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Generalized WKB theory for electron tunneling in gapped α − T3 lattices
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We generalize Wentzel-Kramers-Brillouin (WKB) semiclassical equations for pseudospin-1 α − T3 materials
with arbitrary hopping parameter 0 < α < 1, which includes the dice lattice and graphene as two limiting
cases. In conjunction with a series-expansion method in powers of Planck constant h̄, we acquired and solved
a system of recurrent differential equations for semiclassical electron wave functions in α − T3. Making use
of these obtained wave functions, we analyzed the physics-related mechanism and quantified the transmission
of pseudospin-1 Dirac electrons across nonrectangular potential barriers in α − T3 materials with both zero
and finite band gaps. Our studies reveal several unique features, including the way in which the electron
transmission depends on the energy gap, the slope of the potential barrier profile and the transverse momentum
of incoming electrons. Specifically, we have found a strong dependence of the obtained transmission amplitude
on the geometry-phase φ = tan−1 α of α − T3 lattices. We believe our current findings can be applied to Dirac
cone-based tunneling transistors in ultrafast analog RF devices, as well as to tunneling-current control by a
potential barrier through a one-dimensional array of scatters.
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I. INTRODUCTION

The quantum states and the motion of a charged carrier
in a lattice are, in many ways, not much different from
those described by classical dynamics. Also, the semiclas-
sical approximation [1] is usually a useful and important
tool for providing a simplified description as well as fur-
ther investigations of single-particle and collective properties
of electronic states with high kinetic energies in various
materials [2–5]. Similar to standard quantum mechanics,
the Wentzel-Kramers-Brillouin (WKB) approximation for an
α − T3 lattice can be made by expanding the electron eigen-
state (or wave function) of the considered Hamiltonian as a
power series of Planck’s constant h̄ [4]. Such a method is also
employed for solving the second-order differential equations
having coordinate-dependent coefficients, which are mathe-
matically equivalent to the Schrödinger equation with a spa-
tially varying potential [6]. A semiclassical theory for an arbi-
trary matrix Hamiltonian was developed in Ref. [7]. Although
most physical problems studied by this method are one dimen-
sional, the lately-developed WKB theory has been generalized
to multiple dimensions for new two-dimensional materials.

The α − T3 model [8,9] represents the newest, and likely,
the most technologically promising class of low-dimensional
materials [10] with zero-mass Dirac fermions, and it has
become one of the hot spots in condensed matter physics
after the discovery of graphene and its gapless, linear, and
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relativistic low-energy band structure [11]. The same α − T3

model bears all crucial electronic properties of graphene, yet
it is still remarkably distinguished by the presence of an ad-
ditional flat band at the Dirac point of its energy dispersion.
This dispersionless energy band remains stable and persists
in the presence of charged disorder states, external electric,
magnetic and optical fields, or a time-dependent modulation
potential. Consequently, the observed energy spectrum of
α − T3 appears as metallic, i.e., all these three bands intersect
at the corners of Brillouin zone.

From the perspective of the atomic structure, the difference
between an α − T3 and graphene honeycomb lattices appears
through an additional fermionic atom situated at the center
of each hexagon, which is referred to as a hub C atom. The
hopping integral between the hub and one of the A and B
rim atoms is different from that between nearest-neighbor rim
atoms of hexagon, and the ratio of these hopping parameters
is quantified by a variable α. The maximum value for α is 1
corresponding to the dice lattice, while its minimum value is
0 for graphene for a completely decoupled set of hub atoms.
From this point of view, the α − T3 model can be essentially
viewed as an interpolation between graphene and a dice lattice
as α increases continuously from 0 to 1. Recently, models
for stronger interactions with α > 1 between the hub and rim
atoms have also been proposed and explored.

Initially designed as a purely theoretical model [12],
α − T3, and especially the dice lattices, has recently been
found in a number of existing and experimentally synthe-
sized materials [13]. These include three-layer arrangement
of SrTiO3/SrIrO3/SrTiO3 lattices [14], Lieb [15–18], and
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the Kagome [19–21] optical lattices and waveguides [22,23],
Josephson arrays [24], and Hg1−xCdx quantum well [25]. A
comprehensive review of all dice-like systems with a flat
band can be found in Ref. [26]. Very recently, a band struc-
ture involving flat bands was realized in In0.53Ga0.47As/InP
semiconductor quantum wells along with lateral geome-
try [27]. The α − T3 model reveals a number of promising
electronic [28,29], collective [25,30,31], magnetic [32–37],
optical [38,39], and transport [40–42] features, such as
topological Dirac semimetals [43,44] and tilted Dirac cone
materials [45–47]. All α − T3 materials demonstrate unique
symmetry and topological properties, especially in the pres-
ence of a dressing irradiation [48,49]. For example, a
photo-induced topological phase transition is observed under
a nonresonant optical field [50–55] with a specific polar-
ization [56], and the lattice is turned from a semimetal to
Haldane-like Chern insulator in this case.

The Klein paradox, defined as complete electron tun-
neling independent of barrier height and width, is one of
the landmark properties of all Dirac materials including
graphene [57]. This paradoxical behavior was predicted for
α − T3 for all possible parameters α [58–61] and becomes
asymmetric (i.e., observed at a finite electron incidence an-
gle) under linearly-polarized irradiation [62–64]. In graphene,
unimpeded transmission also exists for a trapezoidal (not
square) potential barrier facilitated by a finite electric field
in the barrier region [65,66]. The question whether such an
effect could also be observed for α − T3 with α > 0 remains
answered and this query becomes the major issue addressed in
this paper based on the WKB approach. Considering that the
electron kinetic energy under a long-range electric potential
can be very large, we believe that the WKB approximation
could be the most efficient tool in solving such a problem.

The examples of the applications of WKB approximation
also include the quantum bound states between two turning
points, which could be analyzed by finding new quantization
rules for such bound states. As an example, one can address
two-dimensional harmonic, or even nonharmonic, oscillator
in α − T3 and derive new quantization rules for such bound
states [67].

The remainder of the paper is organized as follows. In
Sec. II, we proceed with a derivation of the formalism con-
necting different orders of wave function expanded in powers
of the Planck constant h̄. Making use of this expansion, we
obtain closed-form analytic expressions for the wave function
including the phase factor in addition to its spatially dependent
amplitude. In Sec. III, we apply our theory for calculating
the transmission of electrons in various cases with nonsquare
potential barriers, such as a trapezoidal barrier imposed by a
linear-potential profile. Meanwhile, we also consider gapped
α − T3 materials and compute their energy dispersion, semi-
classical action, classically forbidden regions, and amplitude
of transmission. Finally, some remarks are present in Sec. IV
regarding derivation of the set of WKB equations and their ap-
plication to electron transmission and other numerical results.

II. SEMICLASSICAL SOLUTION OF α − T3 MODEL

In this section, we derive the semiclassical wave functions
of a gapless α − T3 lattice up to the first order of the series

expansion in powers of h̄. An important step of this derivation
involves calculating the semiclassical action of which the spa-
tial derivative in Eq. (23) corresponds to a position-dependent
longitudinal electron momentum given in Eq. (24). The mere
knowledge of the action S(ξ ), or momentum component
πx(ξ ), in terms of the scaled length ξ defined in Eq. (13), only
provides a possibility to evaluate the electron transmission
through a nonsquare barrier under a finite longitudinal electric
field. However, an analytical expression for wave function
either does not exist or is too complicated to obtain as we deal
with gapped α − T3 materials.

We begin our study with the pseudospin-1 low-energy
Hamiltonian for the α − T3 model, i.e.,

Ĥα (k | τ, φ) = h̄vF

⎡
⎣ 0 kτ

− cos φ 0
kτ
+ cos φ 0 kτ

− sin φ

0 kτ
+ sin φ 0

⎤
⎦ , (1)

where kτ
± = τkx ± iky, and valley index τ = ±1 distinguishes

electronic states associated with K and K ′ valleys. Phase φ

(0 � φ � π/4) introduced in Eq. (1) relates to α parameter by
α = tan φ, and therefore, the limiting cases for graphene and
dice lattice correspond to φ = 0 and φ = π/4, respectively.

The Hamiltonian in Eq. (1) could be constructed us-
ing the following two φ-dependent 3 × 3 matrices Ŝ(φ) =
{Ŝx(φ), Ŝy(φ)}, where

�̂x(φ) =
⎡
⎣ 0 cos φ 0

cos φ 0 sin φ

0 sin φ 0

⎤
⎦, (2)

�̂y(φ) = i

⎡
⎣ 0 − cos φ 0

cos φ 0 − sin φ

0 sin φ 0

⎤
⎦. (3)

As a result, we have

Ĥα (k | τ, φ) = vF �̂(φ) · {−ih̄∇τ } + V (x) �̂
(3)
0 , (4)

where �̂
(3)
0 is a 3 × 3 unit matrix, V (x) represents a position-

dependent electrostatic potential, and ∇τ = {τ∂/∂x, ∂/∂y}.
In fact, the introduced matrices presented in Eqs. (2) and
(3) are a φ-dependent generalization of 3 × 3 Pauli matrices
written as

�̂(3)
x = 1√

2

⎡
⎣0 1 0

1 0 1
0 1 0

⎤
⎦, (5)

�̂(3)
y = i√

2

⎡
⎣0 −1 0

1 0 −1
0 1 0

⎤
⎦, (6)

where φ = π/4 is taken. On the other hand, for φ → 0,
matrices in Eqs. (2) and (3) reduce to 2 × 2 spin-1/2 Pauli
matrices used to define a Dirac Hamiltonian in graphene. One
sometimes employs the third Pauli matrix, defined as

�̂(3)
z =

⎡
⎣1 0 0

0 0 0
0 0 −1

⎤
⎦, (7)

so as to introduce an energy gap to a pseudospin-1
Hamiltonian [68,69].
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Three eigen-energies associated with the Hamiltonian in
Eq. (1) are easily found to be

ε
γ=±1
τ, φ (k) = γ h̄vF k (8)

with γ = −1 (γ = +1) for the valance (conduction)
band, and

ε
γ=0
τ, φ (k) = 0 (9)

for the remaining flat (or dispersionless) band. Here, all three
bands in Eqs. (8) and (9) do not show any dependence on
phase φ (or parameter α). Furthermore, two wave functions
corresponding to the valence and conduction bands in Eq. (8)
take the form

�
γ=±1
τ, φ (k) = 1√

2

⎡
⎣τ cos φ e−iτθk

γ

τ sin φ e+iτθk

⎤
⎦, (10)

where θk = arctan(ky/kx ) is the angle of wave vector k =
{kx, ky} made with the x axis. The other wave function for the
flat band is

�
γ=0
τ, φ (k) =

⎡
⎣ sin φ e−iτθk

0
− cos φ e+iτθk

⎤
⎦. (11)

Here, we would like to indicate that the energy bands in
Eqs. (8) and (9), as well as the wave functions in Eqs. (10)
and (11), are obtained for a spatially-uniform potential inde-
pendent of position coordinates x and y.

As a generalization, we now consider an x-dependent po-
tential V (x) so that the translational symmetry is kept only
along the y direction, and the wave function changes to
�(x, y) � ψ (x) eiky y. Correspondingly, the previous Hamilto-
nian in Eq. (4) is modified into

Ĥ(x, ky | τ, φ) = h̄vF

⎡
⎣ V (x) cos φ (−ih̄ τ ∂/∂x − ipy) 0

cos φ (−ih̄ τ ∂/∂x + ipy) V (x) sin φ (−ih̄ τ ∂/∂x − ipy)
0 sin φ (−ih̄ τ ∂/∂x − ipy) V (x)

⎤
⎦, (12)

where py = h̄ky is conserved in the tunneling process. Following the approach and notations adopted in Ref. [4], we rewrite our
Hamiltonian in Eq. (12) and the corresponding eigenvalue equation through the following dimensionless variables, i.e., x → ξ ,
E → ε, px,y → πx,y and

ξ = x

WB
, ε = E

V0
and ν(x) = V (x)

V0
, πy = vy py

V0
. (13)

Finally, using the fact that ∂/∂x → ∂/(WB ∂ξ ), we replace Planck constant h̄ by a dimensionless one h̄0, yielding

h̄0 ↔
(

vF

WBV0

)
h̄, (14)

where V0 is the height of the square barrier in the absence of a longitudinal electric field. In Eq. (13), we avoided using an energy
scale EF = h̄vF kF � h̄vF 1/L0 with a unit length L0 for electron Fermi energy since we do not wish to introduce additional
h̄-related terms in the eigenvalue equation. This implies that the energy scale for incoming particles can be large classically and
not limited by values in units of EF .

By using the dimensionless variables defined in Eq. (13), the eigenvalue equation becomes

Ĥα (ξ, πy | τ, φ) � γ (ξ, πy | φ, τ ) = ε � γ (ξ, πy | φ, τ ), (15)

� γ (ξ, πy | φ, τ ) = � γ
x (ξ | φ, τ ) exp

(
i
πyη

h̄0

)
=

⎡
⎣φA(ξ | φ, τ )

φH (ξ )
φB(ξ | φ, τ )

⎤
⎦exp

(
i
πyη

h̄0

)
, (16)

and the Hamiltonian in Eq. (15) is now

Ĥα (ξ, πy | τ, φ) = �̂
(3)
0 ν(x) + �̂(3)

x (φ)

(
−ih̄0 τ

∂

∂ξ

)
+ �̂(3)

y (φ) πy

=
⎡
⎣ ν(x) cos φ(−ih̄0τ ∂/∂ξ − iπy) 0

cos φ(−ih̄0τ ∂/∂ξ + iπy) ν(x) sin φ(−ih̄0τ ∂/∂ξ − iπy)
0 sin φ(−ih̄0τ ∂/∂ξ + iπy) ν(x)

⎤
⎦, (17)

where �̂
(3)
0 represents a 3 × 3 unit matrix.

We know that the standard WKB approach is based on a series expansion of the sought wave function over h̄0 � h̄, namely,

�(ξ, πy | φ, τ ) = exp

{
i

h̄0
S(x)

} ∞∑
λ=0

(−ih̄0)λ �λ(x) = exp

{
i

h̄0
S(x)

} [
�0(x) − ih̄0 �1(x) − h̄2

0 �2(x) + · · · ]
, (18)

where S(x) represents the semiclassical action in the WKB approximation, and our goal is obtaining a differential equation with
respect to x, which connects consecutive terms in the expansion in Eq. (18). From Eq. (17), however, we find that only a term
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involving h̄0 can serve for this purpose. Explicitly, we write down such an equation as

�̂(3)
x (φ)

{
∂

∂ξ
�λ(ξ, πy | φ, τ )

}
− 1√

2
Ô T (ξ, πy | φ τ ) �λ+1(ξ, πy | φ, τ ) = 0, (19)

where λ = 0, 1, 2, 3, · · · , and �λ=−1(ξ, πy | φ, τ ) ≡ 0. Here, the transport operator Ô T (ξ, πy | φ, τ ), connecting consequent
terms of expansion in Eq. (18), is easily found to be

ÔT (ξ, πy | φ, τ ) =
⎡
⎣ κ (ξ ) cos φ (τ∂S(ξ )/∂ξ − iπy) 0

cos φ (τ∂S(ξ )/∂ξ + iπy) κ (ξ ) sin φ (τ∂S(ξ )/∂ξ − iπy)
0 sin φ (τ∂S(ξ )/∂ξ + iπy) κ (ξ )

⎤
⎦, (20)

where κ (ξ ) = ν(ξ ) − ε. Specifically, by setting λ = −1,
Eq. (19) gives rise to

ÔT (ξ, πy | φ, τ ) �0(ξ, πy | φ, τ ) = 0. (21)

For a linear homogeneous Eq. (21), a nontrivial solution exists
only if its determinant is zero, i.e.,

(ε − ν(ξ ))

[(
∂ S(ξ )

∂ξ

)2

+ π2
y − (ε − ν(ξ ))2

]
= 0 , (22)

which is independent of φ. Generally speaking, we know
ν(ξ ) �= ε, and then Eq. (22) leads us to

S(ξ ) − S(ξ0) =
∫ ξ

ξ0

πx(η) dη , (23)

where

πx(ξ ) = ±
√

[ε − ν(ξ )]2 − π2
y (24)

represents the position-dependent longitudinal momentum of
electrons, while the transverse momentum πy remains as a
constant in the tunneling process.

As a next step, we want to find the leading-order wave
function �1(x). Although Eq. (21) appears as an eigenvalue
problem, it is actually much more complicated since S(ξ )
in Eq. (23) and πx(ξ ) in Eq. (24) also depend on particle
energy ε. In fact, Eq. (21) could be utilized to find various
components of the following zero-order wave function

�0(ξ, πy | φ, τ ) =

⎡
⎢⎣

ϕ
(0)
A (ξ | φ, τ )

ϕ
(0)
H (ξ )

ϕ
(0)
B (ξ | φ, τ )

⎤
⎥⎦, (25)

such that

κ (ξ ) ϕ
(0)
A (ξ ) + cos φ [τπx(ξ ) − iπy] ϕ

(0)
H (ξ ) = 0 , (26)

sin φ [τπx(ξ ) + iπy] ϕ
(0)
H (ξ ) + κ (ξ ) ϕ

(0)
B (ξ ) = 0. (27)

Consequently, the wave function in Eq. (25) can be
rewritten as

�0(ξ | φ, τ ) =
⎡
⎣cos φ �(ξ | τ )

−1
sin φ ��(ξ | τ )

⎤
⎦ ϕ

(0)
H (ξ ) , (28)

where ��(ξ | τ ) represents the complex conjugate of �(ξ | τ ),
which is given by

�(ξ | τ ) = 1

κ (ξ )
[τπx(ξ ) − iπy] = −τ exp[−iτ θk(ξ )] .

(29)

Here, θk(ξ ) = tan−1[kx(ξ )/ky] is the angle of wave vector k =
{kx(ξ ), ky} = 1/h̄ {πx(ξ ), πy} with respect to the x axis. It is
clear from Eq. (29) that �(ξ | τ ) does depend on the valley
index τ and position ξ but not on φ. Moreover, the spatial
dependence of ϕ

(0)
H (ξ ) in Eq. (28) still needs to be determined.

Moreover, by taking λ = 0, we get from the recurrence
equation in Eq. (19) that

Ô T (ξ, πy | φ, τ ) �1(ξ, πy | φ, τ )

=
√

2 �̂(3)
x (φ)

∂

∂ξ
�0(ξ, πy | φ, τ ), (30)

where �0(ξ, πy | φ, τ ) has already been obtained expect for
the spatial dependence on ϕ

(0)
H (ξ ). However, we still do

not know the exact form of �1(ξ, πy | φ, τ ). Mathematically,
�1(ξ, πy | φ, τ ) can be constructed from a linear combination
of three arbitrary orthogonal state vectors |v1〉, |v2〉, and |v3〉
in a three-dimensional spinor space. Let us first choose |v1〉 to
be the spinor part of �0(ξ | φ, τ ) in Eq. (28), yielding

|v1(ξ | φ, τ )〉 =
⎡
⎣cos φ �(ξ | τ )

−1
sin φ ��(ξ | τ )

⎤
⎦. (31)

With the given spinor state |v1(ξ | φ, τ )〉 in Eq. (31), we can
choose freely the remaining |v2(ξ | φ, τ )〉 and |v3(ξ | φ, τ )〉 as
long as all of them are mutually orthogonal to each other. By
referencing wave functions in Eqs. (10) and (11) for incident
particles, we take accordingly

|v2(ξ | φ, τ )〉 =
⎡
⎣cos φ �(ξ | τ )

+1
sin φ ��(ξ | τ )

⎤
⎦ , (32)

|v3(ξ | φ, τ )〉 =
⎡
⎣ sin φ �(ξ | τ )

0
− cos φ ��(ξ | τ )

⎤
⎦. (33)

Consequently, �1(ξ, πy | φ, τ ) can be formally written as

�1(ξ, πy | φ, τ ) = ϕ
(0)
H (ξ ) |v1(ξ | φ, τ )〉

+ϕ
(1,2)
H (ξ ) |v2(ξ | φ, τ )〉

+ϕ
(1,3)
H (ξ ) |v3(ξ | φ, τ )〉. (34)

Now, substituting Eq. (34) into Eq. (30), we find

〈v1(ξ | φ, τ ) | Ô T (ξ, πy | φ, τ ) �1(ξ, πy | φ, τ )〉
= 〈v1(ξ | φ, τ ) | Ô T (ξ, πy | φ, τ )

∣∣{∣∣ ϕ(0)
H (ξ ) |v1(ξ | φ, τ )〉
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+ϕ
(1,2)
H (ξ ) |v2(ξ | φ, τ )〉 + ϕ

(1,3)
H (ξ ) |v3(ξ | φ, τ )〉}〉

= 0, (35)

since |v j (ξ | φ, τ )〉 for j = 1, 2, 3 are orthogonal to each
other and ÔT (ξ, πy | φ, τ ) | v1(ξ | φ, τ )〉 = 0 from Eq. (22).
Consequently, using Eq. (30) we get

〈
v1(ξ | φ, τ )

∣∣∣∣ �̂(3)
x (φ)

∂

∂ξ
�0(ξ, πy | φ, τ )

〉

=
〈
v1(ξ | φ, τ )

∣∣∣∣ �̂(3)
x (φ)

∂

∂ξ

{ | v1(ξ | φ, τ )〉ϕ
(0)

H (ξ )
}〉

= 0, (36)

where �̂(3)
x (φ) was initially defined in (2). Eq. (36) can be

written as

[�(ξ | τ ) + ��(ξ | τ )]
∂ ϕ

(0)
H (ξ )

∂ξ

+ 1

2

{[
∂ �(ξ | τ )

∂ξ
+ ∂ ��(ξ | τ )

∂ξ

]

+
[
∂ �(ξ | τ )

∂ξ
− ∂ ��(ξ | τ )

∂ξ

]
cos 2φ

}
ϕ

(0)
H (ξ ) = 0.

(37)

Writing �(±)(ξ | τ ) = �(ξ | τ ) ± ��(ξ | τ ), we finally arrive
at the equation:

�(+)(ξ | τ )
∂ ϕ

(0)
H (ξ )

∂ξ

+ 1

2

[
∂

∂ξ
�(+)(ξ | τ ) + cos 2φ

∂

∂ξ
�(−)(ξ | τ )

]
ϕ

(0)
H (ξ ) = 0,

(38)

in which we have

F (ξ | φ, τ ) ≡ ∂

∂ξ
[�(+)(ξ | τ ) + cos 2φ �(−)(ξ | τ )]

= − 2i πy[
πx(ξ )2 + π2

y

]3/2 {cos[2φ] πx(ξ ) − iτπy}

× dπx(ξ )

dξ
, (39)

which is obtained directly from Eq. (29).
Now, the solution to Eq. (38) could be easily found to be

ϕ
(0)
H (ξ, φ) = c0 exp

[
−1

2

∫ ξ

ξ0

F (ζ | φ, τ )

�(+)(ζ | τ )
dζ

]
. (40)

The integral in Eq. (40) could be evaluated analytically as

−1

2

∫ ξ

ξ0

F (ζ | φ, τ )

�(+)(ζ | τ )
dζ = − iτ

2
cos(2φ) tan−1

[
πx(ξ )

πy

]

+ 1

4

{
ln

[
πx(ξ )2 + π2

y

]
− 2 ln[πx(ξ )]

}
. (41)

Specifically, for a dice lattice with φ = π/4, Eqs. (38) and
(40) are reduced to

dϕ
(0)
H (ξ )

ϕ
(0)
H (ξ )

= − 1

2 �(+)(ξ | τ )

∂ �(+)(ξ | τ )

∂ξ
dξ

= −π2
y

2

dπx(ξ )

πx(ξ )
[
π2

x (ξ ) + π2
y

] , (42)

while for gapless graphene with φ = 0 we acquire the same
results as in Ref. [4]. At last, Eq. (42) leads to the solution

ϕ
(0)
H (ξ ) =

{
π2

x (ξ ) + π2
y

π2
x (ξ )

}1/4

=
{

1 +
[

πy

πx(ξ )

]2 }1/4

, (43)

and then �0(ξ | φ, τ ) in Eq. (28) can be completely deter-
mined. All other higher-order wave function �λ(ξ | φ, τ ) for
λ = 1, 2, · · · can be found by using Eq. (19) repeatedly.
Moreover, Eq. (43) becomes divergent as πx(ξ ) = 0, which
is similar to the resulst of Schrödinger particles and graphene
with a zero or finite band gap [4]. Such a unique feature
indicates that the WKB approximation cannot be used in the
vicinity of so-called turning points with πx(ξ ) = 0.

III. ENERGY BAND GAP IN A PSEUDOSPIN-1 LATTICE

In this section, we will concentrate on calculating elec-
tron transmission over a barrier with a linear potential profile
ν(ξ ) = ν0 + a ξ for an α − T3 material, where the constant a
quantifies the strength of an applied electric field. In fact, we
are able to find the transmission solely based on the semiclas-
sical action S(ξ ) and the longitudinal component of electron
momentum πx(ξ ), and we do not need compute the wave
function, its phase factors, or the spatial dependence. This
is obviously an advantage of employing the WKB approxi-
mation, i.e., a possibility to acquire very precise transmission
of electrons with limited knowledge on electronic states, and
an easily evaluated S(ξ ) even for a very complicated model
Hamiltonian. In this paper, we focus on two special cases with
a band gap induced either by adding an insulating substrate
to an α − T3 layer or by imposing an external off-resonance
dressing field.

We start with adding an α-independent energy gap �0 to
our previous Hamiltonian in Eq. (1) by using �̂(3)

z in Eq. (7),
namely

Ĥα (k | τ, φ) = h̄vF

⎡
⎣ 0 kτ

− cos φ 0
kτ
+ cos φ 0 kτ

− sin φ

0 kτ
+ sin φ 0

⎤
⎦

+�0

⎡
⎣1 0 0

0 0 0
0 0 −1

⎤
⎦, (44)

which gives rise to an eigenvalue equation

ε
[
ε2 − �2

0 − (h̄vF k)2
] + (h̄vF k)2�0 cos 2φ = 0. (45)

A similar gap model was adopted in Ref. [68] for study-
ing effects of an ionized impurity atom on electronic states
of α − T3.

Figure 1 displays the calculated energy dispersion from
Eq. (45), from which we find that symmetry between the
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FIG. 1. Calculated energy dispersion relations (shown shaded) ε(k, �0 | φ) in α − T3 based on Eq. (45). Panels (a)–(c) correspond to phase
φ = π/6, while panels (d)–(f) to a dice lattice with φ = π/4. The left column relates to the case with �0/E (0) = 0; the middle column to
�0/E (0) = 0.5; and the right column to �0/E (0) = 1.0. Here, the Fermi wave number kF is taken as an unit for k, and E (0) = h̄vF kF as an unit
for energy with Fermi velocity vF .

valence and conduction bands under �0 > 0 is broken for all
values of φ except for φ = π/4 (a dice lattice). Meanwhile,
both the band gap between the valence and flat bands �FV and
that between the flat and conduction bands �CF are opened
up, and satisfies �CF �= �FV away from k = 0 for all consid-

ered cases. Therefore, the triple connection for the valence,
flat and conduction bands in each corner of the Brillouin zone
is fully broken.

In the presence of the energy gap �0, the opera-
tor Ô T (ξ, πy | φ, τ ) initially introduced in Eq. (20) is
modified into

Ô T (ξ, πy,�0 | φ, τ ) =
⎡
⎣ κ (ξ ) + �0 cos φ (∂S�(ξ )/∂ξ − iπy) 0

cos φ (∂S�(ξ )/∂ξ + iπy) κ (ξ ) sin φ (∂S�(ξ )/∂ξ − iπy)
0 sin φ (∂S�(ξ )/∂ξ + iπy) κ (ξ ) − �0

⎤
⎦, (46)

where the band gap �0 should be rescaled to �0/V0, cor-
responding to the scaled particle’s kinetic energy ε and
external potential ν(ξ ) in Eq. (13). For simplicity, however,
we will still adopt the same notation �0. Here, we would
like to emphasize that the Hamiltonian in Eq. (44) provides
a good description for all electronic properties of α − T3

lattices, including a dice lattice. However, it suffers from

a serious limitation in the case of φ → 0 for the graphene
since the gap term involving �̂(3)

z in Eq. (44) cannot be
properly transformed to a 2 × 2 Pauli matrix. Therefore, the
proper limit for graphene could only be obtained in the limit
of �0 = 0.

To overcome these limitations, we introduce an alternative
model Hamiltonian, i.e., including a φ-dependent term

Ĥ�(φ) = �

2
�̂z(φ) = �

⎡
⎣cos2 φ 0 0

0 − cos 2φ 0
0 0 − sin2 φ

⎤
⎦, (47)

where the band gap � is included through

ˆ̂�z(φ) = −i [�̂x(φ), �̂y(φ)], (48)

as employed in Ref. [34]. Here, the φ-dependent gap term in
Eq. (47) can also be viewed as a part of the Floquet-Magnus
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FIG. 2. Calculated energy dispersion relations ε(k, � | φ) in α − T3 based on Eq. (51) in the presence of a finite energy gap �. Panels
(a)–(c) correspond to phase φ = 0, panels (d)–(f) to φ = π/6, and panels (i)–(k) to φ = π/4. The left column relates to the case with �/E (0) =
0; the middle column to �/E (0) = 0.5; and the right column to �/E (0) = 1.0.

Hamiltonian for electron dressed state under a circularly-
polarized dressing field [70], which also depends on the valley
index τ = ±1. It is easy to show that Eq. (47), in the graphene
limit φ → 0, reduces to

Ĥ�(φ → 0) = �

⎡
⎣ 1 0 0

0 −1 0
0 0 0

⎤
⎦ , (49)

and meanwhile, for a dice lattice with φ = π/4, to

Ĥ�(φ → π/4) = �

2

⎡
⎣1 0 0

0 0 0
0 0 −1

⎤
⎦ = �

2
�̂(3)

z , (50)

which implies that the effect from laser irradiation on a dice
lattice is only half of that on graphene.

By combining Eqs. (1) and (47), the energy dispersion
for gapped α − T3 lattices is found to satisfy the following

equation, i.e.,

ε3 −
(

5�2

8
+ k2

)
ε − �2

8

[
3 ε cos 4φ + �

3
sin 2φ sin 4φ

]

= 0, (51)

which gives rise to three solutions, given by [48]

ελ(k,� | φ) = 2√
3

√
k2 + �2

8
(5 + 3 cos 4φ) cos

[
2πλ

3

+ cos−1

(
9
√

6 �3 sin 2φ sin 4φ

[8k2 + �2(5 + 3 cos 4φ)]3/2

)]
,

(52)

where λ = 0, 1, 2 specifies three different energy bands.
The calculated energy dispersions from Eq. (52) are pre-

sented in Fig. 2, and the results for both graphene (φ = 0) and
dice lattice (φ = π/4) are displayed in the top and bottom
rows, respectively, along with the case with φ = π/6 for
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FIG. 3. Plots for classically inaccessible regions, i.e., Im[πx (ξ, �0 | φ)] �= 0, of an incident electron in gapped graphene under a potential
barrier ν(ξ ) = ν0 + a ξ . Here, ε is the kinetic energy of incoming electron, and ξ = 0 is selected as the crossing point at which the particle
switches between electron and hole states in the barrier region. The boundaries of shaded region correspond to the turning points satisfying
πx (ξ, �0) = 0, and each panel shows the shaded region for specific �0 values as indicated. The upper panels (a)–(c) demonstrate how the area
and shape of shaded regions depend on πy, while the lower panels (d)–(f) on the barrier slope a. All quantities and parameters used in this
graphs and others later are dimensionless and scaled by Eq. (13).

general α − T3 material in the middle row. From both top and
bottom rows, we find symmetric dispersions with respect to
k = 0, and the graphene gap at k = 0 is exactly twice of that
for a dice lattice. As φ = π/6 for the middle row, the middle
“flat band” becomes dispersive in the way opposite to that
in panels (a)–(c) of Fig. 1, i.e., switching between peak and

valley at k = 0. Moreover, the mirror symmetry between the
valence and conduction band is also broken for a finite value
of � and all values of 0 < φ < π/4.

On the other hand, after a finite band gap has been
taken into account by Eq. (19), the previous operator
ÔT (ξ, πy | φ, τ ) in Eq. (46) has been changed to

Ô T (ξ, πy,�0 | φ, τ ) =
⎡
⎣ κ (ξ ) + �0 cos2 φ cos φ (∂S�(ξ )/∂ξ − iπy) 0

cos φ(∂S�(ξ )/∂ξ + iπy) κ (ξ ) − �0 cos 2φ sin φ(∂S�(ξ )/∂ξ − iπy)
0 sin φ(∂S�(ξ )/∂ξ + iπy) κ (ξ ) − �0 sin2 φ

⎤
⎦, (53)

where �0 = �/V0. Therefore, from Eqs. (53) and (23) we
are able to find explicitly the spatially-dependent longitudinal
momentum πx(ξ,�0 | φ) as

[πx(ξ,�0 | φ)]2 = κ2(ξ ) − π2
y − �2

0

8
(5 + 3 cos 4φ)

+ �2
0

8κ (ξ )
sin 2φ sin 4φ. (54)

As φ = 0, we get from Eq. (54) that [πx(ξ,�0 | φ = 0)]2 =
κ2(ξ ) − �2

0 − π2
y , which is the same as that in Ref. [4]. For

a dice lattice with φ = π/4, on the other hand, we find
[πx(ξ,�0 | φ = π/4)]2 = κ2(ξ ) − (�0/2)2 − π2

y .
By setting �0 = 0 in Eq. (54), we obtain a sim-

plified expression for the longitudinal πx(ξ,�0 | φ) as
[πx(ξ,�0 | φ)]2 = κ2(ξ ) − π2

y , which does not depend on

the phase φ (or α). Therefore, the location of classically-
forbidden regions and the longitudinal momentum πx in those
regions are the same for all values of α, including the case of
graphene.

Equation (54) becomes quadratic if its last term equals
zero, which can be satisfied for either graphene with φ = 0
or a dice lattice with φ = π/4. In these two case, the clas-
sically inaccessible regions are simply connected, as seen in
Figs. 3 and 4. For all other φ values, the turning points, or the
boundaries of classically forbidden regions, are determined by
a cubic κ (ξ ) equation and these regions consist of several parts
with non-trivial shapes and connections, as demonstrated in
Fig. 4(d)–4(k).

It is very important to emphasize that we are not looking
for the momentum from an energy subband but are search-
ing for the imaginary momentum (i.e., [πx(ξ,�0 | φ)]2 < 0)
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FIG. 4. Plots for classically inaccessible regions (shown shaded) of an incident electron in α − T3 materials with ν(ξ ) = ν0 + a ξ . The
boundaries of shaded region correspond to the turning points satisfying πx (ξ,�0 | φ) = 0, and each panel shows the shaded region for specific
�0 and πy values as indicated. Three upper panels show the results as functions o πy for a dice lattice with φ = π/4 and a = 1, while the
remaining six plots for α − T3 lattices as functions of φ for various values of �0 and a = 2.

corresponding to classically forbidden regions and that the
equation is obtained from the 3 × 3 “transport” eigenvalue
equation, as shown in Eq. (53), and includes all three subbands
in its derivation.

As a matter of fact, we find from Eq. (54) that the inclusion
of curved flat band becomes an important factor in eliminating
the divergence from the last term ∝ 1/κ (ξ ), where κ (ξ ) =
ν(ξ ) − ε and κ (ξ ) = 0 at the Dirac point. Therefore, if the
“classically-allowable” regions associated with the initial flat
band are not excluded, this last term could lead to a diver-
gence. All such classically-allowable regions are excluded in
Fig. 4 by white space in the middle of each CFR next to ξ = 0.
Physically, they must be excluded from the integration, except
for two limiting cases of graphene (φ = 0) and a dice lattice
(φ = π/4), in which the flat band remains dispersionless.

In WKB theory, the transmission amplitude
T (πy | a,�0, φ), or the probability for electron tunneling, can
be estimated by the integral of |πx(ξ,�0 | φ)| presented in
Eq. (54), which is equivalent to Im[πx(ξ,�0 | φ)], over the

classically forbidden regions (CFR). This leads to [65,66]

T (πy | a,�0, φ) = exp

[
− 2

h̄0

∫
CFR

|πx(ξ )| dξ

]
(55)

under the condition of∫
CFR

|πx(ξ )| dξ � h̄0. (56)

Here, CFR are defined by π2
x (ξ,�0) < 0, i.e., the parti-

cle acquires an imaginary longitudinal momentum as then
a strongly decayed transmission. The calculated location
and size of CFR from Eq. (54) for gapped graphene are
presented as shaded regions in Fig. 3. The boundaries
of CFR, determined by πx(ξ,�0) = 0, are not linear for
κ (ξ ) in the presence of a finite energy gap, as seen from
Eq. (54). The obtained CFR is always symmetric with the se-
lected electron-to-hole crossing point ξ = 0, given by κ (ξ ) =
[ν(ξ ) − ε]/h̄0 = 0. For the case of �0 = 0, we find from
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FIG. 5. Calculated transmissions T (πy | a, �0) from Eq. (55) for
gapped graphene. Panel (a) presents T (πy | a, �0) as a function
of transverse momentum πy for slope a = 0.2 and various energy
gaps �0 = 0, 0.1, 0.3, 0.5. Plot (b) shows the a-dependence of
T (πy | a, �0 ) with �0 = 0 and various vales of πy = 0, 0.2, 0.5, 1.

Eq. (54) that κ (ξ ) = −
√

π2
x (ξ ) + π2

y ≡ −πtot (ξ ), which is
opposite to the total momentum πtot (ξ ).

Even though the result in Eq. (55) appears only as an
estimation, for some trivial cases, e.g., gapless graphene, this
result becomes accurate [65]. In fact, for �0 = 0 we know
that both Eq. (54) for πx(ξ ) and the conditions for deter-
mining the turning points πx(ξ ) = 0 coincide with gapless
graphene. Therefore, the obtained transmission T (πy | a) =
exp[−(π/a) π2

y ] is expected also true for an arbitrary α −
T3 material with 0 < α < 1 as long as �0 = 0. The Klein
paradox has been observed for all types of α − T3 and all
accessible values of the slope a of the potential barrier, but
would immediately disappear with a finite band gap.

Furthermore, we expect that the width of CFR will in-
crease with πy, as verified from Eq. (54), since it leads to
decrease of πx(ξ ) for a given energy ε of incoming parti-
cle. However, the CFR width reduces for increasing slope a
because the electron/hole crossover and the new classically
allowable state is now achieved within a shorter displacement
of a charger particle along its trajectory under a nonuniform
potential. These predicted effects are indeed observed for
electron transmission in gapped graphene, as presented in
Fig. 5. Apart from the energy gap �0, which always results
in reduced transmission, we see a similar effect from πy kept
as a constant in our model, as seen in Fig. 5(a). In contrast, a
larger potential slope a leads to an enhanced transmission for
fixed �0, as found from Fig. 5(b).

Our present study of the finite-slope barrier transmission
should not be confused with the case of a square-barrier in

α − T3 lattices, where one needs to avoid the situation when
the incident charged carrier would “land” right on the flat
band within the barrier region. Specifically, if the height V0

of a square-potential barrier becomes the same as kinetic
energy ε(k) of incoming electrons, one acquires ε(k) − V0 =
0, which indicates a flat band sitting right on the top of a
potential barrier. In such a case, we cannot find a specific
momentum within the barrier region because the zero-energy
flat band is infinitely degenerate with electron momentum h̄k.

Results for transmission of electrons in gapped α − T3 are
presented in Fig. 6. Similar to gapped graphene, the Klein
paradox occurs only for a head-on collision, or πy = 0, and
�0 = 0, as found from Figs. 6(a) and 6(b). Moreover, we also
find that the Klein paradox remains true for all values of a
and φ, as long as these two conditions are met. For a finite
band gap �0 � 0.2 for α − T3, we see a strong dependence
of transmission on phase φ, which becomes considerable less
than one as shown in Figs. 6(b) and 6(c). In this case, trans-
mission increases with φ due to existence of the flat band in
energy dispersion. Furthermore, we also find increasing trans-
mission with a as seen in Fig. 6(c). Such a feature could be
attributed to the fact that switching between electron and hole
states will be faster for a steeper potential, and this explanation
holds true for both gapped graphene and all types of α − T3

materials.

IV. CONCLUDING REMARKS AND SUMMARY

In conclusion, we have generalized the WKB semiclassical
approximation for pseudospin-1 α − T3 lattices by deriving
a complete set of recurrence transport equations. The solu-
tions of these coupled differential equations have provided
the semiclassical wave functions for gapped and the phase
dependent α − T3 Hamiltonian, and led to the correct de-
scription of quantum states for charge carriers in the ballistic
regime. Additionally, we have obtained closed form analytic
expression for WKB wave functions which could be applied to
various analytical models as well as for studying the tunneling
properties of electrons in gapped α − T3 materials.

Our derivation of the generalized WKB equations and a
pseudospin-1 Dirac-Weyl Hamiltonian for the α − T3 model
are shown to be quite different from a Schrödinger particle
considered in standard quantum mechanics and even a Dirac
electron in graphene. For this case, we are facing with 3 × 3

0.25 0.50.130.0

1.0

0.0

1.0

0.0

1.0

0.0

( )a

( )b ( )c

FIG. 6. Calculated transmissions T (πy | a,�0, φ) from Eq. (55) for gapped α − T3 lattices. Panel (a) demonstrates T (πy | a, �0, φ) as a
function of transverse momentum πy for φ = π/4, a = 0.2, and various energy gaps �0 = 0, 0.1, 0.3, 0.5. Plots (b) and (c) display the φ

dependence of T (πy | a, �0, φ) with πy = 0, a = 1, and various vales of �0 = 0, 0.2, 0.5, 0.7 in (b) and with πy = 0, �0 = 0.5, and different
values of a = 0.5, 1, 1.5, 2 in (c).
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phase-dependent matrices and inequivalent states of electrons
and holes. In particular, the resulting electronic states and
even their energies are found to be valley-dependent under
an external radiation field, which enables the so-called valley
filtering effect and a plenty of other valleytronic applications.

Physically, our derived dynamical equations and calcu-
lated electronic states could be employed for studying a
variety of transport properties of α − T3 materials. However,
our focus in this paper was on the phase-dependent elec-
tron tunneling, band gap modification and the suppression
of the Klein paradox with nonsquare potential barriers. Even
a limited knowledge regarding the semiclassical action and
time-dependent momentum can provide us with important
information on electron dynamics and help us evaluate the
tunneling transmission of electrons through the integral of
absolute electron momentum over the classically inaccessible
regions along the tunneling-electron path.

Based on our generalized WKB theory, we have investi-
gated the electron tunneling through an electric field biased
potential barrier and revealed unimpeded Klein tunneling for
the head-on collisions in the absence of an energy gap. This
event applies to all α − T3 materials independent of the ge-
ometry phase φ, i.e., the calculated transmission in gapless
α − T3 materials does not depend on φ. Moreover, we have
found that the πy-dependent transmission is greatly reduced
in the presence of a band gap, and is decreased when πy

is increased. On the other hand, the slope of the potential

profile always enhances the transmission despite the energy
gap, which is due to speeding up an electron-to-hole (or hole-
to-electron) transition over a shortened distance in ξ position
space. As a result, the generalized WKB theory in this paper
could be utilized to discern the array of localized and trapped
electronic states through their barrier scattering effects.

Our effort in generalizing the WKB approximation to
deal with the Hamiltonian for α − T3 lattices provides ad-
ditional tools to explore additional important and unknown
modifications to tunneling mechanism in such materials, as
demonstrated by our obtained analytical expressions for elec-
tron transmission and Klein tunneling. We believe that our
current study has revealed a remarkable and exclusive physics
features of low-dimensional materials. Meanwhile, all these
discoveries will definitely find their applications in Dirac cone
based tunneling transistors in analog RF devices, along with
their tunneling current control by constructive barrier scatter-
ing across designed array of coherent scatters.
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