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Infrared surface phonon nanospectroscopy of an interacting dielectric-particle–dielectric-substrate
dimer using fast electrons
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Refinements in energy monochromation and aberration correction in state-of-the-art scanning transmission
electron microscopes has opened access to the far infrared regime for spectroscopic characterization at the
nanoscale. At these low energies, the dielectric environment, such as a dielectric slab adjacent to the target
specimen, may no longer play a passive role in the spectrum. Instead, the environment may itself host resonances
that mix with those of the target and complicate interpretation of its spectral responses. This paper explores a
theoretical description of the coupling between the collective vibrational surface modes of a dielectric particle
and dielectric slab of varying thickness for the purpose of elucidating the interacting phononic excitations in
dielectric materials typical of inelastic electron scattering measurements in the infrared. Dynamical coordinates
and a governing Hamiltonian are rigorously defined in the quasistatic limit to account for phonon mode mixing
and forcing by an aloof electron probe, which travels along a grazing trajectory, parallel to the dielectric slab.
As the spectral window of interrogation by fast electron probes has been extended down to thermal energies
with unprecedented meV energy resolution, theoretical models like that presented herein are crucial for accurate
interpretation of experimental data.
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I. INTRODUCTION

Recent advances in electron microscopy have enabled un-
precedented spatial imaging at the atomic scale combined
with refined spectroscopic resolution of inelastic scatter-
ing processes at increasingly low energy due to improved
monochromation and aberration correction of the incident
electron beam [1–6]. These developments have paved the way
for examination of progressively lower energy excitations,
including the molecular vibrations of organic and biological
compounds [7,8], as well as surface and bulk phonons hosted
by macroscopic samples, thin films, individual nanoparticles,
and nanoparticle assemblies of varying morphologies, none of
which had been previously characterized by electron energy
loss spectroscopy (EELS) [9–15]. Unlike a plane-wave light
source, a uniformly moving electron carries an evanescent
field akin to the broad spectrum white light source produced
by synchrotron radiation. When utilized as a spectroscopic
probe, it is capable of characterizing target excitations across
a broad spectral range, from low-energy collective surface and
bulk resonances to valence electronic transitions to core-loss
events at high energy.

As the available spectroscopic window of the electron mi-
croscope has extended ever lower in energy, now down to
thermal energies (∼25 meV), the vibrational modes probed
by the electron beam on individual nanoparticles become
apparent [2,10,16,17]. In this regime, dielectric nanoparti-
cles and their planar dielectric substrates may be coresonant.
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When placed in proximity, independent nanoparticle and sub-
strate excitations are able to appreciably couple in the near
field, and it is the composite nanoparticle-substrate assem-
bly that is ultimately interrogated by the electron beam.
The consequences of such phonon mode hybridization may
be perceptible through inelastic electron scattering, produc-
ing a rich and nuanced spectrum deserving of an in-depth
analysis.

Previous work [18,19] has explored substrate effects
in electron-scattering measurements of nanoparticle targets,
particularly how their presence can renormalize the eigenfre-
quencies of the target’s excited surface modes. Others have
investigated the potential for energy transfer facilitated by the
spectral overlap of a nanoparticle’s surface mode resonances
with the band-gap energies of its supporting semiconductor
substrate, an adsorbate molecule, or an adjacent nanoparticle
[20–26].

In this paper, we present a theoretical model-based ap-
proach to interpreting the measured scattering probability of a
composite dielectric nanoparticle-substrate dimer system for
a grazing electron beam geometry, showcasing that a consid-
eration of only the nanoparticle’s renormalized eigenmodes
is insufficient in interpreting the resulting scattering signal
when both the sample and substrate materials are dispersive
in the same spectral region. For simplicity, we will consider
a spherical nanoparticle target positioned directly adjacent to
the surface of a dielectric slab, where both the particle and slab
host nearly coresonant surface mode responses in the infrared.
We then investigate the resulting interaction between the elec-
tron probe, nanoparticle, and slab encoded in the spectrum of
the scattered electron beam.
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We begin by working within a classical dielectric for-
malism and construct a system Hamiltonian after defining
time-dependent coordinates for the oscillatory surface modes
of both the sphere and substrate. This allows for a charac-
terization of the energies of interaction and associated forces
between the electron probe, nanoparticle, and substrate at
the level of the equations of motion. We then examine the
linear response of the dielectric sphere, deriving its effective
polarizability in the presence of a substrate of varying depths,
by solving the coupled equations of motion in Fourier space.
Correspondingly, we also derive the linear response of the
semi-infinite dielectric slab in the presence of the sphere.
This permits an exploration of how the system evolves in
response to an external perturbing field when the distance
between the sphere and substrate surface is altered and when
the thickness of the supporting substrate is varied. The near-
field interactions between the surface modes on the sphere
and substrate are visualized with the aid of induced electric
near-field profiles, simulated using plane-wave excitation with
specific polarization. Finally, we derive an expression of the
sphere-substrate dimer’s corresponding scattering probability
for a dielectric slab of varying thicknesses and compare the
results to a simulated electron-scattering experiment based on
a numerical solution of Maxwell’s equations. In both cases,
we consider an aloof grazing trajectory, with the path of the
electron beam oriented parallel to the thin film surface and
traveling entirely in vacuum, avoiding the excitation of bulk
phonon mode resonances [15]. Excellent agreement between
simulations and the developed model highlights the impor-
tance of the substrate (which we henceforth refer to more
generally as a dielectric slab) as a separate dynamical com-
ponent that can strongly modify the infrared responses of the
nanoparticle target.

II. SURFACE PHONON MODES OF THE SPHERE AND
SUBSTRATE AND THEIR GENERALIZED COORDINATES

To characterize the electromagnetic surface modes hosted
by a finite dielectric sphere and slab, the latter modeled as
a thin film extended infinitely along x, z directions and of
finite thickness −d � y � 0 in y, we begin at the level of
the potentials and derive their auxiliary Green’s functions. In
general, for a material described by a dielectric function that
is local in space but not in time, its response to an external
perturbing charge distribution ρ is determined by the time-
dependent Poisson equation,

−∇ ·
∫ t

−∞
dt ′ε(x; t − t ′)∇�(x, t ′) = 4πρ(x, t ), (1)

in the quasistatic limit with Green’s function G satisfying

−∇ ·
∫ t

−∞
dt ′ε(x; t − t ′′)∇G(x, x′; t ′′ − t ′)

= 4πδ(x − x′)δ(t − t ′). (2)

By allowing the upper bound of the integral to approach
infinity as the perturbation of the point source extends from
the infinite past into the infinite future, Eq. (2) may be Fourier
transformed in t − t ′ to produce −∇ · ε̃(x, ω)∇G̃(x, x′, ω) =
4πδ(x − x′). Exploiting the orthogonality of the spherical har-

monics and the cylindrical Bessel functions, and applying by
standard procedure [27–29] the appropriate boundary condi-
tions, yields the following Green’s functions for the dielectric
sphere and the dielectric finite-thickness slab in spherical and
cylindrical coordinates, respectively:

G̃1(x, x′; ω)

= 1

|x − x′| −
∑
�m

4π

2� + 1

a2�+1

r′�+1r�+1
Y�m(θ, φ)

× Y ∗
�m(θ ′, φ′ )̃β�(ω), (3)

G̃2(x, x′; ω)

= 1

|x − x′| −
∞∑

n=−∞
ein(φ−φ′ )

∫ ∞

0
dkJn(k�)

× Jn(k�′)e−k(y+y′ )̃ζk (ω), (4)

when the source (x′) and observation (x) points are in the
same region outside of the dielectric. Embedded within these
Green’s functions are the geometric surface response func-
tions,

β̃�(ω) = �(̃ε1(ω) − 1)

�(̃ε1(ω) + 1) + 1
, (5)

ζ̃k (ω) = (̃ε2(ω)2 − 1)(1 − e−2kd )

(̃ε2(ω) + 1)2 − (̃ε2(ω) − 1)2e−2kd
, (6)

expressed in terms of the dielectric functions ε̃1,2(ω) of the
sphere (1) and slab (2) in a vacuum environment (i.e., εb = 1).
The surface resonance conditions of each are determined by
the pole structure of Eqs. (5) and (6). It is therefore apparent
that the sphere hosts an infinite number of discrete surface res-
onances, indexed by integer �, while the slab simultaneously
hosts a pair of surface resonances, which evolve continuously
with changing kd [30]. In Eqs. (3) and (4), the first term is
the Green’s function for the inhomogeneous Poisson equa-
tion, which accounts for the presence of the point source.
The second, containing β̃� and ζ̃k, are the induced Green’s
functions Gsph, and Gslab of the dielectric objects. Here, a is
the sphere radius and d is the substrate thickness, and the
latter extends along dimension y. r, θ, and φ are the respective
radial, polar, and azimuthal coordinates, and the cylindrical
radial coordinate � = √

x2 + z2.
Considering the time-domain representations of the re-

sponse functions permits a definition for the dynamic induced
potentials �sph and �slab as the product of a space-dependent
mode function and time-dependent amplitude decomposition
[31]. We write

�sph(x, t ) =
∫

dx′dt ′Gsph(x, x′; t − t ′)ρ(x′, t ′)

=
∑
�m

f�m(x)u�m(t ), (7)

�slab(x, t ) =
∫

dx′dt ′Gslab(x, x′; t − t ′)ρ(x′, t ′)

=
∞∑

n=−∞

∫ ∞

0
dk�n(k, x)Qn(k, t ). (8)
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The time-dependent dynamical coordinates are defined as

u�m(t )= −
√

12πa32� + 1

e2

∫
dx′dt ′ f ∗

�m(x′)ρ(x′, t ′)βl (t − t ′),

(9)

Qn(k, t ) = − 1

(ek2)2

∫
dx′dt ′�∗

n(k, x′)ρ(x′, t ′)ζk (t − t ′),

(10)

and the mode functions are defined as

f�m(x) = −
√

4π

3

e

2� + 1

a�−1

r�+1
Y�m(θ, φ), (11)

�n(k, x) = −ek2einφJn(k�)e−ky. (12)

The coordinates u�m and Qn represent a collective time-
dependent amplitude response of the charge carriers of the
sphere and slab, the dynamics of which are determined by the
response functions β� and ζk , and the time-dependent charge
distribution ρ. The mode functions f�m and �n describe the
spatial profile of the �, m, n mode responses.

For the particular case of a semi-infinite slab, i.e., in the
limit that the slab thickness d → ∞, its response function sur-
renders all dependence on k, ζ̃k (ω) → ζ̃ (ω) = (̃ε2(ω) − 1)/
(̃ε2(ω) + 1), and the induced Green’s function in the time
domain reduces to Gslab = −ζ (t − t ′)/|x − x̄′|. In Cartesian
coordinates, the vector x̄′ = (x′,−y′, z′) specifies the position
of the fictitious image charge generated in the dielectric slab.
Then we utilize a Lorentz dielectric model ε̃i(ω) = ε∞,i +
ω2

p,i/(ω2
i − ω2 − iγiω) to describe the sphere and substrate

bulk responses, where i = 1, 2, βl and ζ are well defined in
the time domain. Explicitly,

β�(t − t ′) = ω̃2
�

��

e−γ1(t−t ′ )/2 sin ��(t − t ′), (13)

ζ (t − t ′) = ω̃2
s

�s
e−γ2(t−t ′ )/2 sin �s(t − t ′), (14)

with �� =
√

ω2
� − γ 2

1 /4, ω2
� = ω2

1 + �ω2
p,1/[�(ε∞,1+1)+1],

ω̃2
� = �ω2

p,1(2� + 1)/[�(ε∞ + 1) + 1]2, �s =
√

ω2
s − γ 2

2 /4,

ω2
s = ω2

2 + ω2
p,2/(ε∞,2 + 1), and ω̃2

s = 2ω2
p,2/(ε∞,2 + 1)2.

Equations (13) and (14) illustrate that the surface responses
are oscillatory, and the bound charges of the sphere and
slab oscillate at eigenfrequencies �� and �s when displaced
from equilibrium. The terms ω̃�,s, both proportional to the
plasma frequencies ωp,i, encode the extent of the material’s
polarization. Comparing Eqs. (9) and (10) to a general
solution for a damped, driven harmonic oscillator [32],
x0(t ) = ∫ t

−∞ dt ′gHO(t − t ′)F (t ′)/m0 (where gHO is the
harmonic oscillator Green’s function), allows for extraction
of the generalized forces which act upon coordinates u�m and
Qn, defined as

F�m(t ) = −(2� + 1)
∫

dx′ f ∗
�m(x′)ρ(x′, t ), (15)

Fn(k, t ) = − 1

k2

∫
dx′�∗

n(k, x′)ρ(x′, t ). (16)

This permits the construction of the following equations of
motion for the surface responses:

m�ü�m(t ) + m�γ1u̇�m(t ) + m�ω
2
�u�m(t ) = F�m(t ), (17)

mkQ̈n(k, t ) + mkγ2Q̇n(k, t ) + mkω
2
s Qn(k, t ) = Fn(k, t ),

(18)

expressed in terms of the effective masses m� =
e2/

√
12πa3ω̃2

� and mk = e2k2/ω̃2
s . From these equations,

we see that the effective masses of the surface modes are
inversely related to the material’s charge carrier density,
so as the polarizability of the object increases, the surface
mode mass decreases. From Eqs. (15) and (16), we observe
that the nature of the time-dependent generalized forces
that act on m�, mk are determined by characteristics of the
dielectric objects, their mode functions, and the perturbing
charge distribution. We also take note that u�m carries units
of length (cm in cgs units), while Qn is a coordinate density
(cm−2), which illustrates that the surface mode responses of
the sphere are localized and those of the slab are delocalized
in space. Therefore, surface mode excitations of the sphere
and slab in the IR region inherit the description of localized
surface phonons (LSPhs) and delocalized surface phonon
(SPhs) [33], respectively.

III. SYSTEM HAMILTONIAN AND COUPLED
EQUATIONS OF MOTION

In the limit of no damping (i.e., γ1,2 → 0), Eqs. (17) and
(18) can be derived from the following Hamiltonians:

Hsph =
∑
�m

[
p�m p∗

�m

m�

+ m�ω
2
�u�mu∗

�m − (F ∗
�mu�m + F�mu∗

�m)

]
,

(19)

Hslab=
∞∑

n=−∞

∫ ∞

0
dk

[
PnP∗

n

mk
+mkω

2
s QnQ∗

n − (F ∗
n Qn + FnQ∗

n )

]
,

(20)

where p�m and Pn are the momenta conjugate to the co-
ordinates ulm and Qn for the sphere and semi-infinite slab
surface modes. The total system Hamiltonian for the compos-
ite sphere-slab system in the presence of a uniformly moving
electron is

H = H0
el + H0

sph + H0
slab + Hel,sph + Hel,slab + Hsph,slab. (21)

In Eq. (21), H0
el is the kinetic energy of the fast electron

probe with charge density ρel(x, t ) = −eδ(x − rel(t )). H0
sph

and H0
slab account for the internal energies of the dielec-

tric objects, and Hel,sph and Hel,slab for the the energy of
interaction of the dielectrics with the fast electron. Finally,
Hsph,slab accounts for the coupling energy between the di-
electric bodies. For simplicity, we restrict the response of
the sphere to the lowest order � = 1 dipole mode and move
from the spherical-multipole basis of Eq. (9) to Cartesian
coordinates. The vector u0(t ) defines the LSPh coordinate
with natural frequency ω0, effective mass m0, and charge
distribution ρ0(x, t ) = −eu0(t ) · ∇δ(x − r0). Hamiltonians
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for the individual dielectric objects are defined from Eq. (21) as

Hsph = H0
sph + Hel,sph + Hsph,slab

= p2
0

2m0
+1

2
m0ω

2
0u2

0 − u0 · Fel +
∫

dxρ0(x, t )�slab(x, t ), (22)

Hslab = H0
slab + Hel,slab + Hsph,slab

=
∞∑

n=−∞

∫ ∞

0
dk

[
PnP∗

n

mk
+ mkω

2
s QnQ∗

n − (
F ∗

el,nQn + Fel,nQ∗
n

)] +
∫

dxρ0(x, t )�slab(x, t ), (23)

where the energy of interaction between the LSPh and semi-infinite slab is calculated by integration of ρ0 with �slab.
Applying Hamilton’s equations produces the following set of coupled Newton equations:

m0ü0(t ) + m0γ1u̇0(t ) + m0ω
2
0u0 + e

∑
n

∫ ∞

0
dkQn(k, t )∇�n(k, r0) = Fel(t ), (24)

mkQ̈n(k, t ) + mkγ2Q̇n(k, t ) + mkω
2
s Qn(k, t ) + eu0(t ) · ∇�n(k, r0) = Fel,n(k, t ), (25)

where dissipative forces have been reintroduced to provide a finite lifetime for the oscillatory responses.
We define the position vectors for the LSPh and the traveling electron coordinate as r0 = (0, h, 0) and rel(t ) = (c, b, vt ).

h is the height of the dipole above the slab surface, c is the displacement of the electron along the x axis, b is the electron’s
height above the dielectric slab’s surface, and z = vt indicates that the electron is traveling along a z-oriented trajectory,
with velocity vẑ, as represented in Fig. 1. The dynamics of the oscillatory LSPh are then governed by the integro-differential
equation

ü0(t ) + γ1u0(t )ω2
0u0(t ) − e2

8m0h3

∫ t

−∞
dt ′ζ (t − t ′)[ux(t ′)x̂ + 2uy(t ′)ŷ + uz(t ′)ẑ] = Fel(r0, t )

m0
+

∫ t

−∞
dt ′ζ (t − t ′)

F̄el(r0, t ′)
m0

.

(26)

The terms Fel(r0, t ) and F̄el(r0, t ), of which the latter is con-
volved with the surface response function of the dielectric
slab, represent the forces on coordinate u0 due to the evanes-
cent field of the fast electron and the electron-induced surface
charge on the slab, respectively. The latter term is commonly

FIG. 1. Schematic of the composite sphere-slab dielectric system
in the presence of a uniformly moving electron. Relevant parameters
including the sphere radius a, the position of the electron rel (t ),
and the time-dependent LSPh coordinate of the sphere u0 at a fixed
position r0 are defined, along with the generalized coordinate of
the substrate surface response Qn(k, t ) and the energy of interaction
Hsph,slab. When the sphere rests directly on top of the slab, the height
h = a.

referred to as the image field [34], defined as

Fel(r0, t ) = e2 cx̂ + (b − h)ŷ + (vt )ẑ

[c2 + (b − h)2 + (vt )2]
3
2

, (27)

F̄el(r0, t ) = e2 −cx̂ + (b + h)ŷ − (vt )ẑ

[c2 + (b + h)2 + (vt )2]
3
2

. (28)

From Eq. (26), the Fourier amplitude solutions ũ0(ω) are
determined via Fourier transformation

ũx(ω) = α̃x(ω)

e2

[
F̃el,x(r0, ω) + ζ̃ (ω)˜̄F el,x(r0, ω)

]
, (29)

ũy(ω) = α̃y(ω)

e2

[
F̃el,y(r0, ω) + ζ̃ (ω)˜̄F el,y(r0, ω)

]
, (30)

ũz(ω) = α̃z(ω)

e2

[
F̃el,z(r0, ω) + ζ̃ (ω)˜̄F el,z(r0, ω)

]
, (31)

and are expressed in terms of an effective polarizability α̃x,y,z,
encoding the linear response of the LSPh coordinate and the
external driving forces F̃el,i(r0, ω) and ˜̄F el,i(r0, ω) regulating
the response amplitude.

The second forcing term in Eqs. (29)–(31) implies that the
frequency components of the electron’s field will elicit a large
image response when they coincide with the surface resonance
conditions of the dielectric slab, magnifying the influence of˜̄F el,i(r0, ω) on the resulting amplitude of ũ0(ω). Both forcing
terms are defined by the Fourier transform of Eqs. (27) and
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(28), i.e.,

F̃el,x(r0, ω) = c

R

2e2|ω|
v2

K1

( |ω|R
v

)
,

˜̄F el,x(r0, ω) = − c

R̄

2e2|ω|
v2

K1

( |ω|R̄
v

)
,

F̃el,y(r0, ω) = b − h

R

2e2|ω|
v2

K1

( |ω|R
v

)
,

˜̄F el,y(r0, ω) = b + h

R̄

2e2|ω|
v2

K1

( |ω|R̄
v

)

F̃el,z(r0, ω) = 2e2ω

v2
iK0

( |ω|R
v

)
,

˜̄F el,z(r0, ω) = −2e2ω

v2
iK0

( |ω|R̄
v

)
, (32)

determined with the aid of Basset’s integral [35], where R =√
c2 + (b − h)2 and R̄ =

√
c2 + (b + h)2. The effective polar-

izabilities are defined as

α̃x,z(ω) =
[
α̃(ω)−1 − 1

8h3
ζ̃ (ω)

]−1

, (33)

α̃y(ω) =
[
α̃(ω)−1 − 1

4h3
ζ̃ (ω)

]−1

, (34)

where α̃(ω) = (e2/m0)(ω2
0 − ω2 − iγ0ω)−1 is the free space

dynamic polarizability of the sphere. The modified polariz-
ability terms α̃x,y,z account for the coupling of the LSPh to the
LSPh induced surface response in the dielectric slab. The re-
sulting pole structure of the modified polarizabilities describes
the emergence of new normal mode resonance conditions
when the proximity of the sphere and slab is varied.

The results detailed above are valid in the limit of d � a
or when the dielectric slab can be safely modeled as semi-
infinite. We now consider the case that the average radius
of an interrogated sample is comparable to or significantly
greater than the depth of the adjacent dielectric slab and gener-
alize our results above to consider dielectric slabs of varying
depths. We will demonstrate that even the presence of ultra
thin planar dielectric surfaces may lead to nontrivial mode
mixing with the dielectric sphere. Fortunately, this generaliza-
tion is easily accomplished with an approach identical to that
of the semi-infinite case. Solving for the Fourier amplitudes
of the LSPh oscillations, considering the electron coordinate
rel(t ) = (0, b, vt ), we find

ũz(ω) = α̃z(ω)

e2

[
F̃el,z(r0, ω) +

∫ ∞

0
dk˜̄F k,z(r0, ω )̃ζk (ω)

]
,

(35)

ũy(ω) = α̃y(ω)

e2

[
F̃el,y(r0, ω) +

∫ ∞

0
dk˜̄F k,y(r0, ω )̃ζk (ω)

]
.

(36)

The k-dependent force terms are proportional to the Fourier
transform of the J0(kvt ) and J1(kvt ) cylindrical Bessel func-
tions, where ˜̄Fk(r0, ω) = ˜̄F k,y(r0, ω)ŷ + ˜̄F k,z(r0, ω)ẑ repre-
sents the force due to the electron-induced surface charge

on the finite slab, analogous to the semi-infinite case above.
These terms are defined as

˜̄F k,z(r0, ω) = −i
2e2ω

v2

e−k(b+h)√
k2 − (

ω
v

)2
for k � |ω|

v
, (37)

˜̄F k,y(r0, ω) = 2e2

v

k e−k(b+h)√
k2 − (

ω
v

)2
for k � |ω|

v
. (38)

The effective polarizabilities in the case of the finite slab are

α̃z(ω) =
[
α̃(ω)−1 − 1

2

∫ ∞

0
dkk2e−2kh ζ̃k (ω)

]−1

, (39)

α̃y(ω) =
[
α̃(ω)−1 −

∫ ∞

0
dkk2e−2kh ζ̃k (ω)

]−1

. (40)

In Fig. 2, we examine Im α̃y(ω) as parameters d and h are
varied, and show in the limit of d → 0 and h � a that its max-
ima coincide with the eigenspectrum of the decoupled surface
modes of the sphere (blue line) and slab (red curves). The
eigenvalues of the free space dielectric objects are provided
by the the poles of Eqs. (5) and (6), i.e.,

�̃� = −i
γ1

2
± ��, (41)

�̃±(k, d ) = −i
γ2

2
± �±, (42)

�0 is the Fröhlich eigenfrequency [36] of the � = 1 LSPh and

�± =
√

ω2±(k, d ) − (γ2/2)2 are the transverse (+) and longi-
tudinal (−) Fuchs-Kliewer (FK±) eigenfrequencies [11,30].
The terms ω2

±(k, d ) = ω2
2 + ω2

p,2/(ε∞ − a±(k, d )) are the
natural frequencies of the oscillating FK± modes, where
a+(k, d )=(e−kd+1)(e−kd − 1)−1 and a−(k, d ) = (e−kd−1)
(e−kd + 1)−1. As d → ∞, �± → �s, and the FK± modes
become energetically degenerate. This results in only one
remaining resonance for the semi-infinite slab, as predicted
in Eq. (14). Also, Eqs. (35)–(40) reduce to Eqs. (29)–(34) in
this limit.

Figure 2(a) displays Im α̃y(ω) as the sphere approaches a
100-nm-thick slab of the same dielectric composition, clearly
displaying mode splitting beginning near h ∼ 2a that is maxi-
mized at h = a. With h = a fixed, Fig. 2(b) shows the result of
decreasing the substrate thickness from 100 nm to 0 nm. Here
we see that the splitting between the FK± modes is greatest
as the slab becomes increasingly thin, although the contribu-
tion to Im α̃y(ω) from the transverse FK+ mode is rapidly
diminished. At d = 0 nm, contributions from the FK± modes
disappear from Im α̃y(ω) altogether, as expected. When d
is decreased from 2a � d > 0 nm, three peaks emerge in
Im α̃y(ω), indicating three normal modes resonances due to
mixing of the sphere’s LSPh mode with the FK± modes of
the slab. Figure 2(c) highlights in the regime of 0 < d �
a how the normal mode responses of the dimer dissociate
to the free space normal mode responses of the decoupled
sphere and slab. In the regime of 2a < d � 100 nm, we
notice the formation of two normal modes in Im α̃y(ω), as
the participating FK± modes unite from two energetically
distinct surface mode resonances into one. Also, as the slab
depth increases, its one remaining surface mode resonance
more effectively couples to the LSPh, as evidenced by the
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FIG. 2. Evolution of Im α̃y(ω) for an a = 20 nm sphere when the sphere height (h) and the slab depth (d) are varied. The dielectric response
of the sphere and slab are defined by a common Lorentz oscillator dielectric function [i.e., ε̃1(ω) = ε̃2(ω)], parametrized to the bulk response
of MgO. In panel (a), the sphere is moon-landed onto a 100-nm-thick slab from an initial distance of 100 nm between the sphere and the slab
surfaces. In panel (b), the depth of the slab is decreased from d = 100 nm to 0 nm, and the FK± (h̄�±) modes are allowed to evolve as kd is
varied. �0 is the � = 1 eigenfrequency of the free-space sphere (blue line) and �s is the eigenfrequency of the free-space semi-infinite slab
(red curves). Panel (c) provides a closer examination of the mixed surface mode responses in the region of 0 � d � a. We observe that as the
slab depth becomes increasingly small, the normal mode responses resolve to the free-space eigenfrequencies.

increase in amplitude of the higher energy 90 meV branch
for d > 2a in Fig. 2(b). This result is expected due to the in-
creased amount of polarizable material proximal to the LSPh,
leading to a larger effective coupling between the dielectric
bodies.

IV. INELASTIC SCATTERING PROBABILITY
FOR THE COMPOSITE SPHERE-SLAB SYSTEM

To derive the inelastic scattering probability of the com-
posite system, we first consider the time-averaged work
performed on a passing electron by an external field using
Poynting’s theorem. The average work �E is equivalent to
the first energy moment of the inelastic scattering probability

function �(ω) according to [37]

�E =
∫

dxdtEind(x, t ) · Jel(x, t )

=
∫

d (h̄ω)h̄ω�(ω). (43)

Making use of the continuity equation, Eq. (43) yields
�(ω) = (π h̄2)−1

∫
dxIm{̃ρ∗

el(x, ω)�̃ind(x, ω)} under the qua-
sistatic approximation. In the case of the composite dielectric
sphere-slab structure, where the total induced potential in the
vacuum region above the dielectric slab is �̃ind = �̃sph +
�̃slab, the resulting loss probability for the aloof parallel-
grazing trajectory depicted in Figs. 1 and 3 is

�(ω) = lim
z0→∞

2z0

π

(
e

h̄v

)2 ∫ ∞

ω/v

dk
e−2kb√

k2 − (
ω
v

)2
Im

{̃
ζk (ω)

} + 1

π h̄2 Im

{
ũ0(ω) ·

[
F̃el(r0, ω) +

∫ ∞

0
dkζ̃ ∗

k (ω )̃F̄k (r0, ω)

]∗}
. (44)

Again, in the limit that the depth of the dielectric slab d → ∞, Eq. (44) reduces to

�(ω) = lim
z0→∞

2z0

π

(
e

h̄v

)2

K0

(
2ωb

v

)
Im

{̃
ζ (ω)

} + 1

π h̄2 Im
{̃
u0(ω) · [̃

Fel(r0, ω) + ζ̃ ∗(ω )̃F̄el(r0, ω)
]∗}

. (45)

In either case, the first terms described under the limit z0 →
∞, where z0 is the path length traveled by the electron, were
originally derived by Takimoto, Echenique, Rivacoba, and
Pendry (TERP), and again recently reported by Echarri et al.
in the case of swift electrons interacting with atomically thin
surfaces, traveling along parallel trajectories [34,38–41]. We
will refer to the thin film scattering probability as �TERP,
and it accounts for the contribution to the total scattering
probability �(ω) from the probing electron’s interaction with
the electron-induced wake potential on the slab [42]. The

second term ∝ Im{̃u0(ω) · F̃∗
el(r0, ω)} accounts for its inter-

action with the LSPh mode, while the final term ∝ Im{̃u0(ω) ·
[
∫ ∞

0 dkζ̃ ∗
k (ω )̃F̄k (r0, ω)]

∗
} relays the fast electron’s interaction

with the LSPh-induced surface mode on the slab. The first
term of Eq. (44), �TERP, is devoid of any information con-
cerning coupling between the surface modes of the dielectric
sphere and slab, and is equivalent to the loss probability of
an isolated thin film. Therefore, we regard it as a background
signal only and proceed with an evaluation of � − �TERP
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FIG. 3. Comparison of (a) Eq. (44) to (b) simulation for the
monomers (free space sphere and slab), and the dimer (composite
sphere-slab system) after background subtraction. For the simulated
composite system, the numerical scattering probability for a d = 2
nm dielectric slab is subtracted from the result for a composite
a = 20 nm sphere positioned on top of a slab of identical dimen-
sions. A Lorentz oscillator dielectric function parametrized to the
bulk response of MgO is used to describe the material responses of
the sphere and slab. The electron beam height is b = 3a, traveling
uniformly with 10 keV of kinetic energy, and the location of the
charge distributions are defined by r0 = (0, a, 0) and rel = (0, b, vt )
for the sphere and probe, respectively. In both simulation and theory,
�TERP is normalized to �LSPh.

when comparing our analytic results in Fig. 3(a) to simulated
scattering experiments in Fig. 3(b).

To test the validity of the analytic loss function in Eq. (44),
we have performed fully retarded numerical electrodynamics
simulations using the electron-driven discrete dipole ap-
proximation (e-DDA) method [43,44] on finite, cylindrical
dielectric slabs, 2 nm in depth and 400 nm in width, with a
parallel-grazing, nonpenetrating trajectory, and collected the
corresponding scattering probability spectrum. An additional
simulation was performed on a dielectric slab of identical
dimensions but in the presence of a dielectric sphere with
a radius of 20 nm positioned directly on top of the slab. In
each case, the simulations were performed with an interdipole
spacing of 1 nm, and with an electron velocity of 10 keV. The
spectrum for the isolated slab is treated as a background and
is subtracted from the scattering probability of the composite
system. For the isolated slab, we observe the response of
longitudinal (FK−, 70 meV) and transverse (FK+, 94 meV)
Fuchs-Kliewer modes, showcasing that the finite-sized sim-
ulated slab hosts normal mode responses at energies similar
to those predicted by the eigenspectrum displayed in Fig. 2.
This is observed analytically via �TERP, in Fig. 3(a), which
predicts energy loss by the passing electron when it couples
to the FK±-modes of the d = 2 nm slab.

In the case of the sphere-slab dimer’s scattering probability,
in both theory and simulation, we notice a slight deviation
from the scattering spectrum of the independent dielectric ob-
jects. This includes a blueshifting of the peak associated with
�LSPh (84 meV) and a blueshift in the peak associated with the
FK− mode (72 meV). And although its contribution to � −
�TERP is subtle, we observe a redshift in the peak associated
with the FK+ mode of the slab (92 meV), indicating the for-
mation of new normal modes in the composite system as a re-
sult of induced near-field coupling between the dielectric ob-

FIG. 4. Normal component (Ex) induced electric field contour
maps for the independent sphere and slab (a) under y and z-polarized
plane-wave illumination and the composite sphere-slab system under
y-polarized plane-wave illumination (b). The fields are evaluated at
the associated peaks of the extinction spectrum (i)–(vi) to illustrate
the near-field coupling between the sphere and the slab (i)–(iii) and
to examine the induced field profile of the free space monomers,
namely, the transverse and longitudinal surface modes hosted by
the dielectric slab (iv), (vi) and the dipolar surface modes of the
sphere (v).

jects. Additionally, the composite loss probability suffers a de-
crease in intensity relative to that of the free space sphere due
to coupling of the LSPh to its own induced surface response
on the slab and the traveling electron’s wake potential [42].

In both theory and simulation, we have utilized a Lorentz
oscillator dielectric function, parametrized to the bulk vibra-
tional response of MgO, a material whose local dielectric
function has been well characterized via thin film ellipsometry
[45,46] in the near IR. In addition, the bulk and surface vi-
brational mode excitations for MgO nanoparticles of varying
morphologies have been been extensively characterized in
recent electron scattering experiments, lattice dynamics cal-
culations, and molecular dynamics simulations [16,47]. While
our theoretical model is general enough for characterizing
any combination of dielectric materials for the sphere and
slab under a quasistatic approximation, MgO was selected
due to it hosting a discrete bulk response in the far IR [45],
which lends itself well to a simple fitting procedure for the
Lorentz-oscillator dielectric parameters. Also, the resulting
surface modes are nearly coresonant between the sphere and
the slab when they are composed of the same dielectric ma-
terial, which leads to increased mode mixing. Herein, we
use the following dielectric parameter values ε∞ = 2, h̄γ1,2 =
5 meV, h̄ω1,2 = 70 meV, and h̄ωp = 90 meV for MgO.

To inspect the near-field interaction of the LSPh mode
with the FK± modes, we calculate background subtracted
plane-wave extinction spectra [48] for the dimer in a man-
ner identical to that of the background subtracted scattering
probability, with the polarization of the incident electric field
oriented normal to the surface of the slab. For comparison,
extinction calculations for the the individual monomers are
also presented. Figure 4 displays the normal component of the
induced electric field at the sphere-vacuum interface for both
the composite (dimer) system (i)–(iii) and for the individual
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monomers (iv–vi) at the associated peak energies in the ex-
tinction spectrum.

First, examining the response of the monomer dielectric
objects, plane-wave excitation of the isolated sphere Fig. 4(v)
drives the LSPh mode, irrespective of the orientation of inci-
dent polarization. Extinction measurements of the dielectric
slab, however, reveal a highly biased response between po-
larization of the incident field parallel and normal to the
slab surface. For the chosen configuration, a y-polarized
plane-wave source selects the slab’s transverse FK+ mode
[Fig. 4(vi)] while z polarization along the long axis of the slab
drives the longitudinal FK− mode [Fig. 4(iv)]. For the dimer,
excitation energy [Fig. 4(i), 72 meV] reveals an out-of-phase
oscillation of the LSPh, indicated by the change in orienta-
tion of the dipolar-field relative to the field profile at energy
[Fig. 4(ii), 84 meV]. This indicates that the LSPh dipole
oriented normal to the slab’s surface appreciably couples to
the FK− mode of the slab, while the vanishingly small peak
at [Fig. 4(iii), 93 meV] suggests a weak coupling between
the LSPh and the slab’s FK+ mode. The degree of coupling
between the surface modes is evident in the surface plot of
Im α̃y(ω), as the resonant peak associated with the dipole
begins to shift upon approach to the slab’s surface, along with
the emerging influence of the slab’s FK− mode in the modified
response function of the LSPh. This coupling of the surface
modes is also reflected in both the simulated plane-wave ex-
tinction calculations, and in the scattering probability profile
produced by theory and simulation. This is demonstrated in
Figs. 2–4 when comparing the resonant frequencies of the free
space dielectric objects to those of the background subtracted
dimer, both at the level of the spectroscopic observables and
at the level of the response function α̃y(ω).

In both electron scattering and plane wave extinction
simulations, we have restricted the dimensions of the
substrate to a shallow depth of d = 2 nm. This was due
to computational restrictions concerning the size of the
interrogated dielectric structures. Specifically, we considered
the necessity of extending the slab in width to dimensions
large enough to observe the response of the FK± modes in
the simulated scattering probability, while remaining in good
agreement with �TERP in Fig. 3(a).

V. CONCLUSION

As the spectroscopic range of modern EEL measurements
have expanded into the far-IR, the vibrational resonances of
dielectric materials are now susceptible to detailed character-
ization via inelastic electron scattering spectroscopy. Recent
advances in electron energy monochromation and aberration
correction have laid bare the need to investigate the influ-
ence of the resonant dielectric environment on the sample’s
loss probability in the IR region. Of particular importance
is the influence of dielectric substrates which support dielec-
tric nanoparticle targets in typical EELS experiments, which
at low energy may inherit the role of an active dynami-
cal contributor to the resulting signal. Although, in typical
electron-scattering experiments, an electron probe geometry
which penetrates the supporting substrate is more commonly

employed, the modified surface response functions derived
within encode the spectral features of the new normal mode
resonances of the sphere-slab dimer, which are independent
of orientation of the electron probe’s trajectory. Common
substrates composed of both amorphous oxide and ionic crys-
talline materials are typically nondispersive in the optical
regime but often host a rich set of surface vibrational re-
sponses at thermal energies. While the inelastic scattering of
fast electrons by isolated thin films and isolated nanoparticle
targets of varying morphology have been extensively studied
and rigorously modeled, under both radiative and nonradiative
approximations, an in-depth description of how a dispersive,
resonant substrate influences the loss probability of the target
specimen has so far not been made. This has motivated us
to construct a theoretical model detailing the contributions to
the EELS observable due to induced near-field coupling in a
composite particle-slab assembly.

To accomplish this, we considered the case of a spherical
dielectric nanoparticle adjacent to a dielectric slab of vary-
ing depths. We defined generalized coordinates and effective
masses for the surface modes of the dielectric objects in terms
of their bulk dielectric parameters, along with the generalized
forces which drive the surface modes. Determining the energy
of interaction between the sphere and the slab allowed us
to construct coupled equations of motion, from which we
extracted the modified linear response function of the lowest
order � = 1 LSPh mode of the dielectric sphere. Then, forcing
the coupled system with a fast electron moving parallel to the
slab’s surface and external to the dielectric objects, we derived
an analytic expression for the resulting inelastic scattering
probability � of the dimer. Comparison between our analytic
results and numerical electrodynamics simulations demon-
strate excellent agreement, both under electron beam and
plane-wave excitation. Taken together, this work has revealed
that when target and substrate surface modes are coresonant,
the effects of the substrate’s presence are nontrivial in the ob-
served spectroscopic observable and may substantially modify
the apparent response of the target specimen. Thus, careful
theoretical analysis like that presented herein is required to
interpret the measured scattering signal. Additionally, this
study offers fundamental insights into the physical origin of
the scattering signal in composite systems, which is relevant
for quantitative analysis of nanoscale physical properties such
as phonon mapping [15], local temperature measurement [14],
and the phonon density of states [11].
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