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Linear and nonlinear transport across a finite Kitaev chain: An exact analytical study
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We present exact analytical results for the differential conductance of a finite Kitaev chain in an N-S-N
configuration, where the topological superconductor is contacted on both sides with normal leads. Our results are
obtained with the Keldysh nonequilibrium Green’s function technique, using the full spectrum of the Kitaev chain
without resorting to minimal models. A closed formula for the linear conductance is given, and the analytical
procedure to obtain the differential conductance for the transport mediated by higher excitations is described.
The linear conductance attains the maximum value of e2/h only for the exact zero-energy states. Also, the
differential conductance exhibits a complex pattern created by numerous crossings and anticrossings in the
excitation spectrum. We reveal the crossings to be protected by inversion symmetry, while the anticrossings result
from a pairing-induced hybridization of particlelike and holelike solutions with the same inversion character.
Our comprehensive treatment of the Kitaev chain allows us also to identify the contributions of both local
and nonlocal transmission processes to transport at arbitrary bias voltage. Local Andreev reflection processes
dominate the transport within the bulk gap and diminish for higher excited states but reemerge when the bias
voltage probes the avoided crossings. The nonlocal direct transmission is enhanced above the bulk gap but
contributes also to the transport mediated by the topological states.
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I. INTRODUCTION

The search for Majorana zero modes (MZMs) in topolog-
ical superconductor systems is currently an intensely pursued
quest in condensed-matter physics [1–4], with the primary
aim to realize a robust framework for topological quantum
computing [5–7]. Currently the most advanced experimental
platforms for Majorana devices are based on proximitized
semiconducting nanowires [8–10], although they have not
yet been unambiguously proven to host Majorana states.
Transport properties of Majorana nanowire devices have been
intensively studied, with the main purpose of devising a de-
tection scheme for the Majorana states by determining their
transport fingerprints. The most fundamental one, that of ob-
serving a quantized zero bias peak in conductance [4,11,12],
can be mimicked by trivial Andreev bound states [10,13–16]
or level repulsion in multiband systems [17,18], thus several
detection schemes also exploiting Majorana nonlocality have
been proposed [19–21]. From the point of view of the applica-
tions, one of the schemes for the readout of Majorana qubits
is based on transport interferometry [22,23], providing further
motivation to explore the transport properties of Majorana
devices.

Most of the works in this domain are, out of necessity,
either numerical or based upon a minimal model, concen-
trating on charge transport through the in-gap states [10,13–
15,24–27]. Our aim is to find an analytical expression for the
current flowing through a topological superconductor, taking
into account its full excitation spectrum. The knowledge of
such analytical solutions for at least one topological supercon-
ductor is instrumental in testing the reliability of the numerical

results. As our model system, we take a prototypical topo-
logical superconductor, the Kitaev chain [28]. Although the
low-energy spectrum of a Kitaev chain with two Majorana
states has served as the basis for minimal models of nanowire
transport, we are aware of only a few analytical studies which
focused on the transport characteristics of the Kitaev chain
itself, achieving its description in analytical terms for several
parameter ranges [29,30]. Doornenbal et al. [29] treated the
chain as a fragment of an N-S-N system, but with the bias
drop occurring at one contact only, which yields the well-
known value 2e2/h for the conductance through an MZM.
Without a self-consistent calculation, it also leads, however, to
nonconservation of current. Another recent work [30] studied
the low-energy transport properties of a Kitaev chain with
long-range superconducting pairing, using a Green’s func-
tion technique combined with the scattering matrix approach.
The transport calculation is analytical, although it needs the
eigenvectors as input, which are obtained from a numerical
diagonalization of the Hamiltonian.

In this paper, we use the Keldysh nonequilibrium Green’s
functions technique (NEGF) and the notion of Tetranacci
polynomials to derive analytical expressions for both the
current and conductance of a Kitaev chain in an N-S-N config-
uration, in the linear as well as nonlinear transport regime, for
arbitrary hopping t , superconducting pairing �, and chemical
potential μ. Thus, we can access not only the known transport
properties of the topological states but also of the higher
excited states.

While we derive the differential conductance for arbitrary
bias drop at the contacts, we show only the results for
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symmetric bias—the configuration in which the current
is conserved. In consequence, crossed Andreev reflection
processes do not contribute to transport. For the chosen
symmetric setup, the transport occurs via two mechanisms,
local Andreev reflection and nonlocal direct transmission.
Both contributions feature conductance peaks resonant with
the excitation energies but with different weights. The trans-
port within the bulk gap is dominated by the local, Andreev
processes, while the main contribution to transport above the
bulk gap comes from the nonlocal, direct transmission. The
excitation spectrum above the bulk gap contains several series
of crossings and avoided crossings, ubiquitous in the spectra
of Majorana nanowires [13,15,17,27,31–33]. Our analysis
sheds light on the nature of these states’ features. We find
that the crossings are protected by the inversion symmetry of
the normal chain—the degenerate eigenstates have particle
(hole) sectors of opposite inversion character. On the other
hand, the particle (hole) sectors of anticrossing states match
under inversion and the superconducting pairing allows the
particlelike and holelike solutions of the linear chain to
hybridize. Inside the anticrossings, the Andreev reflection
processes are revived, reminiscent of their importance in the
subgap transport. Similarly, even though the direct transmis-
sion plays the prominent role in high bias conductance, it is
also responsible for some of the current flowing through the
two topological states at low bias. We obtain the maximum
value of e2/h for the zero-bias Majorana conductance peak,
as expected from an N-S-N setup with symmetric bias
drop [25,34,35]. Remarkably, our results show that for a
finite chain, the value e2/h for the linear conductance is not
obtained in the whole topological phase but only near the
Kitaev points (μ = 0, |t | = |�|). Elsewhere, the conductance
can be close to its maximum value or even significantly lower.

This paper is organized as follows. First, we analyze the
spectrum of an isolated Kitaev chain in Sec. II, including the
higher excitations. In Sec. III, we discuss our N-S-N transport
setup, providing a general current formula for our system. The
analytical expression for the linear conductance is derived in
Sec. IV. In Sec. V, we present the formula for the differential
conductance at finite bias in terms of appropriate Green’s
functions. The detailed derivations of the expressions for the
current, conductance, and the Green’s functions are given in
the Appendices.

II. THE ISOLATED KITAEV CHAIN

The central element of our N-S-N system is the finite
Kitaev chain, which is a tight-binding chain of N lattice sites,
with one spinless fermionic orbital at each site and nearest-
neighbor p-wave superconducting pairing. The p-wave nature
of the superconductivity couples particles of equal spin, al-
lowing a spinless treatment. The pairing is treated in the
usual mean-field approach, yielding the Kitaev grandcanon-
ical Hamiltonian [4,28]

ĤKC := Ĥ0 − μN̂KC = − t
N−1∑
j=1

(d†
j+1d j + d†

j d j+1)

− �

N−1∑
j=1

(d†
j d†

j+1 + d j+1d j ) − μ

N∑
j=1

d†
j d j , (1)

in terms of the fermionic creation (annihilation) operators d†
j

(d j). The quantities introduced in Eq. (1) are the real space
position index j = 1, . . . , N , the hopping amplitude t ∈ R,
and the superconducting pairing constant � ∈ R. The action
of the gate voltage applied later to the wire is to change the
chemical potential as μ → μ + μg, with μg = ηgeVg, and ηg

the lever arm of the junction.
The spectrum and topological properties of both finite

and infinite Kitaev models were discussed in detail in the
recent past [3,4,28,36–39] and we shall give here only a brief
overview of the low-energy spectrum, giving more emphasis
to the hitherto largely unexplored quasiparticle states at higher
energy.

In the thermodynamic limit (N → ∞), the energy of the
excitations obeys the bulk dispersion relation

E±(k) = ±
√

[μ + 2t cos(kd )]2 + 4�2 sin2 (kd ), (2)

where d is the lattice constant. The topological features of
the Kitaev chain can be found after a calculation of the
winding number or the Pfaffian topological invariant [40,41].
The boundaries between trivial and nontrivial phases in the
topological phase diagram [3,4,28] are determined by the
gap closing of the bulk dispersion relation, which happens at
k = 0 or k = π/d for � �= 0 and μ = ±2t . As one finds, the
nontrivial phase exists only for |μ/�| < 2|t/�|.

In a finite chain, the bulk-edge correspondence [42,43] im-
plies the existence of evanescent state solutions at the system’s
boundary in the topologically nontrivial phase. These states
have a complex wave vector κ , and their wave functions decay
away from the edges with a decay length ξ , which for μ = 0
is given by

ξ = 2d∣∣ln ∣∣ t−�
t+�

∣∣∣∣ . (3)

The energy of these topological excitations lies inside the bulk
gap introduced with Eq. (2) and is in general nonzero, with the
upper bound proportional to exp(−Nd/ξ ); i.e., for ξ � Nd
the edge state energy is exponentially small.1The energy of the
decaying states becomes exactly zero for specific parameter
settings [36–39,44], namely,

μn = 2
√

t2 − �2 cos
( nπ

N + 1

)
, (4)

with n = 1, . . . , N and for t2 � �2. Zero-energy solutions
for t2 < �2 are found only for n = (N + 1)/2, which is only
possible for odd N . The zero energy solutions form lines in
the (t/�,μ/�) plane (we shall call them Majorana lines)
departing from the points |t | = |�|, μ = 0, as depicted in
Fig. 1.

The exact zero-energy solutions of the isolated Kitaev
chain represent fermion parity switches [36,45–47] and, for
given t,� occur for discrete values of μ. Although the finite
size effects may raise the energy of the topological states so
high that they do not contribute to the zero-bias conductance
(see, e.g., the low conductance regions in Fig. 5), close to the

1The decay length in Eq. (3) is defined for μ = 0, since the effect
of μ on ξ is not significant [28,39].
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FIG. 1. Lowest positive excitation energy of the isolated Kitaev
chain as a function of t/� and μ/�. The color map in the back-
ground displays the numerically calculated energy of the lowest
eigenstate, the red line depicts the phase boundary |μ| = 2|t | be-
tween the topologically trivial (|μ| > 2|t |) and nontrivial (|μ| < 2|t |)
bulk phases, while the white dashed lines are the Majorana lines
defined by Eq. (4). Along these lines, the ground-state energy E0 is
exactly zero. All Majorana lines start from the μ = 0, t = ±� points
and are located in the bulk topological region.

Majorana lines the energy of these states is very low, as seen
in Fig. 1. Thus, due to the broadening of the energy levels
induced by the coupling to the leads, also states with energy
smaller than such broadening will effectively act as MZMs.
As we shall show, in an N-S-N setup with symmetric bias, they
yield a linear conductance very close to e2/h, reaching the
exact e2/h in the thermodynamic limit [25,34,35]. We recall
here that in an N-S configuration, the height of the zero bias
peak is expected to be 2e2/h [4,10].

A. Higher excitation spectrum

The low-energy states of the topological superconductors
have so far garnered the most attention of the scientific com-
munity. Nevertheless, a current flowing through the Kitaev
chain at a larger bias will also involve the higher lying ex-
citations. Thus, some questions naturally arise, such as: How
will the high-energy spectrum impact the differential conduc-
tance? If a chain is in the topological phase, will this affect
the features visible at finite bias? To answer these questions,
we first analyze the full spectrum of a finite Kitaev chain. The
numerically obtained spectrum as a function of μ is shown in
Fig. 2(a) for t > �, and in Fig. 2(b) for � > t . The eigen-
states in the Bogoliubov–de Gennes (BdG) representation are
composed of particle (u) and hole (v) components. In most of
the spectrum, the eigenstates have either particle (|u| > |v|)
or hole (|v| > |u|) character; the states within the bulk gap (cf.
Appendix A), but also some higher energy solutions described
below, are nearly equal mixtures of both.

The linear chain, which is the foundation of the Kitaev
chain in Eq. (1) has inversion symmetry. For the linear
chain, the inversion corresponds to a straightforward ex-
change d (†)

j → d (†)
N+1− j and its matrix representation is an

N × N matrix I0 with 1 on the antidiagonal and 0 elsewhere.

(a)

(b)

FIG. 2. Full spectrum of a Kitaev chain, for (a) t = 4.1� and
(b) � = 4.1t . The color scale shows the particle/hole character of
the corresponding eigenstate, expressed through |u| − |v|, where |u|
and |v| are the norms of the particle and hole parts of the eigenstate,
respectively. The violet shaded regions show the bulk gap.

If this operation is extended directly to the Kitaev chain, it
results in changing the sign of the superconducting pairing be-
cause of its p-wave nature. The unitary symmetry inverting the
order of the sites, under which the Kitaev Hamiltonian is in-
variant, is instead d j → idN+1− j , d†

j → −id†
N+1− j . Its matrix

representation is IKC = iτz × I0, where τz is the Pauli matrix z
in the Nambu space. Crucially, IKC applied to a Nambu spinor
adds a global phase i (which can later be gauged away) and
changes the sign of the hole part of the spinor. In consequence,
the particle and hole sectors in each eigenstate of the Kitaev
chain must have opposite character under the simple inversion
symmetry I0 (cf. Fig. 3, for a detailed discussion in a slightly
different approach see Appendix D).

For t > �, we see a series of anticrossings between
the higher excitations, which occur throughout the spec-
trum. The particlelike and holelike solutions of the normal
chain in the Nambu space at the anticrossings have the same
character under inversion, thus they can hybridize under the
influence of the superconducting pairing. In consequence, the
particle and hole sectors of the hybridized quasiparticle eigen-
states have nearly equal weight. The crossings, on the other
hand, are protected by the different inversion symmetries of
the involved eigenstates, which have predominantly particle-
or holelike character. For � > t , the character of the exci-
tation spectrum is naturally different—higher absolute value
of μ again separates the spectrum into particle- and hole-like
sets of states, but at μ = 0 the particle-hole mixing occurs
within the whole spectrum. Unlike in the t > � case, both
the strict and avoided crossings now also occur outside of the
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(a)

(b)

FIG. 3. Inversion symmetry for chosen ranges of the full spec-
trum, for (a) t = 4.1� and (b) � = 4.1t . The color represents Iu :=
〈u|I0|u〉/|u|2 for the particle sector and Iv := 〈v|I0|v〉/|v|2 for the
hole sector—light red for u/v even under inversion (Iu/v = +1),
blue for u/v odd under inversion (Iu/v = −1). Thickness of the lines
is proportional to |u| and |v| in the corresponding panel, and the
dark dashed and dot-dot-dashed lines follow E+((2n + 1)δκ ) and
E+(2n δκ ) from Eq. (2), respectively, with δκ := π/(N + 1).

topological phase, under the action of the hopping, rather than
of the pairing term.

To find the values of μ at which an eigenvalue E is de-
generate, we have to revisit the general quantization rule for
the wave vectors of the finite Kitaev chain. As we showed in
Ref. [39], the eigenstates of the Kitaev chain require, in gen-
eral, the knowledge of four wave numbers ±κ1,2 (κ1 �= ±κ2),
since one has to satisfy two boundary conditions for electron
and hole sectors separately. We use κ	 := (κ1 + κ2)/2, κ� :=
(κ1 − κ2)/2 for shortness. The values of κ1,2 are related and
obey

cos (κ	 ) cos (κ�) = −1

2

μt

t2 − �2
, (5)

which can be obtained from Eq. (2) by demanding E (κ1) =
E (κ2). Thus, Eq. (5) is in fact a bulk property of the system

which also encodes the dependence of κ	, κ� on the chem-
ical potential in a finite system. Together with the boundary
conditions, it yields the quantization rule of the finite Kitaev
chain,

sin2 [κ	 (N + 1)]

sin2 [κ�(N + 1)]
= 1 + (

�
t

)2
cot2 (κ�)

1 + (
�
t

)2
cot2 (κ	 )

. (6)

While a detailed derivation of the position of strict and
avoided crossings for E �= 0 can be found in Appendix D 3,
let us here summarize its results. The boundary conditions,
together with the requirement of double degeneracy (higher
degeneracies occur only for the special cases of either t = 0
or � = 0 or t2 = �2), constrain κ	,� to be selected zeros of
sin2 [κ	,�(N + 1)]:

κ	 = n π

N + 1
or

(N + 1 − n) π

N + 1
, n = 2, . . . , Nmax,

(7)

κ� = m π

N + 1
, m = 1, . . . , n − 1, (8)

with Nmax = N/2 (Nmax = (N + 1)/2) for even (odd) N >

3. These values indeed satisfy the boundary conditions
since sin2 [κ	,�(N + 1)] [1 + (�/t )2 cot2 (κ	,�)] = 0, for
both t ≷ �. For odd N , we find additional (N − 1) degen-
eracies at μ = 0, [39] corresponding to (N − 1)/2 allowed
values for κ� if κ	 = π/2, for both E ≷ 0. The values of μ

where the crossings occur follow from the Eq. (5) for fixed
values of t and �. While for both � > t and � < t the number
of crossings is the same, their positions are not. The energy
eigenvalues follow, as usual, from the dispersion relation in
Eq. (2).

The conditions for degenerate energy levels are illustrated
in Fig. 3. The energies corresponding to κ1,2 = n1,2 π/(N +
1) are shown with dashed and dot-dot-dashed lines for odd
and even n1,2, respectively. The conditions Eqs. (7) and (8)
are obeyed at the intersections of the lines with n1,2 either
both even or both odd, and indeed at these intersections we
see strict crossings. On the other hand, the avoided crossings
appear for n1,2 with different parities. In these cases, κ	,� are
not integer, but half-integer multiples of π/(N + 1), and the
quantization rule Eq. (6) implies

1 +
(

�

t

)2

cot2 κ	 = 1 +
(

�

t

)2

cot2 κ�,

which can be fulfilled only if � = 0 because κ� �= κ	|mod π .
Hence, for � �= 0, these crossings are avoided. Interestingly,
the values of E and μ at their centers can be correctly
calculated from Eqs. (2) and (5) by using κ	,� which are
half-integer multiples of π/(N + 1).

One can summarize that the E �= 0 crossings and anti-
crossings follow the equidistant quantization of a linear chain,
where � = 0 in Eq. (1), but the specific values of μ and
the related energies depend on the nonzero �. The presence
of crossings and anticrossings is not per se a signature of
the topological phase—they can also be found in the non-
topological regime for � > t , cf. Fig. 2(b). In this case,
the crossover into the topological phase introduces only a
quantitative change in the higher excitation spectrum—two of
the extended states localize, becoming the boundary modes.
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FIG. 4. The Kitaev chain in N-S-N transport configuration,
sketched in the particle-hole basis. The parameters tL, tR are the
tunneling hoppings between the leads and the Kitaev chain from
Eqs. (10). The results shown in this paper are obtained for a symmet-
rically applied bias. The resulting profile of the chemical potential
for the electronic sector is shown below the device.

The energies and wave functions of the remaining extended
states readjust to accommodate the presence of the topolog-
ical states, although for the extended states this change is
continuous.

III. N-S-N TRANSPORT AND THE CURRENT FORMULA

In this section, we introduce our transport setup, illustrated
schematically in Fig. 4, and discuss the current formula. We
place the Kitaev chain between two normal conducting leads,
described by the grand-canonical Hamiltonians

Ĥα − μN̂α =
∑

k

εkα c†
kα

ckα, α = L, R, (9)

where c†
kα

(ckα ) creates (destroys) a spinless fermion in state
k and lead α. Note that ĤKC in Eq. (1) and Ĥα in Eq. (9) are
written with the reference energy being the chemical potential
μ of the Kitaev chain. In the above description, we consider
leads in their eigenbasis.

Our N-S-N junction is completed with the tunneling
Hamiltonian,

ĤT =
∑

k

(tL c†
kLd1 + tL d†

1 ckL ),

+
∑

k

(tR c†
kR dN + tR d†

N ckR), (10)

which couples only the first (last) chain site to the contact
L (R). We consider the tunneling elements tL,R as k depen-
dent, real quantities. This setup is equivalent to a fully spin
polarized system where the fixed spin σ is suppressed in the
notation.

The current through an N-S-N junction can be calculated
with the NEGF approach [48–56]. Since the Kitaev Hamil-
tonian in Eq. (1) is given in mean field, and thus breaks the
conservation of particles, the calculation has to be carried
out with care. The physical current measured in experiment
is conserved everywhere, thus we calculate it for simplicity
inside the left lead. There, the electronic current (for fixed
spin) reads

IL(t ) = −e 〈ṄL〉, (11)

where e is the elementary charge and NL = ∑
k c†

kLckL. The
steady state current (for fixed spin) reads

IL = i
e

2h

∫
R

dE Tr{τz ⊗ 1N 
L[G< + FL (Gr − Ga)]}, (12)

with 
α = −2 Im(	r
α ) (α = L, R), where 	r

α is the retarded
self-energy of the lead α, defined in Appendix E. Since we are
working in the BdG formalism, all quantities under the trace
in the above equation are 2N × 2N matrices, defined with re-

spect to �̂ = (d1, . . . , dN , d†
1 , . . . , d†

N )
T
, forming electronic

and hole subspaces. For example, the matrix Fα contains the
Fermi functions f (E ) for electrons and holes in the following
form:

Fα =
[
1N f (E − eVα )

1N f (E + eVα )

]
, (13)

where VL = ηV , VR = (η − 1)V account for scenarios with
different applied bias V . Further, the lesser Green’s function
G< is

G< = i Gr

( ∑
α=L,R

Fα
α

)
Ga, (14)

with details of the derivation discussed in Appendix E. In
equilibrium (V = 0), we have G<

eq = −F (E ) (Gr − Ga) and
the current vanishes.

The special choice of the tunneling Hamiltonian in
Eqs. (10) defines the self-energies 	r

α as sparse matrices,
see Eqs. (F4) and (F5). This, together with the trace and the
particle-hole symmetry, yields a current formula where only
two entries of the retarded Green’s function, namely, Gr

1,N and
Gr

1,N+1, are required. One finds

IL = e

h

∫
R

dE
{

−

L 
−
R

∣∣Gr
1,N

∣∣2 [ f (E − eVL ) − f (E − eVR)]

+ 
−
L 
+

L

∣∣Gr
1,N+1

∣∣2 [ f (E − eVL ) − f (E + eVL )]
}
,

(15)

now setting VL = −VR = V/2. We choose this scenario to
keep the current in Eq. (15) conserved, IL = −IR, which
for symmetric bias occurs if 
L = 
R, even without a self-
consistent calculation of � [25,53,57]. The density of states in
the lead α and the associated tunneling amplitudes |tα (k)|2 are
encoded in the quantities 
±

α = 2π
∑

k |tα (k)|2 δ(E ± εkα ),
with − (+) for particles (holes). In a realistic device scenario,
however, one may have to represent the leads in the site basis
and employ a recursive approach to calculate the self-energy
[56].

Equation (15) allows a microscopic analysis of the charge
transfer through the Kitaev chain, where two processes con-
tribute. The term containing Gr

1,N describes the usual direct
transfer (D) of a quasiparticle from the left to the right lead
through a normal conducting system, but here in presence
of the p-wave superconductivity embodied by �. The second
term in Eq. (15), i.e., the one including Gr

1,N+1, describes the
Andreev reflection—the incoming electron is reflected back
as a hole and a right-moving Cooper pair is formed inside
the Kitaev chain [58,59]. In the third possible process, the
right-moving Cooper pair in the chain is formed by an elec-
tron coming from the left and a hole coming from the right.
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This process, named crossed Andreev reflection, does not
contribute to the current in a symmetric bias configuration. We
give the exact analytic form of Gr

1,N and Gr
1,N+1 in Appendix G

in terms of Tetranacci polynomials, see in particular Eqs. (G9)
and (G11).

The relative weight of the two contributing processes de-
pends on the chosen parameters of the Kitaev chain (μ, t,�),
as we will see in the context of the zero temperature conduc-
tance in the next section.

IV. LINEAR TRANSPORT

The conductance G := limV →0 ∂I/∂V is easily calculated
from Eq. (15). At T = 0 K, one finds the simple formula

G = e2

h

{

−

L 
−
R

∣∣Gr
1,N

∣∣2 + 
−
L 
+

L

∣∣Gr
1,N+1

∣∣2}
E=0

=: GD + GA, (16)

accounting for direct transport and Andreev reflection, respec-
tively.

In the following, we make use of the analytic expressions
for Gr

1,N , Gr
1,N+1 derived in Appendix G to give the closed

formulas for Gr
1,N , Gr

1,N+1 at E = 0 (derived in Appendix H).
For simplicity, we consider the wide band limit, where the
tunneling amplitudes tL, tR and the densities of states ρL, ρR

in the leads are constant. Thus, 
±
L,R = 
L,R = const. We find

that the Green’s functions at E = 0 are given by

Gr
1,N

∣∣
E=0

= (−1)N−1 pN−1 + mN−1

|q+|2 + γLγR(pN−1 + mN−1)2
q−,

(17)

Gr
1,N+1

∣∣
E=0

= −iγR
p2N−2 − m2N−2

|q+|2 + γLγR(pN−1 + mN−1)2
, (18)

with p = t + �, m = t − �, and γL,R = 
L,R/2. The polyno-
mial qs (s = ±1), given by

qs = pN−2 [s p2 xN,0 + ip xN−1,0(s γL − γR)

+ xN−2,0 γL γR], (19)

carries information on the spectral structure of the isolated
Kitaev chain, since the determinant of the isolated Kitaev
Hamiltonian with N sites is (−1)N p2N x2

N,0 [39]. The closed
form of the term x j,0 for an arbitrary integer j is

x j,0 = R j+1
+ − R j+1

−
R+ − R−

, (20)

with R± = (−μ ±
√

μ2 − 4 mp)/(2p).
We find for the conductance the closed form

G = e2

h

γL γR(pN−1 + mN−1)2

|q+|2 + γL γR(pN−1 + mN−1)2 . (21)

The conductance in the limit N → ∞ takes the value e2/h.
We also get the value G = e2/h for the linear conductance at
the Kitaev points, independent of the value of the coupling
strengths γL,R, since the terms in qs vanish there. The GL

from Eqs. (32) and (33) in Ref. [29] can be obtained from
the formulae in Appendix H, setting μ = 0 and η = 1 (in
Ref. [29] one contact is effectively grounded).

(a) (b)

(c) (d)

FIG. 5. Conductance G (wide band limit) in units of e2/h for
γL,R/� = 0.001 as function of μ/� and t/�. (a), (b) The roughly tri-
angular plateau of high conductance is bounded (with some padding
[39]) by the phase boundary (red line) and branches out into distinct
lines when the magnitude of decay length and system length become
comparable. Those lines of high conductance follow the Majorana
lines given by Eq. (4), with one of them always coinciding with the
μ = 0 axis for odd N . (c) The most important contribution to the
conductance G = GA + GD is the Andreev term. (d) The direct term
GD only broadens the conductance plateau.

Besides the Kitaev points, the behavior of the conductance
is more intricate and depends on the parameters setting. In
particular, on the zero-energy Majorana lines of the isolated
chain, see Eq. (4), the term xN,0 vanishes, although, due to
the coupling to the leads, the whole polynomial qs does not.
For the special case of symmetric coupling γL = γR, however,
the conductance along the Majorana lines becomes nearly
independent of the coupling. The behavior of the conductance
in the t/�–μ/� plane is shown in Figs. 5(a) and 5(b) for
the case of N = 20 and N = 21 sites. While in the vicinity
of the Kitaev points the conductance is large and close to e2/h,
as the ratio of t/� increases it remains so large only in close
vicinity of the Majorana lines.

To better understand this behavior, we examine more
closely the two contributions to the conductance, GD and GA,
see Eq. (16). We find

GD = e2

h

γL γR(pN−1 + mN−1)2

[|q+|2 + γL γR(pN−1 + mN−1)2]2
|q−|2, (22)

GA = e2

h

γ 2
L γ 2

R (p2N−2 − m2N−2)2

[|q+|2 + γL γR(pN−1 + mN−1)2]2
, (23)

with q± from Eq. (19). For details of the calculation, see Ap-
pendix H. The contributions GA and GD for the case N = 20
are depicted in Figs. 5(c) and 5(d). The difference between
the Andreev and the direct term originates from the function
q− which appears in the numerator of GD. For γL,R � �, the
q− factor is small as long as ξ � dN , i.e., inside the trian-
gular conductance plateau. Here xN,0 is exponentially small
due to the existence of in-gap states and xN−1,0, xN−2,0 are
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FIG. 6. Conductance contributions GA and GD (wide band limit,
T = 0 K) in units of e2/h as function of t/� along the zero en-
ergy line, with μ adjusted to obey Eq. (4) for n = 10 and with
γL = γR = 0.001�, for different chain lengths. The Andreev term
(solid lines) mostly contributes in the vicinity of the Kitaev point and
decreases for larger ratios t/�, while GD (dashed lines) shows the
opposite behavior. The total conductance (black line) G = GA + GD

stays close to e2/h, since a contributing zero-energy eigenstate of the
isolated Kitaev chain is always available. The Andreev term accounts
here for the reflection RD = 1 − TD, where TD is the transmission
amplitude of the direct term.

suppressed by γL,R. In the region of the plateau, q+ is also
small, thus GA is enhanced while GD is suppressed. In the limit
of vanishing order parameter, � = 0, it immediately follows
from the above equations that G = GD, GA = 0, since—as
expected—the Andreev contribution vanishes. For ξ 
 Nd
and leaving the discrete lines of nonzero conductance aside
for a second, we find no in-gap states with zero or even
exponentially small energy anymore; the function qs grows
for increasing values of μ/� and/ or t/�, which leads to
a suppression of both conduction terms GD ∝ |q−|2/|q+|4,
GA ∝ 1/|q+|4. For intermediate parameter values ξ ≈ Nd , the
polynomials xN−1,0, xN−2,0 become important. They describe
essentially the spectrum of a Kitaev chain with N − 1, N − 2
sites, i.e., ξ � (N − j)d for j = 1, 2. Their contributions de-
fine the crossover region between the triangular plateau of
high conductance and the region featuring separated Ma-
jorana lines within the topologically nontrivial phase when
ξ 
 Nd . Note that the crossover region is influenced by γL,R

too.
Let us turn to the conductance along the Majorana lines,

given by Eq. (4). On those lines, the function xN,0 vanishes and
thus the functions qs have minima in μ. The value of qs varies
strongly around these minima and leads to the appearance
of low conductance regions between the Majorana lines for
ξ 
 Nd . The ratio of GD and GA changes along those lines
as depicted in Fig. 6 starting with GA = 1 and GD = 0 at
Kitaev points and converges to GA = 0 for t/� → ∞. This
behavior is independent of the chosen line. Remarkably, the
sum GD + GA is seemingly constant and equal to e2/h; it is,
in fact, very slightly suppressed due to Eq. (21), becoming
fully quantized only in the thermodynamic limit.

V. NONLINEAR TRANSPORT

The nonlinear transport effects are captured by the differ-
ential conductance ∂I/∂V . At T = 0 K and using Eq. (15) we

(a) (b)

(c) (d)

FIG. 7. Differential conductance as a function of eV/(2�) and
μ/� for |t/�| = 4.1, γL = γR = 0.02�, and N = 20. (a) The
Andreev term is the dominant contribution to the differential con-
ductance for the in-gap states but also affects the excitations. (b) The
direct contribution to ∂I/∂V is present for all eigenstates; its strength
inside the gap depends on the parameters. (c) The total differential
conductance is the sum of the Andreev and the direct terms. (d) The
dark stripe for V ≈ 0 of the Andreev term in (a) has, in fact, a
braidlike structure, since the chain is too short (Nd ∼ 4ξ ) to support
zero-energy eigenstates everywhere [4,28,39]. The Andreev reflec-
tions are stronger around the values of μ where exact zero-energy
states are present. Direct process contributions enhance the transport
between two Andreev peaks.

find

∂I

∂V
= e2

2h

∑
E=±V/2


−
L

(

−

R

∣∣Gr
1,N

∣∣2 + 
+
L

∣∣Gr
1,N+1

∣∣2), (24)

where we set VL = −VR = V/2. We depicted ∂I/∂V and its
Andreev (A) and direct (D) contributions given by the Gr

1,N+1
(Gr

1,N ) terms in Figs. 7 and 8.
As expected, the Andreev term is slightly smaller than

e2/h around V ≈ 0 for |μ| < 2|t | and ξ/(Nd ) � 1, while the
direct term is weak. Outside V ≈ 0, the roles of Andreev and
direct contributions are exchanged, though the Andreev term
reemerges, contributing a significant fraction of a conductance
quantum at the resonances with the quasiparticle energy levels
and inside the avoided crossings between higher excitations;
there the involved eigenstates of the Kitaev chain have again
significant contributions from both particle and hole sectors
(cf. Fig. 2).

A special situation arises at the Kitaev points, where μ =
0 and |t | = |�|. Here the isolated Kitaev chain hosts only
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(a) (b)

(c) (d)

FIG. 8. Differential conductance as a function of eV/(2�) and
μ/�, with γL = γR = 0.02� and N = 20, similar to Fig. 7, but for
|t | = |�|. (a) The Andreev term is still dominant around V ≈ 0,
while it is weak for excited states except at μ = 0 and V = ±2�.
(b) The direct contribution shows the complementary behavior to the
Andreev one. Further, it does not contribute at (μ,V ) = (0, ±2�).
(c) Total differential conductance as sum of the Andreev and direct
term shows a higher conductance inside the gap and at μ = 0 and
V = ±2�. (d) The spectrum of the isolated Kitaev chain, where the
brown (blue) color indicates the particle (hole) character as in Fig. 2.
The Andreev term in (a) contributes more strongly for states with
equal particle and hole parts.

eigenstates with energies 0, ±2|t | (degenerate). For these
parameters, direct charge transfer through the Kitaev chain
is forbidden. This becomes evident when the Kitaev chain
Hamiltonian is represented in terms of Majorana operators
(see Fig. 11), where one of the nearest-neighbor hopping am-
plitudes, either i(� + t ) or i(� − t ), vanishes and the chain
falls apart into a set of dimers and two end sites [4,28,39].
The direct term Gr

1,N cannot contribute to transport, which
occurs only through the Andreev term Gr

1,N+1—as long as

R �= 0, the Cooper pair formed in the Kitaev chain through
the Andreev reflection can escape into the right lead. When
μ �= 0, the chemical potential binds Majorana operators of the
same site and establishes a direct transport channel linking the
dimers and end sites.

Let us turn back to the region around V ≈ 0 for |μ| <

2|t |, ξ/(Nd ) � 1 and |�| �= |t |. The seemingly structureless
Andreev contribution to ∂V I in Fig. 7(a) has, in fact, a braid-
like pattern of larger values as depicted in Fig. 7(d). The
higher values ≈ e2/h for the Andreev term arise around the

FIG. 9. Differential conductance as a function of eV/(2�) for
t/� = 4.1 and γL = γR = 0.02�. (a) A typical pattern arising in
the Andreev term as a function of μ/�, here for N = 20 [zoom
into Fig. 7(a)]. The blue dashes in (a) and (b) mark the bias range
from which the red traces in (c) are taken. (b) Grey lines in the
background trace E [nπ/(N + 1)], with n ∈ [0, N]. The positions of
exact and avoided crossings along E [κ1 = 6π/(N + 1)] are marked
with green and pink points, respectively. (c) The two contributions
GD = ∂ID/∂V and GA = ∂IA/∂V at μ = 0 in a small bias window
around the center Vc(Va) of the (anti)crossing. The bias window
width and sampling are chosen adaptively; the curves are rescaled
horizontally so as to show them clearly also for large N . The curves
highlighted in red at the anticrossings are the ∂ID/∂V traces at
N = 20 indicated in (a) and (b).

μ values where the MZM are present [36–39], i.e., at the
zero-energy crossings. In between these specific parameter
values, the importance of the Andreev contribution decreases
and the direct term starts to contribute.

Increasing the length of the Kitaev chain increases the
separation between the left and right Majorana components
of the topological state. The subgap conductance becomes
dominated by the Andreev processes, while the importance
of direct transmission diminishes. In the high bias differential
conductance, the surprisingly strong revival of Andreev pro-
cesses turns out to be independent of the length and reaching
e2/(4h). A typical pattern of exact and avoided crossings in
the Andreev contribution as a function of μ and V is shown
for N = 20 in Fig. 9(a). To track the length dependence of the
Andreev peaks, we examine the neighborhood of the crossings
and anticrossings in the excitation spectrum, where either
the particle/hole mixing is maximal (anticrossings) or there
are two degenerate states of opposite particle/hole charac-
ter available (crossings; see also Fig. 2). We set μ = 0 and
track the bias windows around E (κ1) = 6π/(N + 1) [which
fixes κ2 = (N − 5)π/(N + 1)]. For even N , E (κ1) will give

165432-8



LINEAR AND NONLINEAR TRANSPORT ACROSS A … PHYSICAL REVIEW B 103, 165432 (2021)

us the position of the anticrossing centers, for odd N—of
the crossings. The evolution of E (κ1) with N is shown in
Fig. 9(b). We scan the differential conductance in a bias
window around the centers of these (anti)crossings, with the
width and sampling of the bias window chosen adaptively,
accounting for denser peaks at high V and N . The resulting
differential conductance curves for each N ∈ [10, 110] are
shown in Fig. 9(c), centered on the bias corresponding to
the appropriate center of the (anti)crossing. The peak ampli-
tudes for both direct and Andreev contributions are length
independent, although the peak width in both cases decreases
with the chain length. At the anticrossings, where the particle
and hole sectors are fully mixed, the amplitude of direct and
Andreev terms are the same, equal to 0.25 e2/h. In the case of
crossings, the reappearance of the Andreev contribution is due
to the presence of two degenerate states, from which mixed
particle-hole solutions can be constructed, although the two
components do not have equal weight. The peak values now
differ, with the Andreev contribution at ∼0.21 e2/h and the
direct contribution at ∼0.79 e2/h. The Andreev contribution
is suppressed with increasing t/�, in a way analogous to the
zero-bias conductance (cf. Fig. 6).

VI. CONCLUSIONS

In this paper, we have investigated linear and nonlinear
transport across a finite Kitaev chain in an N-S-N setup,
with symmetrically applied bias. Using the analytical meth-
ods developed to study the spectrum of the isolated Kitaev
chain [39], we could provide closed formulas for the relevant
Green’s functions and, in turn, for the linear and differen-
tial conductance at zero temperature. We have analyzed the
quasiparticle spectrum with its complex pattern of exact and
avoided crossings being governed by the inversion symmetry
and related this pattern to the calculated transport spectra.
Perhaps counterintuitively, our results show that direct trans-
mission processes also contribute to the subgap transport
mediated by the topological states and, likewise, that the
Andreev processes participate in the transport at high bias,
especially when the involved states are nearly equal superpo-
sitions of particle and hole solutions. At the anticrossing, the
direct transmission and Andreev processes contribute equally.
Furthermore, the two split peaks reach the maximum value of
0.5 e2/h, independent of the chain length. Regarding the linear
conductance, the maximum value of e2/h is reached only near
the Kitaev points.

In summary, our work provides a complete analytical
description of transport through an archetypal topological
superconductor, the Kitaev chain, extending our knowledge
of this system beyond what can be gleaned from minimal
models reduced to topological states alone. Since some of
the observed spectral and transport features (such as the ex-
act and avoided crossings in the higher excitation spectrum)
are generic to 1D topological superconductors, our complete
analytical and numerical treatment can provide a valuable
benchmark and insight for the study of other model systems,
such as, for example, the one based on s-wave proximitized
Rashba nanowires.

(a) (b)

FIG. 10. The band extrema of a bulk Kitaev chain as a function
of μ, for (a) t = 4.1� and (b) � = 4.1t . The numerical energy levels
for a chain with N = 20 sites are shown in grey for comparison. The
types of allowed solutions for the wave number κ in a finite chain
are indicated. Purely imaginary κ are allowed in the small range of
μ indicated in the inset of (a). The notation κ∈̃iR in the topological
range of μ in (b) means that the allowed wave vectors can also have
a constant real part, π/2.
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APPENDIX A: BULK GAP

The bulk gap in the Kitaev spectrum is easily estimated
from the dispersion relation Eq. (2). The condition for the
vanishing first derivative at the band extrema is fulfilled at
three values of bulk momentum k:

k1 = 0, k2 = π, k0 = arccos

(
μt

2(�2 − t2)

)
.

Examples of the spectra of the Kitaev chain with N = 20 sites
as a function of μ, together with the lines denoting the bulk
energies at the band extrema, are shown in Fig. 10. The wave
functions in a finite Kitaev chain can be described by purely
real, purely imaginary, or complex wave vectors κ , in the
regions marked in the figure. The bulk gap is marked with
light red shading.

APPENDIX B: SELECTED QUANTUM BASES FOR THE
KITAEV CHAIN

The operators associated with the Kitaev chain can be
represented in several bases, each suited to facilitate some
specific calculation. We give here an overview of the four
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FIG. 11. Kitaev chain described through the Majorana operators.
The effective hoppings are all imaginary, with i(� ± t ) describing
the hopping between two sites and the iμ relating the Majorana A
and B sublattices on one site.

basis choices which will be used in these Appendices, together
with the rationale behind this choice.

(1) Default Bogoliubov–de Gennes basis, used throughout
the main text and given by

�̂ = (d1, ..., dN , d†
1 , ..., d†

N )T . (B1)

This basis neatly separates particle and hole sectors of the
system. The representations of the physical quantities in this
basis do not carry any labels: the Green’s functions are Gs,
where s =<,>, a, r, the self-energies 	s

α , the 
 matrices 
α ,
and α = L, R.

(2) Chiral basis is defined by

�̂c = (
γ A

1 , ..., γ A
N , γ B

1 , ..., γ B
N

)T
, (B2)

where γ A/B are the Majorana operators, given by γ A
j = (d j +

d†
j )/

√
2, γ B

j = i(d†
j − d j )/

√
2. The Hamiltonian terms of the

Kitaev chain in this basis are illustrated in Fig. 11. We name
it chiral because in this basis the chiral symmetry has an es-
pecially simple representation, C = σz ⊗ 1N×N . The physical
quantities in this representation are denoted by the subscript
c, e.g., Hc, Ic. We use it only for the spectrum calculations
in Appendix D to highlight how the A components of an
eigenstate are mapped by inversion onto its B components.

(3) Site-ordered particle-hole basis is just a rearranged
default basis, with

ˆ̃� = (d1, d†
1 , ..., dN , d†

N )T . (B3)

We denote the physical quantities in this basis by a ,̃ e.g., G̃s,
	̃α . The transformation between this and the default basis is
given by ˆ̃� = U �̂, with

Unm =
{

δm,(n+1)/2 for n odd

δm,N+n/2 for n even,
(B4)

with n, m = 1, ..., 2N . Since U is just a permutation matrix,
an observable A transforms as Ã = UAU T . This is our in-
termediate basis in Appendix E, in which the site-specific
Green’s functions are expressed most conveniently.

(4) Site-ordered Majorana basis is a rearranged chiral ba-
sis, with

�̂M = (
γ A

1 , γ B
1 , ..., γ A

N , γ B
N

)
. (B5)

The physical quantities in this basis are denoted by the sub-
script M . The unitary transformation to the default basis, such

that �̂M = T �̂, is given by the matrix T

T = 1√
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
−i 0
0 1 0
0 −i 0

. . .
. . .

1 0
−i 0
0 1
0 −i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0
i 0
0 1 0
0 i 0

. . .
. . .

1 0
i 0
0 1
0 i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where | separates the first N and the last N columns. The
physical quantities transform as AM = TAT†. We use this
basis to set up the polynomial sequences in Appendix C. The
same type of sequences define the eigenvectors of the system
in Appendix D. In Appendix G, we take advantage of the
block-tridiagonal form of the Hamiltonian in this basis (the
elements of the Hamiltonian are illustrated in Fig. 11).

APPENDIX C: TETRANACCI POLYNOMIALS AND THEIR
CLOSED FORMULA

The eigenvectors of Hamiltonians describing the nearest-
neighbor hopping in a Su-Schrieffer-Heeger (SSH) chain
could be obtained using the Fibonacci polynomials [39],
where each term in the polynomial sequence is determined by
its immediate neighbors. The presence of further nondiagonal
terms in the Hamiltonian will result in more complex poly-
nomial sequences, including more elements in the recursion
formula. In the general Kitaev chain, which is equivalent to
two SSH-like chains additionally coupled by μ, we must use
polynomial sequences where each term is determined by four
preceding ones. These Tetranacci polynomials are essential
for the calculations of the excited-state wave functions in Ap-
pendix D and for the exact calculation of the Green’s functions
in Appendix G.

1. Definition and basic properties

The eigenvectors of a Kitaev chain can be expressed
through two sequences of Tetranacci polynomials, one for the
A and one for the B elements of the eigenvectors (later referred
to as �vA and �vB). We describe this procedure in Appendix D.

The characteristic polynomial of the isolated Kitaev chain,
which we will need for the calculation of the Green’s func-
tions, can be expressed through four Tetranacci sequences
x j, y j, χ j , and Y j , which obey two equivalent sets of coupled
equations. The first set is

x j+1 = −iμ

b
x j + a

b
x j−1 + E

b
y j, (C1a)

χ j+1 = −iμ

b
χ j + a

b
χ j−1 + E

b
Y j, (C1b)

y j+1 = iμ

a
y j + b

a
y j−1 + E

a
x j, (C1c)

Y j+1 = iμ

a
Y j + b

a
Y j−1 + E

a
χ j, (C1d)

and the second set reads

x j+1 = −iμ

b
x j + a

b
x j−1 + E

a
χ j, (C2a)
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TABLE I. The first values of the Tetranacci polynomials x j , y j ,
χ j , and Y j .

j x j Y j χ j y j

−3 iμ b/a2 −iμ a/b2 −E/b −E/a

−2 b/a a/b 0 0

−1 0 0 0 0

0 1 1 0 0

1 −iμ/b iμ/a E/b E/a

χ j+1 = iμ

a
χ j + b

a
χ j−1 + E

b
x j, (C2b)

y j+1 = −iμ

b
y j + a

b
y j−1 + E

a
Y j, (C2c)

Y j+1 = iμ

a
Y j + b

a
Y j−1 + E

b
y j . (C2d)

Using the relationships defined by these equations, we can
decouple the four sequences and find that each of the x j , y j ,
χ j , Y j polynomials obeys the same recursion formula as x j

(and as the eigenvector entries �vA, �vB),

x j+2 = E2 + a2 + b2 − μ2

ab
x j − x j−2

+ iμ
b − a

ab
(x j−1 + x j+1). (C3)

The four sequences differ only in their initial values, given in
Table I. They appear at first as separated objects but they are
in fact connected by a symmetry relation. By exchanging all a
terms by b terms and vice versa and turning the sign of μ into
−μ, x j (χ j) transforms into y j (Y j).

Although Eqs. (C1) and (C2) are equivalent to Eq. (C3),
each description has its own advantages, often unseen in
the other. For example, the comparison of Eq. (C1d) with
Eq. (C2d) yields

bχ j = a y j, (C4)

and more such relationships can be found.
Note also that Eq. (C3) is invariant under the inversion

symmetry and exchange of � → −�. Further, all four poly-
nomials carry no physical unit and x j , Y j (χ j , y j) are real (pure
imaginary) objects.

However, the most important reason to present Eqs. (C1)
and (C2) is the limiting case of E = 0, which we need to
obtain the conductance formula at zero bias and temperature
later. While in Eq. (C3) seemingly not much happens at E =
0, in Eqs. (C1) and (C2) we find that x j , y j , χ j , Y j become
decoupled and obey simplified recursion formulas. We denote
the polynomials in the case of E = 0 with x j,0, y j,0, χ j,0, Y j,0.
The polynomials χ j,0 = y j,0 ≡ 0 due to the initial values in
Table I, and x j,0 and Y j,0 reduce to Fibonacci polynomials
[60–62]

b x j+1,0 = −iμ x j,0 + a x j−1,0, (C5)

a Y j+1,0 = iμ Y j,0 + bY j−1,0. (C6)

A power law ansatz for x j,0 ∝ R j (Y j,0 ∝ R̃ j) leads first to the
values of R± (R̃±):

R± = −iμ ±
√

4 ab − μ2

2b
, R̃± = iμ ±

√
4 ab − μ2

2a
.

(C7)

A superposition of R j
± (R̃ j

±) leads to

x j,0 = R j+1
+ − R j+1

−
R+ − R−

,

Y j,0 = R̃ j+1
+ − R̃ j+1

−
R̃+ − R̃−

. (C8)

This closed formula for a Fibonacci polynomial is the so-
called Binet form [60–62]. The similarity between R± and R̃±
allows us to determine Y j,0 in terms of x j,0,

Y j,0 =
(

−b

a

) j

x j,0, (C9)

which leads to many simplifications for the conductance for-
mula later.

Please notice that the case of E = 0 in Eq. (C3) always
leads to Fibonacci polynomials even in problems distinct from
the Kitaev chain, where Eqs. (C1) and (C2) are unknown.

A second limiting case exists for μ = 0. We see directly
from Eq. (C3), but not from Eqs. (C1) and (C2), that x j , y j , χ j ,
Y j show again a Fibonacci character, only of a different kind
compared with the E = 0 case. Define uj := x2 j (v j := x2 j−1)
and thus u j (v j) obeys

u j+1 = E2 + a2 + b2

ab
u j − u j−1, (C10)

which mimics the form of Eq. (C5) with different coefficients
and a power-law ansatz gives their closed form [39].

From the physical point of view, the two sequences of
polynomials uj+1 and v j+1 construct the Green’s functions of
the μ = 0 case, in which the Kitaev chain can be considered
as two decoupled SSH-like chains [39].

2. The closed form of Tetranacci polynomials and their
Fibonacci decomposition

We turn now to the closed formula for any Tetranacci
polynomial. Both the characteristic polynomial of the isolated
Kitaev chain and its eigenvectors can be written in the form
of Tetranacci polynomials. In the context of Green’s functions
of a Kitaev chain between two leads, the relevant Tetranacci
polynomials are dx

j , dy
j , dχ

j , dY
j discussed further in Appendix

G. We shall therefore derive a closed form for ξ j , a general
sequence of Tetranacci polynomials obeying Eq. (C3), with
arbitrary initial values ξ−2, ξ−1, ξ0, and ξ1. The expressions
for x j , y j , χ j , Y j , dx

j , dy
j , dχ

j , and dY
j can then be obtained by

inserting appropriate initial values into the formula for ξ j .
The idea is to use a power-law ansatz ξ j ∝ r j (r �= 0) as we

did in the limiting cases E = 0 and μ = 0 before. We are left
to find all zeros of

r4 − ζ r2 + 1 − η (r + r3) = 0, (C11)
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where we used a shorthand notation for the coefficients in
Eq. (C3):

ζ := E2 + a2 + b2 − μ2

ab
, (C12)

η := iμ
b − a

ab
. (C13)

One can solve for the zeros by dividing Eq. (C11) by r2 and
calling S = r + 1/r. Thus, we have

S2 − 2 − ζ − η S = 0,

and the solutions for S read

S1,2 = η ±
√

η2 + 4(ζ + 2)

2
. (C14)

Finally, we can get the zeros from S1,2. They read

r±i =
Si ±

√
S2

i − 4

2
, i = 1, 2. (C15)

An expression for the S1,2 in terms of two wave numbers
κ1, κ2,

S1,2 = 2 cos(κ1,2), (C16)

yields directly the physical interpretation of r j
±i as plane

waves, r j
±i = exp(±iκi j). Since S1,2 contains the energy E

[via ζ , see Eq. (C13)], it connects the energy E and wave
numbers κ1,2 ∈ C. Indeed, S1,2 = 2 cos(κ1,2) is the shortest
form of the dispersion relation of the Kitaev chain in Eq. (2)
and implies directly E (κ1) = E (κ2). Note that κ1,2 are not
quantized so far. The details of the connection between r±i,
Si and the dispersion relation of the isolated Kitaev chain, the
wave vectors, and their quantisation rule is given in Ref. [39].

The ansatz for ξ j is simply

ξ j = c1 r j
+1 + c2 r j

−1 + c3 r j
+2 + c4 r j

−2, (C17)

and the coefficients c1, . . . , c4 are fixed by ξ−2, . . . , ξ1. Once
the c1, . . . , c4 are known in terms of ξ−2, . . . , ξ1, one can
reorder Eq. (C17) according to the independent contributions
of the initial values. This results in

ξ j =
1∑

i=−2

ξi Xi( j), (C18)

where the functions Xi( j) depend only on various powers of
r±1, r±2, see Eq. (C22)–(C24) below, but not on the values
of ξ−2, . . . , ξ1. Hence, changing the values of ξ−2, . . . , ξ1

does not change the functions Xi( j). As one sees directly from
Eq. (C18), there are constraints on Xi( j), namely,

Xi( j) = δi, j, for i, j = −2, . . . , 1, (C19)

to ensure that the initial values are assumed by ξ j . One can
understand Eq. (C18) as the counterpart to the Binet form,
which is used to determine the closed form expression of
Fibonacci polynomials [60–62] [see, e.g., Eq (C8)].

Despite the short form of ξ j in Eq. (C18), the formulas
for Xi( j) tend to be lengthy, such that we first introduce a

shorthand notation for their main pieces. We define the func-
tions F1,2( j) as

F1( j) := r j
+1 − r j

−1

r+1 − r−1
= r j

+1 − r− j
+1

r+1 − r−1
+1

, (C20)

F2( j) := r j
+2 − r j

−2

r+2 − r−2
= r j

+2 − r− j
+2

r+2 − r−1
+2

, (C21)

where the right-hand side of both equalities arise due to
ri r−i = 1 for i = 1, 2. Please notice that already F1,2( j) are
special solutions of Eq. (C3), since they are constructed in
terms of the solutions r±i [see Eq. (D17)].

The polynomials Xi( j) read

X−2( j) = F2( j) − F1( j)

S1 − S2
, (C22)

X−1( j) =
2∑

σ=1

Fσ ( j + 2) + Fσ ( j − 1)Fσ̄ (2) − Fσ (3)Fσ̄ ( j)

(S1 − S2)2 ,

X0( j) =
2∑

σ=1

Fσ ( j + 1)Fσ̄ (3) − Fσ ( j + 2)Fσ̄ (2)

(S1 − S2)2 (C23)

−
2∑

σ=1

Fσ ( j − 1)

(S1 − S2)2 , (C24)

X1( j) =
2∑

σ=1

Fσ ( j + 2) + Fσ ( j) − Fσ ( j + 1)Fσ̄ (2)

(S1 − S2)2 , (C25)

where σ̄ is meant as not σ , e.g., if σ = 1 then we have
σ̄ = 2 and vice versa. As one sees, the functions Xi( j) are a
superposition of the solutions F1,2( j − x) (x = −2,−1, 0, 1),
where the coefficients are sometimes F1,2(2) or F1,2(3). Thus,
the Xi( j) are Tetranacci polynomials as well. As we saw in
Eq. (C17), four initial values are required to fix a solution
of Eq. (C3) and these are given with the selective property in
Eq. (C19) for the Xi( j)’s. We call the Xi( j) basic or primitive
Tetranacci polynomials.

A second proof that the Xi( j) obey the recursion formula
in Eq. (C3) follows directly from Eq. (C18). Choosing only
one initial value different from zero, e.g., ξ j = δ j1 for j =
−2, . . . , 1, results in

ξ j = X1( j).

Similar choices reveal that ξ j can be equal to only one of the
Xi( j). Thus, the Xi( j) must be Tetranacci polynomials.

The easier form of x j,0 in Eq. (C8) cannot be seen from
here, since the r±i does not reduce to the R± at E = 0. The
reason is that the recursion formulas for E = 0 and E �= 0 do
not transform directly into each other. In the limiting case of
μ = 0, we find from Eq. (C14) that

S1|μ=0 = −S2|μ=0,

yielding

r+1|μ=0 = −r−2|μ=0.

The effect on F1,2 in Eqs. (C20) and (C21) is

F1( j)|μ=0 = (−1) j−1 F2( j)|μ=0,
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and we find further that

X−2(2l + 1)|μ=0 = 0,

X0(2l + 1)|μ=0 = 0,

X−1(2l )|μ=0 = 0,

X1(2l )|μ=0 = 0,

for all values of l . Thus, the form of the recursion formula at
μ = 0 in Eq. (C3) is respected and the Tetranacci polynomials
ξ j reduce back to Fibonacci polynomials for μ = 0. This
behavior of ξ j can be also understood in a different way. The
definition of the Tetranacci polynomial F1,2 is actually a Binet
form of Fibonacci polynomials [60–62]. One can easily prove
that F1,2 obey

Fi( j + 2) = Si Fi( j + 1) − Fi( j), (C26)

for all j, with F1,2(0) = 0, F1,2(1) = 1. Thus, the closed form
of ξ j can be seen as a superposition of two distinct sequences
of Fibonacci polynomials F1,2.

However, one has to account for all four different fun-
damental solutions r±i(i = 1, 2) in the case of Tetranacci
polynomials. Similar to the denominator of a Binet form,
which contains the difference of the two fundamental solu-
tions of the corresponding Fibonacci sequence [r+i − r−i for
Fi( j)], we find that S1,2 adopt this role in the case of Tetranacci
polynomials. Note that S1 − S2 = r+1 + r−1 − r+2 − r−2.

APPENDIX D: EIGENVECTORS AND DEGENERACIES IN
THE SPECTRUM

1. The general eigenvector problem

We briefly recapitulate here the eigenvector problem in-
vestigated in Ref. [39] and introduce the inversion symmetry
before we turn to the degenerate energy eigenvalues. The
Kitaev chain Hamiltonian can be expressed in the chiral basis
[cf. Eq. (B2)] through

Hc =
[

0N×N h

h† 0N×N

]
, (D1)

with ĤKC = 1
2 �̂†

c Hc �̂c and hn,m = −iμδn m + a δn,m−1 −
b δn,m+1 for n, m = 1, . . . , N , a = i(� − t ), b = i(� + t ).
For an eigenvector �w = (�vA, �vB)T of the Hamiltonian Hc, the
sublattice vectors �vA := (ξ1 . . . , ξN )T, �vB := (σ1 . . . , σN )T

have to obey

h �vB = E �vA, (D2)

h† �vA = E �vB. (D3)

In particular, we consider here exclusively the case of E �=
0, where one can choose all ξn (σn) as real (pure imaginary)
numbers. Solving for �vA grants

hh† �vA = E2 �vA, (D4)

and �vB follows then from Eq. (D3). Importantly, Eq. (D4)
directly implies that the entries of �vA obey the Tetranacci
recursion formula:

ξ j+2 = E2 + a2 + b2 − μ2

ab
ξ j − ξ j−2

+ iμ
b − a

ab
(ξ j−1 − ξ j+1). (D5)

Extending the sequence of ξ ’s via Eq. (D5) beyond the range
j = 1, ..., N allows the simplification of the boundary condi-
tion to

ξ0 = ξN+1 = b ξ1 − a ξ−1 = b ξN+2 − a ξN = 0, (D6)

while �vA still contains only ξ1, . . . , ξN and the boundary
condition yields after some algebra the quantization rule [39]
given by Eq. (6). The values of κ1,2 and E are thus fixed. A
sequence obeying Eq. (D5) requires four initial values, for
example, ξ−2, ξ−1, ξ0, ξ1, and one can derive the following
closed formula:

ξ j =
1∑

i=−2

ξi Xi( j), (D7)

where the functions Xi( j) [cf. Eqs. (C22)–(C24) in Appendix
C 2] depend on E2, t , �, μ, and N ; they inherit the selective
property Xi( j) = δi, j for only i, j = −2 , . . . , 1. As we see
from the boundary conditions in Eq. (D6), ξ0 = 0 and thus
is fixed, while ξ−1 = b ξ1/a. In the case of no degeneracy, we
have one degree of freedom and we can choose ξ1 arbitrarily.
Consequently, ξ−2 is the last missing initial value and can be
fixed via ξN+1 = 0, yielding

ξ−2 = −ξ1
a X1(N + 1) + b X−1(N + 1)

a X−2(N + 1)
(D8)

in the absence of degeneracy and with X−2(N + 1) �= 0.
If X−2(N + 1) = 0, we should use the fourth equality in
Eq. (D6) instead. The eigenvector problem is now solved,
since the constraint b ξN+2 − a ξN = 0 quantizes the wave
vectors generating the eigenvalue E and thus the values of the
functions Xi( j) are known.

2. Inversion symmetry

In our previous work, we used a rather lengthy method to
determine the entries of �vB from the ones of �vA. The inversion
symmetry I allows us to pursue a much simpler method as we
explain in the following. The modified inversion symmetry
of the Kitaev chain which we discussed in Sec. II, i.e., the
invariance of ĤKC under the exchange d j → idN+1− j , d†

j →
−id†

N+1− j , involves an additional global phase of i for the
Nambu spinor. The consequences of the simple inversion sym-
metry of the original chain (I : d (†)

j → d (†)
N+1− j) can, however,

be explored in a more elegant way, which does not need to
introduce an additional phase. In the BdG basis, I ĤKC I−1 =
ĤKC|−�. Written in the basis of Hc, the representation of I is

Ic =
[

I0

I0

]
, I0 =

⎡
⎣ 1

...

1

⎤
⎦,

where I0 represents the usual inversion operation, i.e., revers-
ing the site order. The use of Ic on the eigenvector problem
yields

(h|−�) I0�vB = E I0�vA, (h†|−�) I0�vA = E I0�vB.

Importantly, we have that h|−� = −h† and vice versa, trans-
forming the equations for I0 �vA (I0 �vB) in the ones of �vB (�vA)
at −E . Recalling that all �vA (�vB) are real (pure imaginary)
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vectors, we can cancel this sign of E by the now obvious
relation between �vA and �vB:

�vA = ±iI0�vB, (D9)

�vB = ∓iI0�vA. (D10)

The sign of E to which the ± solution belongs, depends on
the parameters. Thus, the entries of �vB now obey the simple
relation σN+1− j = ∓i ξ j and a normalized eigenvector �w is
achieved by normalizing �vA and division by

√
2.

In the special case of E = 0, the degenerate eigenstates are
still related by inversion symmetry but the decoupling of �vA

and �vB always allows us to set one of them to zero, whereby
a relation between �vA and �vB of the same eigenvector can
become invalid.

Once �vA is known, one can rewrite the solution in the
basis of the fermionic operators d (†)

j . After the transformation

the electron d j (hole d†
j ) part of the quasiparticle state is

�vA − i�vB (�vA + i�vB). The different combination signals oppo-
site behavior under inversion symmetry as captured in Fig. 3.
Further, after an application of the particle-hole symmetry to
the eigenstates, the character of the electron and hole parts
under inversion symmetry changes into the opposite, since the
exchange E → −E means �vB → −�vB while keeping the same
vA.

3. Degenerate energy levels

The important starting point for the case of degeneracies
is Fig. 2, where we see that for specific values of t , � and μ

a crossing in the spectrum occurs, which naturally depends
also on N . We exclude here from consideration the cases
of E = 0, t2 = �2 (ab = 0), and t � = 0 because they are
already known. Further, we consider t , � as fixed while μ

can be varied to achieve a degeneracy.
Let us begin by inspecting the degree of the degeneracy and

assume initially that we have D � 2 degenerate eigenvectors

�v (d ) = (�v (d )
A , �v (d )

B )
T

with d = 1, . . . , D and all �v (d ) have to
obey the Eqs. (D2)–(D7). We continue with almost the same
notation as above, where we change only ξ j (σ j) into ξ

(d )
j

(σ (d )
j ) for clarity. The eigenstates are still determined by the

quantization rule in Eq. (6), and in the following we will
obtain the required further constraint on Eq. (6) needed for
the eigenstates to be degenerate.

The case of degenerate eigenvectors has to be treated
carefully, since their superposition can break the connection
between �v (d )

A and �v (d )
B via inversion symmetry. Nonetheless,

once the value of the energy is known, all information of �v (d )

is still contained in �v (d )
A , since �v (d )

B follows from h† �v (d )
A =

E �v (d )
B . Furthermore, for given values of t , �, and μ, the

functions Xi( j) in Eq. (D7) differ only for states with different
energies, therefore the �v (d )

A are defined only by distinct initial
values ξ

(d )
−2 , . . . , ξ

(d )
1 . Thus one can build and exploit special

superpositions of those eigenstates, yielding

ξ
(1)
1 = 1, ξ

(1)
−2 = 0, (D11)

ξ
(2)
1 = 0, ξ

(2)
−2 = 1. (D12)

The boundary condition in Eq. (D6) demands ξ (0) = 0, ξ (d )
−1 =

b ξ
(d )
1 /a and thus fixes �v (d )

A . Note that Eqs. (D11) and (D12)
imply D = 2, i.e., only twofold degeneracies are allowed,
since beyond ξ1 and ξ−2 there are no further degrees of free-
dom to exploit. As we see next, Eq. (D8), which formerly
coupled ξ

(d )
1 and ξ

(d )
−2 , becomes indeed invalid for the new su-

perpositions. Returning to the boundary condition in Eq. (D6),
we get further constraints, namely,

X−2(N + 1) = 0, (D13)

b X−2(N + 2) − a X−2(N ) = 0, (D14)

a X1(N + 1) + bX−1(N + 1) = 0, (D15)

b[aX1(N + 2) + bX−1(N + 2)]

− a[aX1(N ) + bX−1(N )] = 0, (D16)

implying a division of zero by zero in Eq. (D8). Further,
Eqs. (D13)–(D16) show that the boundary condition splits into
two parts for N + 1 and for N + 2, N which is the constraint
on Eq. (6) for which we have been looking.

As we have discussed in Appendix C 2, the four functions
Xi( j) are constructed with the help of two special functions
F1,2, see Eqs. (C22)–(C24), which are are nothing else than
standing waves,

F1,2( j) = sin (κ1,2 j)

sin (κ1,2)
, (D17)

at site j, constructed from the plane waves r+1,+2 = eiκ1,2 as
follows from Eqs. (C15), (C20), and (C21).

Now we can solve for κ1,2. We get first from Eq. (D13) two
constraints: S1 − S2 �= 0, i.e., κ1 �= ±κ2, and F1(N + 1) =
F2(N + 1). Second, these two restrictions used on Eq. (D15)
together with exploiting the properties of F1,2 [for example,
Eq. (C26)], give us a familiar expression, namely,

a X−2(N + 2) − b X−2(N ) = 0, (D18)

which is almost Eq. (D14). Thus, X−2(N + 2) = X−2(N ) = 0
holds or, equivalently, F1(N + 2) = F2(N + 2) and F1(N ) =
F2(N ). This imposes a further constraint on κ1,2 to obey
F1,2(N + 1) = 0. Thus κ1,2 = nπ/(N + 1), n = 1, . . . , N .

The combinations of different values of κ1,2 yield both
the positions of strict and of avoided crossings in the (μ, E )
plane. The values of μ follow from Eq. (5) after converting
the values of κ1,2 into κ	,�. The energy E , in turn, can be
obtained from the dispersion relation in Eq. (2). Whether these
(μ, E ) pairs define strict or avoided crossings is determined
by the general quantization rule in Eq. (6), considering the
following facts: (i) With κ1,2 = n1,2π/(N + 1), the values for
κ	,� are either both half integer or both integer multiples
of π/(N + 1). (ii) The entire derivation for κ1,2 is invariant
under the exchange κ1 → ±κ2 and κ1 → −κ1, hence, without
loss of generality we can demand κ1 > κ2. (iii) By virtue of
Eq. (5), κ1 + κ2 �= π , except for N odd and μ = 0. In the
end, we find that only κ	,� which are integer multiples of
π/(N + 1) satisfy the quantization rule Eq. (6) for an arbitrary
value of �. Thus, the selection rule for strict crossings can
be expressed in terms of κ	,�, demanding that κ	 > κ�, and
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resulting in the requirement of κ	,� being integer multiples
of π/(N + 1) as stated in Eqs. (7) and (8). The half-integer
multiples satisfy Eq. (6) only if � = 0, hence in a supercon-
ducting chain they always define avoided crossings.

APPENDIX E: DERIVATION OF THE CURRENT
FORMULA

The electronic current (for fixed spin) in the left lead is

IL(t ) = −e 〈ṄL〉, (E1)

where e is the elementary charge and NL = ∑
k c†

kLckL. The
specific choice of the tunneling Hamiltonian HT in Eqs. (10)
leads to the explicit expression

IL(t ) = − ie

h̄

∑
k

(tL 〈d†
1 (t ) ckL(t )〉 − t∗

L 〈c†
kL(t ) d1(t )〉), (E2)

where the superconductivity is contained inside the time evo-
lution of the creation and annihilation operators. Further, we
shall use a 2 × 2 matrix notation for the fermionic Green’s
functions whose entries are defined via Dj := (d j, d†

j )T as

(
G>

i j (t, t ′)
)

n m
:= − i

h̄
〈(Di(t ))n (Dj (t

′))†
m〉, (E3)

(
G<

i j (t, t ′)
)

n m
:= i

h̄
〈(Dj (t

′))†
m (Di(t ))n〉, (E4)

(
Gr

i j (t, t ′)
)

n m
:= − i

h̄
θ (t − t ′)〈{(Di(t ))n, (Dj (t

′))†
m}〉, (E5)

(
Ga

i j (t, t ′)
)

n m
:= i

h̄
θ (t ′ − t )〈{(Di(t ))n, (Dj (t

′))†
m}〉, (E6)

where {·, ·} denotes the anticommutator and n, m = 1, 2. All
kinds of Green’s functions, such as Gs

kα (t, t ′), Gs
jkα (t, t ′) for

s = 〈, r, a, 〉, are defined analogously with Ckα := (ckα, c†
kα

)T

instead of Dj . Please keep in mind that the NEGF formalism
uses a large variety of inter-related Green’s functions.

In the following, we will denote all 2 × 2 matrices with a
bold font to keep them distinct from the 2N × 2N matrices
used everywhere else.

A convenient expression for the current in terms of those
2 × 2 matrices is

IL(t ) = −e
∑

k

Re

{
Tr

[(
tL 0
0 t∗

L

)
G<

kL 1(t, t )

]}
. (E7)

Starting from the equation of motion for the relevant Green’s
functions, and using standard relations between them together
with the Langreth rules [48–50,54,63], we find the steady-
state current

IL = −e
∫
R

dω

2π
Tr
{
τz
[
�r

L(ω) G<
11(ω)

+ �<
L (ω) Ga

11(ω)
]}

, (E8)

with

�r
α (ω) = lim

η→0

∑
k

|tα (k)|2
[ 1

h̄ω−εkα+iη 0
0 1

h̄ω+εkα+iη

]
, (E9)

�<
α (ω) = 2π i

∑
k

|tα (k)|2
[
δ(h̄ω − εkα ) 0

0 δ(h̄ω + εkα )

]

×
[

f (h̄ω − eVα ) 0
0 f (h̄ω + eVα )

]
. (E10)

The lesser Green’s function matrices G<,a
11 involve only the

first site of the Kitaev chain and carry information about
the coupling of this site with both the rest of the chain and
the leads. To obtain them, it is convenient to work in the
site-ordered particle-hole basis [cf. Eq. (B3)], where the 2 × 2
matrices introduced above become the building blocks of G̃s

(s = 〈, r, a, 〉):

G̃s =
⎡
⎣Gs

11 . . . Gs
1N

...
...

Gs
N1 . . . Gs

NN

⎤
⎦. (E11)

We find that G̃r obeys[
(h̄ω + iη)12N − H̃ − 	̃r

L − 	̃r
R

]
G̃r = 12N , (E12)

with the self-energy matrices 	̃s
L,R (s = 〈, r, a, 〉) given by

	̃s
L =

⎡
⎢⎢⎣

�s
L 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

⎤
⎥⎥⎦

2N×2N

, (E13)

	̃s
R =

⎡
⎢⎢⎣

0 . . . 0 0
...

. . .
...

...

0 . . . 0 0
0 . . . 0 �s

R

⎤
⎥⎥⎦

2N×2N

, (E14)

where 0 is the 2 × 2 matrix filled with zeros. The Hamiltonian
H̃ reads

H̃ =

⎡
⎢⎢⎢⎢⎣

−μτz α

α† −μτz α
. . .

. . .
. . .

α† −μτz α

α† −μτz

⎤
⎥⎥⎥⎥⎦

2N×2N

,

(E15)

where we kept the Pauli matrix τz in regular font, and the
matrix α

α =
[−t −�

� t

]
(E16)

accounts for nearest-neighbor terms. Further, G̃< obeys

G̃< = G̃r (	̃<
L + 	̃<

R )G̃a, (E17)

with G̃a = (G̃r )
†

so all ingredients of Eq. (E8) are in principle
known. The trace and the sparsity of the self-energies 	̃s

L,R
allow us to express the current

IL = −e
∫
R

dω

2π
Tr
{
1N ⊗ τz

[
	̃r

L(ω) G̃<(ω)

+	̃<
L (ω) G̃a(ω)

]}
(E18)
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in terms of these 2N × 2N matrices. We define 
̃α :=
−2 Im(	̃r

α ) = i(	̃r
α − 	̃a

α ) and with

F̃α = 1N ⊗
[

f (h̄ω − eVα ) 0
0 f (h̄ω + eVα )

]
, (E19)

it follows that 	̃<
α = 
̃α F̃α . Since the current is a real quantity,

i.e., 2IL = IL + I†
L , we find the appealing form [52]

IL = i
e

2

∫
R

dω

2π
Tr{(1N ⊗ τz ) 
̃L[ G̃< + F̃L(G̃r − G̃a)]}.

(E20)

Expressing all quantities in the default basis Eq. (B1) yields
directly Eq. (12). The corresponding expressions of the
self-energies and Green’s functions are explicitly given in
Appendix F.

Finding the analytical form of the conductance demands
first a simplification toward Eq. (15), which mostly consists
of taking the trace and using the sparsity of the self-energies.
This procedure is performed at best by using Eq. (E8) and
a basis transformation Eq. (B4) at the end. We find from
Eq. (E17) that

G<
11 = Gr

11 �<
L Ga

11 + Gr
1N �<

R Ga
N1 (E21)

and Eq. (E12) yields first G̃r − G̃a = −i G̃r (
̃L + 
̃R)G̃a and
thus

Gr
11 − Ga

11 = −i
[
Gr

11 �L Ga
11 + Gr

1N �R Ga
N1

]
. (E22)

With 2IL = IL + I†
L , it follows from Eq. (E8) that

IL = i
e

2

∫
R

dω

2π
Tr
{
τz
[
�L Gr

11 �<
L Ga

11

− �<
L Gr

11 �L Ga
11

+ �L Gr
1N �<

R Ga
N1

− �<
L Gr

1N �R Ga
N1

]}
, (E23)

where the 2 × 2 broadening matrices read

�α =
[

−

α 0
0 
+

α

]
, (E24)

with the abbreviations 
±
α = 2π

∑
k |tα (k)|2 δ(h̄ω ± εkα ). To

shorten the expression of the trace, we define

f ±
α := f (h̄ω ± eVα ), (E25)

and after a bit of algebra one finds

i Tr
{
τz
[
�L Gr

11 �<
L Ga

11 − �<
L Gr

11 �L Ga
11

]}
= 
−

L 
+
L

(|G̃r
1,2(ω)|2 + |G̃r

2,1(ω)|2) [ f −
L − f +

L ], (E26)

i Tr
{
τz
[
�L Gr

1N �<
R Ga

N1 − �<
L Gr

1N �R Ga
N1

]}
= 
−

L 
−
R

∣∣G̃r
1,2N−1(ω)

∣∣2 [ f −
L − f −

R ]

+ 
+
L 
+

R

∣∣G̃r
2,2N (ω)

∣∣2 [ f +
R − f +

L ]

+ 
−
L 
+

R

∣∣G̃r
1,2N (ω)

∣∣2 [ f −
L − f +

R ]

+ 
+
L 
−

R

∣∣G̃r
2,2N−1(ω)

∣∣2 [ f −
R − f +

L ]. (E27)

In contrast to Eq. (15), where only electronic contributions
are used, in Eqs. (E26) and (E27) we have six terms for both
electronic and hole degrees of freedom, and a factor of 1/2 in
front of Eq. (E23) to avoid overcounting. The following steps
will further reduce the number of terms.

Throughout our approach, we considered t and � as real
quantities. Hence, H̃ is a symmetric matrix. Since 	̃r

α are sym-
metric too, we have that G̃r

i, j = G̃r
j,i. This yields in Eq. (E26)

a factor of 2.
Further, the particle-hole symmetry gives

(1N ⊗ σx ) [G̃r (−ω)]∗ (1N ⊗ σx ) = −G̃r (ω), (E28)

where ∗ denotes the complex conjugation. The use of
Eq. (E28) on G̃r (ω) and observing its particular action on the
entries of the 2 × 2 block Gr

1N yields

G̃r
2,2N (ω) = −[G̃r

1,2N−1(−ω)
]∗

, (E29)

G̃r
1,2N (ω) = −[G̃r

2,2N−1(−ω)
]∗

. (E30)

Since 
±
α (ω) = 
∓

α (−ω) holds, one has simply to split the
integration in Eq. (E23) into two parts. After a substitution of
ω → −ω and the use of the relations in Eqs. (E29) and (E30),
we find that

IL = e
∫
R

dω

2π

{

−

L (ω)
+
L (ω)

∣∣G̃r
1,2(ω)

∣∣2[ f −
L − f +

L ]

+ 
−
L (ω)
−

R (ω)
∣∣G̃r

1,2N−1(ω)
∣∣2[ f −

L − f −
R ]

+ 
−
L (ω)
+

R (ω)
∣∣G̃r

1,2N (ω)
∣∣2[ f −

L − f +
R ]
}
, (E31)

which is already very close to Eq. (15); we need now a basis
transformation given by Eq. (B4). The necessary entries of G̃r

transform as

G̃r
1,2 = Gr

1,N+1,

G̃r
1,2N−1 = Gr

1,N ,

G̃r
1,2N = Gr

1,2N ,

and inserting this in Eq. (E31) with the substitution E = h̄ω

leads almost directly to Eq. (15), though the bias still remains
to be set.

The use of the mean-field technique breaks the conserva-
tion of the number of particles, if fixed values of � are used
and thus IL �= −IR. For correctness, one has to the use the
self-consistently calculated profile of �, since that correctly
replaces two operators with their mean values and the number
of particles is (implicitly) conserved. On the other side, one
obviously prefers to avoid the self-consistency cycle. After we
obtain IR, we find that IL = −IR holds for 
L = 
R and sym-
metrically applied bias (η = 1/2, i.e., VL = V/2, VR = −V/2),
without demanding the self-consistently calculated � [25,53].
This trick sets the internal supercurrent to zero and allows
the use of fixed values of �. As a second effect, the crossed
Andreev term Gr

1,2N does not contribute to the current, since
the difference of the Fermi functions f −

L − f +
R is always zero

for η = 1/2 if both leads are at the same temperature.
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APPENDIX F: MATRIX EXPRESSIONS IN THE
(STANDARD) BOGOLIUBOV–DE GENNES BASIS

The use of the default basis �̂ =
(d1, . . . , dN , d†

1 , . . . , d†
N )T gives an intuitive understanding

of the current formula, since the entries of the Hamiltonian,
the self-energies, and the Green’s functions are ordered first
in the particle/hole subspace and second in the real space
position. For example, Gr

1,N describes the transport of an
electron from site j = 1 to site j = N , where it leaves the
Kitaev chain as an electron to the right lead. We present here
the matrices used in Eq. (12). The BdG Hamiltonian H reads

H =
[

C S
S† −C

]
2N×2N

, (F1)

with ĤKC = 1
2 �̂†H�̂, ĤKC being given by Eq. (1). The ma-

trices C and S are

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−μ −t
−t −μ −t

−t −μ −t
. . .

. . .
. . .

−t −μ −t
−t −μ −t

−t −μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×N

,

(F2)

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 �

−� 0 �

−� 0 �
.. .

. . .
. . .

−� 0 �

−� 0 �

−� 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×N

.

(F3)

Due to the choice of the tunneling Hamiltonian HL in
Eqs. (10), the self-energies 	r

L and 	r
R are sparse matrices

(i, j = 1, . . . , 2N)(
	r

L

)
i, j = δ1iδ1 j �L− + δN+1,iδN+1, j �L+, (F4)(

	r
R

)
i, j = δNiδN j �R− + δi,2Nδ2N, j �R+ (F5)

acting only on the first and last site. We used here the abbre-
viations

�α± = lim
η→0

∑
k

|tα (k)|2
E + iη ± εkα

, α = L, R, (F6)

where the index − (+) accounts for particles (holes). In gen-
eral, the finite lifetime introduced by the self-energies is given
by the imaginary part Im(�α±) = −π

∑
k |tα (k)|2δ(E ±

εkα )= : − γ ±
α . In the special case of the wide band limit, the

functions �α± don’t depend on E and become �α± = −iγα

from the main text.
Returning to the general case, the matrices 
α follow from


α (E ) = −2 Im
(
	r

α

)
, α = L, R.

The retarded Green’s function Gr is given by

Gr = [
E12N − HBdG − 	r

L − 	r
R

]−1
,

and the advanced Green’s function obeys Ga(E ) = [Gr (E )]†.
The Fermi Dirac distribution f (E ) is contained in the matrix
Fα such that

Fα =
[
1N f (E − eVα )

1N f (E + eVα )

]
,

where Vα denotes the shift of the chemical potential at contact
α = L, R. Finally, the lesser Green’s function G<(E ) reads

G<(E ) = i Gr

[ ∑
α=L,R

Fα
α (E )

]
Ga. (F7)

APPENDIX G: THE EXACT FORM OF THE GREEN’S
FUNCTIONS Gr

1,N+1, Gr
1,N , Gr

1,2N

The entries of the retarded Green’s function Gr
1,N Gr

1,N+1
and Gr

1,2N in the default basis can be obtained analytically.
The calculations are most conveniently performed in the site-
ordered Majorana basis defined in Eq. (B5), since the Kitaev
Hamiltonian and the self-energies are reshaped into a block
tridiagonal matrix, see Eq. (G1) below. Keeping in mind that
Gs = T†Gs

MT, after a bit of algebra one finds that

Gr
1,N+1 = 1

2

{(
Gr

M

)
11 − (

Gr
M

)
22 + i

[(
Gr

M

)
12 + (

Gr
M

)
21

]}
,

Gr
1,N = 1

2

{(
Gr

M

)
1,2N−1 + (

Gr
M

)
2,2N

+ i
[(

Gr
M

)
2,2N−1 − (

Gr
M

)
1,2N

]}
.

Gr
1,2N = 1

2

{(
Gr

M

)
1,2N−1 − (

Gr
M

)
2,2N

+ i
[(

Gr
M

)
2,2N−1 + (

Gr
M

)
1,2N

]}
.

Although several other entries of the inverted matrix are re-
quired to obtain the entries Gr

1,N+1, Gr
1,N , and Gr

1,2N after the
transformation, the inversion can be performed analytically.
As it turns out, see Eq. (G2) below, the problem involves a
nonlinear combination of polynomials and the basis transfor-
mation allows the decomposition.

In the case of N �= 1, the retarded Green’s function Gr
M is

the inverse of

M : = E 12N − HM − 	r
L,M − 	r

R,M

=

⎡
⎢⎢⎢⎢⎢⎢⎣

AL B
C A2 B

C A3 B
. . .

. . .
. . .

C AN−1 B
C AR

⎤
⎥⎥⎥⎥⎥⎥⎦

, (G1)

with

A j =
[

E iμ
−iμ E

]
, C† = B =

[
0 −a

−b 0

]
,

Aα = A2 +
[

σα,p i σα,m

−i σα,m σα,p

]
,

and j = 2 , . . . , N − 1, a = i(� − t ), b = i(t + �), σα,p =
−(�α+ + �α−)/2, σα,m = (�α+ − �α−)/2. In the case of
N = 1, Gr

M is the inverse of

A2 +
∑

α=L,R

[
σα,p i σα,m

−i σα,m σα,p

]
.
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The final results for Gr
1,N+1, Gr

1,N , and Gr
1,2N unite the cases

N = 1, N �= 1 and so we drop this distinction. The required
entries of Gr

M are obtained via the adjoint matrix technique,
where one needs to calculate only determinants. The matrix
form in Eq. (G1) allows us to use the method explained in
Ref. [64], which entails the inversion of the B-type matrices.
The calculation of det(M) is straightforward, but notice that
the seemingly unimportant structure of the B matrices is the
key here. The matrices B, B−1 are off-diagonal, which yields
simpler coefficients in the recursion formula and is the reason
to use a basis of Majorana operators. A site-ordered fermionic
basis [cf. Eq. (B3)] replaces B with −α from Eq. (E16) and
the calculation cannot be performed that easily.

Nevertheless, obtaining the entries of the adjoint matrix
themselves requires even further tricks, which we cannot
cover here. To give only one example, the minors of M which
we have to calculate for the entries of Gr are not of the same
block tridiagonal form as M itself, one column and one row is
missing. One has thus to extend the minors of M to 2N × 2N
without changing the value of the determinant, while at the
same time restoring the same block tridiagonal shape. For the
Andreev contributions, one has simply to add a row and a col-
umn, which contain only zeros except one single 1 at position
(1,1) of this new matrix. Laplace’s expansion shows that the
value of the determinant is unchanged, but the newly formed
first upper/lower off-diagonal block is not invertible. To cure
this, one has to consider an entire sequence of matrices, which
converge back to the former, etc. Furthermore, once this cal-
culation is accomplished, still a different procedure has to be
adopted to calculate the direct and crossed Andreev terms.

We shall therefore simply give below the closed formulas
for the relevant Green’s functions and justify their form a pos-
teriori. For example, if one calculates first det(E12N − HM),
which is essentially the characteristic polynomial and straight-
forward2 to derive with Ref. [64], one finds that

det(E 12N − HM) = (−ab)N (xN YN − yN χN ), (G2)

where the functions xN , YN , yN , χN are Tetranacci polynomi-
als of order N , as discussed in Appendix C. They obey the
recursion formula [39] Eq. (C3), which we repeat here for the
sake of convenience,

x j+2 = E2 + a2 + b2 − μ2

ab
x j − x j−2

+ iμ
b − a

ab
(x j−1 − x j+1), (G3)

with the initial values for xN , YN , yN , χN given in Table I. To
generalize the result in Eq. (G2) to the case including the self-
energies, one should remember that the self-energies act only
on the first/last site; the interior of the matrix M in Eq. (G1)

2In the strict approach, one has to exclude that ab = 0 to arrive at
the following results. The case of ab = 0 follows by taking the limit
of a → 0 and/or b → 0 at the end. The full result is smooth in a
and b as one can proof easily. However, in Ref. [64], each inversion
of B is countered by a multiplication with det(B) for cancellation,
but both operations enter at different levels in the procedure. Hence,
ab �= 0 is only a technical but not a physical restriction.

is not affected by them. Importantly, the recursion formula in
Eq. (G3) is a consequence of this structure. This justifies an
attempt (as it turns out, successful) to solve our problem using
Tetranacci polynomials.

Following the technique of Ref. [64], one can define the
polynomials dy

j , dx
j , dχ

j , and dY
j as a superposition of x j , Y j ,

y j , χ j ,

dy
j := σR,p x j−1 + i σR,m y j−1 + a y j, (G4)

dY
j := σR,p χ j−1 + i σR,m Y j−1 + a Y j, (G5)

dx
j := σR,p y j−1 − i σR,m x j−1 + b x j, (G6)

dχ
j := σR,p Y j−1 − i σR,m χ j−1 + bχ j, (G7)

including the entries of the right self-energy as coeffi-
cients. Physical intuition leads us to believe that, similar to
dy

j , dY
j , dx

j , and dχ
j , also Tetranacci polynomials including

only the left self-energy exist. Our use of Eqs. (G4)–(G7) is
only a matter of the chosen technique.

In the end, one finds

det(M)

(−ab)N−1
= dy

N dχ
N − dx

N dY
N

+ σ 2
L,m − σ 2

L,p

ab

[
dy

N−1 dχ

N−1 − dx
N−1 dY

N−1

]
+ σL,p

b

[
dy

N dx
N−1 − dx

N dy
N−1

]
+ σL,p

a

[
dχ

N dY
N−1 − dY

N dχ

N−1

]
+ i

σL,m

a

[
dy

N dχ

N−1 − dx
N dY

N−1

]
+ i

σL,m

b

[
dY

N dx
N−1 − dχ

N dy
N−1

]
, (G8)

and the entries Gr
1,N+1, Gr

1,N , and Gr
1,2N read

Gr
1,N+1

2det(M)

(−ab)N−2
= b2

a

[
dY

N−2 dχ

N−1 − dY
N−1 dχ

N−2

]

+ a2

b

[
dy

N−2 dx
N−1 − dy

N−1 dx
N−2

]
+ ia

[
dχ

N−1 dy
N−2 − dY

N−1 dx
N−2

]
− ib

[
dx

N−1 dY
N−2 − dy

N−1 dχ

N−2

]
, (G9)

Gr
1,2N

2det(M)

(−ab)N−1
= b

a

[
dχ

N−2 − i dY
N−2

]
− a

b

[
dy

N−2 + i dx
N−2

]
+ (E − �L,+ − μ)

×
[

dx
N−1 − idy

N−1

b
− dY

N−1 + idχ

N−1

a

]
,

(G10)

Gr
1,N

2det(M)

(−ab)N−1
= b

a

[
dχ

N−2 + i dY
N−2

]
+ a

b

[
dy

N−2 − i dx
N−2

]
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+ (E − �L,+ − μ)

×
[

dx
N−1 + idy

N−1

b
+ dY

N−1 − idχ

N−1

a

]
.

(G11)

The results for det(M), Gr
1,N+1, Gr

1,N , and Gr
1,2N hold for all

values of N , t , �, μ, E , and the wide band limit is not used
yet. Notice that these functions do not diverge at t = ±�, i.e.,
a = 0 or b = 0. The reason is that all denominators contain
only a′s and b′s, which are exactly canceled by the prefactors
(−ab)N−x for x = 1, 2. This statement is obvious after a look
into Eq. (G1), since no entries of the matrix diverge there.
Strictly speaking, one has to take the limit a (b) → 0 and not
to evaluate at a = 0 (b = 0), but this is merely a numerical
issue.

Taking a closer look to the Andreev contribution in
Fig. 7(a), one observes very light and thin lines represent-
ing Andreev conduction minima outside the conduction gap,
which intertwine with the darker ones, representing the max-
ima. They are caused by two features of Gr

1,N+1: first, it
contains Tetranacci polynomials dj also for j = N − 1 and
j = N − 2; second, these polynomials enter here as a product,
therefore in a higher order than in Gr

1,N , and at their zeros the
Andreev transmission is suppressed more strongly than the
direct transmission.

APPENDIX H: CONDUCTANCE FORMULA

The conductance follows from Eq. (15) by its derivative
with respect to the bias in the zero bias limit. In the wide band
limit at T = 0 K, we find

GD = 4
e2

h
γLγR

∣∣Gr
1,N

∣∣2
E=0, (H1)

GA = 4
e2

h
γ 2

L

∣∣Gr
1,N+1

∣∣2
E=0, (H2)

and, of course, G = GD + GA. The necessary Green’s func-
tions are given by Eqs. (G8)–(G11) and we have only to
evaluate them at E = 0. In turn, one should focus first on the
Tetranacci polynomials dy

j , dY
j , dx

j , dχ
j from Eqs. (G4)–(G7).

At E = 0, they reduce to

dy
j |E=0 = iγRx j−1,0,

dχ
j |E=0 = iγRY j−1,0,

dY
j |E=0 = a Y j,0,

dx
j |E=0 = b x j,0.

We use Eq. (C9) to eliminate Y j,0 and we find in a first step
after some algebra that

det(M)|E=0 b2−2N = b2 x2
N,0 − x2

N−1,0

(
γ 2

L + γ 2
R

)
,

+ x2
N−2,0

γ 2
L γ 2

R

b2
,

− γLγR
(
x2

N−1,0 − xN,0 xN−2,0
)

× a2N−2 + b2N−2

(−ab)N−1
. (H3)

The key to shorten the last expression and to further simplifi-
cations is the function gs (s = ±1),

gs := bN−1
[
is b xN,0 + i xN−1,0(γR − sγL ) − i

b
xN−2,0 γLγR

]
,

(H4)

since one gets that

−|b1−N gs|2 = b2 x2
N,0 − x2

N−1,0(γR − sγL )2

+ x2
N−2,0

γ 2
L γ 2

R

b2
,

− 2s γLγR xN,0 xN−2,0, (H5)

which is very close to the expression of det(M)|E=0 in
Eq. (H3). To obtain the equality in Eq. (H5), one has to use
that s2 = 1 and that x j,0 is a real valued function, see Eq. (C5)
and Table I. The last identity we need to simplify det(M)|E=0
reads

x2
j−1,0 − x j,0 x j−2,0 =

(
−a

b

) j−1
, (H6)

which follows directly from Eq. (C8) and the fact that
R+ R− = −a/b with R± from Eq. (C7). Adding and subtract-
ing the term 2s γL γR (x2

N−1,0 − xN,0 xN−2,0) to det(M)|E=0
and using the Eqs. (H5) and (H6) yields

det(M)|E=0 = (−1)N |gs|2 − γLγR[aN−1 + s(−b)N−1]2,

(H7)

where a factor (−1)N−1 occurs for taking bN−1 out of the
absolute value in Eq. (H5).

Finally, the simplifications of the entries Gr
1,N+1 and Gr

1,N
at E = 0 starting from Eqs. (G9)–(G11) read

Gr
1,N

∣∣
E=0

= (−1)N−1 aN−1 + (−b)N−1

2 det (M)|E=0
g−, (H8)

Gr
1,N+1

∣∣
E=0

= −i γR
a2N−2 − b2N−2

2 det (M)|E=0
, (H9)

Gr
1,2N

∣∣
E=0

= (−1)N aN−1 − (−b)N−1

2 det (M)|E=0
g+, (H10)

where we give the result of Gr
1,2N |

E=0
only for completeness.

The use of the Eqs. (H8) and (H9) together with Eqs. (H1) and
(H2) yields to the expressions Eqs. (22) and (23), as we show
now.

The function qs from Eq. (19) is constructed such that
|qs|2 = |gs|2. Further, we have b = i p, a = −i m with p =
t + � and m = t − �. In a first step, we get for the total
conductance G = GD + GA,

|2 det (M)|E=0|2
4γLγR

h

e2
G = (pN−1 + mN−1)2|g−|2 + γL γR(p2N−2 − m2N−2)2

= (pN−1 + mN−1)2[|g−|2 + γLγR(mN−1 − pN−1)2], (H11)
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after reorganizing the terms arising from Eqs. (H8) and (H9). The use of Eq. (H7) yields

| det(M)|E=0| = [|gs|2 + γLγR(mN−1 + s pN−1)2]

and the total conductance becomes

G = e2

h

γL γR (pN−1 + mN−1)2

|g+|2 + γL γR (pN−1 + mN−1)2 . (H12)

Since |gs|2 = |qs|2 holds, we find the conductance according to Eq. (21).
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[32] A. Kobiałka, T. Domański, and A. Ptok, Sci. Rep. 9, 12933

(2019).
[33] J. Danon, A. B. Hellenes, E. B. Hansen, L. Casparis, A. P.

Higginbotham, and K. Flensberg, Phys. Rev. Lett. 124, 036801
(2020).

[34] J. Ulrich and F. Hassler, Phys. Rev. B 92, 075443 (2015).
[35] X.-Q. Li and L. Xu, Phys. Rev. B 101, 205401 (2020).
[36] S. Hegde, V. Shivamoggi, S. Vishveshwara, and D. Sen, New J.

Phys. 17, 053036 (2015).
[37] A. A. Zvyagin, Low Temp. Phys. 41, 625 (2015).
[38] H.-c. Kao, Phys. Rev. B 90, 245435 (2014).
[39] N. Leumer, M. Marganska, B. Muralidharan, and M. Grifoni,

J. Phys.: Condens. Matter 32, 445502 (2020).
[40] C.-K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Rev. Mod.

Phys. 88, 035005 (2016).
[41] X. Wen and A. Zee, Nucl. Phys. B 316, 641 (1989).
[42] R. S. K. Mong and V. Shivamoggi, Phys. Rev. B 83, 125109

(2011).
[43] W. Izumida, L. Milz, M. Marganska, and M. Grifoni, Phys. Rev.

B 96, 125414 (2017).
[44] K. Kawabata, R. Kobayashi, N. Wu, and H. Katsura, Phys. Rev.

B 95, 195140 (2017).
[45] C. W. J. Beenakker, D. I. Pikulin, T. Hyart, H. Schomerus, and

J. P. Dahlhaus, Phys. Rev. Lett. 110, 017003 (2013).
[46] S. Das Sarma, J. D. Sau, and T. D. Stanescu, Phys. Rev. B 86,

220506(R) (2012).
[47] B. Pekerten, A. M. Bozkurt, and I. Adagideli, Phys. Rev. B 100,

235455 (2019).
[48] H. Haug and A.-P. Jauho, Quantum Kinetics in Transport and

Optics of Semiconductors (Springer, Berlin, 1996).
[49] K. Flensberg and H. Bruus, Introduction to Many-Body Quan-

tum Theory in Condensed Matter Physics (Oxford Graduate
Texts, New York, 2002).

165432-20

https://doi.org/10.1103/PhysRevB.81.125318
https://doi.org/10.1088/0268-1242/27/12/124003
https://doi.org/10.1103/RevModPhys.87.137
https://doi.org/10.1393/ncr/i2017-10141-9
https://doi.org/10.1038/npjqi.2015.1
https://doi.org/10.1103/PhysRevX.6.031016
https://doi.org/10.1103/PhysRevLett.120.220504
https://doi.org/10.1126/science.aaf3961
https://doi.org/10.1038/s41565-017-0032-8
https://doi.org/10.1038/s42254-020-0228-y
https://doi.org/10.1103/PhysRevLett.103.237001
https://doi.org/10.1103/PhysRevB.82.180516
https://doi.org/10.1103/PhysRevB.96.075161
https://doi.org/10.21468/SciPostPhys.7.5.061
https://doi.org/10.1103/PhysRevResearch.2.013377
https://doi.org/10.1103/PhysRevB.102.245431
https://doi.org/10.1103/PhysRevLett.123.107703
https://doi.org/10.1103/PhysRevB.100.125407
https://doi.org/10.1103/PhysRevB.98.085125
https://doi.org/10.1103/PhysRevB.97.161401
https://doi.org/10.1038/s41467-019-13133-1
https://doi.org/10.1088/1367-2630/aa54e1
https://doi.org/10.1088/1367-2630/ab1431
https://doi.org/10.1103/PhysRevB.84.201308
https://doi.org/10.1088/1367-2630/14/8/083020
https://doi.org/10.1103/PhysRevB.87.024515
https://doi.org/10.1103/PhysRevB.96.085418
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1103/PhysRevB.91.045419
https://doi.org/10.1103/PhysRevB.97.155113
https://doi.org/10.1103/PhysRevB.93.245404
https://doi.org/10.1038/s41598-019-49227-5
https://doi.org/10.1103/PhysRevLett.124.036801
https://doi.org/10.1103/PhysRevB.92.075443
https://doi.org/10.1103/PhysRevB.101.205401
https://doi.org/10.1088/1367-2630/17/5/053036
https://doi.org/10.1063/1.4928919
https://doi.org/10.1103/PhysRevB.90.245435
https://doi.org/10.1088/1361-648X/ab8bf9
https://doi.org/10.1103/RevModPhys.88.035005
https://doi.org/10.1016/0550-3213(89)90062-X
https://doi.org/10.1103/PhysRevB.83.125109
https://doi.org/10.1103/PhysRevB.96.125414
https://doi.org/10.1103/PhysRevB.95.195140
https://doi.org/10.1103/PhysRevLett.110.017003
https://doi.org/10.1103/PhysRevB.86.220506
https://doi.org/10.1103/PhysRevB.100.235455


LINEAR AND NONLINEAR TRANSPORT ACROSS A … PHYSICAL REVIEW B 103, 165432 (2021)

[50] D. A. Ryndyk, Theory of Quantum Transport at Nanoscale
(Springer, Cham, Heidelberg, 2016).

[51] J. Rammer and H. Smith, Rev. Mod. Phys. 58, 323 (1986).
[52] Y. Meir and N. S. Wingreen, Phys. Rev. Lett. 68, 2512

(1992).
[53] A. Levy Yeyati, A. Martín-Rodero, and F. J. García-Vidal, Phys.

Rev. B 51, 3743 (1995).
[54] M. di Ventra, Electrical Transport in Nanoscale Systems

(Cambridge University Press, Cambridge, 2008).
[55] Z. Y. Zeng, B. Li, and F. Claro, Phys. Rev. B 68, 115319

(2003).
[56] P. Sriram, S. S. Kalantre, K. Gharavi, J. Baugh, and B.

Muralidharan, Phys. Rev. B 100, 155431 (2019).

[57] R. Mélin, F. S. Bergeret, and A. Levy Yeyati, Phys. Rev. B 79,
104518 (2009).

[58] A. Andreev, JETP 19, 1228 (1964).
[59] G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B

25, 4515 (1982).
[60] V. E. jun. Hoggatt and C. T. Long, The Fibonacci Quarterly 12,

113 (1974).
[61] W. Webb and E. Parberry, The Fibonacci Quarterly 7, 457

(1969).
[62] M. Özvatan and O. Pashaev, arXiv:1707.09151.
[63] D. C. Langreth, Linear and Nonlinear Electron Transport in

Solids (Springer, New York, London, 1976), Vol. 17.
[64] L. G. Molinari, Linear Algebra Appl. 429, 2221 (2008).

165432-21

https://doi.org/10.1103/RevModPhys.58.323
https://doi.org/10.1103/PhysRevLett.68.2512
https://doi.org/10.1103/PhysRevB.51.3743
https://doi.org/10.1103/PhysRevB.68.115319
https://doi.org/10.1103/PhysRevB.100.155431
https://doi.org/10.1103/PhysRevB.79.104518
https://doi.org/10.1103/PhysRevB.25.4515
http://arxiv.org/abs/arXiv:1707.09151
https://doi.org/10.1016/j.laa.2008.06.015

