
PHYSICAL REVIEW B 103, 165417 (2021)

Superflat energy band induced by moiré electric potential in twisted bilayer graphene
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Narrow and even flat energy bands reflect strong electronic correlation which brings in novel physical
properties. Pursuing flatter band has recently attracted a lot of attention. Along this line, we theoretically
investigate low-energy band structures and concomitant topological properties of twisted bilayer graphene at the
first magic angle based on a continuum model. By considering an external moiré electric potential, in addition to
the intrinsic Hartree potential, we find that the lowest bands can be further flattened by this electric potential and
a superflat band structure is obtained. In such bands, the extremely small ratio between the bandwidth and the
interaction strength will enhance the strong correlation. These superflat energy bands give nearly perfect nesting
at the half-filling, then it benefits the formation of Cooper pairs and the rise of superconducting temperature.
Moreover, combining with a perfectly aligned boron nitride substrate, the system undergoes a topological phase
transition by modulating the relevant parameters of the electric potential. The topological phase transition can
be well explained using simplified analytical treatments near the Dirac points.
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I. INTRODUCTION

A recent experimental breakthrough was the fabrication
of twisted bilayer graphene with accurately controlled twist
angles, and then superconductivity and strongly correlated
Mott insulating state were discovered in such a system [1–4].
A twisted graphene bilayer (TGB) is constructed with two
rotationally stacked graphene single layers, and its electronic
band structure is sensitively dependent on the twist angle θ . At
each of a series of magic angles, two nearly flat bands around
the neutrality point are formed due to strong interlayer cou-
pling [5–17]. When the carrier density is assured for that the
Fermi level lies within the flat bands, the Coulomb interaction,
which is much larger than the kinetic energy of an electron,
drives the system into a strongly correlated phase. Together
with the nontrivial topology of the flat bands, the TGB shows
many interesting phenomena. A surge of theoretical works
have been done on this subject for explaining and exploring
its exotic properties [18–38].

As θ approaches the first magic angle, the noninteracting
bandwidth of the lowest bands shrinks to the smallest value
about 7 meV. An important issue to be concerned with is if we
can compress further the flat bands of a TGB into an extremely
narrow one. This is interesting but not very intuitive since pre-
vious attempts with external fields, for instance, hydrostatic
pressure [3,39] or optical illumination [40], only changes the
value of the magic angle rather than the bandwidth. Other
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studies that try to flatten the low-energy bands of some dif-
ferent moiré structures by introducing gaps at the primary
Dirac points [41,42] do not exceed the bandwidth limit of the
TGB. If the bandwidth of the flat bands at the magic angle
can change with external conditions, it will make the TGB a
versatile platform to investigate the strong correlation effects.
On the other hand, the effect of the long-range Coulomb inter-
action on the lowest bands is nonnegligible. The occupation
of the lowest bands leads to an inhomogeneous electrostatic
potential which is comparable or larger than the bandwidth of
the flat bands. Using the Hartree approximation, the effective
potential gives rise to a significant distortion of the flat bands
[43–48].

In this paper, we consider an external moiré electrostatic
potential (MEP) applied on the system in addition to the
intrinsic Hartree potential (HP). We investigate the band
dispersion and the Chern number of the TGB by using a con-
tinuum model in the vicinity of the Dirac points in graphene
monolayers (GMLs) [5,10]. It is found that both the external
MEP and the intrinsic HP shift the Dirac cones in energy and
open gaps at the hexagon corners of the moiré Brillouin zone
(MBZ). During the same time, the energy at the � point is
rarely affected by the intrinsic HP but linearly responds to the
external MEP. Hence, the flat conduction (or valence) band is
compressed while the other band is stretched when there ex-
ists only one potential. This band flattening mechanism does
not change the total bandwidth of the flat bands. However,
combination of the external MEP and the intrinsic HP can
give rise to superflat bands with the total bandwidth less than
2 meV. When the Fermi energy is tuned inside the superflat
bands, the velocity of the electron is seriously suppressed in
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the whole MBZ. This is unlike the noninteracting TGB at
the first magic angle, where the velocity is relatively large
near the � point. The ratio between the bandwidth and the
Coulomb interaction is further decreased, then the system is
driven into the stronger correlation limit. Together with the
nearly perfect nesting at half-filling of the superflat bands,
more interesting phenomena can be explored in this platform.
We can derive an effective Hamiltonian in the vicinity of the
Dirac points. This Hamiltonian can well explain the energy
shift and the gap opening simultaneously. Furthermore, it is
justified that if we apply the external MEP on the TGB,
a topologically trivial gap is opened between the conduc-
tion and valence bands. However, an atom-scale staggered
sublattice potential generated from a substrate can introduce
topologically nontrivial gaps at the Dirac points. Using the
benefit of these two competing effects, the system can un-
dergo a topological phase transition via the modulation of an
external MEP.

The paper is organized as follows. In Sec. II, we briefly
review the effective continuum model for a TGB, and also in-
troduce a MEP. In Sec. III, we calculate the low-energy spectra
numerically, and find that the MEP can notably change the
band structure and the topology of the TGB. We also show that
the effective Hamiltonians in the vicinity of the Dirac points
can be used to explain the topological phase transition of the
flat bands. In Sec. IV, we discuss the possible experimental
realization for compressing the TGB’s bands. Finally, we give
a brief conclusion in Sec. V.

II. MODEL HAMILTONIAN IN THE CONTINUUM LIMIT

At a small twist angle θ , a slight difference in the lattice
orientation gives rise to a long-period moiré interference pat-
tern, which means the number of carbon atoms in a unit cell
will be very large. It is a challenging problem to strictly solve
the single electron’s wave equation in such a complex system.
An optional way is to calculate the band structure using a
continuum model in the vicinity of the Dirac points in GMLs
[5,10,49].

We construct a TGB by rotating layer 1 and layer 2 with
angles −θ/2 and +θ/2, respectively, in a totally overlapping
graphene bilayer. The moiré unit cell is spanned by L1 and L2

as illustrated in Fig. 1(a). The lattice constant |L1| = |L2| = L
is L = a/2 sin(θ/2). The lattice structure locally resembles
the regular stacking such as AA, AB, or BA. In momentum
space, the two Dirac points of the rotated graphene layers
are separated by kθ = 2K0 sin(θ/2), where K0 = 4π/3a and
a is the lattice constant of each GML. After the band re-
construction, +K1 and −K2 are folded onto one corner (K

′
)

of the MBZ of the TGB, while −K1 and +K2 are folded
onto the other inequivalent corner (K), as shown in Figs. 1(b)
and 1(c).

When the twist angle is small, the electronic structure can
be described by a continuum model, where the intervalley
mixing can be safely neglected. In a single valley, taking
ξ = + as an example, the low-energy band structure can be
described by the Dirac model around the Dirac points of a
monolayer shown in Fig. 1(c). We can write the Hamilto-
nian with the interlayer coupling by the moiré potential U (r),
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FIG. 1. (a) Atomic structure of a TGB with θ = 3.48◦. (b) Bril-
louin zone folding in the TGB with a small twist angle θ . The two
large hexagons represent the first Brillouin zones (BZs) of the two
GMLs distinguished by red (layer 1) and green (layer 2), with ±K1,2

as the valleys in the BZs. (c) The small hexagon is the moiré Brillouin
zone (MBZ) of the TGB, with K and K

′
as the valleys in the MBZ.

(d) The three qn are the momentum transfers that correspond to the
three interlayer hopping processes. Gi (i = 1, 2, 3) are the reciprocal
lattice vectors.

that is

H0 =
(−ivFσθ/2 · ∇ U (r)

U †(r) −ivFσ−θ/2 · ∇
)

, (1)

where σθ/2 = e−(iθ/4)σz (σx, σy)e(iθ/4)σz , ∇ = (∂x, ∂y), and
U (r) = ∑3

j=1 Uje−iq j ·r. The three-momentum transfers

q j are q1 = kθ (0,−1), q2 = kθ (
√

3/2, 1/2), and q3 =
kθ (−√

3/2, 1/2), as shown in Fig. 1(d). The symmetry of the
TGB requires the interlayer coupling to have the form

Uj = wAAσ0 + wAB[σx cos( j − 1)φ + σy sin( j − 1)φ], (2)

where φ = 2π/3, and wAA and wAB are the interlayer hopping
parameters in the AA and AB stacking regions. In the rest of
this paper, we will focus on this valley if there is no special
statement.

165417-2



SUPERFLAT ENERGY BAND INDUCED BY MOIRÉ … PHYSICAL REVIEW B 103, 165417 (2021)

As our main consideration, we apply an onsite MEP

V (r) =
∑

n

Vn(r) =
∑

n

Vn

∑
i=1,2,3

cos(nGi · r) (3)

on both layers, where G1 = kθ (
√

3, 0), G2 = kθ (
√

3/2, 3/2),
and G3 = G1 − G2 are the reciprocal lattice vectors of the
MBZ, as shown in Fig. 1(d). We assume that the origin of
the coordinates locates at one of the AA regions. Vn is the
amplitude of the potential. To avoid extra multiperiodicities
added into the system, we only take two components, i.e.,
n = 1, 2. The form of V1(r) is very natural in the TGB be-
cause it is compatible with the charge density distribution.
Performing a self-consistent Hartree calculation of the band
structure, the long-range Coulomb interaction provides itself
an intrinsic electrostatic HP which has the same form as V1(r)
[43–48]. In this sense, we use V1(r) to mimic the mean-filed
approximation of the Coulomb interactions. On the other
hand, V2(r) is an external MEP that can be realized with the
electrostatic gating schemes [50–52]. One can pattern an array
of periodic fine metal gates on top of graphene samples by
etching dielectric layers with a moiré pattern as shown in
Fig. 6. For the latter, we will discuss the experiment setup in
details in Sec. IV.

Notice that the moiré potentials U (r) and V (r) hybridize
the TGB’s eigenstates at q = k + n1G1 + n2G2, where n1, n2

are integers. Therefore, the total Hamiltonian H = H0 + V (r)
for a single Bloch vector k in the MBZ owns the infinite
dimensions. As the low-energy states are expected to be dom-
inated by the GML eigenstates near the original Dirac points,
we truncate the Hamiltonian to the finite dimensions and just
keep q with |n1| � 6 and |n2| � 6 [18]. Then, we numerically
diagonalize the Hamiltonian and obtain the eigenenergies and
eigenstates.

Here, we take vF = √
3at/2, where t = 2.6 eV is the

hopping energy between the nearest-neighbor atoms on a
graphene layer. The moiré potential U (r), representing the
interlayer coupling, is controlled by the two parameters wAA

and wAB, which are slightly different in the real TGB. Ear-
lier studies assumed wAA = wAB, which corresponds to a
perfectly flat TGB [14–16]. Afterwards, deepened theoretical
analysis predicted that the optimized lattice structure of the
TGB is actually corrugated in the out-of-plane direction. As a
result, the interlayer spacing is the widest in the AA stacking
region and the narrowest in the AB/BA stacking region. It
makes wAA a little smaller than wAB. As shown in a numerical
work [18], the difference between wAA and wAB makes sure
that the lowest bands at the magic angle are well separated
from other higher bands. As a suitable choice, in the following
calculations, we take wAA = 0.08 eV and wAB = 0.1 eV [53].

III. RESULTS AND DISCUSSION

A. Band flattening caused by the MEP

As shown in the previous researches [43–48], the intrin-
sic MEP caused by the Coulomb interactions can modulate
the flat bands in the TGB and make the bandwidth of the
conductance or valence band become extremely small with
fine tuning of the filling level. In our work, we first repro-
duce this result by substituting the HP with V1(r), and find
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FIG. 2. Schematic of the moiré electric potential (a) V1(r) and
(b) V2(r) in real space. The maxima and minima of the potential
are denoted by the bright and dark regions, respectively. (c, d)
Band flattening of the lowest electronic structures, including the
dispersion relations and the densities of states of the TGB without
(black) and with the MEP (red and green). The difference is that
we set V1 = ±1.2 meV, V2 = 0 in (c) and V1 = 0, V2 = ±3 meV in
(d). S = (

√
3/2)L2 is the area of a moiré unit.

that the band flattening effect can only be achieved within
a small window of the value V1. In most cases, the band
structure is overstretched. If we only consider the presence
of V1(r), the electric potential reaches maximum at the AA
regions and minimum at the AB/BA regions as illustrated in
Fig. 2(a). Since the electric potential preserves the in-plane
twofold rotation (C2) and the time-reversal (T ) symmetries,
the Dirac points at the MBZ boundaries remain gapless. In
Fig. 2(c), we calculate the dispersion relations as well as the
densities of states (DOS) at the first magic angle (θ = 1.05◦)
without and with the MEP. In the absence of the MEP, we
can see that the conductance band, as well as the valence
band, is about 3 meV wide in the energy axis and separated
from the excited bands by an energy gap about 16 meV in
the upper and lower sides. When the electric potential V1(r)
is applied, the Dirac points are shifted upward (downward)
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while the energies at the � point are rarely changed. Hence,
the conduction (valence) band is compressed by this action.
In Fig. 2(c), we set V1 = +(−)1.2 meV and the bandwidth of
the conductance (valence) band becomes smaller than 1 meV.
In contrast, the bandwidth of the valence (conduction) band,
however, is widened twice as much. Due to the fact that
the energies at the � point are rarely influenced by V1 and the
energies at the Dirac points shift linearly proportional to the
value of V1, both the conduction and the valence band become
overstretched if V1 is further increased.

We can understand this phenomena from the analytical
treatment around the corners of the MBZ. In general, we
further introduce a C2T breaking phase parameter ϕ and let
V1(r) has the form V1(r) = V1

∑
i=1,2,3 cos(Gi · r + ϕ). As the

low-energy states are expected to be dominated by the indi-
vidual graphene eigenstates near the original Dirac points, the
dimension of Hamiltonian (1) can be cutoff to a finite value.
By examining the simplest limit in which the momentum lat-
tice is truncated at the first honeycomb shell, the Hamiltonian
in the vicinity of the K point is expressed as

H0
k =

⎛
⎜⎜⎝

hk U1 U2 U3

U †
1 hk+q1

0 0
U †

2 0 hk+q2
0

U †
3 0 0 hk+q3

⎞
⎟⎟⎠, (4)

where k is in the MBZ, hk and hk+q j
are the Dirac Hamil-

tonians of the GML. The dependence of hk and hk+q j
on

the twist angle θ is small and can be neglected. Hamilto-
nian (4) acts on an eight-component spinor wave function

 = (ψ0, ψ1, ψ2, ψ3)T, where ψ0 comes from layer 2 and
ψ1, ψ2, ψ3 come from layer 1.

By solving the Schrödinger equation Hk
 = Ek
, the
wave function of the lowest bands satisfies(

E0
k − 1 − 3α2

1 + 6α2
hk

)
ψ0 = 0, (5)

and

ψi = −(hk+qi
− E0

k )−1U †
i ψ0, (i = 1, 2, 3), (6)

where α ≡ wAB/vFkθ . H0
k and E0 represent the case without

the MEP. This result is first obtained by Bistritzer and Mac-
Donald [10]. At the K point, due to the protection of the C2T
symmetry, E0

0 = 0 for k = 0. In this case, ψi can be further
simplified as ψi = −h−1

qi
U †

i ψ0.
In the numerical calculations, it is reasonable to assume

V1 � wAB, hence we can treat the electric potential V1(r) as
a perturbation term and get the correction of the Hamiltonian
using degenerate perturbation theory at the Dirac point as

Hγ β

1 = 〈
γ |V (r)|
β〉, (7)

where γ and β are the conduction and valence band in-
dices of the lowest flat bands, respectively. Because the MEP
hybridizes the eigenstates at q = k + n1G1 + n2G2 in the
same layer, the Hamiltonian correction at the K point can be
rewritten as

Hγ β

1 = ∑
i 	= j〈ψγ

i |V1eiϕi j |ψβ
j 〉

= ∑
i 	= j〈ψγ

0 |Uih−1
qi

V1eiϕi j h−1
q j

U †
j |ψβ

0 〉, (8)

where ϕi j = ϕ if qi − q j = G1,2,3 and ϕi j = −ϕ if qi − q j =
−G1,2,3. Transforming Eq. (8) into the same representation
as in Eq. (5), we obtain an effective low-energy perturbation
Hamiltonian after a little detailed derivation as

Heff
1 = 6V1α

2

(
cos(ϕ + π/3) 0

0 cos(ϕ − π/3)

)
. (9)

Notice that V1 is outside the bracket and α2 = 1/3 at the
first magic angle, hence the energy correction is as the same
order as V1. Moreover, two special cases are particularly rel-
evant, i.e., ϕ = 0 and ϕ = π . In these cases, the effective
perturbation Hamiltonian is just a unit matrix corresponds to
the energy shift of the Dirac points. For ϕ = 0 (π ), we get the
largest positive (negative) energy shift.

It is obvious that the external MEP V2(r) can introduce the
similar effects. If we consider only the presence of V2(r), the
potential distribution is illustrated in Fig. 2(b). In Fig. 2(d), we
can observe similar band flattening effect, and the narrowest
bandwidth is less than 0.5 meV if we set V2 = ±3 meV. When
V2(r) is applied, the energies at the Dirac points are shifted
linearly proportional to the value of V2, while the energies at
the � point are shifted towards the opposite direction. Due to
this tendency, the band structure would also be overstretched
if V2 is relatively large.

It is concluded that with the existence of only V1(r) or
V2(r), we cannot obtain a perfect flattened band structure in
the TGB. The flattening of the conduction or valence band
always accompany with the stretch of the other band. Hence,
the total bandwidth, including both the conduction and va-
lence bands, is almost unchanged. Another important issue
is that the strength of the long-range Coulomb interactions
is much larger than the bandwidth of the noninteracting flat
bands at the first magic angle even with large screening effect
[44]. Therefore, the band structure is seriously distorted by
the effective HP, i.e., V1(r) here, when the filling level is away
from the neutrality point. In this sense, it is very necessary
to introduce an external MEP into the system to compensate
for the serious band distortion caused by the Coulomb inter-
actions. If the external MEP has the form of V1(r), one can
restore the noninteracting bands by canceling the influence of
the HP in the best scenario. However, if the external MEP has
the form of V2(r) due to the fact that V2(r) can effectively
manipulate the energy shifts at the � point, we can obtain
real superflat bands with proper choice of the parameters
V1 and V2.

B. Superflat bands at the first magic angle

In a wide range of angles close to the first magic angle,
the Coulomb interaction strongly exceeds the noninteracting
bandwidth of the flat bands. The occupation of the flat bands
leads to the effective HP of order e2/(εL), where ε is the
dielectric constant of the environment. Even for an unrealis-
tically large screening, the HP can severely distort the band
structure of the flat bands [43,44,46]. From the last subsection,
we can see that the energy shifts at the Dirac points are almost
a factor of 3 larger than the value of V1. After the modulation
of the HP, the bandwidth of the flat bands are equal to or larger
than the Coulomb interaction.
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FIG. 3. Superflat bands generated with V1 = 15 meV and V2 =
−37 meV. The total bandwidth is less than 2 meV which is a factor
of 3 smaller than the total bandwidth of the noninteracting flat bands.
The conduction band and the valence band are nearly overlapped
with each other.

Fortunately, the effect of the HP can be neutralized by
applying an external MEP V2(r). With delicate tuning of V2,
we can even obtain superflat bands at the first magic angle.
As shown in Fig. 3, we set V1 = 15 meV and V2 = −37 meV.
The resultant flat bands become superflat with total bandwidth
less than 2 meV. Figure 3 shows the side view of the flat
bands. One can see that the energies of the flat bands are lifted
from neutrality all together. Hence, it can be expected that the
Wannier wave functions for these bands are not significantly
altered, even though in a realistic self-consistent Hartree cal-
culation, the application of V2(r) may influence the charge
distribution in the moiré unit cell and then the value of V1.
It should be pointed out that the appearance of the superflat
bands is not tied up with some special parameters. In fact, if
10 meV < V1 < 18 meV, by choosing the right V2 we always
obtain the superflat bands with total bandwidth smaller than
3 meV. This range of V1 approximately corresponds to the
general level-filling cases in TGBs [43].

The appearance of the superflat bands is very sensitive to
the twist angle. Due to the nonvanishing Fermi velocity near
the Dirac points, superflat bands cannot be generated for the
twist angle larger than the first magic one.

C. Nearly perfect nesting at half-filling

Tuning the external MEP can effectively decrease the ratio
W/U between the bandwidth W and the Coulomb interaction
U , which makes the system a better candidate for research
of strong coupling. At the strong coupling, a simple nesting
based picture can explain the superconductivity and other
instabilities [26–30]. However, when θ gets close to the first
magic angle, only small parts of the Fermi surface contribute
to the nesting. Therefore, many theoretical works studied the
nesting picture a little away from the first magic angle, i.e.,
1.2◦ < θ < 2◦, even though the ratio W/U is undesirably
increased. The reason is quite simple. When θ approaches the
first magic angle, the Fermi surface near the van Hove singu-
larity become distorted caused by the competition between the
vanishing energy eigenvalues near the corners of the MBZ and
the finite energy at the � point. In our scheme, we can reduce
the Fermi surface deformation near the van Hove singularity
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FIG. 4. (a) Contour plots of the compressed conduction bands
for ξ = ± valleys with V1 = 12 meV and V2 = −30 meV. The red
dashed loops correspond to the Fermi surface at half filling. With
respect to the Fermi surface, the dark regions around the corners
of the MBZ are fully filled with electrons while the bright regions
at the centers are empty. (b) Perfect nesting of the triangularly
shaped Fermi surface. (c) The bare susceptibility in the IVC channel
χ0(q) = 〈A†

qAq〉. The bright regions near the nesting momenta reach
the maximum.

by compressing both the conduction and the valence bands. In
Fig. 4(a), we show the contour plots of the conduction band
for both valleys ξ = + and ξ = − with V1 = 12 meV and
V2 = −30 meV at the first magic angle. The total bandwidth
of the flat bands is about 2.2 meV. The value of V1 corresponds
to the half-filling of the conduction bands. The red dashed
loops, which resemble perfect triangles, represent the Fermi
surface at the half-filling. When the Fermi surface is com-
posed of perfect triangles, like what we plot in Fig. 4(b), then
these Fermi pockets are nested along three nesting vectors
Q1,2,3, as illustrated.

Electronic correlation not only affects the band structure,
but also contributes to the transport properties, especially the
superconductivity concerned here. To assure the time-reversal
symmetry, in the present case, Cooper pairing could come
from the strong coupling given in terms of density-dentsity
interactions [30] as

Hint =
∑

q

Un+
−qn−

q , (10)

where nξ (q) = ∑
k cξ†

k+qcξ

k is the Fourier component of the
density operator of the conduction band for valley ξ , and the
spin indices are omitted. It is a pure repulsive interaction for
which U is taken as positive. Using the random phase approx-
imation (RPA) we can analyze the electron instabilities in all
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FIG. 5. (a) The moiré electric potential in real space with V1 = 1 meV and ϕ = π/2. The in-plane C2 symmetry is broken by the electric
potential. (b) Side view of the lowest bands with V1 = 20 meV and ϕ = π/2. Due to the strong electric potential, the band structure is fully
gapped and two energy peaks appear near the � point. The Chern number is 0 when the Fermi level lies in this gap. Hence this gap is
topologically trivial. (c) Topological phase transition by tuning the electric potential if one of the GMLs in the TGB is nearly aligned with an
hBN substrate.

fermion bilinear channels. Although the RPA approach does
not include the interwind fluctuations in different channels, it
still captures the essential characteristics of the instabilities.
From Eq. (10), it is clear that the intervalley coherence (IVC)
channel has the strongest instability, and we focus on this
channel.

We define an intervalley bilinear operator Aq =∑
k c+†

k+qc−
k and rewrite the interaction Hamiltonian as

Hint ≈ −U
∑

q A†
qAq + · · · . By calculating the bare zero

frequency susceptibility χ0(q) = 〈A†
qAq〉 at low temperatures,

the RPA corrected coupling constant in the IVC channel is
given by gRPA = −U/(1 − Uχ0). Figure 4(c) shows the bare
susceptibility of the IVC channel that peaks strongly near the
three nesting momenta Q1,2,3.

The IVC fluctuations can create an effective pairing
interaction between electrons [30]. We can see it by recast-
ing the RPA corrected IVC interaction into the intervalley
pairing channel, restricting to the zero momentum pair-
ing, i.e.,

∑
q gRPA(q)A†

qAq ≈ −∑
q,k gRPA(q)�†

−k+q�k, where
�k = c+

k c−
−k is the intervalley pairing operator. The attrac-

tive interaction in the IVC channel implies the repulsive
interaction in the intervalley pairing channel. However, the
superconducting state can still appear if there is a relative
sign change between the pairing form factors connected by
the nesting momenta, i.e., �k = −�−k+Q1,2,3

. When the flat
bands are compressed, the RPA corrected coupling diverges
faster than the noncompressed case, in addition to the perfect
nesting we can expect that the glue effect caused by the IVC
fluctuations is stronger in the compression case.

Another critical factor influencing the superconductivity
is the DOS at the Fermi energy. From the reports on the
TGB [1,3], superconductivities were observed in the vicinity
of the van Hove singularity at the first magic angle. Away
from the first magic angle θ ≈ 1.1◦, superconductivity is
gradually suppressed, and superconductivity is not typically
observed with θ < 1.0◦ or θ > 1.2◦. These phenomena can
be recognized as the decrease of the DOS near the van Hove
singularity. On the contrary, when the DOS near the van
Hove singularity is strongly increased in the compression
case, together with the stronger nesting effect and the di-

minishing ratio W/U , higher superconducting temperature is
expected.

D. Topological phase transition

The effect of the previous MEP does not break the degen-
eracy at the Dirac points since the MEP preserves the C2T
symmetry. For the simplest case, we ignore V2(r) and focus
on the C2T breaking phase parameter ϕ to show topological
phase transition in the system. If ϕ 	= 0 or π , the C2T sym-
metry is broken and topological gaps will be generated in the
system. It should be noted that similar situation happens for
V2(r), however, it is very difficult to obtain analytical results
in the more complicated case.

If ϕ is not set as 0 or π , the electric potential will lose the
C2 symmetry. In Fig. 5(a), we draw the real-space MEP by
choosing ϕ = π/2, and we can see that the maximum and the
minimum of the electric potential lie neither in the AA region
nor in the AB/BA region. Hence the in-plane C2 symmetry is
no longer preserved. We can rewrite the perturbation Hamil-
tonian (9) as

Heff
1 = f1(ϕ)σ0 + f2(ϕ)σz, (11)

where σ0 is the unit matrix, f1(ϕ) = 6V1α
2 cos ϕ cos(π/3)

and f2(ϕ) = −6V1α
2 sin ϕ sin(π/3). The first term in Eq. (11)

corresponds to the energy shift of the Dirac cone that is
periodic with ϕ, while the second term is an effective mass
term added into the Dirac field. It is worth mentioning that the
effective Hamiltonian (11) is only valid at the K point, while
at the K

′
point the effective Hamiltonian has the same form

but by transforming f2(ϕ) into − f2(ϕ).
It should be noted that the effective masses at the K and

K
′

point have opposite signs. To recall that these Dirac cones
come from the same valley and have the same chirality, but
with opposite mass signs, the total Berry phase of the MBZ is
canceled out. With the increase of V1, the perturbation treat-
ment is no longer valid, however, the Chern number remains
unchanged. For ϕ = π/2 and ϕ = 3π/2, the Dirac points are
pinned down to the zero energy level and the absolute value of
the effective mass reaches the maximum. In Fig. 5(b), we
show the band structure of the whole MBZ with the amplitude
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V1 = 20 meV, and find that a sizable full gap is opened. Using
the TKNN formula [54], we numerically checked that the
Chern number is 0 when the Fermi level lies within this gap.

On the other hand, if one of the GMLs in the TGB is
nearly aligned with an hBN substrate, the broken C2 symmetry
will introduce an atom-scale staggered potential � ∼ 17 meV
in this layer. The effect of top (bottom) layer staggered po-
tential �t (�b) on the single-valley moiré Hamiltonian (1)
gives effective masses at the K and K

′
point with same signs

[53], hence a topologically nontrivial gap exists in the system
by the perfectly aligned hBN substrate. The topology of the
flat bands are determined by the competition between these
two kinds of potentials, i.e., atom-scale short-range staggered
potential versus long-range MEP. In Fig. 5 (c), we set �t = 0
and �b = 10 meV and the Chern number is calculated with
the Fermi level at the charge neutrality. With the increase of
V1, topological phase transition is characterized as the Chern
number changes from topologically nontrivial C = 1 to topo-
logically trivial C = 0. This phase transition can be verified
by measuring the Hall conductance at three-quarters filling of
the conduction (valence) flat band [55,56].

IV. EXPERIMENTAL REALIZATION

Electrostatic superlattices have been known to significantly
modify the electronic structure of low-dimensional materials.
In the existing experiments, the reported TGB devices are
fabricated with two sheets of rotated graphene encapsulated
by two hBN sheets using the tear and stack technique [1,2].
Due to the fact that the flat bands lies within the band gap of
the hBN, the moiré pattern generated from the hBN and GML
lattices results in an external MEP, and the moiré wavelength
λ is controlled by the twist angle φ between the hBN and
GML as

λ = 1 + ν√
ν2 + 2(1 + ν)(1 − cos φ)

a, (12)

where ν ≈ 1.81% is the lattice constant mismatch between the
hBN and GML. The form of the external MEP V2(r) requires
a twist angle φ = 1.85◦ at the first magic angle of the TGB.
Moreover, the amplitude of the external MEP created by the
hBN substrate is compatible with our numerical calculations.

Another flexible approach to obtain useful an MEP can
be realized by electrostatic gating schemes [50–52]. Figure 6
shows a schematic of a typical device geometry. An hBN/

TGB/hBN sandwich gated by a global top metal gate and a
bottom Si gate with a prepatterned SiO2 substrate in between.
A triangular array of holes are etched into the SiO2 substrate.
Applying a bias to the bottom Si gate results in a spatially
periodic variation of the displacement field compatible with
the etched pattern, which can be used to mimic an MEP. The
top gate electrode is used to independently tune the carrier
density in the channel.

So far we focused on the setting where the MEP is perfectly
aligned with the TGB, i.e., the center of the MEP locates
exactly at the rotation center. In more general cases, for ex-
perimental realization, it is very difficult to achieve perfect
alignment on the atomic scale. If the MEP center does not
coincide with the rotation center, we should take into account
a displacement vector D. Therefore, the MEP is revised as

Si GateSi Gate

Metal Gate (Top)Metal Gate (Top)

2SiOSiO

TGBTGB
hBNhBN

hBNhBN

FIG. 6. Schematically showing the device to mimic the MEP. A
periodic array of holes are etched into the SiO2 substrate. Applying
a bias to the bottom doped Si gate results in a modulated potential in
the TGB.

r ⇒ r + D, and the effective perturbation Hamiltonian (9)
will be modified by changing ϕ to ϕ + Gi · D. This does not
change the fact that the MEP will shift the Dirac cones in
energy axis and create a topologically trivial gap between the
conduction and valence bands.

V. CONCLUSION

In summary, we numerically solved the band structures of a
TGB with an external MEP applied onto the system. We found
that the MEP has direct influence on the flat bands. Together
with the HP caused by the long-range Coulomb interaction,
the external MEP can compress the lowest bands in the TGB
into a superflat band with the total bandwidth less than 2 meV.
The Fermi surface at the half-filling is nearly perfect nested
due to the flattening of the bands and higher superconducting
temperature is expected. Moreover, combining with a perfect
aligned hBN substrate, a topologically trivial or nontrivial gap
is opened in the lowest bands. We derived some analytical
expressions to understand the mechanism of the topological
phase transition. We find that the mass term in the effective
Hamiltonian is directly controlled by the MEP. Hence, we can
manipulate both the topology and the bandwidth of the flat
bands by tuning the MEP. In such a tunable TGB system, sys-
tematic investigations of the interplay between the topology
and the unconventional superconductivity have deepened our
understanding of strong correlation systems.
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