratio of the GND
and SSD densities [ζ = (κ/ρ)2τ ∗]. This reflects the fact that
if in some area the system has a local net Burgers vector, the
system can evolve at any stress level. In this case there is no
critical yield stress required for plastic flow, at least not in the
here envisaged fcc case, where the Peierls barrier is negligible.

Introducing Eqs. (4) and (5) into Eqs. (7) and (8) we obtain
equations in terms of the mean and drift velocity as(

vd + κ

ρ
vm

)
= M0b

(
κ

ρ
τ ∗ + τ d

)
, (13)(

vm + κ

ρ
vd

)
= M0b

(
κ

ρ
τ d + ζ (τ ∗)

)
. (14)

After rearranging these equations, vm and vd can be expressed
as

vm = M0bχ (τ ∗), (15)

vd = M0b

(
κ

ρ
[τ ∗ − χ (τ ∗)] + τ d

)
, (16)

FIG. 3. The velocities vm and vd as a function of τ ∗ for the κ > 0
case.

where another mobility function χ was introduced which is
defined as

χ (τ ∗) =
{

0, if |τ ∗| � τ y

τ ∗ − sτ y, if |τ ∗| > τ y.
(17)

Equations (15) and (16) together with Eqs. (4) and (5) form a
closed set of evolution equations that are equivalent to Eqs. (7)
and (8). Introduction of the vm and vd, however, does not only
yield equations that are mathematically somewhat simpler, but
also highlight the physics behind the mobility laws. According
to Fig. 3, the mean velocity vm is zero up to the yield stress τ y.
This means that the relative positions of positive and negative
dislocations with respect to each other do not change below
the threshold stress τ y and the dislocation configuration drifts
as a “rigid structure.” Indeed, in this regime (that is, |τ ∗| � τ y)
vd may be positive if either τ d or κ is nonzero. This situation
is visualized in Fig. 1(a). Above the yield stress (|τ ∗| > τ y)
vm becomes nonzero, that is, the configuration is no more
“rigid,” but rearrangements within the structure of positive
and negative dislocations start to take place. The drift velocity
vd remains constant as seen in Fig. 3. For a sketch of the
corresponding dislocation velocities, see Fig. 1(c).

It is important to point out that in agreement with the
mobility function in Eq. (9), below τ y the mean velocity
vm = (v+ − v−)/2 is zero and the dislocation system may
only move “as a rigid structure.” Although no relative rear-
rangements take place in this case, when κ �= 0 the surplus of
one dislocation type over the other still entails a nonzero strain
rate below the yield point according to Eq. (6).

It may seem odd that dislocation motion and even a
nonzero plastic strain rate can be observed below the yield
point. We point out that τ y is a local yield point and should not
be confused with an emerging global yield stress. If the exter-
nal stress (being part of τmf and, consequently, of τ ∗) is below
the global yield point then gradients in ρ and κ will develop
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that will stop dislocation motion and, thus, plastic strain rate
will become zero everywhere in the material [23,31].

The evolution equations presented so far were obtained
by a systematic coarse graining of the discrete microstruc-
ture. The same equations, however, can be also derived using
general thermodynamics principles. In the following, we will
review this procedure and its main conceptual steps since
this methodology can be more easily generalized to the 3D
case. Note that the term thermodynamic refers to the general
conceptual framework being adopted from irreversible ther-
modynamics, but does not by any means refer to the role of
temperature. In this paper we deal with systems where thermal
noise does not play any role.

We start by noticing that due to the dissipative nature
of the motion of dislocations (force action on a dislocation
is proportional to the dislocation velocity), if the number
of dislocations is fixed, the sum of the elastic dislocation-
dislocation and external field-dislocation interaction energies
cannot increase during the evolution of the system. Accord-
ingly, there exists a scalar quantity (state variable) for the
discrete dislocation system that cannot increase as the system
evolves (see Appendix D).

As it was shown earlier in detail, for the coarse-grained
system there also exists a scalar functional of the dislocation
densities P[ρ, κ] that cannot increase during the evolution
of the system [20,23,29]. This quantity was found to not be
equal to the coarse-grained dislocation-dislocation plus the
dislocation-external load interaction energy. Therefore, the
term “plastic potential” was introduced for P[ρ, κ] [20,27,29]
(details are given in Appendix D).

The time evolution of the plastic potential is

Ṗ =
∫

[μρ∂tρ + μκ∂tκ]dA, (18)

where

μρ = δP

δρ
, (19)

μκ = δP

δκ
. (20)

Because P may not increase we require the inequality
Ṗ � 0. By substituting the general kinematic equations (4)
and (5) into the above equation and after partial integration
one obtains

Ṗ =
∫

{(ρvd + κvm )∂xμρ + μρ |γ̇ |�(ρ, κ )

+ (ρvm + κvd )∂xμκ}dA � 0. (21)

The sign of the term related to dislocation multiplication and
annihilation is independent of the velocities. For any velocity
law we thus have to ensure that

μρ�(ρ, κ ) � 0. (22)

For the plastic potential given in Appendix D this is for in-
stance guaranteed with the source term of Kocks-Mecking
type employed in Ref. [31]. Given that inequality (22) is
fulfilled, the velocities vm and vd have to be selected such that

τ d

(
vd + κ

ρ
vm

)
+ τ ∗

(
vm + κ

ρ
vd

)
� 0, (23)

where the stress terms

τ ∗ = −1

b
∂xμκ, (24)

τ d = −1

b
∂xμρ (25)

were introduced.
The next task is to find a mobility rule for vm and vd that

fulfills condition (23). There is no unique solution for this
step, so one needs to employ a physical argument. Here, we
refer to the derivation described earlier in this section and
adopt mobility rules of Eqs. (15) and (16). This choice also
explains the notations used in Eqs. (24) and (25): τ ∗ and τ d

are equivalent quantities with the ones obtained during the
coarse-graining procedure. In the following it is shown that
this choice for the mobility laws is indeed compatible with
Eq. (23).

Since below the flow stress (|τ ∗| � τ y)

vm = 0 and (26)

vd = M0b

(
κ

ρ
τ ∗ + τ d

)
, (27)

inequality (23) is obviously fulfilled.
In the flowing regime (|τ ∗| > τ y)

vm = M0b(τ ∗ − sτ y) and (28)

vd = M0b

(
s
κ

ρ
τ y + τ d

)
. (29)

So, inequality (23) becomes(
τ ∗ + κ

ρ
τ d

)
(τ ∗ − sτ y) +

(
κ

ρ
τ ∗ + τ d

)(
s
κ

ρ
τ y + τ d

)
� 0.

(30)

By introducing

Bd = s
κ

ρ
τ y + τ d, (31)

Eq. (30) can be reformulated as[
τ ∗ − sτ y +

(
1 − κ2

ρ2

)
sτ y + κ

ρ
Bd

]
(τ ∗ − sτ y)

+
(

κ

ρ
(τ ∗ − sτ y) + Bd

)
Bd � 0, (32)

which can be rewritten as

(τ ∗ − sτ y, Bd )

(
1 κ

ρ
κ
ρ

1

)(
τ ∗ − sτ y

Bd

)

+
(

1 − κ2

ρ2

)
sτ y(τ ∗ − sτ y) � 0. (33)

Since the matrix in the first row is positive definite and
sτ y(τ ∗ − sτ y) > 0, the above form clearly indicates that in-
equality (23) is indeed fulfilled in the flowing regime, too.
So, the mobility laws of Eqs. (15) and (16) do guarantee that
the plastic potential P cannot increase during the evolution of
the system irrespective of the actual form of P. We note that,
moreover, condition (22) imposes an important restriction on
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the physically acceptable form of source terms which usually
have to be introduced on phenomenological grounds.

At the end of this section, the main steps of the thermo-
dynamic considerations are summarized. To arrive at a closed
set of evolution equations, first, one needs to define the plastic
potential P as a function of the SSD and GND densities (ρ
and κ , respectively). Second, stress terms τ ∗ and τ d follow
according to Eqs. (24) and (25). Third, mean and drift veloc-
ities are obtained using the mobility rules of Eqs. (15) and
(16). Finally, the evolution equations follow after substituting
these into Eqs. (4) and (5). The actual form of the stress terms
τ ∗ and τ d and that of the plastic potential P are given in
Appendix D (details can be found in Refs. [23,25]).

In the following, the generalization of the above results to
curved dislocations will be discussed after recapitulating the
kinematic fundamentals of the continuum theory of curved
dislocations.

III. KINEMATICS OF CURVED DISLOCATIONS
IN SINGLE SLIP

For describing the kinematics of the evolution of curved
dislocation ensembles in 3D we follow the method developed
by Hochrainer et al. [32–36]. For simplicity we consider only
glide-type dislocation motion in single slip (with slip plane
perpendicular to the z axis). We also assume that there are
no dislocations in the other slip systems, i.e., we exclude
forest dislocations. We note, however, that no assumptions
are made on the shape of dislocation lines. It is important to
mention that the fields to be introduced below can depend on
the z coordinate, but since for the geometry considered the
dislocation evolution happens in a plane perpendicular to the
z axis, the z dependence is not indicated unless it is necessary.
Consequently, the kinematic problem is virtually planar.

In order to be able to treat dislocations of different orienta-
tion in the same volume element, we extend the problem into
2 + 1 dimensions [32,33,35], where the dislocation line direc-
tion is introduced as an independent variable at each point. In
the glide plane, the line direction is represented by the angle ϕ

the local dislocation line direction forms with the x axis, given
by, e.g., the Burgers vector. So, the problem is “expanded” to
the (x, y, ϕ) = (r, ϕ) space. The static state of the system is
given by a vector field R [an average tangent to curves “lifted”
to the higher-dimensional space see Ref. [33]] on the (2 + 1)D
space characterized by two (pseudo)scalar fields [32,33,35],
the dislocation density ρ ′(r, ϕ), and the so-called curvature
density q′(r, ϕ) as

R = (ρ ′ cos ϕ, ρ ′ sin ϕ, q′) = ρ ′L (34)

with the line direction L given by

L = (cos ϕ, sin ϕ, k′) = (l, k′), (35)

where k′ = q′/ρ ′ is interpreted as the local average curvature
[32,33] of the dislocations with spatial line direction l . In this
paper scalar functions on the (2 + 1)D space are distinguished
by the prime sign. Equivalent to the line direction L we intro-
duce the operator

L̂ = cos ϕ ∂x + sin ϕ ∂y + k∂ϕ. (36)

A generalization of the dislocation density tensor is given
through the “signed line density” on the (2 + 1)D space as

α′ = ρ ′(r, ϕ)L(r, ϕ) ⊗ b = R ⊗ b, (37)

where b = (bx, by) is the Burgers vector of the considered
dislocations. The dislocation density tensor in the 2D “real”
space is the average of the spatial part of α′ in the ϕ direction,

α(r) = 1

2π

∫ 2π

0
ρ ′(r, ϕ)l (r, ϕ) ⊗ b dϕ = κ ⊗ b. (38)

Because the Burgers vector b is independent of the line di-
rection, the dislocation density has a product structure with
the net line direction vector κ = (κ1, κ2), the components of
which are the first-order Fourier coefficients of ρ ′:

κ1(r) = 1

2π

∫ 2π

0
ρ ′(r, ϕ) cos ϕ dϕ, (39)

κ2(r) = 1

2π

∫ 2π

0
ρ ′(r, ϕ) sin ϕ dϕ. (40)

If the angle ϕ is taken from the Burgers vector, κ1 is the net
screw dislocation component and κ2 the net edge dislocation
component.

It is important to ensure that dislocation lines do not end in
the system. We force this condition in the (2 + 1)D space (i.e.,
we do not allow discontinuity in the ϕ direction) [32,33,35].
This is ensured by the condition

D̂iv α′ = 0, (41)

where the generalized operator D̂iv acts on a vector field A =
(A1, A2, Aϕ ) as

D̂ivA = ∂xA1 + ∂yA2 + ∂ϕAϕ, (42)

leading to the condition

cos ϕ ∂xρ
′ + sin ϕ ∂yρ

′ + ∂ϕq′ = 0. (43)

Note that the solenoidality of α′ implies the solenoidality of α

via Eq. (38).
In order to know the local evolution of a dislocation in the

(2 + 1)D space we have to give the velocity V of the dislo-
cation line which contains aside from the spatial components
also a directional velocity which represents rotations of line
segments. Since the spatial velocity of a dislocation segment is
perpendicular to the spatial line direction l , the spatial velocity
is characterized by a scalar function v′(r, ϕ). For geometrical
reasons the rotation is given by the negative gradient of v′
along the line direction L [32,33]. The higher-dimensional
velocity is thus defined as

V (r, ϕ) = (v′ sin ϕ,−v′ cos ϕ,−L̂(v′)). (44)

The time evolution of the system is derived from exterior
differential calculus by a Lie derivative in the direction of the
generalized velocity V , which generalizes the 3D conserva-
tion law of ∂tα = ∇ × (v × α) [33]. In terms of field ρ ′ and
k′ one obtains that

∂tρ
′ = −D̂iv(ρ ′V ) + v′k′ρ ′, (45)

∂t k
′ = −v′k′2 − L̂(L̂(v′)) − V̂ (k′) (46)
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with the “velocity operator” V̂ given by the form

V̂ = v′ sin ϕ ∂x − v′ cos ϕ ∂y − L̂(v′)∂ϕ. (47)

One can find from Eqs. (45) and (46) that the time evolution
of the quantity q′ = ρ ′k′ is given in the form

∂t q
′ = −D̂iv(q′V + ρ ′L̂(v′)L). (48)

(This formula has been first published by Monavari and
coworkers [39] without derivation. We provide the derivation
in Appendix B). As it is seen below, the quantity q′(r, ϕ)
is in some sense a more natural quantity to work with than
curvature k′(r, ϕ).

For the further considerations it is useful to give Eq. (45)
in its explicit ϕ-dependent form

∂tρ
′ = − sin ϕ ∂x(ρ ′v′) + cos ϕ ∂y(ρ ′v′)

+ ∂ϕ{cos ϕ ∂x(ρ ′v′) + sin ϕ ∂y(ρ ′v′)

+ ∂ϕ[cos ϕ ∂x(q′v′) + sin ϕ ∂y(ρ ′v′) + ∂ϕ (q′v′)]} + v′q′

(49)

in which condition (43) is taken into account.
In this section we derived kinematic evolution equations

(49) and (48) for the density fields ρ ′ and q′ defined on the
(2 + 1)D space. Together with the velocity field v′(r, ϕ) they
form a closed set of kinematic evolution equations. However,
due to the large number of degrees of freedom the numerical
solution of the resulting equations is not feasible. In the next
section we, therefore, continue with reducing the complexity
of the problem and develop simplifying assumptions to obtain
kinematic evolution equations in the 2D “real” space.

IV. DIPOLE APPROXIMATION

As a next step, for the periodic ϕ dependence of the fields
appearing in the evolution equations (49) and (48) we apply
a Fourier expansion and stop at the first-order terms [31].
Because of the analogy with multipole expansion applied in
different field theories, like electrostatics, we call this “dipole
approximation,” but it has to be stressed that this does neither
mean we consider a system of dislocation dipoles nor that we
assume any specific shape of the dislocation lines. With this it
is assumed that

ρ ′(r, ϕ) ≈ ρ(r) + 2 cos ϕκ1(r) + 2 sin ϕκ2(r) (50)

(the reason for the factor 2 is seen below),

v′(r, ϕ) ≈ vm(r) + cos ϕvd
1 (r) + sin ϕvd

2 (r), (51)

and

q′(r, ϕ) ≈ q(r) + cos ϕQ2(r) − sin ϕQ1(r). (52)

Equation (50) means that ρ is the net SSD density that is
not dependent on the orientation and κ1 (κ2) is the GND
density of dislocations parallel to the x (y) axis (angle ϕ

is measured from the x axis). Note that this definition co-
incides with Eqs. (39) and (40), hence, the same notation.
The dipole approximation for the density (50), thus, implies
that no directional (screw or edge content) information is
available on the SSD content. This is crucial in order to under-
stand that one may not expect the following theory to exactly

(a) (b)

(c)

FIG. 4. Sketch of the meaning of velocities vm and vd
1,2 defined

by Eq. (51) as to how they would apply to a dislocation loop in the xy
plane. For simplicity, these velocities are assumed constant in space.
The dark red loop represents the original loop and the one in light red
is the shape obtained after a short time. Note that the actual velocity
vector along the loop changes continuously according to Eq. (51).
The arrows represent only exemplarily the velocities of the segments
being parallel to x and y axes. (a) When vm = 0 but vd

1 �= 0 and
vd

2 �= 0, then the loop moves as a “rigid structure” [like in the 2D
case, see Fig. 1(a)]. As explained in the text, part of the loop parallel
to vd has zero velocity, and the part being perpendicular to vd has
the largest speed. (b) If vd

1 = vd
2 = 0 the loop expands with velocity

vm. Here, the shape of the loop changes, so relative displacements
between dislocation segments take place, analogously to the situation
in 2D [see Fig. 1(b)]. (c) Superposition of (a) and (b) when all
velocity components vm and vd

1,2 are nonzero. In this case, translation
and expansion of the loop takes place simultaneously.

specialize to the above sketched theory of straight parallel
edge dislocations (where only dislocations parallel to the y
axis are present) without explicitly incorporating the available
directional information on the SSD. Considering direction
information for SSD would require to use at least two more
Fourier coefficients.

The dipole approximation for the velocity (51) introduces
three scalar velocity terms: vm, vd

1 , and vd
2 . According to

the definition of the velocity v′ [Eq. (44)], the meaning of
these terms is visualized in Fig. 4 as to how they would
apply to a single dislocation loop. vm is a mean velocity of
dislocations of all characters, whereas the drift velocity vector
vd = (vd

1 , v
d
2 ) characterizes the direction of dislocations (l ‖

vd) for which the opposite characters show the largest velocity
difference given by the twice the modulus vd = 2|vd|. It is
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important to not confuse the drift velocity vector with any kind
of dislocation velocity vector which is always perpendicular
to the local line direction. The comparison of Figs. 1 and 4
demonstrates the analogy between the vm and vd velocities
for the different models, and explains the identical notation.

Regarding the dipole approximation (52) for the curvature
density q′ = ρ ′k′ we note that ρ ′ and q′ are connected by
the solenoidality requirement (43). The curvature difference
vector Q, which indicates the direction of dislocations with
maximum difference in curvature between dislocations of op-
posite orientation, may therefore not be independently defined
from the density approximation. While the dipole approxi-
mations will violate solenoidality on the higher-dimensional
space, we require that the dipole approximation of the diver-
gence on the higher-dimensional space, i.e., of the quantity

G(r, ϕ) := cos ϕ ∂xρ
′(r, ϕ) + sin ϕ ∂yρ

′(r, ϕ) + ∂ϕq′(r, ϕ),
(53)

has to vanish. By taking the integral

Gm(r) = 1

2π

∫ 2π

0
G(r, ϕ)dϕ, (54)

one can see from (50) that the vector κ needs to be solenoidaly,

Gm(r) = ∂xκ1(r) + ∂yκ2(r) = 0. (55)

This is an important “constraint” relation between the κ1,2

fields. It expresses the fact that dislocations cannot end in the
bulk of a sample [33,36].

Also, the Fourier coefficients

Gd
1(r) = 1

2π

∫ 2π

0
cos ϕ G(r, ϕ)dϕ (56)

and

Gd
2(r) = 1

2π

∫ 2π

0
sin ϕ G(r, ϕ)dϕ (57)

are supposed to vanish, Gd
1,2 = 0. With the quantities intro-

duced in Eqs. (50) and (52) this leads to the consistency
requirements

Q1(r) = ∂xρ(r) (58)

and

Q2(r) = ∂yρ(r). (59)

Note that unlike Eq. (55), the relation of Q to the density
variables, i.e., Eqs. (58) and (59), depends on the number of
considered Fourier coefficients. Terms related to next-order
Fourier coefficients are neglected (for details see Hochrainer
[36]).

Next, we shall determine the evolution equations of the
fields ρ, κ1,2, and q. By substituting expressions (50)–(52) into
Eq. (49) we arrive at the evolution equation:

1

2π

∫ 2π

0
∂tρ

′dϕ = ∂tρ (60)

with

∂tρ = −1

2
∂x

(
ρvd

2

) + 1

2
∂y

(
ρvd

1

) + ∂y(κ1v
m ) − ∂x(κ2v

m )

+1

2
qvm + 1

2
vd

1Q2 − vd
2Q1. (61)

By substituting the relations (58) and (59) into the above
equations we obtain

∂tρ = −1

2
∂x

(
ρvd

2

) + 1

2
∂y

(
ρvd

1

) + ∂y(κ1v
m ) − ∂x(κ2v

m )

+qvm + 1

2
vd

1∂yρ − 1

2
vd

2∂xρ, (62)

where we also neglected terms related to higher-order Fourier
coefficients. It is useful to rewrite the above equation into the
form

∂tρ = −∂x
(
ρvd

2

) + ∂y
(
ρvd

1

) + ∂y(κ1v
m ) − ∂x(κ2v

m )

+qvm + 1

2
ρ∂yv

d
1 − 1

2
ρ∂xv

d
2 . (63)

We have now arrived at the kinematic evolution equation
of ρ in the “dipole” approximation. The comparison of this
equation with that of the 2D case [Eq. (4)] shows remark-
able similarity. It should be noted, however, that the last two
terms are not “compatible” with the 2D results, if the current
equations would be simply adopted for the straight edge dis-
location case. (The latter would mean that one assumes b to
be parallel with the x axis and takes κ1 = 0 and q = 0.) As
discussed above, this is the result of the closing approximation
we indirectly apply with the forms given by Eqs. (50)–(52)
[36]. One cannot expect that it is directly applicable for
straight dislocations. In order to allow for incorporating this
information, multipliers λ1, λ2 are introduced. For straight
dislocations λ1,2 = 0 and in the dipole approximation applied
here λ1,2 = 1

2 . So,

∂tρ = −∂x
(
ρvd

2

) + ∂y
(
ρvd

1

) + ∂y(κ1v
m ) − ∂x(κ2v

m )

+qvm + λ1ρ∂yv
d
1 − λ2ρ∂xv

d
2 . (64)

For the further considerations we make two important
observations:

cos ϕ(D̂iv(ρ ′V ) + q′v′)

= ∂y(ρ ′v′) − ∂ϕ (−q′v′ sin ϕ − ρ ′L̂(v′) cos ϕ) (65)

and

sin ϕ(D̂iv(ρ ′V ) + q′v′)

= −∂x(ρ ′v′) + ∂ϕ (q′v′ cos ϕ + ρ ′L̂(v′) sin ϕ). (66)

The detailed derivation of the above identities is provided in
Appendix A. By taking

1

2π

∫ 2π

0
cos ϕ ∂tρ

′dϕ = ∂tκ1 (67)

with Eqs. (50), (51), and (65) one finds that

∂tκ1 = ∂y
(
ρvm + κ1v

d
1 + κ2v

d
2

)
. (68)
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In a similar way by calculating

1

2π

∫ 2π

0
sin ϕ ∂tρ

′dϕ = ∂tκ2 (69)

one arrives at

∂tκ2 = −∂x
(
ρvm + κ1v

d
1 + κ2v

d
2

)
. (70)

Again, comparison with Eq. (5) shows a clear analogy with the
2D case, here without any additional terms due to the dipole
approximation.

For the evolution equation of the curvature q we use
Eq. (48) in its explicit form (see Hochrainer [36])

∂t q = −∂x
1

2π

∫ 2π

0
[q′v′ sin ϕ + ρ ′L̂(v) cos ϕ]dϕ

− ∂y
1

2π

∫ 2π

0
[−q′v′ cos ϕ + ρ ′L̂(v) sin ϕ]dϕ (71)

indicating the important fact that q is a conserved quantity.
Again in the dipole approximation one obtains

∂t q = ∂x

[
−qvd

2 + vmQ1 − 1

2
∂x

(
ρvm + 1

2
κ2v

d
2 + 3

2
κ1v

d
1

)
− 1

4
∂y

(
κ1v

d
2 + κ2v

d
1

)]

+ ∂y

[
+qvd

1 + vmQ2 − 1

2
∂y

(
ρvm + 1

2
κ1v

d
1 + 3

2
κ2v

d
2

)
− 1

4
∂x

(
κ2v

d
2 + κ1v

d
1

)]
. (72)

If we assume a nearly homogeneous system and neglect all
terms in Eq. (72) which contain second derivatives, we arrive
at the simplified form

∂t q = −∂x
(
qvd

2 − vmQ1
) + ∂y

(
qvd

1 + vmQ2
)
, (73)

which we will use subsequently, however, the general case can
be treated in a similar way.

It should be noted that the truncation procedure applied
above corresponds to a “natural” closing approximation. One
may consider higher-order terms in the Fourier expansion of
the fields ρ ′(r, ϕ), q′(r, ϕ), and v′(r, ϕ) and apply some other
closure approximations (see Hochrainer and Monavari et al.
for details [36,39]). Nevertheless, the general structure of the
evolution equations remains the same.

To summarize this section, we applied a “dipole”-type ap-
proximation to the kinematic equations in (2 + 1)D. The name
refers to the fact that the ϕ-dependent terms were expanded
up to the first-order Fourier coefficients. We emphasize that
no other assumptions on the microstructure (e.g., the presence
of dislocation dipoles) were made. Using the approximation
we derived kinematic evolution equations (64), (68), (70), and
(73) that are formulated in terms of the variables ρ, κ1,2,
q, vm, vd

1,2 [note that Q1,2 derive from ρ by Eqs. (58) and
(59)] defined in the “real” 2D space. The approximation was
motivated by the fact that the resulting evolution equations are
analogous to the 2D case described in Sec. II which was found
to represent dislocation dynamics in sufficient detail.

V. PLASTIC DISTORTION

Before proceeding to the dynamics of the system we have
to discuss what is the plastic distortion tensor βp and its rate
β̇

p
for the geometry considered. As it is known the dislocation

density tensor αi j = eikl∂kβ
p
l j where eikl is the Levi-Civita

tensor. As a consequence, for the general case, α does not
uniquely determine βp. For the problem considered here, how-
ever, this is not the case. Since we assumed that dislocations
can evolve only in their slip planes the i = 3 components of
β

p
i j are different from zero [40], and β

p
3 j (r) = β0(r)b j where

β0(r) is a scalar that can be calculated from α as follows: from
the definition of κ1 and κ2 given by Eq. (50) one can see that

κ1 = ∂yβ0, (74)

κ2 = −∂xβ0. (75)

Now, let us introduce the vector F = (−κ2, κ1, 0). Assuming
that we are in a given slip plane (i.e., z is fixed), one can
find that due to the condition ∂xκ1 + ∂yκ2 = 0 F is Curl free
(Curl F = 0). As a consequence, F can be given as the gradi-
ent of a scalar field. It is straightforward to see that Fi = ∂iβ0

with z coordinate considered as a fixed parameter. With this,
β0 can be calculated from the GND density with the integral

β0(r) =
∫ r

∞
Fi dri, (76)

where the integration can be carried out for any curve that is
in a plane perpendicular to the z direction. (Here we assumed
that all fields go to zero at infinity.)

Concerning the rate of plastic deformation β̇p it is ob-
viously determined by β̇0 as β̇

p
3 j (r) = β̇0(r)b j (the other

components are zero). From Eqs. (74)–(76) one gets

β̇0(r) =
∫ r

∞
∂t Fidri (77)

with ∂t F = (−∂tκ2, ∂tκ1, 0). From Eqs. (68) and (70)

∂t F1 = ∂x
(
ρvm + κ1v

d
1 + κ2v

d
2

)
, (78)

∂t F2 = ∂y
(
ρvm + κ1v

d
1 + κ2v

d
2

)
, (79)

leading to

β̇0 = ρvm + κ1v
d
1 + κ2v

d
2 . (80)

The analogy with the 2D model is again fulfilled [cf. Eq. (6)].

VI. EVOLUTION OF THE PLASTIC POTENTIAL

So far we have derived kinematic evolution equations for
the curved dislocation system in the frame of a dipole ap-
proximation. The resulting Eqs. (64), (68), (70), and (73) do
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not specify how to obtain the velocities vm and vd
1,2 from the

state variables ρ, κ1,2, and q. In order to perform this step
and to arrive at the desired closed set of dynamic equations
we generalize the thermodynamic considerations of the 2D
model described in Sec. II. As a starting point, we assume
that there is a scalar functional of the fields ρ, κ1,2, and q
that cannot increase during the evolution of the system. We
recall that in the 2D case this functional was derived from
microscopic considerations [23], which, due to the complexity
of the microstructure, is not feasible for the present 3D case.
It should be noted again, as it is explained in Appendix D,
that this functional is different from the coarse-grained elastic
energy.

For the curved dislocation problem, at this stage, we do
not specify the actual form of the functional (for that, see
Sec. VII), rather, in analogy with Sec. II, first we are going
to obtain mobility laws that are, on the one hand, consistent
with the 2D case and, on the other hand, guarantee that this
functional cannot increase during the evolution of the system.
The functional is denoted by P[ρ, κ1, κ2, q] and it is called
“plastic potential.”

In general its time derivative is given by the equation

Ṗ =
∫ [

δP

δρ
∂tρ + δP

δκ1
∂tκ1 + δP

δκ2
∂tκ2 + δP

δq
∂t q

]
dV, (81)

where δP/δX denotes the functional derivative of P with re-
spect to the field X . For shorter notations we introduce the
quantities

μρ = δP

δρ
, μκ1 = δP

δκ1
, μκ2 = δP

δκ2
, μq = δP

δq
. (82)

They could be called the appropriate “chemical potentials.”
The name comes from the formal analogy with chemical
potentials used in thermodynamics. These quantities are in
fact intensive state variables. However, due to the frictionlike
mobility laws introduced below, these quantities may not be
constant in equilibrium.

By substituting the kinematic equations (64), (68), (70),
and (73) into Eq. (81) and then performing partial integrations
one arrives at the inequality

Ṗ = −
∫

bρ

[
(τ ∗ + τm )vm +

(
κ1

ρ
τ ∗ + τ d

1

)
vd

1

+
(

κ2

ρ
τ ∗ + τ d

2

)
vd

2

]
dV � 0, (83)

where the following terms with stress dimension were intro-
duced:

τ ∗ = 1

b
[(∂yμκ1 ) − (∂xμκ2 )], (84)

τ d
1 = 1

bρ
[(∂yμρ )ρ + (∂yμq)q + ∂y(λ1μρρ)], (85)

τ d
2 = − 1

bρ
[(∂xμρ )ρ + (∂xμq)q + ∂x(λ2μρρ)], (86)

τm = 1

bρ
[(∂yμρ )κ1 − (∂xμρ )κ2

+(∂xμq)Q1 + (∂yμq)Q2 − μρq]. (87)

For these terms the notations τ ∗ and τ d
1,2 are used based on the

analogy with the 2D case [cf. Eqs. (24) and (25)], whereas τm

does not have a corresponding term in the 2D model.
To guarantee that the plastic potential does not increase

in time, the integrand of Eq. (83) must everywhere be non-
negative, that is,

(τ ∗ + τm )vm +
(

κ1

ρ
τ ∗ + τ d

1

)
vd

1

+
(

κ2

ρ
τ ∗ + τ d

2

)
vd

2 � 0. (88)

Next, we introduce the mobility laws for curved disloca-
tions that are taken to be analogous to the 2D case [Eqs. (15)
and (16)] and, thus, read as

vm = M0bχ (τ ∗), (89)

vd
1,2 = M0b

(
κ1,2

ρ
[τ ∗ − χ (τ ∗)] + τ d

1,2

)
. (90)

This means that up to the local yield stress τ y the mean veloc-
ity vm is zero, but vd

1,2 may have a nonzero value, the situation
sketched in Fig. 4(a). Above the yield stress, however, all the
velocity terms may differ from zero, which corresponds to
Fig. 4(c). The value of τ y will be defined later.

The question we address in the following is whether these
mobility laws are consistent with inequality (88). It is easy
to see by simple substitution that the condition is fulfilled
if |τ ∗| � τ y (nonflowing regime). When |τ ∗| > τ y (flowing
regime) inequality (88) reads as[

τ ∗ − sτ y +
(

1 − κ2
1

ρ2
− κ2

2

ρ2

)
sτ y

+κ1

ρ
Bd

1 + κ2

ρ
Bd

2 + Bm

]
(τ ∗ − sτ y)

+
(

κ1

ρ
(τ ∗ − sτ y) + Bd

1

)
Bd

1

+
(

κ2

ρ
(τ ∗ − sτ y) + Bd

2

)
Bd

2 � 0, (91)

where s = sgn(τ ∗), and the following auxiliary stress terms
are introduced:

Bd
1 = s

κ1

ρ
τ y + τ d

1 , (92)

Bd
2 = s

κ2

ρ
τ y + τ d

2 , (93)

Bm = τm − κ1

ρ
τ d

1 − κ2

ρ
τ d

2 . (94)

Notice that Bd
1M0b and Bd

2M0b are the velocities vd
1 and vd

2
at |τ ∗| � τ y, respectively. The inequality (91) can now be
rewritten as(

1 − κ2
1

ρ2
− κ2

2

ρ2

)
(τ ∗ − sτ y)2

+ (
τ ∗ − sτ y, Bd

1

)( κ2
1

ρ2
κ1
ρ

κ1
ρ

1

)(
τ ∗ − sτ y

Bd
1

)
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+ (
τ ∗ − sτ y, Bd

2

)( κ2
2

ρ2
κ2
ρ

κ2
ρ

1

)(
τ ∗ − sτ y

Bd
2

)

+
[

Bm +
(

κ2
1

ρ2
+ κ2

2

ρ2
− 1

)
sτ y

]
(τ ∗ − sτ y) � 0. (95)

Combining the first and the fourth terms and realizing that the
second and third terms are always non-negative, unconditional
non-negativity requires that[

Bm +
(

1 − κ2
1

ρ2
− κ2

2

ρ2

)
τ ∗

]
(τ ∗ − sτ y) � 0. (96)

With the dimensionless quantity

β = Bm

μb
√

ρ
(
1 − κ2

1
ρ2 − κ2

2
ρ2

) , (97)

the inequality assumes the form

(τ ∗ + βμb
√

ρ )(τ ∗ − sτ y) � 0. (98)

Note that the non-negativity of ρ ′ in Eq. (50) implies that the

term (1 − κ2
1

ρ2 − κ2
2

ρ2 ) in the denominator of Eq. (97) is always
positive.

According to the well-known Taylor hardening law the
yield stress is

τ y = αμb
√

ρ. (99)

Condition (98) is consequently fulfilled if |β| < α. One can
see from Eq. (94) that β contains a term that is proportional
to q/ρ3/2 which is the ratio of the average dislocation spacing
1/

√
ρ and the average radius of curvature ρ/q. For common

dislocation configurations this ratio is supposed to be small.
The other terms in β are proportional to spatial derivatives of
the various fields. So for nearly homogeneous configurations
at small q/ρ3/2 ratio |β| is assumed to be small compared to
the Taylor coefficient α, which usually takes values between
0.3 and 0.4 [41]. On the other hand, in highly inhomogeneous
or strongly curved dislocation configurations, considering the
named global Taylor coefficient α becomes questionable on
a local level. In this case, we therefore propose to ensure
condition (98) by making α a function of β and thus of the
local dislocation state. As the simplest possible α(β ) function
one may take

α(β ) =
{
α0 if |β| < |α0|,
|β| if |β| � |α0|, (100)

where now α0 denotes the constant global coefficient.
The finding that α becomes a function of the local dis-

location state is consistent with the general experimental
observation that α is (weakly) dependent on the type of dislo-
cation pattern developing upon different modes and levels of
deformation [42]. However, deriving the state dependence of
α will require further investigations.

VII. PROPOSED FORM OF THE PLASTIC POTENTIAL

The last step to arrive at dynamic evolution equations for
curved dislocations in single slip is to specify the form of the
plastic potential P. The stress terms τ ∗ and τ d

1,2 then follow
from Eqs. (84)–(86). It is important, however, to distinguish

between the so-called mean-field stress τmf that is due to
the long-range stress field generated by the GND dislocations
and the boundary tractions, and the back stress related to the
dislocation-dislocation correlations. The measurable quantity
is the mean-field stress from which the resolved shear stress
appearing in the theory τmf = (1/b)n · σ · b with n being the
glide plane normal vector.

In order to get the actual form of the plastic potential here
we again follow the route developed for 2D straight disloca-
tions (see Groma [23]) and split the plastic potential into a
“mean-field” and a “correlation” part

P = Pmf + Pcorr. (101)

The first term Pmf is the mean-field elastic energy of the
system, which means that if the dislocations were distributed
randomly (i.e., uncorrelated), then Pmf would exactly be the
elastic energy. The mean-field part reads as [23,25,29]

Pmf [χ, κ1, κ2]

=
∫ [

−1

2
(Inc χ)i jC

−1
jikl (Inc χ)lk + χi jη ji

]
dV, (102)

where Inc is the incompatibility operator, χ is the stress po-
tential tensor, C is the elastic modulus tensor, and η is the
incompatibility tensor related to the dislocation density tensor
as [25,40]

ηi j = 1
2 (eiln∂nα jl + e jln∂nαil ). (103)

This means that the dependence of Pmf on κ1 and κ2 appears
implicitly through the dislocation density tensor via Eq. (38)
and the i = 3 and j = 3 components of αi j are zero.

For Pmf the auxiliary variable χ was introduced. As it was
shown by Groma et al. [29], the stress equilibrium equation
can then be obtained by

δPmf

δχi j
= 0, (104)

and the stress tensor follows from its solution as

σ = Inc χ. (105)

The equilibrium equation (104) also allows us to introduce the
boundary conditions for surface tractions and displacements
for a given sample geometry. As it is shown in Appendix C,
the mean-field resolved shear stress τmf follows as

τmf = 1

b

[(
∂y

δPmf

δκ1

)
−

(
∂x

δPmf

δκ2

)]
. (106)

According to Eq. (84), if Pcorr was zero (that is, we assumed
a random distribution of dislocations) then τ ∗ would be equal
to τmf .

The “correlation” part Pcorr represents a correction to the
plastic potential due to the fact that dislocations are not po-
sitioned randomly but develop spatial correlations. This part
cannot depend on χ otherwise the stress equilibrium equation
(104) would be violated. Its simplest possible form, as first
given in Ref. [37], can be obtained from symmetry and di-
mensionality arguments and, based on the 2D straight parallel
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dislocation problem, reads as

Pcorr[ρ, κ1, κ2, q]

=
∫

Gb2

[
Aρ ln

(
ρ

ρ0

)
+ κ · D · κ

2ρ
+ R

2

q2

ρ2

]
dV, (107)

where G = μ/2π (1 − ν) (introduced for dimensional rea-
sons), A and R are dimensionless constants, D is a 2 × 2
dimensionless constant matrix [38], and ρ0 = 1/c2b2 � ρ is
a constant parameter with dislocation density dimension with
c being a constant determined by the core properties of the
dislocation [38]. Similar expressions have been proposed by
Hochrainer [37] and Zaiser [38]. We recall, however, that
the plastic potential suggested here is not the coarse-grained
elastic energy derived by Zaiser [38], as is demonstrated for
the 2D case in Appendix D. The second term in Pcorr has to be
invariant to the rotation of the Burgers vector, so

κ · D · κ = Dss(ns · κ)2 + Dee(ne · κ)2 + 2Dse(ns · κ)(ne · κ),
(108)

where Dss, Dee, and Dse characterize correlations between
screw dislocations, edge dislocations, and between screw
and edge dislocations, respectively, and form a symmetric
positive-definite tensor. Moreover, ns and ne are unit vectors
parallel and perpendicular (in the xy plane) to the Burgers
vector, respectively.

What is really new as compared to the 2D case is the
third term in Eq. (107). Since the energy should not depend
on the direction of the curvature (that is, the sign of q), as
a lowest-order approximation we suggest a quadratic form
in q. Since the dimension of q is m−3, the parameter R is
dimensionless. With this, apart from ρ0, no material parameter
with length dimension is introduced into the theory (the mul-
tiplier Gb2 cancels from the evolution equations). It should be
mentioned, however, that the energy term related to curvature
should account for line-tension effects. Since line tension is
a core effect it should go to infinity with decreasing disloca-
tion core size. As a consequence, one may suggest that R is
inversely proportional to b2ρ (the core size is in the order of
the size of the Burgers vector b). The issue requires further
investigations.

According to Eqs. (84) and (101), τ ∗ can be split into two
parts, namely,

τ ∗ = τmf + τ b (109)

with τ b being the back stress. The latter is the contribution of
the correlation part of the plastic potential Pcorr as

τ b = 1

b

[
∂y

δPcorr

δκ1
− ∂x

δPcorr

δκ2

]

= Gb

[
∂y

(
D11

κ1

ρ
+ D12

κ2

2ρ

)

−∂x

(
D22

κ2

ρ
+ D12

κ1

2ρ

)]
. (110)

If the system is not far from homogeneous, i.e., κ1,2 � ρ and
∂x,yρ � ρ3/2, then

τ b = Gb

ρ
[∂y(D11κ1 + D12κ2)

−∂x(D22κ2 + D12κ1)], (111)

that corresponds to the straightforward generalization of
the back stress introduced for 2D [19], hence the identical
notation.

Concerning the diffusion stresses τ d
1 and τ d

2 one obtains

τ d
1 = 1

bρ

[
ρ ∂y

δPcorr

δρ
+ q ∂y

δPcorr

δq
+ ∂y

(
λ1ρ

δPcorr

δρ

)]

= Gb

ρ

[
A

(
1 + 2λ1 + λ1 ln

ρ

ρ0

)
∂yρ + Rq ∂y

q

ρ2

]
,

(112)

and similarly

τ d
2 = − 1

bρ

[
ρ ∂x

δPcorr

δρ
+ q ∂x

δPcorr

δq
+ ∂x

(
λ2ρ

δPcorr

δρ

)]

= −Gb

ρ

[
A

(
1 + 2λ2 + λ2 ln

ρ

ρ0

)
∂xρ + Rq ∂x

q

ρ2

]
.

(113)

Note that the constant ρ0 does appear in the formulas, but
only in terms also containing λ1,2 as a multiplicative factor.
We address this issue in the Discussion section below.

VIII. DISCUSSION

The continuum theory of curved dislocations in single slip
presented in the paper is a direct generalization of the 2D
continuum theory of straight parallel edge dislocations devel-
oped earlier by a systematic coarse graining of the evolution
equation of the individual dislocations [19,23]. But while the
2D continuum theory is directly linked to the discrete dislo-
cation dynamics, building the direct link between the discrete
and continuum description for the curved dislocation prob-
lem seems virtually impossible. Therefore, in order to have a
closed theory for the dependence of the velocities vm and vd

1,2
on the dislocation state, one has to resort to phenomenological
rules. In the current contribution we deduce these rules by
closely following the 2D case, where the phenomenology was
derived earlier to match the coarse-grained theory.

The proposed model may be summarized as follows (see
also Fig. 5):

(i) The state of the dislocation system is given by the
fields: total dislocation density ρ, GND density vector
(κ1, κ2), and curvature density q.

(ii) For the time evolution of these fields a “dipole” ap-
proximation is used leading to the Eqs. (64), (68), (70), and
(73).

(iii) The dynamics of the system is obtained from a scalar
functional P[χ, ρ, κ1, κ2, q] called “plastic potential.” In anal-
ogy to irreversible thermodynamics, the relevant quantities
are the appropriate combinations of the spatial derivatives
of the different “chemical” potentials, which are the corre-
sponding functional derivatives of the plastic potential. The
key quantities are the “effective stress” τ ∗ that is the sum
of the mean-field and “back” stresses [Eqs. (84)], and the
generalized “diffusion” stresses τ d

1 and τ d
2 which depend on

the gradient of the dislocation density and the curvature field
[Eqs. (85) and (86)].

(iv) The τ ∗ and τ d
1,2 dependence of the velocity fields vm

and vd
1,2 are indicated in Fig. 3. Below the flow stress the
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FIG. 5. Summary of the model.

mean velocity vm vanishes, while above it increases linearly
with τ ∗. In the nonflowing regime the velocities vd

1,2 are linear
in τ ∗, whereas in the flowing one they remain constant upon
increasing stress.

A central but yet qualitative finding of this study is that
the requirement of thermodynamic consistency may yield a
state-dependent Taylor factor α, at least for inhomogeneous
and strongly curved dislocation configurations. Such correc-
tions to the “Taylor law” are well known in the literature on
work hardening [42], but they have not been derived from a
continuum dislocation theory before.

Going from systems of straight parallel edge dislocations
towards the current single-slip situation with curved disloca-
tions is a small but important step towards a more general
dislocation-based theory of plasticity. Before discussing a
few aspects of generalizing the theory, however, we need to
address an aspect, which might seem to refute the current
results: it is found by numerous experimental investigations
that most macroscopic properties of dislocation systems, like
flow stress, and the length scale of dislocation patterns, scale
with the average dislocation-dislocation spacing lc = 1/

√
ρ.

This means systems with different dislocation densities can be
scaled to each other with the scaling factor lc. This is called
the “principle of similitude” [43,44].

In order to fulfill this principle, a continuum theory of
dislocations may not contain parameters (or combinations of
parameters) with length dimension other than lc. The plastic
potential given by Eq. (110), however, contains the parameter
ρ0 with 1/length2 dimension. Consequently, at first sight the
proposed plastic potential Pcorr violates the principle of simili-
tude. Concerning the evolution equations, however, ρ0 appears

only in the first term of Bm and in the last term for τ d
1 and τ d

2
[cf. Eqs. (94), (85), and (86), respectively]. As it is discussed
above Bm can be absorbed into the α parameter of the flow
stress. For nearly homogeneous systems with small curvature
α is independent from Bm. Concerning τ d

1 and τ d
2 they have

a logarithmic ρ0 dependence in the term proportional to λ1,2.
Such logarithmic deviations from the principle of similitude
are well known to occur due to curvature effects [44].

Regarding the derivation of a more general theory of plas-
ticity we note two simplifying assumptions which will need to
be relaxed in the future:

(1) In the above considerations the mobility M0 is modeled
as constant, resulting in a linear relation between the velocity
vm and the stress. This may be generalized by allowing that
M0 depends on the stress. Taking the form

M0(τ ∗) = M∗ f

(
τ ∗ − τ y

τ y

)
, (114)

where M∗ is a positive constant and f (x) is any non-
negative function, does in general comply with inequality
(83). Common phenomenological plasticity theories with a
power function relation between plastic shear rate and shear
stress can be recovered if f (x) is chosen as a power function.

(2) Formally, it appears relatively straightforward to gen-
eralize the theory for multiple slip. In this case, however,
local dislocation-dislocation interactions, like formation of
junctions and dislocation annihilation, cannot be neglected.
Moreover, cross slip and at higher temperature climb may
play an important role, too. These phenomena need to be in-
corporated into the proposed theory as source and sink terms.
Promising, though mostly phenomenological, ways how to in-
corporate some of these phenomena in continuum dislocation
theories were recently proposed by El-Azab et al. [15,16,45]
and Schulz et al. [46,47]. These extensions proved success-
ful in describing various technologically important situations,
such as torsion of microwires and compression of micropillars
[48,49].

As a concluding remark, we can state that the proposed
continuum theory of curved dislocations is established in a
systematic manner based on the continuum theory of straight
parallel dislocations. While this is an important step toward
a general theory of crystal plasticity, a wealth of issues still
need to be addressed in future research.
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APPENDIX A: DERIVATION OF EQ. (65)

The detailed derivation of the identity (65)

cos ϕ(D̂iv(ρ ′V ) + q′v′)

= ∂y(ρ ′v′) − ∂ϕ (−q′v′ sin ϕ − ρ ′L̂(v′) cos ϕ) (A1)
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is given below. We use two conditions: (i) from equation
D̂iv(ρ ′L) = 0 one gets that

∂ϕq′ = − cos ϕ ∂xρ
′ − sin ϕ ∂yρ

′ =: −l̂ (ρ ′), (A2)

where the operator l̂ = cos ϕ ∂x + sin ϕ ∂y was introduced,
and (ii) from Eq. (36) one obtains that

ϑ ′ := −L̂(v′) = −l̂ (v′) − k′∂ϕv′

= − cos ϕ ∂xv
′ − sin ϕ ∂yv

′ − k′∂ϕv′. (A3)

With the above equations one can find that

cos ϕ(D̂iv(ρ ′V ) + q′v′)

= [cos ϕ ∂y(ρ ′v′) − sin ϕ ∂x(ρ ′v′) − ∂ϕ (ρ ′ϑ ′)] cos ϕ

+ q′v′ cos ϕ

= cos2 ϕ ∂y(ρ ′v′) − sin ϕ cos ϕ ∂x(ρ ′v′)

− ∂ϕ (ρ ′ϑ ′) cos ϕ + q′v′ cos ϕ

= ∂y(ρ ′v′) − [cos ϕ ∂x(ρ ′v′) + sin ϕ ∂y(ρ ′v′)] sin ϕ

+ q′v′ cos ϕ − ∂ϕ (ρ ′ϑ ′) cos ϕ

= ∂y(ρ ′v′) − l̂ (ρ ′v′) + q′v′ cos ϕ − ∂ϕ (ρ ′ϑ ′) cos ϕ

= ∂y(ρ ′v′) − l̂ (ρ ′v′) + ρ ′L̂(v′) sin ϕ + q′v′ cos ϕ

− ∂ϕ (ρ ′ϑ ′) cos ϕ + ρ ′ϑ ′ sin ϕ

= ∂y(ρ ′v′) − [l̂ (ρ ′v′) − ρ ′ l̂ (v′)] sin ϕ + q′∂ϕv′ sin ϕ

+ q′v′ cos ϕ − ∂ϕ (ρ ′ϑ ′) cos ϕ + ρ ′ϑ ′ sin ϕ

= ∂y(ρ ′v′) − l̂ (ρ ′)v′ sin ϕ + q′∂ϕv′ sin ϕ + q′v′ cos ϕ

− ∂ϕ (ρ ′ϑ ′) cos ϕ + ρ ′ϑ ′ sin ϕ

= ∂y(ρ ′v′) + ∂ϕ (q′)v′ sin ϕ + q′∂ϕv′ sin ϕ + q′v′ cos ϕ

− ∂ϕ (ρ ′ϑ ′) cos ϕ + ρ ′ϑ ′ sin ϕ

= ∂y(ρ ′v′) − ∂ϕ (−q′v′ sin ϕ + ϑ ′ρ ′ cos ϕ). (A4)

APPENDIX B: DERIVATION OF EQ. (48)

For the derivation of Eq. (48) we note that Eq. (46) was
originally derived from the evolution of q′ in the form [33]

∂t q
′ = −k D̂iv(ρ ′V ) − ρ ′L̂(L̂(v′)) − ρ ′V̂ (k′). (B1)

From this form Eq. (48) follows by

∂t q
′ = −k D̂iv(ρ ′V ) − ρ ′L̂(L̂(v′)) − ρ ′V̂ (k′)

= −D̂iv(ρ ′k′V ) + ρ ′V̂ (k′) − ρ ′V̂ (k′) + ρ ′L̂(ϑ ′)

= −D̂iv(ρ ′k′V ) + D̂iv(ρ ′ϑ ′L) − ϑ ′D̂iv(ρ ′L)

= −D̂iv(ρ ′k′V − ρ ′ϑ ′L)

= −D̂iv(q′V + ρ ′L̂(v′)L), (B2)

where we used the product rule

D̂iv( f ′X ) = X̂ ( f ′) + f ′D̂iv(X ) (B3)

in which f ′ is a scalar function, X = (Xx, Xy, Xϕ ) is a vector
function, and X̂ denotes the directional derivative operator
X̂ = Xx∂x + Xy∂y + Xϕ∂ϕ .

APPENDIX C: MEAN-FIELD STRESS

In this Appendix we consider the quantity

1

b

(
∂y

δPmf

δκ1
− ∂x

δPmf

δκ2

)
. (C1)

The only term in Pmf that depends on the GND variables κ1

and κ2 will be denoted as Pp:

Pp =
∫

χi jη jidV. (C2)

Since the incompatibility tensor is ηi j = −(Inc εp)i j where εp

is the plastic deformation tensor, with partial integration one
obtains that

Pp = −
∫

σi jε
p
ji dV, (C3)

where we used that σ = Inc χ. Without restricting the gener-
ality we can assume that the Burgers vector is parallel to the
x axis [b = (b, 0, 0)]. Since the slip normal is parallel to the
z axis, in this case only the 31 components of βp differ from
zero. With this

Pp = −
∫

σ13β
p
31 dV. (C4)

One can now introduce S1 and S2 scalar fields such that σ13 =
−∂yS1 + ∂xS2 where S1,2 are not uniquely defined but as it will
be shown below this does not influence the final result. With
Eqs. (74) and (75) again after partial integration

Pp = −
∫

(S1κ1 + S2κ2)b dV. (C5)

From this one arrives at

1

b

(
∂y

δPmf

δκ1
− ∂x

δPmf

δκ2

)
= σ13 = τmf . (C6)

APPENDIX D: PLASTIC POTENTIAL

Since the issue has not been published earlier we give a
short discussion below why one has to distinguish between the
coarse-grained elastic energy and the “plastic potential” pro-
posed to use for giving the velocities vm and vd

1,2. We discuss
only the 2D straight edge dislocation evolution problem. The
3D generalization is far from straightforward (see Ref. [38]).

Let us start with the equation of motion of the individual
dislocations. We consider a system of parallel edge disloca-
tions with Burgers vector b = (±b, 0, 0) and line direction
l = (0, l, 0). Assuming overdamped motion, the velocity of
the ith dislocation is proportional to the force acting on it:

dxi

dt
= M0b

(
N∑

j=1

sis jτind(ri − r j )

)
, (D1)

where ri is the position of the ith dislocation in the xz plane,
si = ±1 is the sign of the ith dislocation, N is the number
of dislocations, M0 is a mobility constant, and τind(
r) is the
shear stress generated by a dislocation with positive sign. For
simplicity, no external load is considered here, but it can be
added in a straightforward manner.
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FIG. 6. Coarse graining (CG) at different levels.

Since the shear stress is the appropriate second derivative
of the stress potential [40]

τind = ∂x∂zχind (D2)

it can be given as τind = −∂x�ind where �ind = −∂zχind. This
means that b�ind is the elastic interaction energy between two
dislocations with the same sign. It follows that the equation of
the motion of the ith dislocation (D1) can be given as

dxi

dt
= −M0∂xiV ({ri}), (D3)

where

V ({ri}) = b
∑
i, j

sis j�ind(ri − r j ) (D4)

is the total elastic interaction energy per unit length.
It is easy to see that due to the dissipative dislocation

motion

d

dt
V ({ri}) = − 1

M0

N∑
i=1

(
dxi

dt

)2

� 0 (D5)

so the total “discrete” elastic energy cannot increase during
the evolution of the dislocation system.

In order to have a continuum theory derived from the evo-
lution of the individual dislocations one can perform coarse
graining at two different ways indicated in Fig. 6. As it is ex-
plained in detail by Zaiser in Ref. [38] a coarse-grained energy
E [κ, ρ] can be obtained from V ({ri}) with the knowledge of
the dislocation-dislocation correlation functions.

An alternative way is a systematic coarse graining of the
system of the equation of motion of dislocations (D3). For
the detailed derivation, see Refs. [19,23]. As it is explained in
Ref. [23] (see also above) the evolution equations for the fields
ρ± can be obtained from a scalar functional P[ρ, κ] called
“plastic potential” that is directly derived from the equation of

motion of dislocations. If we, however, compare E [ρ, κ] and
P[ρ, κ] we find that the functional form of the two quantities
is the same, namely

Pmf +
∫

Gb2

[
Aρ ln

(
ρ

ρ0

)
+ κDκ

2ρ

]
dx dy, (D6)

but the parameters A and D appearing in them, determined by
the dislocation-dislocation correlation functions, are different
[23,38]. In the local density approximation [23,38] for the
plastic potential

Dpp = ρ

Gb

∫
[(d s + dd )x∂x�ind]dx dy,

App = ρ

Gb

∫
[(d s − dd )x∂x�ind]dx dy (D7)

while for the coarse-grained energy

Dcge = ρ

Gb

∫
[(d s + dd )�ind]dx dy,

Acge = −1

4
,

(D8)

where d s and dd are spatial correlation functions between
dislocations of the same and the opposite signs, respectively.
It should be noted that for the coarse-grained energy A is
independent from the correlation function that it obviously
cannot lead to the right evolution equation where all the terms
but the mean-field stress are related to dislocation-dislocation
correlations.

Since P[ρ, κ] is obtained from the equation of motion of
the individual dislocations and, as it is explained above, it
cannot increase during the evolution of the coarse-grained
fields, the plastic potential is the quantity we have to use in
the generalized 3D theory, too.
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