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Spintronics with a Weyl point in superconducting nanostructures
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We investigate transport in a superconducting nanostructure housing a Weyl point in the spectrum of Andreev
bound states. A minimum magnet state is realized in the vicinity of the point. One or more normal-metal
leads are tunnel-coupled to the nanostructure. We have shown that this minimum magnetic setup is suitable
for realization of all common goals of spintronics: detection of a magnetic state, conversion of electric currents
into spin currents, potentially reaching the absolute limit of one spin per charge transferred, and detection of spin
accumulation in the leads. The peculiarity and possible advantage of the setup is the ability to switch between
magnetic and nonmagnetic states by tiny changes of the control parameters: superconducting phase differences.
We employ this property to demonstrate the feasibility of less common spintronic effects: spin on demand and
alternative spin current.
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I. INTRODUCTION

Spin currents in metals are conserved at significant length
scale of spin-flip length and therefore can be induced and
measured at this scale. The entire field of spintronics [1,2]
concentrates on conversion of electric currents to spin cur-
rents, electrical detection of spin polarization produced by
the spin currents, and dynamics of these processes [3]. Much
theoretical research addressed this conversion and detection at
ferromagnet-normal metal interfaces, for collinear [4,5] and
noncollinear [6,7] configurations of the ferromagnets. Detec-
tion of the complex counting statistics of spin currents has
been addressed as well [8,9].

New functionalities can be achieved by combining ferro-
magnets, normal metal, and superconductors, most are based
on spin-singlet nature of Cooper pairs forming the supercon-
ducting condensate [10]. For instance, the absolute spin-valve
effect [11,12] can be achieved in this way, and long-distance
triplet proximity effect [13–15] can be arranged.

While most research and applications in spintronics con-
centrates on extended structures, all spintronic effects can be
reproduced with the systems involving few quantum states, for
instance, realized in semiconducting quantum dots [16,17].
Spin filtering and detection have been demonstrated [17–19]
and more research is underway [20]. The ferromagnets are not
needed here since spin effects arise from Zeeman splitting of
the discrete energy levels by external magnetic field.

Recently, Weyl points—the topological singularities in
the spectrum of Andreev bound states—have been predicted
in superconducting nanostructures [21]. At a Weyl point,
the energy of the lowest Andreev state crosses Fermi level,
so it costs vanishing energy to excite a quasiparticle near
the Weyl point. From general topological reasoning, such
crossing requires tuning of three parameters. This is why
the Weyl points are usually considered in multiterminal su-
perconducting nanostructures where the parameters are the

superconducting phase differences of the terminals. Four ter-
minals are thus needed to realize a Weyl point. This prediction
gave rise to related experimental and theoretical research
[22–33].

It is important that weak spin-orbit interaction splits the
energies of single-quasiparticle states. This can be realised
within AIIIBV semiconductors, heavy metals, and curved
graphene [21,34–36] Owing to this, the ground state config-
uration is always magnetic in a small finite region around
the point and is nonmagnetic otherwise [28,34]. The opposite
magnetization is realized in a small region at opposite settings
of the phase differences, as required by time reversibility.
Thus Weyl point provides a minimum magnet that involves a
single electron spin and can be driven to a nonmagnetic state
by a tiny change of the external parameters—superconducting
phases. More details are provided in Sec. II.

In this paper, we investigate if this minimum magnet can
be utilized in spintronic context. We consider low-voltage
transport in a setup where one or two normal leads are
tunnel-coupled to a superconducting structure hosting a Weyl
point (Fig. 1). We demonstrate that this suffice to realize all
spintronic effects: The magnetic state of the superconduct-
ing structure can be detected, a spin-polarized current can
be induced in the leads, and its polarization can be close to
absolute one, nonequilibrium spin accumulation in the leads
can be detected electrically. The peculiarity and a possible
advantage of the Weyl-point spintronics is the sensitivity of
all effects to tiny variations of the superconducting phases.
This enables spintronic effects that are not usually present
in common situations; we discuss how to provide spin on
demand and alternative spin current.

The structure of the paper is as follows. In Sec. II we review
the generic Hamiltonian of the Weyl point and explain the
magnetism in its vicinity. In Sec. III we establish a micro-
scopic model of tunneling to/from the nanostructure, identify
the elementary transport processes, compute their rates, and
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FIG. 1. Single-lead (a) and two-lead (b) setups for spintronics
with a Weyl point investigated in this paepr. The normal leads are
tunnel-coupled to a superconducting structure hosting an Andreev
bound state (W.P.A.B.S.) that can be tuned to a Weyl point by choos-
ing the superconducting phases φ1,2,3. Since the model in use applies
to any nanostructure, the picture is rather symbolic, the W.P.A.B.S
region is anything that connects the leads thus making the Andreev
bound states possible. We demonstrate the spintronic effects in the
transport: Spin current J in addition to electric current I , and the
detection of possible spin accumulation in the leads.

derive a master equation describing the transport. We study
the transport in a single-lead setup in Sec. IV. Next, we de-
scribe how to achieve spin on demand and alternative spin
current (Sec. V). Owing to spin conservation in the supercon-
ductor, the dc spin current requires two leads; we consider
this situation in Sec. VI and show how to approach the abso-
lute spin polarization of the resulting current. We discuss the
detection of spin accumulation in the leads in Sec. VII. We
conclude in Sec. VIII.

II. MAGNETISM NEAR A WEYL POINT

In this section, we give the effective Hamiltonian of the
superconducting nanostructure in the vicinity of Weyl point
and describe its magnetic state following the Refs. [21,28,34].
Three independent superconducting phase differences can be
regarded as a 3D vector �ϕ. Suppose the Weyl points are
situated at ±�ϕ0. In the vicinity of the point at �ϕ0 we expand
�ϕ = �ϕ0 + δ�ϕ, |δ�ϕ| � 1 and can describe the lowest Andreev
bound states by a 2 × 2 matrix BdG Hamiltonian

ĤW = φaτ̂a; φa = Mab δϕb, (1)

where τ̂a is a vector of Pauli matrices. This form suggests
convenient coordinates �φ for the vicinity of a Weyl point that
are linearly related and thus equivalent to δ�ϕ. These rescaled
coordinates �φ are very convenient although they have dimen-
sion energy. We will make consistent use of them in the rest
of the paper. In these coordinates of dimension energy, the
spectrum is isotropic and conical, E = ±| �φ|. The coordinates
are thus defined upon an orthogonal transformation. We thus
consider only a pair of Andreev bound states. We stress that
this approximation is valid at low energy and in the small
vicinity of the Weyl point in any nanostructure, while the
criteria on low energy and small vicinity are specific for a
nanostructure. If there are few Andreev bound states in the
overall spectrum, the energy should be lower than the super-
conducting energy gap �, and the phase distance from the
Weyl point should be smaller than 2π . The approximation is
also valid if there are many Andreev bound states forming a
quasicontinuous spectrum; in this case, the energy should be
smaller than the average level spacing in the spectrum and
the phase distance is restricted by a correspondingly smaller
value.

The 2 × 2 BdG Hamiltonian is obtained by projection
on two two-component eigenfunctions |�±〉 related by BdG
symmetry. In coordinate representation,

|�+〉 = (
u(r), v(r)

)
; |�−〉 = ( − v∗(r), u∗(r)

)
, (2)

r being the coordinates within the nanostructure.
Weak spin-orbit interaction within the nanostructure mod-

ifies the Hamiltonian splitting the Andreev states in spin [34],

ĤW = φaτ̂a + Baσ̂a, (3)

σ̂a being a vector of Pauli matrices in spin space, and Ba

looks like an external magnetic field causing Zeeman splitting.
However, �B �= 0 even in the absence of external magnetic field
and represents the effect of the superconducting phase differ-
ences on spin orientation. Owing to global time reversibility,
the vectors �B are opposite for opposite Weyl points, �B(−ϕ0) =
−�B(ϕ0). The magnitude of �B can be estimated as the su-
perconducting energy gap � times a dimensionless factor
characterizing the weakness of the spin-orbit interaction. For a
concrete number in mind, we can take B � 0.1� � 0.2 meV,
which corresponds to niobium. If there is an external magnetic
field, it adds to �B. We note however that our estimation of B is
about 3 T, so it requires a significant field to change it. While
the presence of SO is important for the spectrum of the Weyl
point, its concrete value is not that important for our model
since it enters only as a single parameter B and all spintronic
properties scale eventually scale with this parameter.

To rewrite the Hamiltonian in the second-quantization
form, we introduce quasiparticle annihilation operators γ̂σ and
associated Nambu bispinors γ̄a,σ ≡ (γ̂σ , σ γ̂

†
−σ ) to recast it to

the standard form,

HWP = 1
2 γ̄ †

α ĤWP
αβ γ̄β . (4)

This Hamiltonian can be reduced to a diagonal form for a
certain direction in φ-space, �φ = φ�n by a Bogoliubov trans-
form of γ̂σ to a direction-dependent ˆ̃γσ . Choosing the spin
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FIG. 2. Magnetism near a Weyl point (a) Energies of the singlet
(g, x) and doublet (↓, ↑) states in the vicinity of a Weyl point vs
one of the phases. (b) The region of a doublet (magnetic) ground
state around a Weyl point at �ϕ0 surrounded by the region of a singlet
ground state. (c) Opposite magnetizations at Weyl points at ±�ϕ0.

quantization axis along �B, we arrive at

HWP = 1
2 (φ + Bσ )( ˆ̃γ †

σ
ˆ̃γσ − ˆ̃γσ

ˆ̃γ †
σ ). (5)

This gives the spectrum sketched in Fig. 2(a). The energies
are E = ±φ for two spin-singlet states, ground one |g〉, and
excited one |x〉 ≡ ˆ̃γ †

↑ ˆ̃γ †
↓ |g〉. The energies are E = ±B for two

components of the spin doublet |↑〉 ≡ ˆ̃γ †
↑ |g〉, |↓〉 ≡ ˆ̃γ †

↓ |g〉. The
spin-doublet is split and its energies exhibit no singularity or
phase dependence in the vicinity of the Weyl point �φ = 0,
while the spin-singlet states retain the conical spectrum.

This leads us to a simple but important conclusion: The
ground state of the nanostructure is magnetic in a narrow
vicinity of a Weyl point, namely, at |φ| < B [Fig. 2(a)].
Corresponding to our estimation of B, δϕ � 0.1. Thus, the
magnetism can be switched on and off by variation of mag-
netic flux controlling the superconducting phase differences
by a tenth of the flux quantum. This is a much smaller action
than, for instance, in quantum dots where it requires a change
of electron number and strong magnetic fields, not mentioning
the bulk magnetic structures. The opposite direction of the
equilibrium magnetic polarization is found at the opposite
Weyl point [Fig. 2(c)].

This makes a nanostructure with Weyl points a minimum
example of a magnet.

III. MICROSCOPIC MODEL AND TUNNELING RATES

Let us consider tunneling between the electron states in
the nanostructure and those in a normal lead. Conventionally,
we assume a quasicontinuous spectrum in the lead and label
the electron states with k and spin direction σ , d̂σ,k being an
associated electron creation operator. We start with a rather

general model tunneling Hamiltonian

HT =
∫

dr (tk (r) ĉσ (r)† d̂σ,k + H.c.) (6)

that describes electron tunneling to/from a point r in the
nanostructure from/to the state k in the lead, ĉσ (r) being the
electron annihilation operator at the point r. The tunneling
amplitudes can be equivalently given in coordinate representa-
tion, t (r, r′), with the transform involving the eigenfunctions
of the states k in coordinate representation. We assume spin
conservation in the course of tunneling, this is consistent with
the assumption of weak spin-orbit interaction.

To proceed, one represents ĉσ (r) in terms of the quasi-
particle creation/annihilation operators γ̂σ,n associated with
the quasiparticle states in the nanostructure, those are labeled
with n:

ĉσ (r) =
∑

n

(un(r) γ̂σ,n − σ v∗
n (r) γ̂

†
−σ,n). (7)

Here, (un(r), vn(r)) is the wave function of the quasiparticle
state n.

We concentrate on the tunneling that involves only the
lowest quasiparticle state near the Weyl point, this is relevant
at low energies � �. We also neglect higher-order tunneling
processes corresponding to two-electron tunneling to the su-
perconducting nanostructure [37] or Andreev reflection from
the nanostructure. With this, we can replace

cσ (r) → u(r) ˆ̃γσ − σ v∗(r) ˆ̃γ †
−σ , (8)

where ˆ̃γσ is the direction-dependent quasiparticle creation op-
erator, and (u(r), v(r)) is the associated wave function which
also depends on the direction n.

With this, we can express all the tunneling rates involving
electron energy E in terms of two combinations of the tunnel-
ing amplitudes:


u,v = 2π

h̄

∑
k

δ(E − Ek )
∣∣T u,v

k

∣∣2
, (9)

T u
k =

∫
dr u(r) t∗

k (r); T v
k =

∫
dr v(r) tk (r). (10)

Here, 
u enters the rates of the processes where
adding/extracting of an electron in the lead is accompanied
by extracting/adding a quasiparticle, while 
v determines
the rates of the processes where the adding/extracting of
an electron goes together with the adding/extracting a
quasiparticle. These rates depend on the direction in the
vicinity of the Weyl point. Transforming the wave functions,
we derive the �n dependence of these rates:


u,v = 


2
± �
1 · �n; | �
1| < 
/2. (11)

We observe that the tunneling breaks isotropy near the Weyl
point. This has been also noted in Ref. [38] where we have
considered tunneling to/from a Weyl point nanostructure to
discrete electron states. In the following, we will neglect the
energy dependence of 
u,v , which is a common assumption
for the tunneling at energies close to the Fermi energy.

With this, we can straightforwardly evaluate the rates of
all relevant processes. Those include transitions between |g〉
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and doublet states, |e〉 and doublet states, each transition can
proceed with addition of spin σ and either electron or hole
to the lead. Let us consider a transition from |x〉 to | − σ 〉
with addition of an electron with spin σ to the lead. This
should involve 
u. The energy of the resulting electron is
E = Ee − E−σ , and the probability to find an empty state for
this transition is defined by the filling factor in the lead at the
energy E and with spin direction σ . Therefore,


x→−σ,e = 
u(1 − fσ (Ex − E−σ )) (12)

The other rates are obtained by similar consideration. Let us
list them all [here for brevity f̄ ≡ (1 − f )] :


x→σ,e = 
u f̄−σ (Ex − Eσ ), (13)


x→σ,h = 
v fσ (Eσ − Ex ), (14)


σ→x,e = 
v f̄σ (Eσ − Ex ), (15)


σ→x,h = 
u f−σ (Ex − Eσ ), (16)


g→σ,e = 
v f̄−σ (Eg − Eσ ), (17)


g→σ,h = 
u fσ (Eσ − Eg), (18)


σ→g,e = 
u f̄σ (Eσ − Eg), (19)


σ→g,h = 
v f−σ (Eg − Eσ ). (20)

We note that since Eg = −Ex and Eσ = −E−σ , this is the
manifestation of the absence of electron-electron interactions
in our model,


σ→x = 
g→−σ ; 
x→σ = 
−σ→g (21)

for both e and h processes separately. One can easily include
more leads into the consideration; each rate will be a sum of
contributions of the rates to each lead.

The rates will enter a standard master equation for the prob-
abilities pg, px, p↑, p↓. We will not write down the equation,
since owing to the absence of the interactions, its solution
is easily obtained in a very general situation and reads (F̄ =
1 − F ):

pg = F̄uF̄d , p↓ = Fd F̄u, p↑ = FuF̄d , px = FuFd , (22)

where the effective “filling factors” Fd,u are given by

Fd = �−1
∑

j

(

( j)

u f ( j)
↓ (εd ) + 
( j)

v f̄↑(−εd )
)
, (23)

Fu = �−1
∑

j

(

( j)

u f ( j)
↑ (εu) + 
( j)

v f̄↓(−εu)
)
, (24)

εu,d = E↑,↓ − Eg; � ≡
∑

j

(

( j)

u + 
( j)
v

)
, (25)

j being metallic lead index.
We mostly concentrate on the vanishing temperature case,

kBT � B. Then in the absence of spin accumulation the filling
factor does not depend on spin and can be approximated
f (E ) = �(−E + eV ), V being the voltage applied to the lead.
It is convenient to set the superconducting nanostructure at
zero voltage.

B

B

-B

eV

0 0

FIG. 3. Transport in the single-lead setup. The lines of thresholds
at eV = ±|B − φ| and eV = ±(B + φ) define the domains with the
electric current I = ±I0, ±2I0. There is no current at low voltage
except φ ≈ B and vanishing temperature.

IV. SINGLE-LEAD TRANSPORT

Let us concentrate on a single-lead setup and evaluate the
current at various voltages applied to the lead. To understand
the relevant transport processes, let us fist assume vanishing
temperature, eV > 0 and φ > B, that is, the singlet ground
state. No current will flow until the voltage exceeds the thresh-
old required to put a quasiparticle with spin down to the
nanostructure, eV > εd = φ − B. At slightly higher voltage,
the states at energy ed are filled in the lead and an electron at
this energy tunnels to the nanostructure adding a quasiparticle.
The rate of this process is 
u. The second quasiparticle can
not be added yet since it requires higher energy. The state of
the nanostructure only changes when an electron at energy
−εd enters annihilating the quasiparticle. This process occurs
with the rate 
v . Then the transport cycle repeats itself. We
thus have two electrons transferred per cycle of the average
duration 
−1

u + 
−1
v , so that the current in this regime is

given by

I = e
2
u
v


u + 
v

≡ I0. (26)

If we start with the magnet ground state, φ < B, the threshold
voltage for the same transport regime is determined by open-
ing the pair annihilation process, eV > −εd . Both thresholds
are combined in one by relation eV > |φ − B| (Fig. 3). Upon
further increase of voltage, we achieve another threshold
eV > εd = B + φ where electrons coming to the leads can
add a quasiparticle with spin up, either to ground or spin-
down state. Owing to the absence of interaction, this opens
up another equivalent and independent transport channel, and
the current doubles in this regime (Fig. 3):

I = 2I0. (27)

An interesting feature in this regime is a singular depen-
dence of the current at the Weyl point φ = 0. Indeed, the
current is a function of �n [see Eq. (11)],

I = e
4
u
v


u + 
v

= e
0 − 4e
(�
1 · �n)2



. (28)
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At φ = 0, an infinitesimally small change of �φ leads to a
finite change of the current. Remarkably, such divergent ad-
mittance response persist at finite voltages. In reality, the
singularity is probably smoothed at φ � 
, elaboration on
this being beyond the approach of this article. Nevertheless,
this anomalously big response can be used for a simple and
reliable identification of the Weyl point position in a realistic
experiment.

At negative eV , all the processes are accompanied by elec-
trons leaving the nanostructure rather than entering it. This
reverses the sign of the current upon reverting the voltage.

There is a relatively simple expression for the current be-
yond the vanishing temperature limit,

I/I0 = ( fF (εd − eV ) − fF (εd + eV ))

+ ( fF (εu − eV ) − fF (εu + eV )), (29)

where fF (ε) ≡ (1 + exp(ε/kBT ))
−1

is the Fermi distribution
function, two terms correspond to quasiparticle transfer with
down or up spin. At finite but small temperature kBT � B
the zero-voltage conductance exhibits a resonant peak in the
vicinity of B = φ, that is, at εd � kBT � B

dI

dV
= eI0

2kBT

1

cosh2(εd/2kBT )
. (30)

This can be used for identification of the transition to the
magnetic state.

There is no dc spin current in the single-lead setup owing
to the simple fact that the current to the singlet superconductor
bears no spin. In the next sections, we show how this can be
circumvented.

V. SPIN ON DEMAND AND AC SPIN CURRENT

Let us understand that despite the fact that the dc spin
current is absent for the single-lead setup, the spin injection is
easy to organize. Suppose we want a spin on demand: single
spin injected to the lead in a time window around a time
moment t0. We can do so by changing the superconducting
phases, that is, φ. Before t0, we keep φ > B so the state is the
ground singlet. At t = t0, we switch φ to a value < B mak-
ing down state energetically favorable. Within a time interval
� 
0 a spin will be injected to the lead, either as an electron
or hole excitation. To inject a spin of opposite sign, we keep
φ < B before t0 and change it to the value B > 0.

An obvious drawback of this scheme is that we cannot
inject the spin of the same sign twice; we would need to evac-
uate the quasiparticle somewhere. In the single-lead setup, it
would have to go to the same lead injecting the opposite spin.
This drawback becomes an advantage if the goal is to produce
an ac spin current J .

Suppose we cycle φ in the following way:

φ(t ) = B + φ̃ sin(�t ). (31)

In the limit of low frequencies � < 
, we have alternating
single-spin injections at time moments tn = 2πn/� (Fig. 4).
In the opposite limit of high frequencies � > 
, the down
and ground singlet state are equally populated, the spin trans-
fers are stochastic with the time-averaged spin current being

FIG. 4. Time-averaged ac spin current (thick curve) from the
lead produced by a periodic modulation of the distance φ (thin
curve) from the Weyl point. Upper plot: Low frequencies � � 
,
spin transfers at the time scale � 
 upon crossing the boundary of
magnetic state region. Lower plot: high frequencies � � 
, equal
populations of spin-down and ground singlet state.

given by

J (t ) = −sgn(sin(�t ))
/2. (32)

Even in the limit of high frequencies, the amplitude of this
ac spin current is comparable with dc spin currents we will
evaluate later.

VI. TWO-LEAD TRANSPORT

Let us start our discussion of the transport in the two-
lead setup with a simple but perhaps the most interesting
example. Let us organize an absolute spin-valve, that is, the
transport involving only electrons of a single spin direction.
The tunneling to/from the two leads is characterized by the
rates 
(1)

u,v , 
(2)
u,v . We assume vanishing temperature and φ > B.

We also set V2 = 0 and increase the voltage of the first lead.
Nothing happens till eV1 < εd ; the nanostructure remains in
the ground singlet state. Upon crossing this threshold, spin-
down electrons from the first lead can create a quasiparticle
in the nanostructure. The quasiparticle can go either to the
first or two the second lead. Let us assume 
(1)

u,v � 
(2)
u,v . In

this case, the created quasiparticle will go to the second lead
almost instantly bringing the nanostructure back to the ground
singlet state. Therefore the transport in the first lead will in-
volve only spin-down electrons, I1 = e
(1)

u , J1 = −I1/e. The
absolute spin valve is realized.

The spin current in the second lead is exactly opposite,
J2 = −J1. As to the electric current, the quasiparticle decay-
ing to this lead can create both electron and hole excitations.
So that the current in the second lead is smaller in magnitude
than I2 and can be of either sign depending on the direction
near the Weyl point,

I2 = I1
(

(2)

v − 
(2)
u

)/(

(2)

v + 
(2)
u

) = −2I1(�
(2) · �n)/
(2).

(33)
It is easy to revert the direction of the spin current. If φ <

B, the ground state is spin-down doublet and the transport in
the first lead involves the spin-up electrons only, I1 = e
(1)

v ,
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FIG. 5. Two-lead setup. The absolute spin-valve regime can be
realized at small |eV2| < |εd | and 
(1)

u,v � 
(2)
u,v . Except the regions

with zero-spin current J = 0, only electrons with either spin-down
or spin-up are transported in the first lead. In all regions, J = J1 =
−J2. The current in the second lead is not completely polarized, I2 =
±βI1 with β ≡ (
(2)

v − 
(2)
u )/(
(2)

v + 
(2)
u ), or I2 = ±Ĩ , Ĩ = e(
(1)

v −

(1)

u )β.

J1 = I1/e. The currents in the second lead follow I1, J1 as in
the previous case.

If we rise eV1 above the second threshold, eV1 > εu, at
φ > B, the quasiparticles with both spins can be created in
the nanostructure, eventually, with equal probability. This
quenches the spin current in this regime, while the electric
current I1 = 2e
(1)

u is doubled. If φ < B, the crossing of the
second threshold does not change the absolute spin valve
regime since the transitions from the spin-down state to either
ground or excited singlet are both accompanied by the same
spin change. The current increases to I1 = e
(1).

Reverting V1 changes the sign and magnitude of I1 while
J follows the magnitude but remains of the same sign. The
results for the absolute spin valve regime are summarized in
Fig 5. At vanishing temperature, the transport is the same
through the range −|εd | < eV2 < |εd |.

General picture of the transport in the two-lead setup
beyond the assumption 
(1) � 
(2) is more complex. The
polarization of the transport electrons is not absolute. For
instance, in the region defined by −|εd | < eV2 < |εd |, φ > B,
φ − B < eV1 < φ + B the currents read

J = J1 = −J2 = −
(1)
u


(2)


(2) + 
(1)
, (34)

I1 = e
(1)
u


(2) + 2
(1)
v


(2) + 
(1)
, (35)

I2 = −e
(1)
u


(2)
u − 
(1)

v


(2) + 
(1)
. (36)

The polarization of the current in the second lead is thus∣∣∣eJ

I1

∣∣∣ = 1

1 + 2

(1)
v /
(2)

< 1. (37)

In all voltage regions and arbitrary temperatures the currents
are obtained from the general formulas

(
(2) + 
(1) )J = 
(1)
(2)
u ( fF (εd − eV2) − fF (εu − eV2))

− 
(2)
(1)
u ( fF (εd − eV1) − fF (εu − eV1))

+ 
(1)
(2)
v ( fF (εd + eV2) − fF (εu + eV2))

− 
(2)
(1)
v ( fF (εd + eV1) − fF (εu + eV1)),

(38)

(
(2) + 
(1) )I1/e = 2
(1)
u 
(1)

v ( fF (εd − eV1) − fF (εd + eV1)

+ fF (εu − eV1) − fF (εu + eV1))

+
(1)
u 
(2)

u ( fF (εd − eV2) − fF (εd − eV1)

+ fF (εu − eV2) − fF (εu − eV1))

+
(1)
u 
(2)

v ( fF (εd + eV2) − fF (εd − eV1)

+ fF (εu + eV2) − fF (εu − eV1))

+
(1)
v 
(2)

u ( fF (εd − eV2) − fF (εd + eV1)

+ fF (εu − eV2) − fF (εu + eV1))

+
(1)
v 
(2)

v ( fF (εd + eV2) − fF (εd + eV1)

+ fF (εu + eV2) − fF (εu + eV1)). (39)

VII. DETECTION OF SPIN ACCUMULATION

So far we have considered equilibrium electron distribution
in the normal leads. It is plausible to arrange a distribution
that is not in equilibrium with respect to spin [1,3]. For
instance, there may be another contact with this lead, that
injects spin utilizing the properties of a traditional normal
metal-ferromagnet interface. Owing to the approximate spin
conservation, the distributions of the spins of two different
directions can be regarded as independent and may differ
in chemical potentials. This difference 2P characterizes spin
accumulation in energy units. If we assume thermalization of
the distributions, the filling factors read

f↓,↑(ε) = fF (ε ± P). (40)

If the axis of the resulting spin accumulation �P is not in
the direction of �B, the effective filling factors for two spin
directions read[

f↓(ε)
f↑(ε)

]
=

[
cos2 θ

2 sin2 θ
2

sin2 θ
2 cos2 θ

2

][
fF (ε + P)
fF (ε − P)

]
, (41)

θ being the angle between �P and �B.
A common spintronic effect is an electric current response

on spin accumulation at one side of a contact [1]. This re-
sponse may be present even without a voltage difference
applied to the contact owing to spin dependence of the trans-
mission coefficients [2]. It provides a convenient way to detect
and measure the spin accumulation.

Let us start with the single-lead setup. In this case, the
spin accumulation gives no current at zero voltage despite the
difference in transport of spin-down and spin-up electrons.
The reason for this is a rather fine symmetry of the distri-
bution given by Eq. (41): fσ (ε) = f̄−σ (−ε). This guarantees
equal amount of electron emission and absorption by the
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(a)

(b)

(c)

FIG. 6. The detection of spin accumulation. (a) The single-lead
setup. The domain of the current with I = I0 (see Fig. 3) is spit
into two corresponding to majority and minority spin accumulated,
those are shifted in φ by ±P. The currents in the resulting domains
are cos2 θ

2 I0, sin2 θ

2 I0. (b) The detection in the single-lead setup re-
quires voltage. Low-voltage conductance corresponding to (a) gives
two peaks that are well-separated provided kBT � P. In the plot,
kBT = 0.1P. (c) In the two-lead setup, the spin accumulation gives
rise to a current in the absence of voltage. The current in the first lead
exhibits two plateaux � cos2 θ

2 ,− sin2 θ

2 . Here kBT = 0.1P.

superconducting nanostructure and thus zero net current. The
spin accumulation in this setup is however detected in the
presence of voltage. At vanishing temperature, each boundary
between the regions of different current is split by the spin
accumulation. Two resulting boundaries correspond to thresh-
olds for the transport of minority/majority spin and are shifted
by ±P in eV , as shown in Fig. 6(a). At finite temperature
and small voltage, spin accumulation is manifested in splitting
and ±P shifts of the conductance peak. Two separate peaks
are formed if the accumulation is not in the direction of �B,
otherwise the conductance peak is shifted by P,

dI

dV
= eI0

kBT

(
cos2 θ

2

cosh2((εd + P)/2kBT )

+ sin2 θ
2

cosh2((εd − P)/2kBT )

)
, (42)

c.f. Eq. (30), see also Fig. 6(b). More general expression for
the current reads

I/I0 = cos2 θ

2
A+ + sin2 θ

2
A−;

A± = f (εd ± P − eV ) − f (εd ± P + eV )

+ f (εu ∓ P − eV ) − f (εu ∓ P + eV ). (43)

Interestingly, in a two-lead setup the spin accumula-
tion is detected as a current signal without the voltages
applied. We assume the spin accumulation is in the first
lead. The accumulation P < B gives rise to the current re-
sponse near φ = B [Fig. 6(c)] in the window |φ − B| <

2P. In this regime, we can disregard the contribution
of the spin-up excitations. The current in the first lead
reads

I1 = e
(1)
(2)


(1) + 
(2)

[
cos2 θ

2
( fF (ed + P) − fF (εd ))

+ sin2 θ

2
( fF (ed − P) − fF (εd ))

]
(44)

and I2 = −I1. Finally, we notice that the current response on
the spin accumulation also remains the limit of high tempera-
tures kBT � B, P where it is small in comparison with I0 and
linear in �P:

I1 = − eφ
(1)
(2)

8(
(1) + 
(2) )(kBT )3
(2 �P · �B + �P2). (45)

VIII. CONCLUSION

To conclude, we have investigated transport from the nor-
mal leads to a superconducting nanostructure housing a Weyl
point. A minimum magnet state is realized in the vicinity
of this point. Owing to this, the transport exhibit all funda-
mental spintronic effects; the magnetic state can be detected,
spin-on-demand and ac spin currents can be arranged in
single-lead setups, spin-polarized current can be produced
in two-lead setups; this includes the absolute polarization,
the spin accumulation in a lead can be detected by elec-
tric measurement. The experimental realization of the setup
and the corresponding spintronic experiments are feasible.
Such a minimum spintronic device will be a demonstra-
tion of the power of superconducting nanotechnology and is
advantageous because of its sensitivity to small changes of su-
perconducting phase differences and energy selectivity of the
transport.
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[1] I. Žutić, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323
(2004).

[2] G. E. W. Bauer, Phys. Rev. Lett. 70, 1733(E) (1993).
[3] Y. Tserkovnyak, A. Brataas, G. E. W. Bauer, and B. I. Halperin,

Rev. Mod. Phys. 77, 1375 (2005).
[4] T. Valet and A. Fert, Phys. Rev. B 48, 7099 (1993).
[5] M. Johnson and R. H. Silsbee, Phys. Rev. B 37, 5312

(1988).

[6] A. Brataas, Y. V. Nazarov, and G. E. W. Bauer, Phys. Rev. Lett.
84, 2481 (2000).

[7] A. Brataas, G. E. Bauer, and P. J. Kelly, Phys. Rep. 427, 157
(2006).

[8] A. Di Lorenzo and Y. V. Nazarov, Phys. Rev. Lett. 93, 046601
(2004).

[9] A. Di Lorenzo, G. Campagnano, and Y. V. Nazarov, Phys. Rev.
B 73, 125311 (2006).

165424-7

https://doi.org/10.1103/RevModPhys.76.323
https://doi.org/10.1103/PhysRevLett.70.1733
https://doi.org/10.1103/RevModPhys.77.1375
https://doi.org/10.1103/PhysRevB.48.7099
https://doi.org/10.1103/PhysRevB.37.5312
https://doi.org/10.1103/PhysRevLett.84.2481
https://doi.org/10.1016/j.physrep.2006.01.001
https://doi.org/10.1103/PhysRevLett.93.046601
https://doi.org/10.1103/PhysRevB.73.125311


Y. CHEN AND Y. V. NAZAROV PHYSICAL REVIEW B 103, 165424 (2021)

[10] J. Linder and J. W. A. Robinson, Nat. Phys. 11, 307
(2015).

[11] D. Huertas-Hernando, Y. V. Nazarov, and W. Belzig, Phys. Rev.
Lett. 88, 047003 (2002).

[12] G. De Simoni, E. Strambini, J. S. Moodera, F. S. Bergeret, and
F. Giazotto, Nano Lett. 18, 6369 (2018).

[13] F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Phys. Rev. Lett.
86, 4096 (2001).

[14] J. Linder and A. V. Balatsky, Rev. Mod. Phys. 91, 045005
(2019).

[15] V. Braude and Y. V. Nazarov, Phys. Rev. Lett. 98, 077003
(2007).

[16] A. Ludwig, B. Sothmann, H. Höpfner, N. C. Gerhardt, J.
Nannen, T. Kümmell, J. König, M. R. Hofmann, G. Bacher,
and A. D. Wieck, Quantum dot spintronics: Fundamentals and
applications, in Magnetic Nanostructures: Spin Dynamics and
Spin Transport, edited by H. Zabel and M. Farle (Springer,
Berlin, 2013), p. 235–268.

[17] R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha,
and L. M. K. Vandersypen, Rev. Mod. Phys. 79, 1217
(2007).

[18] R. Hanson, L. M. K. Vandersypen, L. H. Willems van Beveren,
J. M. Elzerman, I. T. Vink, and L. P. Kouwenhoven, Phys. Rev.
B 70, 241304(R) (2004).

[19] K. Ono, D. G. Austing, Y. Tokura, and S. Tarucha, Science 297,
1313 (2002).

[20] A. Bordoloi, V. Zannier, L. Sorba, C. Schönenberger, and A.
Baumgartner, Commun. Phys. 3, 135 (2020).

[21] R.-P. Riwar, M. Houzet, J. S. Meyer, and Y. V. Nazarov, Nat.
Commun. 7, 11167 (2016).

[22] N. Pankratova, H. Lee, R. Kuzmin, K. Wickramasinghe,
W. Mayer, J. Yuan, M. G. Vavilov, J. Shabani, and V. E.
Manucharyan, Phys. Rev. X 10, 031051 (2020).

[23] R. L. Klees, G. Rastelli, J. C. Cuevas, and W. Belzig, Phys. Rev.
Lett. 124, 197002 (2020).

[24] G. V. Graziano, J. S. Lee, M. Pendharkar, C. Palmstrom, and
V. S. Pribiag, Phys. Rev. B 101, 054510 (2020).

[25] P. Marra and M. Nitta, Phys. Rev. B 100, 220502 (2019).
[26] Z. Scherübl et al., Commun. Phys. 2, 108 (2019).
[27] M. Houzet and J. S. Meyer, Phys. Rev. B 100, 014521 (2019).
[28] E. V. Repin, Y. Chen, and Y. V. Nazarov, Phys. Rev. B 99,

165414 (2019).
[29] X. Fan, C. Qiu, Y. Shen, H. He, M. Xiao, M. Ke, and Z. Liu,

Phys. Rev. Lett. 122, 136802 (2019).
[30] A. W. Draelos, M.-T. Wei, A. Seredinski, H. Li, Y. Mehta,

K. Watanabe, T. Taniguchi, I. V. Borzenets, F. Amet, and G.
Finkelstein, Nano Lett. 19, 1039 (2019).

[31] J. Erdmanis, A. Lukacs, and Y. V. Nazarov, Phys. Rev. B 98,
241105 (2018).

[32] J. S. Meyer and M. Houzet, Phys. Rev. Lett. 119, 136807
(2017).

[33] E. Eriksson, R.-P. Riwar, M. Houzet, J. S. Meyer, and Y. V.
Nazarov, Phys. Rev. B 95, 075417 (2017).

[34] T. Yokoyama and Y. V. Nazarov, Phys. Rev. B 92, 155437
(2015).

[35] J. D. S. Bommer et al., Phys. Rev. Lett. 122, 187702 (2019).
[36] M. M. Desjardins et al., Nat. Mater. 18, 1060 (2019).
[37] F. W. J. Hekking and Y. V. Nazarov, Phys. Rev. Lett. 71, 1625

(1993).
[38] Y. Chen and Y. V. Nazarov, Phys. Rev. B 103, 045410 (2021).

165424-8

https://doi.org/10.1038/nphys3242
https://doi.org/10.1103/PhysRevLett.88.047003
https://doi.org/10.1021/acs.nanolett.8b02723
https://doi.org/10.1103/PhysRevLett.86.4096
https://doi.org/10.1103/RevModPhys.91.045005
https://doi.org/10.1103/PhysRevLett.98.077003
https://doi.org/10.1103/RevModPhys.79.1217
https://doi.org/10.1103/PhysRevB.70.241304
https://doi.org/10.1126/science.1070958
https://doi.org/10.1038/s42005-020-00405-2
https://doi.org/10.1038/ncomms11167
https://doi.org/10.1103/PhysRevX.10.031051
https://doi.org/10.1103/PhysRevLett.124.197002
https://doi.org/10.1103/PhysRevB.101.054510
https://doi.org/10.1103/PhysRevB.100.220502
https://doi.org/10.1038/s42005-019-0200-2
https://doi.org/10.1103/PhysRevB.100.014521
https://doi.org/10.1103/PhysRevB.99.165414
https://doi.org/10.1103/PhysRevLett.122.136802
https://doi.org/10.1021/acs.nanolett.8b04330
https://doi.org/10.1103/PhysRevB.98.241105
https://doi.org/10.1103/PhysRevLett.119.136807
https://doi.org/10.1103/PhysRevB.95.075417
https://doi.org/10.1103/PhysRevB.92.155437
https://doi.org/10.1103/PhysRevLett.122.187702
https://doi.org/10.1038/s41563-019-0457-6
https://doi.org/10.1103/PhysRevLett.71.1625
https://doi.org/10.1103/PhysRevB.103.045410

