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Universal time delays in the inelastic core level photoemission of metals
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Proposing a theoretical model of the core level photoemission of metals, we investigate the plasmon-driven
inelastic photoemission delays based on a nonperturbative treatment of many-electron responses due to the long-
range Coulomb potential. Being irrelevant to the plasmon coupling strength as well as the plasmon frequency,
the emission delays �τn of the nth-order plasmon satellites (n = 1, 2, 3, . . .) are found to be universal order by
order among the metals in the core level photoemission where the recoil-less approximation would be valid. In
particular, for a main line with its weight e−γ , where γ quantifies the plasmon coupling strength, the average
inelastic photoemission delay 〈�τ 〉 is found to be γ (1 − e−γ )−1�τ1 and thus is simply scaled by a universal
time delay �τ1. This finding is sharply contrasted with the emission delays under the localized potential, which
indicates a fundamental difference in the emission process between extended and localized screenings.

DOI: 10.1103/PhysRevB.103.165413

I. INTRODUCTION

Single attosecond (1 as = 10−18 s) pulses in the extreme
ultraviolet (XUV) frequency range allow time-domain insight
into fundamental electronic processes in atoms, molecules,
and solids at the timescale of 10–100 as [1–18]. Photoe-
mission spectroscopy stemming from Einstein’s photoelectric
effect is an ideal target of such investigation. Conventionally,
the photoemission spectroscopy simply analyzes the kinetic
energy distribution of photoemitted electrons for a given con-
tinuous wave light source. A novel form of the attosecond
photoemission with a combination of attosecond XUV pulse
and synchronized femtosecond (1 fs = 10−15 s) infrared (IR)
pulse has opened a new chapter to the time-domain under-
standing of the first stage of photoemission processes such as
photoexcitation and transport [1–3,5,7].

A photoelectron emitted by the attosecond XUV pulse
could be streaked by the femtosecond IR pulse with a variable
relative delay. The first proof of the principle experiment has
shown a time delay of about 100 as (100 ± 70 as) between
photoelectrons from the 4 f core level and the conduction band
of tungsten metal [2]. Subsequently, for the atomic target of
neon, the 2s electron was found to be emitted earlier than the
2p electron by 21 ± 5 as [3] and the electron-electron correla-
tion was also studied in the photoionization [4]. Similarly, for
the atomic argon, the emission of 3s and 3p electrons was ex-
amined [5]. For the van der Waals crystal tungsten diselenide
(WSe2), the emission delay has been investigated by account-
ing for the ionization and transport delays [6]. In a magnesium
surface [i.e., Mg(0001) surface], the photoelectron was found
to be launched simultaneously from the localized core level
and the delocalized valence-band state [7] and later the in-
elastic photoemission delay due to the extrinsic plasmon loss
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was also resolved [8]. Recently, attosecond dynamics of the
valence-band photoexcitation on the magnesium surface have
been studied [9,10].

Photoelectron emission delay of solids would be described
by the ionization delay occurring in the intra-atomic poten-
tial scattering [i.e., the Eisenbud-Wigner-Smith (EWS) delay]
[19] and the transport delay in the propagation to the sur-
face. The transport delay may be again considered in two
respects: One is the delay of the drifting electron under the
crystal potential and the other is the inelastic delay due to
the extrinsic loss of photoelectrons. In the theoretical respect,
the former is handled by exploring the propagation of the
photoelectron wave function �(z, τ ) from a solution of the
one-dimensional Schrödinger equation under the one-particle
crystal potential [20]; however the latter is a challenge because
it is under the many-body potential. A proper approach to the
inelastic delay caused by the extrinsic loss of solids is still
lacking.

In this paper, we propose a theoretical model to describe
the inelastic photoemission delay driven by the extrinsic
plasmon loss in the core level photoemission of a metallic
electron system. By solving the many-body time-dependent
Schrödinger equation, we calculate the photoemission spectra
up to the first-order plasmon satellite including the extrinsic
loss. This could be extrapolated to the infinite-order spectra
based on an idea of the cumulant expansion of the nonper-
turbative theory. The cumulant expansion will be exact in the
limit of the zero bandwidth corresponding to a dispersionless
core level, i.e., in the limit that the recoil-less approximation
would be generally valid. The emission delay �τ1 of the
first-order plasmon satellite is found to be universal among
the metals in that it is irrelevant to the plasmon frequency and
the plasmon coupling strength. At the same time, emissions
of higher-order plasmon satellites are found to be delayed by
2�τ1, 3�τ1, and so on, and universal as well. Furthermore,
when the weight of the main line is e−γ , the average inelastic
delay 〈�τ 〉 is given by γ (1 − e−γ )−1�τ1 and scaled by a
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universal delay �τ1 up to a constant. γ quantifies the plasmon
coupling strength. Our finding is definitely different from
the emission delay in localized systems, which is eventually
traced to the fundamental difference in the photohole screen-
ing between extended and localized systems.

The paper is organized as follows. In Sec. II, we intro-
duce a model Hamiltonian of the core level photoemission of
metals and a theoretical formulation for the nonperturbative
treatment. In Sec. III, we provide the photoelectron emission
delays for inelastic plasmon satellites and point out a universal

time delay. We also discuss the origin of the universality. In
Sec. IV, we give a Summary and Conclusion.

II. MODEL AND THEORETICAL FORMULATION

During the photoemission of core level electrons, the in-
elastic satellites develop by exciting plasmon ωq from the
fluctuating conduction electrons in the Fermi sea. A model
Hamiltonian H describing the relevant physical process can
be written as

H = εcc†c +
∑

q

ωqa†
qaq + AXUV(τ )

∑
k

(c†
kc + c†ck ) +

∑
q

V c
q c†c(a−q + a†

q) +
∑

k

[εk − k · AIR(τ + τIR−XUV)]c†
kck

+
∑
kq

Vk, k+qc†
kck+q(a−q + a†

q). (1)

H includes the photoelectron excitation by the XUV pulse,
the concomitant shaking of conduction electrons (i.e., exciting
plasmon), the photoelectron streaking by the IR pulse, and the
photoelectron scattering with plasmons, which is attributed
to the extrinsic loss. In Eq. (1), c† (or c), c†

k (or ck), and
a†

q (or aq) imply the operators of core level electron, photo-
electron, and bulk plasmon with their energies εc, εk = 1

2 k2,
and ωq = ωpl + 1

2 q2, respectively. For a simple fluctuation
potential Vq(r) = V 0

q e−iq·r due to the plasmon excitation, V c
q is

given by Vq(rc), where rc is the position of the core hole, and
the matrix element Vk, k+q is reduced to 〈k|Vq|k + q〉 = V 0

q .

Here the plasmon coupling strength V 0
q is ξ

√
4πω2

pl/V q2ωq

[21], i.e., originally due to the long-range Coulomb potential.
ξ will be used as a parameter to control the potential strength.

For the parameters, we assume εc = −50 eV for the
magnesium 2p core level and ωpl = 10.6 eV for the density
of metallic electrons of magnesium. AXUV(τ ) is the
photoexciting attosecond XUV pulse given by AXUV(τ ) =
AXUV exp[−τ 2/τ̄ 2

XUV] cos(ωXUVτ )êXUV and AIR(τ ) is
the probing femtosecond IR pulse given by AIR(τ ) =
AIR exp[−τ 2/τ̄ 2

IR] cos(ωIRτ )êIR. ωIR = 1.63 eV is taken.
XUV and IR pulses are assumed to be linearly polarized
along the photoelectron detection. Half widths at half maxima
(HWHMs) of the two pulses are now 165.6 as and 2.5 fs.
τIR−XUV is a controllable relative delay of the IR pulse from
the XUV pulse.

Up to the first-order (n = 1) plasmon satellite, the photoe-
mission process is described by the quantum state |�(τ )〉 in
the limit of AXUV → 0,

|�(τ )〉 = C(τ )|c〉|0′〉 +
∑

k

Ck(τ )|k〉|0〉

+
∑

k

∑
q

Ckq(τ )|k〉|q〉, (2)

where |c〉 and |k〉 stand for the states of core level electron

and photoelectron, |0′〉 (= e− ∑
q

V c
q

ωq
a†

q |0〉 ≈ [1− ∑
q

V c
q

ωq
a†

q]|0〉)
is the vacuum state without a core hole, and |0〉 and |q〉 are the
states of vacuum and plasmon with a core hole. By solving

the time-dependent Schrödinger equation ih̄∂/∂τ |�(τ )〉 =
H|�(τ )〉 with an initial condition of |�(τ0)〉 = |c〉|0′〉 at τ =
τ0 (τ0 � −τ̄XUV), we could calculate the photoemission spec-
trum J (ω, τIR−XUV) = |Ck(τmax )|2 + ∑

q |Ckq(τmax )|2 with
ω = k2/2 at a given value of τIR−XUV. |Ck(τmax )|2 and∑

q |Ckq(τmax )|2 make the main line and the n = 1 plasmon
satellite, respectively. τmax is the time at which the spectrum is
fully converged. The last term of Eq. (1) leads to the extrinsic
plasmon loss and drives the inelastic photoemission delay as
will be shown later. Without it, the plasmon satellite simply
reduces to the intrinsic one. In Fig. 1(a), through R and α,
relative weights of the main line and the (intrinsic and/or
extrinsic) satellite are illustrated.

Through a cumulant expansion [22], a partial summation
of the contributions of Vq in the first-order perturbation theory
could be extrapolated to the infinite-order spectra P(ω),

P(ω) =
∫

dτ

2π
e−iωτ exp

[∫
dω′β(ω′)

eiω′τ − 1

ω′

]
, (3)

where β(ω)/ω should correspond to
∑

q |Ckq(τmax)|2. An in-
tegral in the exponent of Eq. (3) is well defined for small
ω′ and finite τ , but we may have trouble with its numerical
treatment in the limit of ω′ = 0 for large τ . Therefore, we will
not try a direct calculation of P(ω) and instead convert to an
integral equation. We then have

ωP(ω) =
∫ ω

0
dω′β(ω′)P(ω − ω′),

which will be actually used for an evaluation of Eq. (3).
According to previous studies, the lowest-order core-induced
plasmon emission generates a cumulant representation of
the spectrum [23], likewise the emission by photoexcited
valence-/conduction-band electrons [24]. However, as a rule
the interference processes involving the interplay between the
core hole and photoexcited electron coupling to plasmons
do not [25,26], unless the electron motion can be treated
in the recoil-less regime [27]. In Fig. 1(b), a diagrammatic
expansion to the infinite-order spectra P(ω) from β(ω), i.e.,
corresponding to the cumulant expansion, is schematically
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FIG. 1. Nonperturbative treatment of core level photoemission
of metal. (a) R and α with respect to ξ . R and α are defined by
R = Imain/[I intr

n=1 + Iextr
n=1] and α = I intr

n=1/[Imain + I intr
n=1], where Imain de-

notes the spectral weight of the main line and I intr
n or Iextr

n the intrinsic
or extrinsic satellites up to the nth order. The gray box may accord
roughly with the case of magnesium 2p plasmon lines [8]. (b) Extrap-
olation to the infinite-order spectra P(ω) from β(ω) in terms of the
diagrammatic expansion. Solid lines denote electron and wavy lines
plasmon. (c)–(e) J0(ω) (black line), J (ω) (blue line), and P(ω) (red
line) for values of ξ = 0.1, 0.125, and 0.175, respectively. Arrows
indicate higher-order plasmon satellites. All the spectra are evaluated
at τIR−XUV = 0 and normalized by their area. (f) η = I intr

n /Iextr
n with

respect to ξ . Empty squares are for n = 1 and filled squares for
n = ∞.

illustrated. It should be noted that a summation of diagrams
does not include a bubble one, which implies that the cu-
mulant expansion will be exact in the vanishing bandwidth,
for instance, a perfectly dispersionless level or a very deep
core level (probably consistent with our consideration of the
magnesium 2p core level with εc = −50 eV). Furthermore,
the expansion would be expected to be valid within the recoil-
less approximation neglecting recoil momenta of electrons
and holes by excited plasmons. Figures 1(c)–1(e) provide
the intrinsic n = 1 spectra J0(ω), the n = 1 spectra J (ω),
and the infinite-order spectra P(ω) for ξ = 0.1, 0.125, and
0.175 at τIR−XUV = 0. It is noted that J (ω) and P(ω) include
both intrinsic and extrinsic losses. In the figures, higher-order
(n = 2 or n = 3) plasmon satellites are clearly seen in P(ω)
(as indicated by arrows). In Fig. 1(f), weight ratios of intrinsic
and extrinsic satellites are given for selected ξ ’s.

III. RESULTS AND DISCUSSION

In Fig. 2, spectrograms of J0(ω) are displayed with respect
to τIR−XUV for a few values of ξ . In the figure, the emission

FIG. 2. Spectrogram of intrinsic n = 1 photoemission. (a)–(c)
Centers of gravity (white dashed lines) of two features (i.e., main and
intrinsic satellite) of the intrinsic photoemission spectra J0(ω) with
respect to τIR−XUV for values of ξ = 0.1, 0.125, and 0.175. Vertical
(white dashed) lines are simply guides to the eye.

delay �τ between the main and intrinsic plasmon satellite is
estimated to be less than 2 as, which may in fact conclude that
�τ = 0 within the numerical accuracy. An estimation of �τ

is done in the present study by fitting the spectrograms using
the eighth-order Fourier series. In contrast, in spectrograms
of P(ω) (see Fig. 3), systematic nonzero delays of plasmon
satellites relative to the main line are observed depending on
ωXUV. Moreover, the n = 2 plasmon satellite (white dashed
lines) is found further delayed from the n = 1 plasmon satel-
lite. From a comparison with the intrinsic photoemission, it is
critical to note that our model properly captures the relative
transport delays due to the inelastic photoelectron scatter-
ing, where the EWS delays would not be relevant because
they are contained in all the satellites including the main
line.

Figures 4(a) and 4(b) deliver the inelastic photoemission
delays �τ1, �τ2, and �τ3 of n = 1, 2, and 3 plasmon satellites
with respect to the photoelectron kinetic energy (i.e., depend-
ing on ωXUV) for various potential strengths ξ and plasmon
frequencies ωpl, respectively. In the figures, it is remarkable
to find that the emission delays �τn of the nth-order plasmon
satellites would be universal among the metals in that they
hardly depend on the plasmon potential strength as well as the
plasmon frequency. Furthermore, �τn is found to be approxi-
mately n times as long as �τ1,

�τ1 ∼ λ/v,

where v is given by
√

2ε and λ is an average distance prop-
agated by the photoelectron without any inelastic scattering.
The photoelectron suffering two consecutive inelastic scatter-
ings gets to be doubly delayed compared to the photoelectron
scattered once and, that is, higher-order plasmon satellites
would then be delayed as 2�τ1, 3�τ1, and so on. Equation
(3) can now be expressed as follows, by making an expansion
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FIG. 3. Spectrogram of infinite-order photoemission. (a)–(f)
Spectrograms of three features (i.e., main, n = 1 satellite, and n = 2
satellite) of P(ω) with respect to τIR−XUV for values of ωXUV = 88.44,
95.24, 102.04, 108.85, 115.65, and 122.45 eV at a fixed value of
ξ = 0.125. Centers of gravity of the n = 2 satellite features are given
in white dashed lines. Meanwhile, it is a typical observation that the
extrinsic plasmon losses are strengthened as ωXUV decreases. Vertical
(white dashed) lines are simply guides to the eye.

of the integrand,

Psat (ω) = e−γ

[
β(ω)

ω
+ 1

2

∫
dω′ β(ω′)β(ω − ω′)

ω′(ω − ω′)
+ . . .

]
,

where Psat (ω) is the satellite spectra, i.e, Psat (ω) = P(ω) −
e−γ δ(ω), and γ is given by γ = ∫ dω′β(ω′)/ω′. If one inte-
grates Psat (ω) term by term, one can obtain the spectral weight
of each order plasmon satellite obeying the Poisson stochastic
distribution as ∫ dωPsat (ω) = e−γ [γ + 1

2γ 2 + . . .]. Then an
average inelastic photoemission delay 〈�τ 〉 is given by

〈�τ 〉 =
∑∞

n=1
�τnγ

n

n!∑∞
n=1

γ n

n!

= γ (1 − e−γ )−1
�τ1,

and found to be simply scaled by a universal delay �τ1 up to a
constant. 〈�τ 〉 simply gets to be �τ1 in a limit of γ � 1. This
strongly suggests a universal curve of the electron mean free
path of metals [28] from a microscopic point of view of the
photoemission delay. Simultaneously, this is unquestionably
distinguished from localized systems, for instance, atoms,
molecules, insulating solids, and so on.

In a localized electronic environment, the photoelectron
passes through a short-range attractive potential made out of

FIG. 4. Delay of inelastic photoelectron emission. (a) Photoe-
mission delays �τ1, �τ2, and �τ3 of n = 1 (red), n = 2 (blue),
and n = 3 (green) satellites relative to the main line with respect
to the photoelectron kinetic energy for values of ξ . ωpl = 10.6 eV
is adopted. Red dashed curve fits to �τ1. Blue dashed curve doubles
and green dashed curve triples the red dashed one. (b) Photoemission
delays for values of ωpl. ξ = 0.2 is adopted. In the calculation,
HWHM of the XUV pulse is taken to be 331 as.

an efficient screening of the photohole and attains a nega-
tive delay (i.e., the EWS delay) compared to the free space
[29]. The negative delay may be qualitatively understood by
an increase of the electron velocity in the potential range.
The situation would be readily understood from a simple
one-dimensional classical model of the photoelectron on a tra-
jectory, i.e., ρ(z, τ ) = δ(z + vτ − zc) at τ > 0. v (= √

2ε) is
the velocity of the photoelectron and zc the position of the core
hole. Taking the localized potential given by V (z) = V0ζ (z)
[see Fig. 5(a)], the time-dependent scattering potential V (τ )
is obtained as V (τ ) = ∫ dzV (z)ρ(z, τ ). From the first-order
time-dependent perturbation theory, the transition amplitude
M is evaluated to be M = 1−i ∫∞

0 dτV (τ ) = 1−iV0
v

D, where
D is an effective range of the potential. The phase shift δ(ε)
is given by δ(ε) = tan−1[ImM/ReM] = −tan−1[V0D/v] and
the emission delay �τ will then be ∂δ(ε)/∂ε. Here, the delay
directly depends on the depth and width of the scattering
potential. In contrast, a screening of the photohole by the
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FIG. 5. Schematics of photoelectron scattering. (a) Photoemis-
sion under the localized attractive potential. A photohole is well
screened by local states. (b) Photoemission under the extended plas-
mon potential (i.e., outside the intra-atomic sector of metal). A
photohole is not well screened by extended states.

extended states in a metallic environment would not be so
efficient [30]. In that case, therefore, the one-dimensional
classical model of the photoelectron, simultaneously with the
photohole, i.e., ρ(z, τ ) = [δ(z + vτ − zc) − δ(z − zc)] at τ >

0 [21], would be available. Assuming the plasmon-induced
fluctuation potential Vq(z) (= V 0

q eiqz), the photoelectron-
plasmon scattering potential Vq(τ ) is obtained as Vq(τ ) =
∫ dz Vq(z)ρ(z, τ ) [see Fig. 5(b)]. For a proper calculation of
the time-dependent perturbation, we choose to gradually turn
off the perturbation potential as Vq(τ ) → e−ητVq(τ ) with η >

0. From the first-order time-dependent perturbation theory, the
q-dependent transition amplitude Mq is evaluated to be Mq =
−i ∫∞

0 dτeiωqτ e−ητVq(τ ). The q-dependent phase shift δq(ε) is
δq(ε) = tan−1[ImMq/ReMq], which is clearly irrelevant to the
scattering potential strength V 0

q . The q-dependent emission

delay �τ1(q)[= ∂δq (ε)
∂ε

] should be likewise. Eventually, the
emission delay �τ1 may then be defined as a simple average,
i.e., �τ1 = 1

N

∑
q �τ1(q). Similar arguments would be ap-

plied to the higher-order perturbation theory. A pure quantum
mechanical approach will also lead to the same conclusion
[21,30]. Details on the classical model of the photoelectron
on a trajectory are discussed in the Appendix.

IV. SUMMARY AND CONCLUSION

To summarize, we theoretically examined the plasmon-
driven inelastic photoemission delay in the core level
photoemission of metals using a scheme of the nonpertur-
bative expansion. Solving the many-body time-dependent
Schrödinger equation, we obtained the main line and the first-
order plasmon satellite containing the extrinsic loss, which
was extrapolated to the infinite-order spectra. The extrapola-
tion would be feasible within the recoil-less approximation
usually applied to the flat core level. We then found that the
emission delays �τn of the nth-order plasmon satellites are
universal order by order irrespective of metal-specific charac-
teristics in that they are irrelevant to the plasmon scattering
strength and the plasmon frequency. Furthermore, the average
inelastic photoemission delay 〈�τ 〉 is found to be simply
scaled by a universal time delay �τ1. This strongly suggests
a universal curve of the electron mean free path of metals
from a viewpoint of the photoemission delay. Noting that
the present finding is in striking contrast with the emission
delay under the localized potential, we indicate a fundamental

FIG. 6. Photoelectron emission delay in one-dimensional semi-
classical model of the localized scattering potential for various values
of V0. A width D of the potential is adopted to be 1. �τXUV is the
delay calculated at the photoelectron kinetic energy of 124 eV, i.e.,
the upper energy bound of the extreme ultraviolet (XUV) radiation
range, with V0 = −0.1. A unit of V0 and D is the atomic unit.

difference in the photoelectron scattering between extended
and localized screenings.
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FIG. 7. Photoelectron emission delay in one-dimensional semi-
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given. The black dashed line indicates twice the first-order delay.
�τXUV is the delay calculated at the photoelectron kinetic energy of
124 eV.
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APPENDIX: DIFFERENCE IN THE EMISSION PROCESS
BETWEEN LOCALIZED AND METALLIC SYSTEMS

1. Localized system

In Fig. 6, the photoelectron in a one-dimensional localized
potential is shown to have negative emission delays as is well
known. The delay is demonstrated to depend on the depth and
width of the scattering potential.

2. Metallic system

The first-order photoelectron phase shift is given by

δ(1)
q (ε) = tan−1

[
−η

(
1

ωq
+ 1

ωq − qv

)]
,

and the emission delay is obtained by taking the derivative
of δ(1)

q (ε) with respect to ε (= v2/2). From the boundary
condition that the photoelectron is emitted to a semi-infinite
space with z < 0, we choose to take q < 0. The second-order
transition amplitude is

M (2)
q1,q2

(ε) = − 1

2!

∫ ∞

0
dτ1eiωq1 τ1−ητ1Vq1 (τ1)

×
∫ τ1

0
dτ2eiωq2 τ2−ητ2Vq2 (τ2),

and is evaluated to be

M (2)
q1,q2

(ε) = V 0
q1

V 0
q2

2

1

iωq1 − η

iq2v

i
(
ωq1 + ωq2 − q2v

) − 2η

1

i
(
ωq1 + ωq2

) − 2η

− V 0
q1

V 0
q2

2

1

i
(
ωq1 − q1v

) − η

iq2v

i
(
ωq1 + ωq2 − q1v − q2v

) − 2η

1

i
(
ωq1 + ωq2 − q1v

) − 2η
.

The corresponding phase shift is then given by

δ(2)
q1, q2

(ε) = tan−1
Im

[
M (2)

q1,q2
(ε)

]
Re

[
M (2)

q1,q2 (ε)
] .

The second-order delay �τ2 is evaluated from �τ2 =
1

N2

∑
q1,q2

τ (2)
q1, q2

(ε). In Fig. 7, the photoelectron emission de-
lays are qualitatively consistent with Fig. 4 of the main text

and do not depend on the potential strength. In particular, the
second-order delay �τ2 is found to be ≈ 2�τ1, which is also
consistent with Fig. 4 of the main text, i.e., the nonperturbative
treatment of the time-dependent Schrödinger equation. Here it
is found that the emission delay in the metallic screening tends
to decrease more slowly with respect to the photoelectron
kinetic energy compared to the localized screening. This is
actually compatible with a general understanding.
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