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Optical properties of massive anisotropic tilted Dirac systems
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We explore the effect of valley-contrasting gaps in the optical response of two-dimensional anisotropic tilted
Dirac systems. We study the spectrum of intraband and interband transitions through the joint density of states
(JDOS), the optical conductivity tensor, and the Drude spectral weight. The energy bands present an indirect
gap in each valley with a reduced magnitude with respect to the nominal gap of the untilted system. Thus, a new
possibility opens for the position of the Fermi level (an “indirect zone”) and for the momentum space available for
allowed transitions. The JDOS near each gap displays a set of three van Hove singularities which are in contrast
to the case of gapped graphene (an absorption edge only) or 8-Pmmn borophene (two interband critical points due
the tilt). For the Fermi level lying within the gap the JDOS shows the usual linear dependence on frequency, while
when lying above an indirect zone it looks similar to the borophene case. These spectral characteristics in each
valley determine the prominent structure of the optical conductivity. The longitudinal conductivity illustrates
the strong anisotropy of the optical response. Similarly, the Drude weight is anisotropic and shows regions of
nonlinear dependence on the Fermi level. The breaking of valley symmetry leads to a finite Hall response and
associated optical properties. The anomalous and valley Hall conductivities present graphenelike behavior with
characteristic modifications due to the indirect zones. Almost perfect circular dichroism and valley polarization
can be achieved by tuning the exciting frequency with an appropriate Fermi level position. We also calculate the
spectra of optical opacity and polarization rotation, which can reach magnitudes of tenths of radians in some
cases. The spectral features of the calculated response properties are signatures of the simultaneous presence of
tilt and mass, and suggest optical ways to determine the formation of different gaps in such class of Dirac systems
like 8-Pmmn borophene, quinoid-type graphene, organic conductor α-(BEDT-TTF)2I3, or some transition-metal
dichalcogenides.

DOI: 10.1103/PhysRevB.103.165415

I. INTRODUCTION

Relativistic effects are ubiquitous in two-dimensional ma-
terials, and light-matter interaction has become a powerful
tool to test its intriguing consequences. From the spatial imag-
ing of the spin Hall effect in two-dimensional electron gasses
[1] to the distinctive optical response in graphene [2] and the
quantized Faraday and Kerr rotations in topological insulators
[3,4], optical techniques have not only served as a probe of
nonconventional behavior of these materials but also as a
way to extract parameter values for effective models [5,6].
Furthermore, optical properties can be very sensitive to broken
symmetries present in the studied system [7–9]. For example,
the rotation of the polarization plane after passing through a
medium, known as the Faraday effect, can serve as an indi-
cator of the breaking of either time-reversal symmetry (TRS)
or inversion symmetry; Even for the thinnest samples [10],
like graphene [11] and the surface of topological insulators
[12], the Faraday angle can reach several degrees. Similarly,
the polar Kerr effect has as a necessary condition the breaking
of the TRS. Since both effects are directly related with the ac
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conductivity, they offer a contact-free manner to measure the
electronic transport properties of materials [7].

When materials display a relativisticlike linear spectrum
they are called Dirac materials [13]. Most of these materi-
als present an isotropic spectrum in momentum space [14],
a symmetric Dirac cone. Nevertheless, it has been recently
found that some of them present anisotropic linear spectra,
i.e., tilted anisotropic Dirac cones; such as the case for 8-
Pmmn borophene [15–18], quinod-type graphene [19], the
organic conductor α-(BEDT-TTF)2I3 [20–23], 1T′ monolayer
transition metal dichalcogenides [24,25] and partially hydro-
genated graphene [26]. In general, the presence of a cone tilt
does lead to qualitatively different behavior compared with
the untilted system [27]; in particular, when interacting with
light it gives raise to different optical and electronic proper-
ties. Sadhukhan and Agarwal [28] found anisotropic plasmon
dispersion, and Sarí et al. a unique intervalley damping effect
for magnetoplasmons [29,30]. Likewise, it has been found
that the dc conductivity becomes strongly anisotropic between
the parallel and perpendicular direction to the tilt [31], while
the frequency dependent optical conductivity acquires a non-
monotonic behavior with energy that allows to extract the
tilting parameter from optical measurements [32–34]. Being
semimetals, these materials have zero energy gap, but a gap
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can be generated artificially [35–42]. In general, the emer-
gence of a gap can be related with the breaking of a symmetry.
For example, in graphene the otherwise semimetallic behav-
ior, can be changed by breaking inversion symmetry [43],
which results in the opening of a band gap and the consequent
valley Hall effect. Perhaps, the most noticeable example of
this, is the quantum Hall effect in graphene [44], which is ob-
tained by placing graphene in a perpendicular magnetic field.
Haldane [45] showed with an example that the presence of a
magnetic field was not necessary condition, but the breaking
of TRS. An alternative way, to generate a Hall conductivity
by breaking TRS without a magnetic field, is the spin-texture
proposed by Hill et al. [46]. In Hill’s model, the localized
spins of ad-atoms doping one of the sublattices of graphene
arrange themselves creating a spin configuration with tilted
spins, which can be described by an effective tight-binding
Hamiltonian with valley dependent gaps. The latter effect
drastically modifies the density of states (DOS) profile, as well
as the optical longitudinal and anomalous Hall conductivities.
Such a mechanism has been recently invoked in an experiment
which show evidence of spinglass formation in hydrogenated
graphene [47]. Aside of the spin-textured graphene, there are
other Dirac systems with valley asymmetric gap, like gated
silicene [48], α-(BEDT-TTF)2I3 with magnetic modulations
[49], and the modified Haldane model [50]. Although the
optical properties of tilted anisotropic Dirac systems have
been subject of intense research [51–61], up to our knowledge
the effect of valley dependent gaps [25,62–67] in the optical
properties of a tilted anisotropic Dirac system, has not been
reported yet. In this paper we present such a study. In this
respect, we note that ab initio calculations suggest that a band
opening in 8-Pmmn borophene is possible by hydrogenation
and that its direct or indirect nature could be controlled by
strain [62]. On the experimental side, the massive fermion
state of the mentioned Dirac system α-(BEDT-TTF)2I3 has
been recently confirmed [23], making of it a good candidate
material for our study. Moreover, excitation with circularly
polarized light combined with different on-site potential on
underlying sublattices could produce a net valley-dependent
mass, as was discussed in Ref. [65].

The outline of the paper is the following. In Sec. II
we present the Dirac-like Hamiltonian and its energy band
structure, identifying the effect of tilting and anisotropy, the
nonuniform gapped valleys, and Fermi contours. In Sec. III
we study the optical transitions near the gaps. We first study
the joint density of states to identify critical points, which
will determine the prominent spectral features of the optical
response (Sec. III A). The electrical conductivity tensor, due
to intra and interband transitions, is calculated in Sec. III B
within the Kubo formalism. The Drude weight is discussed
in Sec. III C. In Sec. IV we present optical properties of our
system. The anisotropy of the response, circular dichroism
spectrum and valley polarization are studied in Sec. IV A.
The anomalous and valley Hall conductivities are obtained in
Sec. IV B, and compared to the model of gapped graphene
with broken valley symmetry developed by Hill et al. [46].
Spectra of transmission as a function of angles of incidence
and polarization for several positions of the Fermi level is
considered in Sec. IV C. In Sec. IV D we calculate spectra of
Kerr and Faraday rotation. Finally, we present our conclusions

in Sec. V. There are two appendices with expressions of Fermi
contours and related quantities, and of the Fresnel amplitudes
describing the problem of refraction of a 2D system between
two dielectrics.

II. THE HAMILTONIAN: ANISOTROPY, TILT,
AND VALLEY-CONTRASTING GAPS

We consider a 2D anisotropic tilted Dirac system with
momentum-space Hamiltonian

H ξ (k) = ξ (h̄vt kyI + h̄vxkxσx + ξ h̄vykyσy) + �ξσz, (1)

where σi are the Pauli matrices acting on the pseudospin
space, I is the identity matrix and ξ = ± (or K, K ′) is a
valley index; the electron wave vector k = (kx, ky) is mea-
sured from the nominal Dirac point in each valley. In addition
to the broken particle-hole symmetry (PHS), the model in-
clude a valley-contrasting mass, �+ �= �−, which breaks
the time-reversal symmetry (TRS). For �ξ = 0 the Hamilto-
nian describes the low lying excitations of two tilted Dirac
cones like in some 2D graphene-type materials or some or-
ganic conductors subjected to pressure and uniaxial strain
[19,29,31,32,53]. The Hamiltonian of graphene is recovered
by additionally taking vt = 0 and vx = vy = vF . While 8-
Pmmn borophene Hamiltonian is recovered by taking vx =
0.86 vF , vy = 0.69 vF , vt = 0.32 vF , with vF = 106 m/s, and
�ξ = 0 [53]. However, first-principles calculations predict the
band gap opening in 8-Pmmn borophene by hydrogenation
[62]. By combining hydrogen adsorption sites, coverage, and
mechanical strain the possibility of transition from a direct
to indirect band gap is observed. Another material which
presents characteristics as those of the Hamiltonian Eq. (1), is
the organic conductor α-(BEDT-TTF)2I3. This is a 2D system
with a pair of tilted and anisotropic Dirac cones, as was ex-
perimentally verified by several types of measurements [22].
Furthermore, the experimental confirmation of massive Dirac
fermions was recently reported [23]. Some two-dimensional
transition metal dichalcogenides present also tilted Dirac
bands around Dirac points with indirect gaps openend by spin-
orbit interaction and controllable with electric fields and strain
[24,25]. The study presented below about the modification
of the spectrum of interband transitions in the vicinity of an
indirect gap might be useful for that systems.

The Hamiltonian Eq. (1) has recently been considered
to study a valley Seebeck effect [65]. The valley-dependent
gap is explained by combining two contributions, a valley-
dependent mass photoinduced by circularly polarized light
and different on-site energies on the two sublattices, although
no particular considerations on the effects due to the indirect
nature of the gaps is presented.

The energy-momentum dispersion relation corresponding
to the Hamiltonian in Eq. (1) is

ε
ξ

λ(kx, ky) = ξαt ky + λ

√
α2

x k2
x + α2

y k2
y + (�ξ )2, (2)

where αi = h̄vi (i = x, y, t, F ), and the index λ = ± defines
the energy branch and the helicity of the states in the conduc-
tion (λ = +) and the valence (λ = −) bands in each valley.

The bands Eq. (2) have critical points at k∗ = (0,−ξλQξ ),
where Qξ = (|�ξ |/αy)(γ /

√
1 − γ 2), yielding a minimum
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FIG. 1. (a) Energy spectrum of an anisotropic tilted Dirac system with valley symmetry breaking [Eq. (2)]. The smallest vertical energy
differences 2�ξ for each valley are shown (�+ = 25 meV, �− = 45 meV). The indirect nature of the gaps is illustrated in the inset (K valley).
The points k∗ = (0, ∓Q+) correspond to the minimum and maximum of the branches. (b) Fermi level lying within a gap, εF < �̃+. (c) Fermi
level lying above a gap, εF > �+ with allowed interband transitions. The energies h̄ω+

1 , h̄ω+
2 give the minimum and maximum energies needed

for interband transition.

of ε
ξ
+ at (0,−ξQξ ) and a maximum of ε

ξ
− at (0, ξQξ )

[see the inset in Fig. 1(a)]; we have introduced the tilt-
ing parameter γ = vt/vy (0 � γ < 1, nonovertilted cones).
Note then that min{εξ

+(k)} − max{εξ
−(k)} = ε

ξ
+(0,−ξQξ ) −

ε
ξ
−(0, ξQξ ) = 2|�ξ |

√
1 − γ 2 is smaller than the smallest

vertical energy difference min{εξ
+(k) − ε

ξ
−(k)} = ε

ξ
+(0) −

ε
ξ
−(0) = 2|�ξ |. Thus, as a consequence of the simultaneous

presence of tilting (γ ) and mass (�ξ ) there is an indirect
band gap at each valley around the nominal Dirac point;
see Fig. 1. This implies for example that a Fermi level in
the gap means now |εF | < min{|�̃+|, |�̃−|}, where �̃ξ =
�ξ

√
1 − γ 2 < �ξ . Indeed, for each valley the following sce-

narios are now possible according to the position of the Fermi
level: (i) |εF | > |�ξ | (Fermi level above the nominal direct
gap), (ii) |�̃ξ | < |εF | < |�ξ | (Fermi level in an “indirect gap”
region), (iii) |εF | < |�̃ξ | (Fermi level in the absolute gap);
see Fig. 1. This will cause additional structure in the opti-
cal response in contrast to the untilted case (γ = 0). Now
the Fermi contours, defined by the curves Cξ

λ = {k| εξ
λ(k) =

εF }, are the displaced ellipses (1 − γ 2)α2
x (kξ

λ,x )2 + (1 −
γ 2)2α2

y (kξ
λ,y + ξλQξ |εF |/|�̃ξ |)2 = ε2

F − (�̃ξ )2 centered at

(0,−ξλQξ |εF |/|�̃ξ |) with the major semiaxis along the ky-
direction. Note that when the Fermi level lies in an indirect
zone |�̃ξ | < |εF | < |�ξ | the ellipse resides completely in
the region ky < 0 (ky > 0) for λ = + (λ = −) [see Fig. 2(d)]
which modifies significantly the momentum space available
for interband transitions, with respect to that of the case
|εF | > |�ξ |. The roots of equation ε

ξ

λ(k) = εF are displayed
in Appendix A.

III. OPTICAL TRANSITIONS NEAR AN INDIRECT GAP

As a previous step to the calculation of the optical con-
ductivity tensor and to understand the spectral features of
the optical response of the system, we first consider the
joint density of states (JDOS). In the following we adopt
the generic notation of a two-band model and write the
Hamiltonian and its spectrum as H ξ (k) = ε

ξ
0 (k)I + σ · dξ (k)

and ε
ξ
λ(k) = ε

ξ
0 (k) + λdξ (k), where ε

ξ
0 (k) = ξαt ky, dξ (k) =

ξαxkxx̂ + αykyŷ + �ξ ẑ, and dξ (k) = |dξ (k)|. In polar coordi-
nates we write k = k cos θ x̂ + k sin θ ŷ and

ε
ξ
λ(k, θ ) = ξαF kh(θ ) + λ

√
α2

F k2g2(θ ) + (�ξ )2, (3)

in terms of the adimensional quantities h(θ ) = (αt/αF ) sin θ ,
which characterize the tilting dependence, and g2(θ ) =
(α2

x /α
2
F ) cos2 θ + (α2

y /α
2
F ) sin2 θ which accounts for the

anisotropic dispersion. The roots of equation ε
ξ
λ(k(θ ), θ ) = εF

are denoted by kξ
λ,F (θ ) when |εF | > |�ξ | [Fig. 2(b)], and by

qξ,±
λ,F (θ ) if |�̃ξ | < |εF | < |�ξ | [Fig. 2(d)]; see Appendix A

for expressions of these roots. In the later case, the ± sign
refers to the two arcs [in green (red) for the sign −(+) in
Fig. 2(d)] forming the ellipse which lies completely in the
ky < 0 (C+

+ , C−
− ) or ky > 0 (C+

− , C−
+ ) half space; the roots

qξ,±
λ,F (θ ) are defined only in the sector |θ − 3π/2| < θ∗

ξ if
ξλ = +, or for |θ − π/2| < θ∗

ξ if ξλ = −, where tan θ∗
ξ =

(vy/vx )
√

[ε2
F − (�̃ξ )2]/[(�ξ )2 − ε2

F ].

A. Joint density of states

The number of pair of states in conduction (unoccupied)
and valence (occupied) bands separated by a given energy h̄ω

is given by J (ω) = ∑
ξ=± J (ξ )(ω) with

J (ξ )(ω) = gs

∫ ′ d2k

(2π )2
δ(εξ

+(k) − ε
ξ
−(k) − h̄ω), (4)

where gs = 2 is the spin degeneracy and the prime on the
integral indicates a range of integration restricted to that re-
gion of k space for which ε

ξ
−(k) < εF < ε

ξ
+(k). However,

the δ function restricts the integration to points lying on the
resonance curve Cξ

r (ω) = {(kx, ky)| 2dξ (kx, ky) = h̄ω}. Thus,
the integral Eq. (4) has to be carried out over those portions
of the curve Cξ

r (ω) lying within the k-region for which the
previous inequality (Pauli blocking) is satisfied. The curve
Cξ

r (ω) is the ellipse centered at the origin α2
x k2

r,x + α2
y k2

r,y =
(h̄ω/2)2 − (�ξ )2, defined only for h̄ω � 2|�ξ |, or in po-
lar coordinates 2αF kr (θ )g(θ ) =

√
(h̄ω)2 − (2�ξ )2 [Figs. 2(b)

and 2(d)]. Indeed, for a given frequency Eq. (4) can be written
as a line integral of (h̄vk )−1 = |∇k[2dξ (k)]|−1 over those
portions of the curve of constant interband energy Cξ

r (ω) lying
in the regions imposed by Pauli blocking. Peaks in the JDOS
will appear due to electronic excitations involving states with
allowed wave vectors on Cξ

r (ω) such that vk takes extreme
values. The energy difference 2dξ (k, θ ) between the conduc-
tion and valence bands at the Fermi lines kξ

λ,F (θ ) and qξ,±
λ,F (θ )

will be denoted by h̄ω
ξ
λ(θ ) and h̄ν

ξ,±
λ (θ ), respectively (see Ap-

pendix A). For γ = 0 these energies reduce to the same value
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FIG. 2. Conduction energy band ε+
+ (k) at the K valley. The

gap parameter is �+ = 25 meV. At the Fermi level, the contour
line C+

+ = {k|ε+
+ (k) = εF } is an ellipse displaced along the ky axis

by Q+(εF /�̃+), with �̃+ = �+√
1 − γ 2. (a) εF > �+, with εF =

32 meV. (b) Fermi contour k+
+,F (θ ) displayed in (a). The gray

shaded region indicates the momentum space available for optical
transitions, such that ε+

− (k) < εF < ε+
+ (k). (c) Fermi level in the

indirect zone �̃+ < εF < �+, with εF = 23.5 meV. (d) Fermi con-
tour showed in (c). It is defined by the two arcs q+,−

+,F (θ ) (green)
and q+,+

+,F (θ ) (red) in the half-space ky < 0, within the sector |θ −
3π/2| < θ∗

+. As a consequence, the corresponding k-region for in-
terband transitions is strongly reduced. In (b) and (d) the resonance
curve C+

r (ω) = {k|ε+
+ (k) − ε+

− (k) = h̄ω} is presented for several fre-
quencies (dotted lines). It is an ellipse centered at the origin, defined
for h̄ω > 2�+. At the critical frequencies ω+

1 , ω+
2 [see Fig. 1(b)] C+

r

is tangential to the Fermi lines. At a given frequency, only the arcs of
C+

r lying in the shaded region contribute to the optical response.

2|εF |, which is the threshold (above the gap) for interband
transitions in gapped graphene. Given the tilt of the bands
around each valley, it is verified that h̄ω

ξ
−(θ ) = h̄ω

ξ
+(θ ± π )

and h̄ν
ξ,±
− (θ ) = h̄ν

ξ,±
+ (θ ± π ). The minimum and the max-

imum of these energy differences take place at θ = π/2 or
3π/2, and they are all given by the same functions of the
Fermi level,

h̄ω
ξ
1 (εF ) = 2

1 − γ 2

(|εF | − γ

√
ε2

F − (�̃ξ )2
)
, (5)

h̄ω
ξ
2 (εF ) = 2

1 − γ 2

(|εF | + γ

√
ε2

F − (�̃ξ )2
)
, (6)

such that minθ {h̄ω
ξ
±(θ )} = minθ {h̄ν

ξ,−
± (θ )} = h̄ω

ξ
1 < 2|εF |

and maxθ {h̄ω
ξ
±(θ )} = maxθ {h̄ν

ξ,+
± (θ )} = h̄ω

ξ
2 > 2|εF |. As

was mentioned above, h̄ω
ξ
1 (γ = 0) = h̄ω

ξ
2 (γ = 0) = 2|εF |.

Equations (5) and (6) suggest optical measurements of ω
ξ

1/2 to
determine the tilting and gap parameters. Indeed, we can re-
cover them through the expressions γ = √

1 − (4|εF |/εs) and
[�ξ (ωξ

1, ω
ξ
2 )]2 = |εF |[h̄ω

ξ
1 h̄ω

ξ
2 − εs|εF |]/(εs − 4|εF |), where

εs = h̄ω+
1 + h̄ω+

2 = h̄ω−
1 + h̄ω−

2 .
Integral Eq. (4) looks different according to the position of

the Fermi level:
(i) |εF | > |�ξ |
In this case, Pauli blocking and energy conservation re-

stricts to kr (θ, ω) � kξ
λ,F (θ ), which leads to the result

J (ξ )(ω) = gs
h̄ω

8πα2
F

1

2π

∫ 2π

0

dθ

g2(θ )
�

[
ω − ω

ξ
λ(θ )

]
, (7)

where the sign λ = + (−) is used when εF > 0 (<0); �(x)
is the Heaviside unit step function. In Fig. 3(c) the JDOS
J (+)(ω) as calculated from Eq. (7) is shown. For photon
energies h̄ω

ξ
1 < h̄ω < h̄ω

ξ
2 , the angular region in momentum

space available for vertical transitions is no longer 0 � θ �
2π as in the untilted case, but a reduced region with a bound-
ary determined by h̄ω+

+(θ ) (top panel). This is in contrast to
the well known onset �(h̄ω − 2εF ) for interband transitions
between bands with electron-hole symmetry. The characteris-
tic and unique threshold 2εF observed in the optical response
of graphene [68] becomes a region bounded by the critical
energies h̄ω+

1 and h̄ω+
2 , where the frequency dependence is

no longer lineal (bottom panel), because of the tilt of the
bands. The JDOS vanishes for h̄ω < h̄ω

ξ
1 . When h̄ω > h̄ω

ξ
2

the whole angular region 0 � θ � 2π contributes, giving the
result J (ξ )(ω > ω

ξ
2 ) = (gs/8π )(h̄ω/αxαy), which is indepen-

dent of the tilting parameter αt and shows the usual linear
ω-dependence of Dirac systems. Globally, Fig. 3(c) displays
qualitatively a similar behavior as that reported by Verma et al.
for borophene [32].

(ii) |�̃ξ | < |εF | < |�ξ |
Now the momentum space available for direct transitions

is restricted to kr (θ, ω) � qξ,+
λ,F (θ ) or 0 � kr (θ, ω) � qξ,−

λ,F (θ )
[Fig. 2(d)] and the JDOS for the valley ξ reads as

J (ξ )(ω) = gs
h̄ω

8πα2
F

1

2π
�(h̄ω − 2|�ξ |)

×
∫ θ0+θ∗

ξ

θ0−θ∗
ξ

dθ

g2(θ )

{
�

[
ν

ξ,−
λ (θ ) − ω

]
+�

[
ω − ν

ξ,+
λ (θ )

]}
, (8)

where θ0 = 3π/2 (π/2) when ξλ = + (−). We also
find that J (ξ )(2|�ξ | � h̄ω � h̄ω

ξ
1 ) = J (ξ )(h̄ω > h̄ω

ξ
2 ) =

(gs/8π )(h̄ω/αxαy)[1 − (2βξ/π )]/2, where tan βξ =√
[(�ξ )2 − ε2

F ]/[ε2
F − (�̃ξ )2]. The JDOS Eq. (8) for the

valley ξ = + is shown in Fig. 3(b). The spectrum displays
van Hove singularities at 2�+, h̄ω+

1 , and h̄ω+
2 , and a reduced

overall size in comparison to the cases |εF | < |�̃ξ | or
|εF | > |�̃ξ |. Now a linear behavior as a function of photon
energy h̄ω appears, with a lower slope, in two separated
domains only. Moreover, the number of interband transitions
is strongly diminished between h̄ω+

1 and h̄ω+
2 because

the angular space available for transitions is considerably
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FIG. 3. Joint density of states for transitions at the K valley: (a) |εF | < |�̃+|, (b) |�̃+| < |εF | < |�+|, and (c) |εF | > |�+|. We take
�+ = 25 meV and J0 = (gs/8π )(2|�+|/α2

F ).

smaller, as is illustrated in the top panel of Fig. 3(b). The
insets show how the contributing angular region narrows for
ω+

1 < ω < ν+,−
+ (θ ) or ν+,+

+ (θ ) < ω < ω+
2 , while the whole

sector |θ − 3π/2| < θ∗
+ contributes when 2�+ � h̄ω � h̄ω+

1
or h̄ω > h̄ω+

2 . The appearance of three critical energies
instead of one (for |εF | < |�̃ξ |) or two (for |εF | > |�ξ |)
constitutes an optical signature of the indirect gap.

(iii) |εF | < |�̃ξ |
For the Fermi level within the gap the JDOS becomes

J (ξ )(ω) = (gs/8π )(h̄ω/αxαy)�(h̄ω − 2|�ξ |). (9)

Besides the reduction of the absolute gap (|�̃ξ | < |�ξ |), we
note that this result is independent of the tilting parameter.
The JDOS looks very similar to that corresponding to gapped
graphene but now it involves the geometric mean

√
vxvy,

instead of velocity vF , due to the anisotropy of the energy
dispersion; see Fig. 3(a).

All these results are used to evaluate the frequency
dependence of the total JDOS

∑
ξ J (ξ )(ω; εF ) for a con-

tinuous variation of the Fermi level. Figure 4 illustrates
well the appearance of onsets and how the lines defined by
the critical frequencies evolve and shape the spectrum of
JDOS when a gap is open. In Fig. 4(a) we show the re-
sult for borophene (�+ = �− = 0), where the corresponding

critical energies h̄ω1,2(εF ) are also indicated. The case with
only one gap, �+ �= 0,�− = 0, is shown in Fig. 4(b). The
contribution J (−) behaves as for borophene, with critical
frequencies h̄ω−

1,2 = 2εF /(1 ± γ ). However, for transitions
near the gapped valley, the spectrum of the contribution J (+)

displays the threshold at 2�+ [Eq. (9)], the borders defined
by critical frequencies h̄ω+

1,2 with a nonlinear dependence on
εF [Eqs. (5) and (6)], and an indirect zone where the joint
density is strongly suppressed. Figure 4(c) displays the case
with valley-contrasting gaps |�−| > |�+|.

B. Optical conductivity tensor

Within the framework of the linear response theory, we
find that the conductivity tensor σi j (ω) = ∑

ξ σ
(ξ )
i j (ω), which

determines the electrical current induced in the system by an
external homogeneous electric field of frequency ω, has the
form

Re σ
(ξ )
ii (ω) = D(ξ )

ii δ(ω) + Re σ
(ξ ),inter
ii (ω), (10)

Im σ
(ξ )
ii (ω) = Im σ

(ξ ),intra
ii (ω) + Im σ

(ξ ),inter
ii (ω), (11)

σ (ξ )
xy (ω) = −σ (ξ )

yx (ω) = σ (ξ ),inter
xy (ω), (12)

0 1 2 3 4 5 0 2 4 6 8 0 5 10 15 20

FIG. 4. Total joint density of states J (ω; εF )/J0 considering; (a) �+ = �− = 0, (b) �+ = 25 meV and �− = 0, and (c) �+ = 15 meV
and �− = 40 meV. In panels (b) and (c) we take J0 as in Fig. 3. In (a) we use �+ = 25 meV in J0.
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FIG. 5. Dissipative components of the interband conductivity at the K valley, for |εF | < |�̃+| (a, d), |�̃+| < |εF | < |�+| (b, e), |εF | > |�+|
(c, f). We take �+ = 25 meV.

where the label intra (inter) refers to contributions due to intra-
band (interband) transitions. According to the Kubo formula,
these are obtained from (at zero temperature)

σ
(ξ ),intra
ii (ω) = igs

σ0

4π h̄ω

∑
λ

∫
d2k

[
V ξ

λ,i(k)
]2

δ
[
ε

ξ

λ(k) − εF
]
,

(13)

Re σ
(ξ ),inter
i j (ω) = gs

σ0

4h̄ω

∫ ′
d2k

Sξ
i j (k)

[dξ (k)]2
δ[h̄ω − 2dξ (k)],

(14)

Im σ
(ξ ),inter
i j (ω) = gs

σ0

4π h̄ω
P

∫ ′
d2k

× Sξ
i j (k)

[dξ (k)]3

(h̄ω)2

(h̄ω)2 − [2dξ (k)]2
, (15)

Re σ (ξ ),inter
xy (ω) = gs

σ0

2π
P

∫ ′
d2k

T ξ
xy(k)

dξ (k)

1

(h̄ω)2 − [2dξ (k)]2
,

(16)

Im σ (ξ ),inter
xy (ω) = −gs

σ0

8

∫ ′
d2k

T ξ
xy(k)

[dξ (k)]2
δ[h̄ω − 2dξ (k)],

(17)

where σ0 = 2e2/h, P means Principal Value integral,

V ξ
λ,i(k) = ∂ε

ξ
0 (k)
∂ki

+ λ
dξ dξ · ∂dξ

∂ki
, Sξ

i j (k) = (dξ × ∂dξ

∂ki
) ·

(dξ × ∂dξ

∂k j
), and T ξ

xy(k) = dξ · ( ∂dξ

∂kx
× ∂dξ

∂ky
). The prime

indicates integration over domains which depend on the
position of the Fermi energy according to the condition
ε

ξ
−(k) < εF < ε

ξ
+(k). We have included in Eq. (10) the

Drude weight [69] D(ξ )
ii = π limω→0[ω Im σ

(ξ )
ii (ω)] =

π limω→0[ω Im σ
(ξ ),intra
ii (ω)]. When the Fermi level lies

in the gap, the intraband conductivity is null, only transitions

from the valence into the conduction band contribute. We will
work within the infinite band limit.

Figure 5 shows the dissipative components of the optical
conductivity tensor for several positions of the Fermi level
in the valley ξ = +. In accordance to the spectral behavior
of JDOS, these spectra show interband critical points and a
characteristica reduction of the response when the Fermi level
lies in the indirect zone. In contrast to graphene and borophene
there is a finite transverse response ∝ �ξ . However, the result
σ ξ

xx(ω) �= σ ξ
yy(ω) reveals the anisotropic character of the opti-

cal response of the system.
For |εF | < |�̃ξ | [Figs. 5(a) and 5(d)] we obtain

Re σ
(ξ ),inter
ii (ω) = gs

σ0π

16

[
1 +

(
2�ξ

h̄ω

)2
]

× vi

vx

vi

vy
�(h̄ω − 2|�ξ |), (18)

Im σ (ξ ),inter
xy (ω) = −ξgsσ0π

�ξ

4h̄ω
�(h̄ω − 2|�ξ |). (19)

For the diagonal components it is verified that
v2

y Re σ (ξ ),inter
xx (ω) = v2

x Re σ (ξ ),inter
yy (ω), while the Hall

component is independent of vx, vy, and vt . These results
look very similar to those of gapped graphene, but with
the additional anisotropy factor v2

i /vxvy �= 1 in the diagonal
elements.

When |εF | > |�ξ | [Figs. 5(c) and 5(f)],

Re σ
(ξ ),inter
ii (ω) = gs

σ0

16

{
α2

x

α2
F

α2
y

α2
F

[
1 −

(
2�ξ

h̄ω

)2]

×
∫ 2π

0
dθ

(δix sin2 θ + δiy cos2 θ )

g4(θ )

×�
[
ω − ω

ξ

λ(θ )
]

+ α2
i

α2
F

(
2�ξ

h̄ω

)2 ∫ 2π

0

dθ

g2(θ )
�

[
ω − ω

ξ
λ(θ )

]}
,

(20)
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Im σ (ξ ),inter
xy (ω) = −ξgsσ0π

�ξ

4h̄ω

αx

αF

αy

αF

1

2π

×
∫ 2π

0

dθ

g2(θ )
�

[
ω − ω

ξ
λ(θ )

]
, (21)

where λ = + (−) if εF > 0 (<0). We find that
Re σ

(ξ ),inter
ii (ω < ω+

1 ) = 0 and

Re σ
(ξ ),inter
ii (ω > ω+

2 ) = gs
σ0π

16

[
1 +

(
2�ξ

h̄ω

)2
]

vi

vx

vi

vy
. (22)

In contrast to the result for borophene (�ξ = 0),
Eq. (22) shows a dependence on frequency; only for
high enough frequency the universal result Re[σ inter

xx (ω >

ω+
2 )] × Re[σ inter

yy (ω > ω+
2 )] = (e2/4h̄)2 reported by Verma

et al. [32] can be recovered. However, between ω+
1 and

ω+
2 Eq. (20) gives a frequency dependence very similar to

that of borophene, although with slightly different critical
frequencies. Similarly, Im σ (ξ ),inter

xy (ω < ω+
1 ) = 0 and

Im σ (ξ ),inter
xy (ω > ω+

2 ) = −ξgsσ0π
�ξ

4h̄ω
. (23)

Again, this result is very close to that of gapped graphene
for the ξ valley Im σ

gr
xy (ω) = −ξgsσ0π (�ξ/4h̄ω)�(h̄ω −

2max{|εF |, |�ξ |}).
Distinctly different behavior occurs when the Fermi

level is located within the indirect zone |�̃ξ | < |εF | < |�ξ |
[Figs. 5(b) and 5(e)] because of the strong reduction of the
momentum space available for optical transitions, as was dis-
cussed about the JDOS. In this narrow window for the Fermi
energy we have

Re σ
(ξ ),inter
ii (ω) = gs

σ0

16
�(h̄ω − 2|�ξ |)

×
(

α2
x

α2
F

α2
y

α2
F

[
1 −

(
2�ξ

h̄ω

)2]

×
∫ θ0+θ∗

ξ

θ0−θ∗
ξ

dθ
δix sin2 θ + δiy cos2 θ

g4(θ )

× {
�

[
ν

ξ,−
λ (θ ) − ω

] + �
[
ω − ν

ξ,+
λ (θ )

]}
+ α2

i

α2
F

(
2�ξ

h̄ω

)2 ∫ θ0+θ∗
ξ

θ0−θ∗
ξ

dθ

g2(θ )

× {
�

[
ν

ξ,−
λ (θ ) − ω

] + �
[
ω − ν

ξ,+
λ (θ )

]})
,

(24)

Im σ (ξ ),inter
xy (ω) = −ξgsσ0π �(h̄ω − 2|�ξ |) �ξ

4h̄ω

αx

αF

αy

αF

1

2π

×
∫ θ0+θ∗

ξ

θ0−θ∗
ξ

dθ

g2(θ )

{
�

[
ν

ξ,−
λ (θ ) − ω

]
+�

[
ω − ν

ξ,+
λ (θ )

]}
. (25)

As was mentioned above, the spectral features associated
to three critical frequencies in the optical response serve as a
fingerprint of the simultaneous presence of tilting and mass in
the band structure of a 2D Dirac system at low energies. From

Eqs. (18)–(25), it is verified that for |�+| = |�−|, Re σ
(+)
ii =

Re σ
(−)
ii , while for �+ = ±�−, Im σ (+)

xy = ∓ Im σ (−)
xy .

Now, we comment on the total response function σi j (ω) =∑
ξ σ

(ξ )
i j (ω). In contrast to pristine or (uniformly) gapped

graphene, where the conductivity tensor is diagonal and
isotropic with an absorption edge defined by 2|�ξ | or 2|εF |,
in our system we have two pairs of tilted cones with different
gaps in each valley. It is verified that σxy(ω) = 0 when �+ =
�−, because of the recovery of the time-reversal symmetry.
Correspondingly, the inversion symmetry is broken, which
anticipates a valley sensitive response.

The three distinct possibilities for the position of the chem-
ical potential, and the corresponding spectral characteristics
of the optical conductivity of each valley, open a number of
scenarios for the total response. In the following we list the
distinctive cases:

(1) A closed gap in one valley and an open gap in the other.
For instance, �+ �= 0, �− = 0:

(i) |εF | < |�̃+|,
(ii) |�̃+| < εF < |�+|,
(iii) |εF | > |�+|.

(2) εF within the absolute gap, |εF | < min{|�̃+|, |�̃−|}.
(3) Nonoverlapping indirect zones, |�̃+| < |�+| <

|�̃−| < |�−|.
(i) εF at the indirect zone at K but within the gap at K ′,

|�̃+| < |εF | < |�+| < |�̃−|.
(ii) εF above the direct zone at K , but in the gap at K ′,

|�̃+| < |�+| < |εF | < |�̃−|.
(iii) εF above the direct zone at K , but in the indirect

zone at K ′, |�+| < |�̃−| < |εF | < |�−|.
(iv) εF above the direct zones at K and K ′, |εF | >

max{|�+|, |�−|}.
(4) εF lying at overlapping indirect zones at K and K ′,

|�̃+| < |�̃−| < |εF | < |�+| < |�−|.
Thus, from the spectral characteristics of the response of

an individual valley it is possible to anticipate the spectral
features of the total response. For example, in the case 1 the
Hall conductivity will arise from the transverse response of
the valley at K exclusively [Figs. 5(d)–5(f)], in the case 2 the
spectrum will display features at the onsets 2�+ and 2�−,
four critical frequencies will be present in the case 3(iv), while
six will shape the spectrum in the case 4. To illustrate this
variability of the optical response, in Fig. 6 we show σxy(ω)
for the scenarios 2, 3(iv), and 4 only, in the name of brevity.

C. Drude weight

The intraband optical conductivity spectral weight is
anisotropic, as expected, and shows a specific behavior due to
the presence of unequal gaps. For gappless, tilted or untilted
pair of cones, the Drude weight D(ξ )

ii ∝ |εF |, while for gapped
graphene is D�ξ = �(|εF | − |�ξ |)(e2/h̄2)[ε2

F − (�ξ )2]/|εF |.
In our case this behavior is modified in each valley because
of the indirect nature of the gap. In addition, the breaking
of the valley symmetry yields D(+)

ii �= D(−)
ii . The total Drude

weight Dii = ∑
ξ D(ξ )

ii as a function of (positive) Fermi energy
is shown in Fig. 7 for scenarios 1, 3, and 4. When the valley
K ′ is gapples, its contribution to the total weight displays the
characteristic linear dependence up to �̃+, after which the
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FIG. 6. Real and imaginary part of the total Hall response σxy(ω) = ∑
ξ σ (ξ )

xy (ω) for (a) Fermi level within the absolute gap, with
�+ = 15 meV, �− = 40 meV, εF = 0 meV, (b) Fermi energy lying at overlapped indirect zones, with �+ = 15 meV, �− = 14.2 meV,
εF = 13.5 meV, and (c) Fermi level above the direct zones �+ = 15 meV, for �− = 25 meV, εF = 27 meV.

contribution of the gapped valley K starts, presenting a spe-
cific nonlinear behavior in the indirect zone �̃+ < εF < �+,
and a gapped-graphene-like D�ξ function above the nominal
direct gap �+ [Fig. 7(a)]. The situation looks rather dif-
ferent when both valleys are gapped. For the scenario with
nonoverlapping indirect zones |�̃+| < |�+| < |�̃−| < |�−|
[Fig. 7(b)], Dii(εF ) is zero for εF below �̃+, and then follows
a behavior similar to that of Fig. 7(a) for �̃+ < εF < �̃−,
determined only by transitions in the branch ε+

+ . Above �̃−,
the transitions in the band ε−

+ are added, leading to a varia-
tion similar to that in Fig. 7(a). The function Dii(εF ) notably
changes when the indirect zones overlap, �̃+ < �̃− < �+ <

�− [Fig. 7(c)]. Between �̃+ and �̃− only intraband transi-
tions in the indirect zones of the branch ε+

+ contribute, while
for �̃− < εF < �+ transitions in the indirect zone of each
valley start to count. In the range between �+ and �−, D(−)

ii
is due to transitions in the band ε−

+ which take place only
in the corresponding indirect zone. Above �+ and �−, the
Drude weight behaves as can be identified in Fig. 7(a) or
7(b). Globally, a nonlinear dependence on εF , with an overall
reduction of its magnitude, is observed for the total weight.

IV. OPTICAL PROPERTIES

A. Anisotropic response, circular dichroism,
and valley polarization

The anisotropy expressed by the result σxx �= σyy can
also be presented through the longitudinal conductivity
σ‖(ω; ϕ) = ∑

ξ σ
(ξ )
‖ (ω; ϕ). This scalar response function de-

termines the density current induced along the direction of
the external field, J‖ = σ‖E, and it is given by σ‖(ω; ϕ) =

q̂iσi j (ω)q̂ j (sum over repeated indices is implied), where
q̂ = cos ϕ x̂ + sin ϕ ŷ gives the direction of the external field
E ‖ q̂. The quantity Re σ‖(ω; ϕ) determines the dissipation
(power absorption/area) for linearly polarized fields. For the
valley ξ ,

σ
(ξ )
‖ (ω; ϕ) = σ (ξ )

xx (ω) cos2 ϕ + σ (ξ )
yy (ω) sin2 ϕ. (26)

The off-diagonal components of the conductivity tensor does
not appear in this quantity because of its antisymmetry, σ (ξ )

yx =
−σ (ξ )

xy . Polar plots of the longitudinal conductivity Eq. (26),
made of transitions in the vicinity of the valley ξ = +, are
shown in Figs. 8(a)–8(c) as color maps for three positions of
the level εF . We observe that, as a function of the direction ϕ,
the response follows the same functional angular dependence
as the function g(θ ) when |εF | < |�̃+| for frequencies above
the gap, and when |εF | > |�+| for ω > ω+

2 . Indeed, given that
Re σ

(ξ )
ii (ω) ∝ α2

i we find that Re σ
ξ

‖ (ω; ϕ) = σ̄ (ω)�(h̄ω −
2|�ξ |)g2(ϕ) for the former case [Fig. 8(a)] and Re σ

ξ

‖ (ω >

ω
ξ
2 ; ϕ) = σ̄ (ω)g2(ϕ) in the latter [Fig. 8(c)], where σ̄ (ω) =

gs(σ0π/16)[1 + (2�ξ/h̄ω)2]α2
F /αxαy. This dependency on ϕ

is otherwise modified for ω
ξ
1 � ω � ω

ξ
2 [Figs. 8(b) and 8(c)]

due to the spectral characteristics of the allowed transitions
in this frequency range. In Fig. 8(b), the anisotropy is hardly
noticeable below h̄ω+

2 because of the strong suppression of
the spectrum there.

However, owing to the nonvanishing Hall component
σxy(ω) the medium absorb right- and left-circularly po-
larized light differently, revealing the circular dichroism
of the medium. The appropriate conductivity for circu-
larly polarized external field E± is the quantity σ±(ω) =

FIG. 7. Drude weight as a function of Fermi energy when �+ = 25 meV for (a) scenario 1, with �− = 0, (b) scenario 3, with �− =
40 meV, and (c) scenario 4, with �− = 26.5 meV. The scale is normalized to the Drude weight of pristine graphene D0 = (e2/h̄)(ε0

F /h̄), where
ε0

F = h̄vF
√

πne is the Fermi energy in pristine graphene, with electron density ne = 1 × 1015 m−2.
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FIG. 8. Longitudinal conductivity Re[σ (+)
‖ (ω; ϕ)] (a–c) and circular dichroism response Re[σ (+)

± (ω)] (d–f), for three distinct positions of
the Fermi level in the vicinity of the K point with �+ = 25 meV.

σxx(ω) + σyy(ω) ± i[σxy(ω) − σyx(ω)], which gives the in-
duced current J = σ±E±. In this case, the power absorption/
area is determined by

Re σ±(ω) = Re[σxx(ω) + σyy(ω)] ∓ Im[σxy(ω) − σyx(ω)].
(27)

Figures 8(d)–8(f) display Re σ
(+)
+ (ω) and Re σ

(+)
− (ω) for

several values of the level εF . As expected, for |εF | < |�̃ξ |
[Fig. 8(d)] and |εF | > |�ξ | [Fig. 8(f)] the spectra show a
graphenelike and borophenelike response, respectively [see
Figs. 5(a), 5(c) 5(d), and 5(f)]. However, the new scenario
[Fig. 8(e)] opened by the indirect nature of the gap [Fig. 8(e)]
presents a spectrum which, in the interval ω+

1 � ω � ω+
2 ,

breaks that graphenelike behavior (observed in the narrow
range 2�+ � h̄ω � h̄ω+

1 ) and the borophenelike behavior
(started above ω+

2 ).
Circular dichroism can also be illustrated through the Hall

angle

tan �H(ω; εF ) = Re σ+ − Re σ−
Re σ+ + Re σ−

= −Im(σxy − σyx )

Re(σxx + σyy)
. (28)

In Fig. 9 we show the Hall angle spectrum as a function of
the (positive) Fermi energy, encompassing the scenario 2 and
the cases of scenario 3. When εF < �̃+ (scenario 2) the spec-
trum starts at the energy gap 2�+, with decreasing magnitude
until the onset 2�− where is an abrupt change of color due
to a change of sign of −Im[σxy(ω)] [Fig. 6(a)]. For εF > �−
[case 3(iv)], the spectrum present four critical points, with a
change of sign at ω−

1 [Fig. 6(c)]. When �̃+ < εF < �+ [case
3(i)], the angle �H(ω) show three critical points associated
to the van Hove singularities of the JDOS in the indirect
zone of the valley at K point, and a change of sign (from
positive to negative) of −Im[σxy(ω)] at 2�−. In contrast, at
higher values of εF , lying within the other indirect zone [case
3(iii)], we see that the spectrum of dichroism will display five

critical energies, without any change of sign. With respect to
the case 3(ii), where the Fermi level is outside the indirect
zones but inside the K ′ valley gap, the corresponding spectrum
is molded by three critical points and a change of sign of
−Im[σxy(ω)].

We note that there are regions in the εF -ω diagram with
the Hall angle close to ±π/4 indicating an almost perfect
circular dichroism, where the system absorbs mostly left cir-
cularly polarized light and very little the opposite handed
polarization, or vice versa. Indeed, we note that for εF < �̃+
and h̄ω � 2�+, the dichroism arises from the absorption at
the K valley only. Thus Re σ± = Re σ

(+)
± , where Re σ

(+)
+ 


Re σ
(+)
− , as can be seen in Fig. 8(d) for example, lead-

ing to tan �H ≈ +1. However, when �̃+ < εF < �+ < �̃−,
Re σ− ≈ Re σ

(−)
− and Re σ

(−)
− 
 Re σ+ = Re σ

(+)
+ + Re σ

(−)
+

for h̄ω � 2�−, because of the decreasing of transitions at K
valley [see Fig. 8(e)], leading to tan �H ≈ −1. This is re-
markable because such possibility occurs due to the existence

−0.75

−0.50

−0.25

0

0.25

0.50

0.75

FIG. 9. Hall angle �H(ω; εF ) (radians), for �+ = 15 meV, �− =
40 meV.
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FIG. 10. Berry curvature −(�+/αF )2�+
+,z(k) for the states in the band ε+

+ (k) when (a) vt = 0, vx = vy, and (b) vt �= 0, vx �= vy; the points
(0, ±Q+) are indicated. We take �+ = 25 meV. The spread along ky directions reflects the anisotropy of the band.

of an indirect zone and the associated significant reduction of
the dynamical response. The result is in sharp contrast to the
untilted case, where in a map like that of Fig. 9 only the value
tan �H ≈ +1 can be achieved, for h̄ω slightly above 2�+.

It is interesting to consider the valley polarization ex-
pressed by the angle �V,±, which measures the difference of
absorption of circularly polarized light between the K and K ′
valleys,

tan �V,±(ω; εF ) = Re σ
(+)
± − Re σ

(−)
±

Re σ
(+)
± + Re σ

(−)
±

. (29)

As expected, for �+ − �− = 0, �H = 0 due to the TR
invariance, and �V,± �= 0 because of the breaking of in-
version symmetry. Actually, under such conditions σ (−)

xy =
−σ (+)

xy and Re σ
(ξ )
± = Re σ

(−ξ )
∓ , implying that tan �V,+ =

− tan �V,− = Re[σ (+)
+ − σ

(+)
− ]/Re[σ (+)

+ + σ
(+)
− ], which ac-

cording to Fig. 8(d) gives tan �V,± ≈ ±sgn(�+) for h̄ω �
2|�+|. On the contrary, for �+ + �− = 0, �V,± = 0 and
�H �= 0 (with tan �H ≈ sgn(�+) for h̄ω � 2|�+|) because
TRS is broken in the system while retaining inversion sym-
metry. In the Haldane model, valley polarization and perfect
circular dichroism have been reported to occur exclusively
[70], while the possibility of simultaneous phenomena has
been explored recently within a modified Haldane model [50].
In our model, for |�+| �= |�−| the valley polarization and
circular dichroism are achieved simultaneously, suggesting an
alternative tunable way to realize them.

B. Anomalous and valley Hall conductivities

The anomalous Hall conductivity (AHC) is defined by
σ AHE = σ (+)

xy (0) + σ (−)
xy (0), which we obtain through the

well-known formula

σ (ξ )
xy (0) = −gs

e2

h̄

∑
λ

∫
d2k

(2π )2
f
[
ε

ξ
λ(k)

]
�

ξ
λ,z(k), (30)

where �
ξ

λ,z(k) = −ξλ αxαy�
ξ/{2[dξ (k)]3} is the Berry cur-

vature of a state in the band ξ, λ. Note that �
ξ
−,z = −�

ξ
+,z.

In contrast to gapped graphene [Fig. 10(a)], the curva-
ture becomes smaller in magnitude, is no longer isotropic,

and spreads over the ky-axis between the points (0,±Qξ )
[Fig. 10(b)].

At zero temperature, we have

σ AHE(εF ) = gs
e2

h̄

[∫
S+

d2k

(2π )2
�+

+,z(k) +
∫
S−

d2k

(2π )2
�−

+,z(k)

]

= −gs
e2

2h̄
αxαy

[
�+

∫
S+

d2k

(2π )2

1

(d+(k))3

−�−
∫
S−

d2k

(2π )2

1

(d−(k))3

]
, (31)

where the integrals are taken over the sets Sξ = {k | εξ
−(k) <

εF < ε
ξ
+(k)}. The breaking of the TRS (through �+ �= �−)

implies that �+
λ,z(k) �= −�−

λ,z(−k) leading to σ AHE �= 0.
In the following, we show results for the scenarios made

possible by the unequal gaps, mentioned above:
(1) �+ �= 0, �− = 0, σ AHE = σ (+)

xy (0).
(i) |εF | < |�̃+|

σ AHE

−(e2/h)
= sgn(�+), (32)

where sgn(x) is the sign function. Thus a Hall plateau can
be observed [46].

(ii) |�̃+| < |εF | < |�+|
σ AHE

−(e2/h)
= sgn(�+)

(
1

2
− β+

π

)
+ �+

π

αx

αF

αy

αF

αt

αF

×
∫ θ0+θ∗

+

θ0−θ∗+
dθ

sin θ

g2(θ )
f (θ ; �+), (33)

where

f (θ ; x) =
√

ε2
F g2(θ ) − x2[g2(θ ) − h2(θ )]

ε2
F g2(θ ) + x2h2(θ )

,

and β+ is defined after Eq. (8).
(iii) |εF | > |�+|

σ AHE

−(e2/h)
= �+√

ε2
F + γ 2(�+)2

. (34)
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(a)

FIG. 11. (a) Contour map of the anomalous Hall conductivity (AHC) σ AHE(εF ; �−) (in units of −e2/h), for �+ = 15 meV (�̃+ =
13.3 meV). Black dashed lines correspond to εF = ±�̃− and gray dashed lines to εF = ±�−. The horizontal strip indicates the indirect
zone �̃+ < εF < �+. The AHC vanishes along the vertical dotted line, defined by �− = �+. (b)-(e) Function σ AHE(εF ) for the values of the
gap parameter �− indicated by the vertical lines in (a). The dotted lines show the AHC of gapped graphene with �− �= �+.

In the next, without loss of generality we shall take |�+| <

|�−|:
(2) |εF | < min{|�̃+|, |�̃−|}.
From Eq. (31),

σ AHE

−(e2/h)
= sgn(�+) − sgn(�−). (35)

This expression was reported by Hill et al. [46] for gapped
graphene with nonuniform gaps. According to the result
Eq. (35), the anomalous conductivity can be zero or take the
universal quantized value σ AHE = ±2e2/h.

(3) |�̃+| < |�+| < |�̃−| < |�−|
(i) |�̃+| < |εF | < |�+| < |�̃−| < |�−|.

σ AHE

−(e2/h)
= sgn(�+)

(
1

2
− β+

π

)
+ �+

π

αx

αF

αy

αF

αt

αF
2

×
∫ θ0+θ∗

+

θ0−θ∗+
dθ

sin θ

g2(θ )
f (θ ; �+) − sgn(�−).

(36)

(ii) |�̃+| < |�+| < |εF | < |�̃−| < |�−|.

σ AHE

−(e2/h)
= �+√

ε2
F + γ 2(�+)2

− sgn(�−). (37)

(iii) |�̃+| < |�+| < |�̃−| < |εF | < |�−|.

σ AHE

−(e2/h)
= �+√

ε2
F + γ 2(�+)2

− sgn(�−)

(
1

2
− β−

π

)

− �−

π

αx

αF

αy

αF

αt

αF

∫ θ0+θ∗
−

θ0−θ∗−
dθ

sin θ

g2(θ )
f (θ ; �−).

(38)

(iv) |�̃+| < |�+| < |�̃−| < |�−| < |εF |.
σ AHE

−(e2/h)
= �+√

ε2
F + γ 2(�+)2

− �−√
ε2

F + γ 2(�−)2
. (39)

(4) |�̃+| < |�̃−| < |εF | < |�+| < |�−|.
σ AHE

−(e2/h)
=

(
1

2
− β+

π

)
sgn(�+) −

(
1

2
− β−

π

)
sgn(�−)

+ 1

π

αx

αF

αy

αF

αt

αF

[
�+

∫ θ0+θ∗
+

θ0−θ∗+
dθ

sin θ

g2(θ )
f (θ ; �+)

−�−
∫ θ0+θ∗

−

θ0−θ∗−
dθ

sin θ

g2(θ )
f (θ ; �−)

]
. (40)

In Fig. 11 we show the anomalous Hall conductivity as
a function of Fermi energy for a continuous variation of
�−, at a given value of the gap at the K valley. Follow-
ing Ref. [46], we consider positive and negative values of
the quantities �±. Because σ AHE Eq. (31) is an even func-
tion of εF we show only results for εF � 0. The labels on
Fig. 11(a) indicate the region of each scenario, governed by
the corresponding equation (for |�−| > |�+|). For instance,
the regions marked by number 2 correspond to the Eq. (35),
with sgn(�−) = −sgn(�+) at the left, giving the universal
value −2e2/h for the AHC, and sgn(�−) = sgn(�+) at the
right, giving a null value. The narrow strips labeled as 3(i)
correspond to the AHC obtained from Eq. (36), while its
magnitude in the triangular regions labeled as 3(ii) are given
by Eq. (37), and so on. The AHC in the remaining regions
which are not labeled, corresponding to the situation |�−| <

|�+|, can be obtained from the same Eqs. (35)–(39) after
the exchange �− ↔ �+. The small intersections between the
narrow horizontal strip [3(i)] and the sectors marked as 3(iii)
correspond to the case 4, Eq. (40), of overlapped indirect
zones. We remark the need of the breaking of valley sym-
metry to have a finite Hall response [see Eq. (31)]. Indeed,
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FIG. 12. Optical opacity 1 − T (ω) for several values of the angle of polarization φ, at normal incidence (θi = 0), and for the free-standing
sample (ε1 = ε2 = 1). (a) Fermi level within the absolute gap (scenario 2), with �+ = 15 meV, �− = 40 meV, εF = 0 meV, (b) Fermi energy
lying at overlapped indirect zones (scenario 4), with �+ = 15 meV, �− = 14.2 meV, εF = 13.5 meV, and (c) Fermi level above the direct
zones (scenario 3(iv)) with �+ = 15 meV, �− = 25 meV, εF = 27 meV.

along the line �− = �+ [dotted line in (a)] the time-reversal
symmetry is recovered and the AHC vanishes. Figures 11(b)–
11(e) present the function σ AHE(εF ) for several values of the
gap parameter �−, obtained by the vertical cuts indicated
in the contour map. The magnitudes on the vertical cut at
�− = 0 [green line in (a) and (d)] start in the universal value
−e2/h [Eq. (32)], then takes a reduced value in the narrow
strip [Eq. (33)], and decreases afterward according to Eq.(34).
For gapped graphene with unequal gaps σ AHE/(−e2/h) =
sgn(�+) − sgn(�−) if |εF | < min{|�+|, |�−|}, (�+/|εF |) −
sgn(�−) if |�+| < |εF | < |�−|, and (�+ − �−)/|εF | if
|εF | > max{|�+|, |�−|}. For the sake of comparison, we have
included in Figs. 11(b)–11(e) this result. We note that the main
deviation from graphene behavior occurs due to the indirect
zones, which are caused by the tilting and the mass in each
valley.

Similar expressions to Eqs. (32)–(40) are derived for the
conductivity response function σ VHE = σ (+)

xy (0) − σ (−)
xy (0),

which characterizes the valley Hall effect. A contour map like
that in Fig. 11(a) is obtained for the valley Hall conductivity
(VHC) after a reflection in the line �− = 0. In particular,
when �+ + �− = 0 the system presents inversion symmetry
and a corresponding null valley Hall response. Moreover, the
indirect zones introduce again the main modifications with
respect to the valley response in the model of gapped graphene
proposed by Hill et al. [46] (γ = 0, vx = vy).

C. Reflection and transmission

From the electromagnetic scattering problem of optical re-
flection and refraction at a flat interface made of a 2D system,
with electrical conductivity σi j , separating two homogeneous
media with dielectric constants ε1 and ε2, it is found that the
optical reflectivity R and transmissivity T are given by

R(ω, θi, φ; εF ) = (|rpp|2 + |rsp|2) cos2 φ + (|rss|2 + |rps|2)

× sin2 φ+2 Re(rppr∗
ps + rssr

∗
sp) sin φ cos φ,

(41)

T (ω, θi, φ; εF ) = F (θi )[(|tpp|2+|tsp|2) cos2 φ+(|tss|2+|tps|2)

× sin2 φ+2 Re(tppt∗
ps + tsst

∗
sp) sin φ cos φ],

(42)

where F (θi ) =
√

(ε2/ε1) − sin2 θi/ cos θi, θi is the angle of
incidence and the angle of polarization φ is measured from
the plane of incidence; p (s)-polarization corresponds to φ =
0 (π/2). The coefficients rμν (ω, θi ) [tμν (ω, θi )] are the Fres-
nel reflection (transmission) amplitudes corresponding to a
ν-polarized (p or s) incident wave generating a μ-polarized
(p or s) reflected (transmitted) wave. In our problem, for the
amplitudes involving polarization conversion we find tsp =
rsp = rps ∝ σxy(ω), and tps = −√

ε2/ε1 rps/F (θi) ∝ σxy(ω);
for the conserved polarization cases, tss = 1 + rss, tpp =√

ε2/ε1(1 − rpp)/F (θi ). Explicit expressions for the ampli-
tudes rμν (ω, θi ) are given in the Appendix B. We can expect
that for μ = p or s incident polarization R(ω) ≈ |rμμ(ω)|2 and
T (ω) ≈ F (θi )|tμμ(ω)|2, and that their frequency dependence
be mainly determined by σxx(ω) = ∑

ξ σ (ξ )
xx (ω) for μ = p and

by σyy(ω) = ∑
ξ σ (ξ )

yy (ω) for μ = s, given that |σxy/c|2  1
[see Eqs. (B2)–(B5)].

This is illustrated in Fig. 12 where the frequency depen-
dence of the optical opacity 1 − T (ω; φ) at normal incidence
of a free-standing sample [F (θi ) = 1] is shown for several
scenarios according to the position of the Fermi level and
relative magnitudes of the gaps. Given that R ∼ 10−4, the
absorbance 1 − T − R is determined to a large extent by that
quantity. Approximately 1 − T (ω) ≈ (4π/c)Re[σii(ω)], with
i = x (y) for p (s)-polarization. Indeed, in Fig. 12 the form of
the function σ (ξ )

xx (ω) for φ = 0 or of σ (ξ )
yy (ω) for φ = π/2 can

be easily identified after Figs. 5(a)–5(c). When εF lies in the
gaps,

1 − T (ω) ≈ πα

2

v2
i

vxvy

{[
1 +

(
2�+

h̄ω

)2
]
�(h̄ω − 2|�+|)

+
[

1 +
(

2�−

h̄ω

)2
]
�(h̄ω − 2|�−|)

}
, (43)

where α = e2/h̄c is the fine structure constant. For εF >

max{|�+|, |�−|}, with ω > max{ω+
2 , ω−

2 },

1 − T (ω) ≈ πα

2

v2
i

vxvy

[
2 +

(
2�+

h̄ω

)2

+
(

2�−

h̄ω

)2
]
. (44)

For high enough frequencies, these results tends both to
(2.3%)(v2

i /vxvy), where the value πα = 2.3% is the well-
known visual transparency of pristine graphene, defined only
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FIG. 13. Kerr and Faraday rotations θ s
K/F at normal incidence (θi = 0), and considering ε1 = 1, ε2 = 2 (SiO2). In (a–c) it is considered

�+ = 25 meV and �− = 0, for different positions of the Fermi level as shown. (d) Fermi level within the absolute gap (scenario 2), with
�+ = 15 meV, �− = 40 meV, εF = 0 meV, (e) Fermi energy lying at overlapped indirect zones (scenario 4), with �+ = 15 meV, �− =
14.2 meV, εF = 13.5 meV, and (f) Fermi level above the direct zones (scenario 3(iv)) with �+ = 15 meV, �− = 25 meV, εF = 27 meV.

by fundamental constants [2]. That limit values are close to
2.9% for i = x and 1.8% for i = y. In Fig. 12(a), for p-
polarization at h̄ω � 2�+ and h̄ω � 2�−, 1 − T ≈ 2.9% and
4.5% for i = x, and 1.8% and 2.9% for i = y, respectively.
Comparable values are obtained in Fig. 12(c) at ω±

2 . How-
ever, for εF within overlapping indirect zones the transmission
increases, as expected, with 1 − T (ω) < 1% [Fig. 12(b)].
For ε2 > 1 the opacity increases. As an example, we obtain
1 − T (ω) � 3.8% for the scenario of Fig. 12(b) when ε2 = 2.

D. Rotation of polarization

The breaking of the time reversal symmetry and the con-
comitant finite value of a transverse response lead to the well
known phenomenon of polarization rotation of reflected and
transmitted optical waves. The Kerr (K) and Faraday (F )
angles giving the azimuth of the ellipse of polarization can
be obtained from the expression

tan 2θα
K/F = 2Re

{
χα

K/F

}
1 − ∣∣χα

K/F

∣∣2 , (45)

where α = p (s) indicates the incident linearly p (s)-polarized
light, χ p

K = −rsp/rpp, χ s
K = rps/rss for the reflected light, and

χ
p
F = tsp/tpp, χ s

F = −tps/tss for the transmitted light. Typi-
cally, |χα

K/F |  1 and θα
K/F ≈ Re{χα

K/F }.
Figure 13 shows results for θ s

K/F (ω) for three different
positions of the Fermi energy when the K ′ valley is gapless
(top panels), and for the scenarios 2, 4, and 3(iv) (bottom
panels). We consider normal incidence, and ε1 = 1, ε2 = 2.
We note that the frequency dependence of these angles fol-
lows mainly that of the function −Re[σxy(ω; εF )] (see Fig. 6).
Indeed, given the smallness of |σii|/c and (|σxy|/c)2, we find

θ
p
K/F (ω) ≈ θ s

K/F (ω), and as a good approximation

θ s
K (ω) ≈ − 8πRe[σxy(ω)/c]

ε2 − 1 + 2πα
√

ε2
,

θ s
F (ω) ≈ 4πRe[σxy(ω)/c]√

ε2 + 1 + πα
,

after taking σii/c ≈ πσ0/4c = α/4. As expected, near the
resonances the Kerr and Faraday rotations increases, reach-
ing magnitudes ∼10−2 − 10−1 rad and ∼10−3 − 10−2 rad,
respectively. Note also that at low frequency θ s

K/F (0) is de-
termined approximately by σ AHE. In the valley symmetry
breaking mechanism suggested for graphene by Hill et al.
[46], a periodic magnetic flux opens gaps at both valleys
which can be tuned independently. In our case, that mech-
anism would allow to change the sign of �− leading to
θ s

K/F (0) ≈ σ VHE.
Figure 14(a) shows the Kerr rotation as a function of the

incident angle, when the Fermi level lies within the gaps, at a
frequency close to the onset for interband transitions at the K ′
valley, h̄ω ≈ 2�−. There is a strong enhancement of the rota-
tion, about π/2, for an incident angle defined approximately
by (

√
ε2/ cos θt ) − (

√
ε1/ cos θi ) = −(4π/c)σxx(ω), where θt

is determined by the Snell’s law (Appendix B). That angle is
very close to the Brewster value given by tan θB = √

ε2/ε1. At
θi = θB we find

χ
p
K (ω; θB) ≈ − 2

√
ε1σxy√

ε1 + ε2 σxx + 4π
c

(
σxxσyy + σ 2

xy

) , (46)

which can be further approximated by χ
p
K ≈

−2 cos θB(σxy/σxx ); the Kerr angle is found from Eq. (45).
An enhancement close to the Brewster angle has also been
reported for bilayer graphene in the quantum anomalous Hall
state [10].
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FIG. 14. Kerr rotation θ
p
K (ω, θi ) for Fermi level within the gap of the system, εF < min{|�̃+|, |�̃−|} (scenario 2), with �+ = 15 meV,

�− = 40 meV, εF = 0 meV, and ε1 = 1, ε2 = 2 (SiO2). (a) Kerr angle as a function of the angle of incidence, at h̄ω = 75 meV, close to the
onset 2�−. For θi ≈ θB, θ

p
K ≈ π/2. (b) Kerr angel spectrum at θi = θB.

In Fig. 14(b) the spectrum for the Kerr rotation at θi = θB is
displayed. For low frequencies, below the onsets of interband
transitions, the conductivity response is determined by the
dispersive components. Indeed, σxy is a real quantity while
σxx becomes imaginary, yielding Re(σxy/σxx ) ≈ 0 and a small
value for the Kerr rotation. Above 2�+, the optical transitions
in the K valley increase the dissipative components Re(σ (+)

xx )
and Im(σ (+)

xy ), implying that the relative phase of σxy and
σxx becomes increasingly small. Accordingly, the angle θ

p
K

starts to increase in magnitude and takes its largest (negative)
value for h̄ω � 2�−, when the complex quantities σxy and σxx

are closely in phase. However, for h̄ω > 2�− the Kerr angle
decreases in magnitude again for increasing frequency. This is
due to the fact that the optical transitions at both valleys start
to contribute, and for high enough frequency σxy ≈ iIm(σxy)
and σxx ≈ Re(σxx ) become out of phase.

The characteristic spectral features displayed by these
results provide fingerprints of the anomalous transverse
response, and suggest optical polarization rotation measure-
ments as a contact-free probe of the valley symmetry breaking
in the presence of tilting.

V. SUMMARY AND CONCLUSIONS

Following the study of Hill et al. [46] about a mechanism
to break the valley symmetry in graphene and tune the gaps in-
dependently, we explored the effect of valley-contrasting gaps
on the optical properties of two-dimensional anisotropic tilted
Dirac systems like 8-Pmmn borophene and some organic
conductors. We employed a low-energy effective Hamiltonian
with broken particle-hole and valley symmetries. The energy
spectrum is characterized by a valley index and the helicity of
the states. Notably, the energy bands develop an indirect gap
2�̃ξ = 2�ξ

√
1 − γ 2 in each valley, which is lower than the

nominal gap 2�ξ of the untilted system and depends on the
tilting and anisotropy through the parameter γ = vt/vy. As a
consequence, when the Fermi level is outside a gap but close
to the band edge of each valley, the corresponding Fermi con-
tours can be displaced enough to provoke a dramatic change
of the momentum space available for optical transitions. To
explore this, we first calculated the joint density of states to
probe the spectrum of interband transitions. When the Fermi
energy lies within a gap, the JDOS displays the characteristic
linear frequency dependence above the only critical energy
defined by the onset 2�ξ . However, if the Fermi level is
above 2�ξ , then the behavior of JDOS is no longer like that

of graphene with the usual threshold at h̄ω = 2εF but looks
qualitatively similar to that of borophene case, presenting
two critical energies made possible by the tilt of the bands.
However, given the new possibility of an indirect range �̃ξ <

εF < �ξ , we found that the JDOS presents now three van
Hove singularities in that range, and a strong reduction of the
number of vertical transitions in a subregion located between
photon energy intervals with graphenelike and borophenelike
behaviors. Accordingly, the intraband and interband parts of
the optical conductivity tensor were also obtained from the
Kubo formula. We found an anisotropic response σ (ξ )

xx (ω) �=
σ (ξ )

yy (ω) and a finite Hall component σ (ξ )
xy (ω) with spectral

features determined by the set of interband critical points
revealed by the JDOS. When the contributions of each val-
ley are combined to obtain the total response, a number of
spectra are obtained because of the multiple possibilities for
the position of the Fermi level in the complete set of bands,
opened by the presence of nonuniform gaps. Similarly, the
Drude weight is anisotropic and shows a sensitive dependence
on the Fermi energy. To further characterize this scenario,
we also calculated the anomalous and valley Hall conductiv-
ities through the Berry curvature of the bands, and spectra
of circular dichroism, optical opacity, and Kerr and Faraday
angles of polarization rotation. The plots of the AHC and
VHC versus Fermi energy show behaviors that differ appre-
ciably from the case without tilting due to the presence of
indirect zones. Moreover, when the Fermi level is inside the
absolute gap they can take universal values. Interestingly, we
found that the existence of indirect zones makes possible to
have almost perfect circular dichroism for right or left handed
polarized light. Valley polarization can appear simultaneously,
as recently reported within a modified Haldane model. With
respect to the rotation of polarization, the Kerr and Faraday
spectra display a strong dependence on the position of the
Fermi level, signaled by the van Hove singularities of the
JDOS, and reaching magnitudes about 10−3–10−2 rad and
10−2–10−1 rad, respectively. We observed an enhancement
of Kerr rotation close to the Brewster angle of incidence,
similar to that reported for bilayer graphene in the anomalous
Hall state. We also found that by choosing appropriately the
Fermi level position and tuning the exciting frequency close
to the interband critical points, the optical transparency can
deviate from the well known universal result πe2/h̄c = 2.3 %
of graphene by a factor that depends on the velocities vx, vy

and gap parameters. We note that, qualitatively, the same kind
of optical properties are obtained when these parameters are
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varied, whenever the global shape of the energy bands is
preserved.

In summary, the results show clear optical signatures of
valley and electron-hole symmetry breaking in the optical
properties, suggesting diverse optical ways to explore the si-
multaneous presence of anisotropy, tilt, and nonuniform gaps
in Dirac systems.
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APPENDIX A: FERMI LINES

(1) For |εF | > |�ξ |, the equation ε
ξ
λ(k, θ ) = λ|εF | yields

the parametric curve

kξ

λ,F (θ ) = 1

αF

√
E (θ ) − ξλ|εF |h(θ )

g2(θ ) − h2(θ )
(A1)

for θ ∈ [0, 2π ], where E (θ ) = ε2
F g2(θ ) − (�ξ )2[g2(θ ) −

h2(θ )]. The energy difference ε
ξ
+(k, θ ) − ε

ξ
−(k, θ ) =

2dξ (k, θ ) at the Fermi curve is denoted by h̄ω
ξ
λ(θ ) =

2dξ [kξ
λ,F (θ ), θ ], and given by

h̄ω
ξ
λ(θ ) = 2

|εF |g2(θ ) − ξλh(θ )
√

E (θ )

g2(θ ) − h2(θ )
. (A2)

(2) For |�̃ξ | � |εF | � |�ξ |, the Fermi line is given by the
parametric curve

qξ,±
λ,F (θ ) = 1

αF

ξλ|εF |[−h(θ )] ± √
E (θ )

g2(θ ) − h2(θ )
, (A3)

defined in the angular regions |θ − θ0| � θ∗
ξ , where θ0 =

3π/2 if ξλ = + and π/2 when ξλ = −. The angle θ∗
ξ is de-

fined by the condition E (θ ) � 0. Correspondingly, the energy
difference between the conduction and valence band at the
Fermi curve is h̄ν

ξ,±
λ (θ ) = 2dξ (qξ,±

λ,F,(θ ), θ ). Explicitly,

h̄ν
ξ,±
λ (θ ) = 2

|εF |g2(θ ) ± ξλ[−h(θ )]
√

E (θ )

g2(θ ) − h2(θ )
, (A4)

with h̄ν
ξ,+
λ (θ ) > h̄ν

ξ,−
λ (θ ).

APPENDIX B: FRESNEL AMPLITUDES

Here we sketch the solution of the electromagnetic problem defined in Sec. IV C. We consider harmonic plane waves F(r, t ) =
F(r)e−iωt with F(r) = Feik·r satisfying the Helmholtz equation (∇2 + n2k2

0 )F(r) = 0, where the wave vector k = nk0k̂ lies in
the ZX plane, k · F = 0, k0 = ω/c, and n = √

ε is the index of refraction. It is convenient to introduce two vectors perpendicular
to k̂ to span the vectorial amplitude F. One of these vector is ŝ = ẑ × x̂ = ŷ; for the other we can take p̂ = ŝ × k̂. Thus, we have
defined the (real) orthogonal triad (p̂, ŝ, k̂) as a basis to describe transverse plane waves. The incident electric field F = Ei from
the medium with dielectric constant ε1 is then written in terms of its p and s amplitudes as Ei = Ei

pp̂i + Ei
s ŝ, where p̂i = ŝ × k̂i =

1
ki (ki

zx̂ − kx ẑ) = cos θi x̂ − sin θi ẑ and ki = k0
√

ε1 k̂i = kxx̂ + ki
zẑ = k0

√
ε1(sin θi x̂ + cos θi ẑ) are the polarization vector and

wave vector of the incident wave, with ki = k0
√

ε1 and θi being the angle of incidence. Similarly, the reflected field is Er =
Er

pp̂r + Er
s ŝ, where p̂r = ŝ × k̂r = 1

ki (−kr
z x̂ − kx ẑ) = − cos θi x̂ − sin θi ẑ and kr = k0

√
ε1 k̂r = kxx̂ − kr

z ẑ = k0
√

ε1(sin θi x̂ −
cos θi ẑ); note that kr

z = ki
z = k0

√
ε1 cos θi. In the medium ε2, the transmitted field reads as Et = Et

pp̂t + Et
s ŝ, with p̂t = ŝ × k̂t =

1
kt (kt

zx̂ − kx ẑ) = cos θt x̂ − sin θt ẑ, kt = k0
√

ε2 k̂t = kxx̂ + kt
z ẑ = k0

√
ε2(sin θt x̂ + cos θt ẑ), kt = k0

√
ε2; the angle of refraction

θt is determined by the Snell’s law ki
x = kt

x :
√

ε1 sin θi = √
ε2 sin θt . The corresponding magnetic fields are Ba = 1

k0
ka × Ea,

a = i, r, t .
The reflected and transmission amplitudes Er

p,s, Et
p,s can be written in terms of Fresnel amplitudes rμν, tμν ,⎛

⎝Er
p

Er
s

⎞
⎠ =

⎛
⎝rpp rps

rsp rss

⎞
⎠

⎛
⎝Ei

p

Ei
s

⎞
⎠ ,

⎛
⎝Et

p

Et
s

⎞
⎠ =

⎛
⎝tpp tps

tsp tss

⎞
⎠

⎛
⎝Ei

p

Ei
s

⎞
⎠ (B1)

(in the basis {p̂, ŝ}). They should satisfy the boundary conditions (1) ẑ · [ε2Et − ε1(Ei + Er )] = 4πσs(ω), (2) ẑ × [Et − (Ei +
Er )] = 0, (3) ẑ · [Bt − (Bi + Br )] = 0, and (4) ẑ × [Bt − (Bi + Br )] = 4π

c Js(ω), where the induced surface charge density σs is
related to the surface current Js,i(ω) = σi j (ω)Ej (z = 0), i, j = x, y, through the continuity equation, which implies kxJs,x (ω) =
ωσs(ω). Given that Ex(z = 0) = Ei

x(0) + Er
x (0) = Et

x (0) = (kt
z/kt )Et

p = (ki
z/ki )(Ei

p − Er
p ) and Ey(z = 0) = Ei

y(0) + Er
y (0) =

Et
y (0) = Et

s = Ei
s + Er

s ,

Js,x (ω) = σxx(ω)
kt

z

kt
Et

p + σxy(ω)Et
s = σxx(ω)

ki
z

ki

(
Ei

p − Er
p

) + σxy(ω)
(
Ei

s + Er
s

)
,

Js,y(ω) = σyx(ω)
kt

z

kt
Et

p + σyy(ω)Et
s = σyx(ω)

ki
z

ki

(
Ei

p − Er
p

) + σyy(ω)
(
Ei

s + Er
s

)
.

The algebraic system of equations defined by the boundary conditions can be rearranged, leading to(
Mpp Mps

Msp Mss

)(
Er

p
Er

s

)
=

(
Fpp Fps

Fsp Fss

)(
Ei

p
Ei

s

)
,
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for the reflexion amplitudes, and (
Mpp −ηMps

−η−1Msp Mss

)(
Et

p

Et
s

)
= 2ki

z

(√
ε1ε2 Ei

p

Ei
s

)
,

for the transmission field amplitudes, where η = √
ε2/ε1/F (θi ), F (θi ) = kt

z/ki
z =

√
(ε2/ε1) − sin2 θi/ cos θi. We shall not write

the matrix Mμν nor the source matrix Fμν for brevity. Comparison with Eq. (B1) allows the Fresnel amplitudes to be identified.
We display the result for rμν only:

rpp =
(
ε2ki

z − ε1kt
z + 4π σxx

ω
ki

zk
t
z

)(
ki

z + kt
z + 4π

c k0σyy
) − (

4π
c

)2
σxyσyxki

zk
t
z(

ε2ki
z + ε1kt

z + 4π σxx
ω

ki
zk

t
z

)(
ki

z + kt
z + 4π

c k0σyy
) − (

4π
c

)2
σxyσyxki

zk
t
z

, (B2)

rsp = −
8π
c σyx

√
ε1 ki

zk
t
z(

ε2ki
z + ε1kt

z + 4π σxx
ω

ki
zk

t
z

)(
ki

z + kt
z + 4π

c k0σyy
) − (

4π
c

)2
σxyσyxki

zk
t
z

, (B3)

rps =
8π
c σxy

√
ε1 ki

zk
t
z(

ε2ki
z + ε1kt

z + 4π σxx
ω

ki
zk

t
z

)(
ki

z + kt
z + 4π

c k0σyy
) − (

4π
c

)2
σxyσyxki

zk
t
z

, (B4)

rss =
(
ε2ki

z + ε1kt
z + 4π σxx

ω
ki

zk
t
z

)(
ki

z − kt
z − 4π

c k0σyy
) + (

4π
c

)2
σxyσyxki

zk
t
z(

ε2ki
z + ε1kt

z + 4π σxx
ω

ki
zk

t
z

)(
ki

z + kt
z + 4π

c k0σyy
) − (

4π
c

)2
σxyσyxki

zk
t
z

. (B5)

We can see that if σyx = −σxy, then rsp = rps. Note also that if |σxyσyx|/c2  1, then rpp (rss) involves only the component σxx

(σyy). For example, at normal incidence and for a free standing sample T (ω) ≈ |tμμ|2 ≈ 1 − (4π/c)Re[σii(ω)], with i = x for
μ = p and i = y for μ = s, where |σii(ω)|/c  1 is assumed for high enough frequencies in the range of interband transitions.
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