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Edge photogalvanic effect caused by optical alignment of carrier momenta
in two-dimensional Dirac materials
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We show that the interband absorption of radiation in a two-dimensional (2D) Dirac material leads to a
direct electric current flowing at sample edges. The photocurrent originates from the momentum alignment of
electrons and holes and is controlled by the radiation polarization. We develop a microscopic theory of such an
edge photogalvanic effect and calculate the photocurrent for gapped and gapless 2D Dirac materials, also in the
presence of a static magnetic field which introduces additional imbalance between the electron and hole currents.
Further, we show that the photocurrent can be considerably multiplied in a ratchetlike structure with an array of
narrow strips.
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I. INTRODUCTION

Photoelectric phenomena in two-dimensional (2D) materi-
als have been the topic of active research in recent years aimed
at the development of photodetectors and energy harvesting
devices [1]. Various mechanisms of photocurrent generation
based on photothermoelectric [2–4], photovoltaic and bolo-
metric [5], plasmonic [6–8], photon drag [9–11], and ratchet
and photogalvanic [12–18] effects have been reported and
studied. Direct electric currents arise here due to the lack
of space inversion in the 2D structure introduced by p-n
junctions, metallic contacts, the substrate, inhomogeneity of
illumination or heating, or the photon wave vector. Space
inversion symmetry is also broken naturally at the edges of
a 2D material. This symmetry breaking gives rise to the
edge photogalvanic effect (EPGE) observed recently in mono-
layer and bilayer graphene illuminated by terahertz radiation
[19,20] and in graphene in the quantum Hall effect regime
[21]. The EPGE is reminiscent of the surface photogalvanic
effect studied in bulk semiconductor crystals and metal films
[22–27].

The EPGE in 2D materials has been studied so far for
low-frequency radiation inducing indirect intraband (Drude-
like) optical transitions in doped structures [19–21]. These
transitions are quite weak since they can occur only if the
scattering of carriers by static defects or phonons is involved.
With increasing the frequency of radiation direct optical tran-
sitions between the valence and conduction bands come into
play, and the absorption dramatically rises. Even in 2D mono-
layers, such as graphene and transition metal dichalcogenides
(TMDCs), the absorbance related to the interband optical tran-
sitions is known to reach a few percent [28]. Accordingly, one
can expect the enhanced photoresponse in this regime.

Here, we study the edge photogalvanic effect in 2D materi-
als caused by direct interband optical transitions. The edge
photocurrent emerges due to the alignment of charge car-
rier momenta by a linearly polarized electromagnetic wave
with a subsequent scattering of the carriers at the edge and

consists of electron and hole contributions. We develop a
microscopic theory of the EPGE for a large class of 2D
materials with a gapped or gapless Dirac-like energy spec-
trum, such as monolayer and bilayer graphene, monolayers of
TMDCs, HgTe/CdHgTe quantum wells with close-to-critical
thickness, etc. In 2D Dirac materials, the optical alignment of
carriers can be pronounced, compared to traditional quantum
wells, giving rise to a large photocurrent. We show that the
current is controlled by the radiation polarization; its magni-
tude reaches 1 nA per W cm−2 of the radiation intensity for
a single edge and can be enhanced to 1 μA in a ratchetlike
structure consisting of multiple narrow strips. We also inves-
tigate the effect of a static magnetic field applied normally
to the 2D plane and show that the field modifies the polar-
ization dependence of the currents and introduces additional
imbalance between the electron and hole currents. Taking into
account the important role of edge regions in micro- and
nanoscale devices, we expect that the EPGE can determine
the photoresponse of small-size devices and find applications
in detectors of terahertz and infrared radiation and radiation
polarization.

This paper is organized as follows. In Sec. II we describe
the model of the edge photocurrent formation, calculate the
rate of optical transitions and momentum alignment in 2D
Dirac materials, and present the microscopic theory of the
EPGE in a semi-infinite system. In Sec. III we study the effect
of a static magnetic field on the photocurrent. In Sec. IV
we calculate the photocurrent and its spatial distribution in
a single strip and a strip structure. Results of the paper are
summarized in Sec. V.

II. MODEL AND THEORY

The proposed microscopic mechanism of the edge photo-
galvanic effect is a two-step process sketched in Fig. 1. We
consider a semi-infinite 2D structure illuminated by normally
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FIG. 1. (a) Optical alignment of electron and hole momenta in a
2D Dirac structure. The probability of interband transitions (shown
by vertical arrows of different thicknesses) induced by linearly po-
larized radiation depends on the direction of the electron momentum
p. This leads to an anisotropic distribution of photoelectrons and
photoholes in p space. (b) Mechanism of the edge photogalvanic
effect. Optical alignment of electrons (shown by the closed blue
curve) followed by electron scattering from the edge of the 2D
structure results in a direct electric current J flowing along the edge.
The current flows within a narrow strip near the edge with the width
determined by the mean free path l0.

incident linearly polarized radiation, which causes direct op-
tical transitions between the valence and conduction bands.

In the first step, the absorption of linearly polarized radia-
tion leads to the momentum alignment of photoelectrons [and
photoholes; Fig. 1(a)]. This phenomenon stems from the fact
that the optical transition probability depends on the relative
orientation between the quasimomentum p and the electric
field E of the radiation. The phenomenon is well known for
bulk semiconductors [23,29–31] and 2D systems based on
semiconductor quantum wells [32], graphene [33,34], etc.
The optically aligned electrons and holes are characterized
by anisotropic but even-in-p distribution in momentum space
[shown by the closed blue curve in Fig. 1(b)]. Since the
distribution is even in p, no electric current is generated in
the “bulk” of the 2D plane.

The direct electric current J emerges in the second step
as a result of the scattering of optically aligned electrons at
the edge, which introduces a local asymmetry in the electron
distribution in the momentum space. Only those carriers that
were created within the mean free path from the edge may
contribute to the current; therefore, the current flows in a
narrow strip at the edge, as shown in Fig. 1(b). The edge
current is expected to have distinct polarization dependence:
it flows in opposite directions for the radiation polarized at
±π/4 angles with respect to the edge and vanishes if the
radiation is polarized perpendicular to or along the edge.
This polarization dependence also follows from the symme-
try consideration of the EPGE as a second-order nonlinear
effect Jy ∝ (ExE∗

y + EyE∗
x ) [35]. This symmetry considera-

tion also implies the absence of an electric current along the
edge for unpolarized radiation where the time-averaged value
〈ExE∗

y 〉 = 0.
Below, we develop a microscopic theory of the edge pho-

togalvanic effect. We calculate the excitation spectrum of

the photocurrent and its dependence on the band structure
parameters.

A. Band structure and momentum alignment

Consider first the band structure of 2D materials and in-
terband optical transitions. The electron and hole states in a
wide class of direct gap Dirac materials can be described by
the effective Hamiltonian [36–38]

H = a p · σ + (δ0 + bp2)σz + d p2I , (1)

where p = (px, py) is the electron momentum counted from
the Dirac point, σ j ( j = x, y, z) are the Pauli matrices, I is
the identity matrix, and δ0, a, b, and d are the band structure
parameters. The Hamiltonian contains all essential ingredi-
ents: the band gap 2δ0, the linear-in-p coupling between the
valence and conduction band states, and the parabolic term
d p2I introducing electron-hole asymmetry. The Dirac states
can have additional spin and/or valley degrees of freedom.

The energy spectrum and the wave functions of the conduc-
tion (c) and valence (v) bands in the electron representation
are given by

Ec/v,p = ±εp + d p2 (2)

and

�c/v,p = 1√
2εp(εp ∓ δ)

(−ap−
δ ∓ εp

)
, (3)

respectively, where εp =
√

δ2 + (ap)2, δ = δ0 + bp2, and
p± = px ± ipy.

The Hamiltonian of electron-photon interaction has the
form

V = −(e/c)A(t ) · ∇pH, (4)

where e is the electron charge, c is the speed of light, A(t ) =
A exp (−iωt ) + c.c. is the vector potential of the field, ω is
its frequency, and A is its (complex) amplitude related to the
electric field amplitude by E = (iω/c)A.

The electromagnetic field excites electrons from the filled
valence band to the empty conduction band. The matrix ele-
ment of such optical transitions (v, p) → (c, p) has the form

Vpp = − e|a|
εp pc

[(bp2 − δ0)(A · p) − iεp(A × p)z]. (5)

The rate of optical transitions is given by Fermi’s golden rule,

gp = 2π

h̄
|Vpp|2δ(2εp − h̄ω), (6)

where |Vpp|2 is found from Eq. (5) and has the form

|Vpp|2 = πe2a2I

ε2
p ω2c n

{
(δ0 − bp2)2 + ε2

p + 2εp(δ0 − bp2)S3

− (a2 + 4bδ0)
[(

p2
x − p2

y

)
S1 + 2px pyS2

]}
. (7)

Here, I = cn|E|2/(2π ) is the intensity of radiation, n is the
refractive index of the dielectric medium surrounding the 2D
Dirac material, and S1 = (|Ex|2 − |Ey|2)/|E|2, S2 = (ExE∗

y +
EyE∗

x )/|E|2, and S3 = i(ExE∗
y − EyE∗

x )/|E|2 are the Stokes
parameters of the radiation polarization.
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The generation rate (6) includes the polarization-
independent contribution, the terms ∝ S1 and ∝ S2 describing
the momentum alignment of electrons by linearly polarized
radiation, and the contribution sensitive to the circular po-
larization. The latter has opposite signs for the pair of Dirac
cones (e.g., spin subbands or valleys) related by time reversal
symmetry and describes the spin/valley polarization of elec-
trons by circularly polarized radiation [39]. In contrast, the
optical alignment of electron momenta by linearly polarized
radiation is the same for all Dirac cones.

B. Edge photocurrent

In this section we calculate the dc edge current emerging
in a semi-infinite sample at homogeneous illumination by
linearly polarized radiation. We consider a 2D Dirac material
occupying a half plane x � 0 with the edge parallel to the y
axis [see Fig. 1(b)].

The edge electric current consists of electron and hole
contributions, Je

y and Jh
y , respectively, and is given by

Jy = Je
y + Jh

y , Je/h
y =

∫ +∞

0
je/h
y (x)dx, (8)

where je
y (x) and jh

y (x) are the local current densities. Below,
we calculate the electron contribution Je

y . The hole contribu-
tion Jh

y can be computed in a similar way.
The density of electric current in the conduction band is

expressed via the electron distribution function f (x, p) as
follows:

je
y (x) = eν

∑
p

vy f (x, p), (9)

where ν is the factor of spin and valley degeneracy of Dirac
states (e.g., ν = 4 for graphene) and v = ∇pEc,p is the elec-
tron velocity. The distribution function is found from the
kinetic equation

vx
∂ f

∂x
= gp + St f , (10)

where gp is the optical generation rate of electrons and St f is
the collision integral.

The collision integral in the relaxation time approximation
is given by

St f = − f (x, p) − 〈 f (x, p)〉
τ

, (11)

where 〈 f (x, p)〉 is the distribution function averaged over the
directions of p and τ is the relaxation time. Note that the
collision integral above does not describe the relaxation of
the zero angular harmonic of the distribution function. The
corresponding relaxation times, governed by the processes
of energy relaxation and recombination, are typically much
larger than τ and do not affect the anisotropic part of the
distribution function.

The collision integral should be supplemented with the
boundary condition at x = 0. We consider diffuse or specu-
lar reflection of electrons from the sample edge. The type
of reflection is determined by macroscopic imperfections of
the edge rather than its atomic structure because the elec-
tron wavelength is much larger than the lattice constant

and the atomic-scale potential is effectively averaged within
the electron wave packet. In the case of diffuse scattering,
the distribution of the particles reflected from the edge is
even in py, i.e., f (0, px > 0, py) = f (0, px > 0,−py ). For
specular reflection, the distribution satisfies f (0, px, py) =
f (0,−px, py). The additional condition

∑
p vx f (x, p) = 0

comes from the lack of electron flux to the edge in the absence
of spatially inhomogeneous generation and recombination of
carriers.

To calculate the electric current along y we decompose
the distribution function f (x, p) into the symmetric- and
asymmetric-in-py parts as follows:

f (s/a)(x, px, py) = 1
2 [ f (x, px, py) ± f (x, px,−py )]. (12)

The asymmetric part satisfies the equation

vx
∂ f (a)

∂x
= − f (a)

τ
+ g(a)

p , (13)

where g(a)
p is the asymmetric-in-py part of the generation

term gp. Solution of Eq. (13) with the boundary conditions
discussed above has the form

f (a)(x, p) = τg(a)
p + τ

[
ζg(a)

−px,py
− g(a)

p

]
exp

(
− x

vxτ

)
�(px ),

(14)
where ζ is the dimensionless parameter defined by the char-
acter of edge scattering (ζ = 0 for diffuse scattering and ζ =
1 for specular reflection) and �(px ) is the Heaviside step
function.

Multiplying f (a)(x, p) by evy, summing up the result over
p and integrating by x, and taking into account that the gen-
eration rate gp is an even function of p, we obtain the electric
current

Je
y = −eν

1 + ζe

2

∑
p

τ 2
e ve,xve,y gp. (15)

Here, the parameter of edge scattering specularity, the relax-
ation time, and the velocity related to the electrons in the
conduction band are denoted as ζe, τe, and ve, respectively.
The edge current for specular reflection is two times larger
than that for diffuse scattering. The smaller magnitude of the
edge current in the latter case is caused by the loss of electron
momentum along the edge at diffuse scattering. We note that
the result (15) in the case of specular reflection can also be
obtained without the explicit calculation of the distribution
function (14) (see the Appendix).

Similar calculations show that the electric current carried
by holes in the valence band has the opposite sign and is given
by

Jh
y = eν

1 + ζh

2

∑
p

τ 2
h vh,xvh,y gp, (16)

where ζh, τh, and vh = −∇pEv,p are the corresponding hole
parameters in the hole representation.

Equations (15) and (16) are quite general and can be ap-
plied to any 2D material. They show that, in systems with
full electron-hole symmetry, the net electric current Je

y + Jh
y

vanishes. In real systems, where the electron-hole symmetry
is lifted intrinsically (in the energy spectrum) or extrinsically
(e.g., by doping), the net photocurrent is nonzero. Note that
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(a)

(b)

FIG. 2. Excitation spectra of the electron (Je
y ) and hole (Jh

y )
contributions to the edge photocurrent and the total edge photocur-
rent Jy for gapped and gapless 2D Dirac materials. The spectra
are calculated after Eq. (17) for short-range scattering of carriers
in the 2D bulk and specular scattering from the edge (ζe/h = 1),
band structure parameters a = 108 cm/s and δ0d/a2 = 0.03, spin
and valley degeneracy ν = 4, band gap 2δ0 = 20 meV, relaxation
time τ0(10 meV) = 1 ps, refractive index of the surrounding medium
n = 3, and radiation intensity I = 1 W/cm2. The radiation is linearly
polarized at 45◦ with respect to the structure edge.

even in gapless systems like graphene the electron-hole asym-
metry is essential and leads to an imbalance between electron
and hole currents [11,18,40].

For interband optical transitions, the generation term is
given by Eqs. (6) and (7). Putting these equations into
Eqs. (15) and (16), summing up over p, and assuming that
|b| 
 a2/δ0, we finally obtain the electron and hole contribu-
tions to the edge current:

Je/h
y = ±eηa2(1 + ζe/h)τ 2

e/hv
2
e/h p2

∗
2(h̄ω)3

�(h̄ω − 2δ0)IS2, (17)

where η = πνe2/(4h̄cn) is the absorbance of the 2D Dirac
material at h̄ω � δ0, p∗ =

√
(h̄ω)2 − (2δ0)2/(2a) is the

momentum of photoexcited electrons and holes, ve/h =
a
√

1 − (2δ0/h̄ω)2(1 ± h̄ωd/a2) are the corresponding elec-
tron and hole velocities, and �(x) is the Heaviside step
function. The relaxation times τe and τh are taken at the elec-
tron and hole energies Ee/h(p∗) = h̄ω/2 ± (d/4a2)[(h̄ω)2 −
(2δ0)2], respectively.

As follows from Eq. (17), the polarization dependence
of the edge current is determined by the Stokes parameter
S2 = (ExE∗

y + EyE∗
x )/|E|2. The current reaches maxima with

opposite signs for radiation polarized at ±45◦ with respect
to the edge and vanishes for the radiation polarized along or
normal to the edge, in accordance with the model sketched in
Fig. 1.

Figure 2 shows the excitation spectra of the electron and
hole currents, Je

y and Jh
y , respectively, and the total edge pho-

tocurrent Jy = Je
y + Jh

y in gapped and gapless systems. The
spectra are calculated after Eq. (17) for the case when the
energy dependence of the electron/hole scattering rate τ−1

e/h (ε)
follows the electron/hole density of states De/h(ε), which
is relevant to short-range scattering. For weak electron-hole
asymmetry (|d| 
 a2/δ0), the densities of states have the form

De/h(ε) = ν

2π h̄2

ε

a2

[
1 ∓ d

a2

(
3ε2 − δ2

0

)
ε

]
�(ε − δ0),

and we plot the spectra for the relaxation times

τe/h(ε) = τ0(ε̃)
ε̃

ε

[
1 ± d

a2

(
3ε2 − δ2

0

)
ε

]
,

where τ0(ε̃) is the relaxation time at the energy ε̃ in the
absence of electron-hole asymmetry. The parameters used
for calculations are given in the caption of Fig. 2. The band
structure parameters and the relaxation time τ0 are relevant to
2D Dirac systems based on high-quality graphene and HgTe
quantum wells, where the band gap can be tuned by varying
the quantum well thickness [36,37].

In gapped Dirac materials [Fig. 2(a)], the edge photocur-
rent is generated if the photon energy exceeds the band gap.
Above this threshold, the photocurrent increases with the
photon energy, reaches a maximum, and then decreases. In
gapless materials with the Fermi energy lying at the Dirac
point [Fig. 2(b)], the photocurrent monotonically decreases
with the photon energy. The electron and hole contributions
to the photocurrent can be estimated as Je/h

y ∼ eηIl2
e/h/(h̄ω),

where le/h = ve/hτe/h are the mean free paths of photoexcited
electrons and holes. For a mean free path of 1 μm and
h̄ω = 20 meV, the photocurrent normalized by the radiation
intensity is of the order of nA cm2/W.

The edge current is determined by the efficiency of opti-
cal alignment and relaxation times. The quenching of optical
transitions due to Pauli blocking and the decrease of relaxation
times with the rise of temperature result in the decrease of the
photocurrent magnitude. The temperature and disorder, apart
from the obvious change in the scattering time, would also
smear features in the photocurrent excitation spectrum.

III. EFFECT OF MAGNETIC FIELD

Now, we study the effect of a classical magnetic field B
applied along the 2D plane normal z on the edge photocurrent.
We show that the magnetic field modifies the polarization
dependence and magnitude of the photocurrent and, more
interestingly, enables the generation of a net electric current
even in a system with electron-hole symmetry. Like in the
consideration in the previous section, we calculate the electron
contribution to the edge current and then discuss both the
electron and hole contributions.

In a classical magnetic field, the kinetic equation for
the steady-state distribution function of electrons in the
conduction band has the form

vx
∂ f

∂x
+ e

c
(v × B) · ∂ f

∂ p
= gp − f (x, p) − 〈 f (x, p)〉

τ
. (18)

165411-4



EDGE PHOTOGALVANIC EFFECT CAUSED BY OPTICAL … PHYSICAL REVIEW B 103, 165411 (2021)

Multiplying Eq. (18) by vy, averaging the result over the
direction of p, and taking into account that 〈vygp〉 = 0, we
obtain the equation〈

vxvy
∂ f

∂x

〉
+ eBz

c

〈
vxvy

∂ f

∂ py
− v2

y

∂ f

∂ px

〉
= −〈vy f 〉

τ
. (19)

Further, multiplying Eq. (19) by τ and summing up over p, we
obtain, after some algebra,

je
y (x) = −eν

∑
p

τvxvy
∂ f

∂x
+ eBz

c

∑
p

τ

mc
vx f , (20)

where mc = p/v is the cyclotron mass.
In the absence of spatially inhomogeneous recombination

of carriers, the electron (and hole) flux to the edge given by the
term 〈vx f 〉 vanishes. Then, the second term on the right-hand
side of Eq. (20) can be neglected, and Eq. (20) yields

Je
y = −eν

∑
p

τvxvy[ f (∞, p) − f (0, p)]. (21)

The edge current is determined by the difference between the
steady-state distribution functions at the edge and in the 2D
bulk.

For specular reflection of carriers at the edge, f (0, p)
is even in px, and the term

∑
p τvxvy f (0, p) vanishes. The

remaining contribution
∑

p τvxvy f (∞, p) can be readily cal-
culated analytically from the kinetic equation (18) with the
first term on the left-hand side being neglected. Such a calcu-
lation with the generation term (6) shows that the anisotropic
part of the electron distribution function far from the edge has
the form

δ f (∞, p)

= −8π2τe2a2(a2 + 4bδ0)I

(h̄ω)3ωcn
δ(2εp − h̄ω)

×
[(

p2
x − p2

y

)S1 + 2ωcτS2

1 + (2ωcτ )2
+ 2px py

S2 − 2ωcτS1

1 + (2ωcτ )2

]
,

(22)

where ωc = eBz/mcc is the cyclotron frequency. Finally, the
electron and hole contributions to the edge photocurrent at
|b| 
 a2/δ0 are given by

Je/h
y = ±eηa2τ 2

e/hv
2
e,h p2

∗
(h̄ω)3

S2 ∓ 2ωe/hτe/hS1

1 + (2ωe/hτe/h)2

×�(h̄ω − 2δ0)I, (23)

where ωe/h = eBz/(me/hc) are the cyclotron frequencies
of the photoexcited electrons and holes and me/h =
p∗/ve/h = h̄ω/[2a2(1 ± h̄ωd/a2)] are the corresponding ef-
fective masses.

For diffuse scattering from the edge, the contribution to the
edge current from the sum

∑
p τvxvy f (∞, p) is still given by

Eq. (23). The second contribution in Eq. (21) given by the
term

∑
p τvxvy f (0, p) does not vanish anymore and has to be

calculated numerically.
Figure 3 shows the dependence of the edge photocurrent on

magnetic field calculated after Eq. (23) for specular reflection
of carriers from the edge. Figures 3(a) and 3(b) correspond to
the radiation polarized at 45◦ to the edge and along the edge,

Je
y

Jy = Je
y  + Jh
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FIG. 3. Magnetic field dependence of the edge photocurrents
excited by radiation (a) linearly polarized at 45◦ with respect to
the structure edge (Stokes parameter S2 = 1) and (b) linearly po-
larized along the edge (Stokes parameter S1 = 1). Je

y , Jh
y , and Jy

are the electron and hole contributions to the photocurrent and the
total photocurrent, respectively. The photocurrents are calculated for
specular scattering from the edge, band gap 2δ0 = 20 meV, photon
energy h̄ω = 30 meV, spin and valley degeneracy ν = 4, refractive
index of the surrounding medium n = 3, electron and hole mean free
paths le = 1 μm and lh = 0.7 le, respectively, and radiation intensity
I = 1 W/cm2. The insets show a comparison between the total edge
photocurrents in the structures with specular (ζe/h = 1) and diffuse
(ζe/h = 0) edge scattering.

respectively. Since ωe/hτe/h ∝ le/h, where le/h = ve/hτe/h are
the mean free paths of the carriers, the difference between the
hole and electron contributions to the photocurrent is deter-
mined by the single parameter lh/le. In the calculations we set
lh/le = 0.7.

The radiation polarized at 45◦ to the edge induces the elec-
tron (Je

y ) and hole (Jh
y ) edge photocurrents of opposite signs

[Fig. 3(a)]. The photocurrents decrease in the magnetic field
Bz following the Hanle curves [see Eq. (23)]. The net electric
current is nonzero because of the electron-hole asymmetry.

In the magnetic field, the edge photocurrents can also be
excited by radiation polarized along (as well as perpendicular
to) the edge [Fig. 3(b)]. For this polarization, the electron (Je

y )
and hole (Jh

y ) contributions have the same sign and add up to
each other. The net electric current does not require the pres-
ence of electron-hole asymmetry in the 2D system. Therefore,
quite a strong photoelectric response can be expected even in
close-to-symmetric systems like graphene.

The diffuse edge scattering leads to a reduction of the edge
photocurrent compared to the specular one, as shown in the
insets in Figs. 3(a) and 3(b). At zero magnetic field, the ratio
of the edge currents in the structures with mirror (ζe/h = 1)
and rough (ζe/h = 0) edges is 2:1, which also follows from
Eq. (17), whereas at Bz = 0 the ratio depends on the magnetic
field and the radiation polarization.
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FIG. 4. Spatial distributions of the electron current density je
y (x)

near the sample edge at different magnetic fields: (a) ωeτe =
0, 0.5, 1, 2 and (b) ωeτe = 1, 2 at larger scale. The distributions
are calculated for specular reflection of electrons from the edge, the
radiation with Stokes parameter S2 = 1, and the parameters listed in
the caption of Fig. 3.

Numerical solution of the kinetic equation (18) allows us
to find the spatial distribution of the photocurrent density
jy(x). The results of such calculations are shown in Fig. 4. As
expected, the edge photocurrent flows within a narrow strip
near the edge. The width of this strip is of the order of the
carrier mean free path le/h at zero magnetic field and close
to the cyclotron diameter 2ve/h/ωe/h at high magnetic fields.
Interestingly, at ωe/hτe/h � 1, the edge photocurrent flows in
opposite directions in different regions near the edge [see
Fig. 4(b)].

In addition to the current controlled by the radiation po-
larization, in an external magnetic field there can emerge
a polarization-independent photocurrent. Physically, it orig-
inates from the 2D analog of the Kikoin-Noskov photo-
electromagnetic effect known for three-dimensional materials
[41,42]. The effect is related to an enhanced recombination
rate of electrons and holes at the edge of the material, which
may occur due to increased density of the defect at the edge.
The edge recombination leads to a local decrease of the elec-
tron and hole densities, which induces diffusive fluxes of both
types of carriers. At zero magnetic field, the fluxes are directed
to the edge. The net electric current is zero because the cur-
rents carried by electrons and holes compensate each other in
the steady-state regime. The flux density can be estimated as
ix(x) ∼ a0(�γr/γr )G exp(−√

γr/D x), where a0 is a width of
the order of a few lattice constants where the recombination
rate in enhanced, γr = 1/τr , τr is the lifetime of carriers far
from the edge, �γr is the extra recombination probability near
the edge, G = η(ω)I/(h̄ω) is the rate of carrier generation,
η(ω) is the absorbance, and D is the diffusion coefficient
of thermalized carriers. The external magnetic field deflects
the fluxes in opposite directions, giving rise to a net electric
current along the edge. This edge photocurrent flows within
the diffusion length

√
Dτr near the edge and can be estimated

as

JKN
y ∼ eηa0

√
Dτr

h̄ω

�γr

γr

ωcτ

1 + (ωcτ )2
I. (24)

The ratio of the Kikoin-Noskov current (24) to the current
caused by momentum alignment (23) can be estimated as

x

y(a) (b)

N

E(t)

J

w/2−w/2

FIG. 5. (a) Sketch of a ratchet structure consisting of N narrow
asymmetric strips. The incident radiation induces dc electric current
J in each strip, and the total current flowing in the structure is NJ.
(b) Geometry of an individual strip.

(�γr/γr )(a0/l )
√

τr/τ , where l = vτ is the mean free path.
One can expect that, in high-mobility structures, the current
caused by momentum alignment predominates.

IV. PHOTOCURRENT IN A STRIP STRUCTURE

The edge photocurrent is formed in a narrow strip of the
width determined by the carrier mean free path. The bulk of
the 2D system absorbs radiation but is not involved in the
current generation. Therefore, thinking of a possible design
of the structure with enhanced photoresponse, we consider
a ratchet structure consisting of N narrow asymmetric strips
[Fig. 5(a)]. Optical excitation of such a structure leads to a
photocurrent in each strip, and the total current is increased
by a factor of N .

Now, we calculate the photocurrent in an individual strip
and study how it depends on the strip width and boundary
conditions. We consider the 2D Dirac material to be located at
−w/2 � x � w/2, where w is the strip width [Fig. 5(b)]. The
distribution function of electrons in the strip is then a solution
of the kinetic equation (18) with boundary conditions at x =
−w/2 and x = w/2. At zero magnetic field, the asymmetric-
in-py part of the electron distribution function has the form

f (a)(x, px, py) = τ

[
g(a)

p + Cp exp

(
− x

vxτ

)]
, (25)

where

Cp = − S(w/|2vxτ |)
S(w/|vxτ |) g(a)

p + [ζl�(px ) + ζr�(−px )]

× sinh(w/|2vxτ |)
S(w/|vxτ |) g(a)

−px,py
, (26)

S(x) is the function defined by S(x) = [exp(x) −
ζlζr exp(−x)]/2, g(a)

p is the asymmetric-in-py part of gp,
and ζl/r are the parameters of scattering specularity at the
left/right edges of the strip, respectively.

Using the same method as described in Sec. III, one can
show that the total electron photocurrent in the strip Je

y =∫ w/2
−w/2 je(x)dx is given by

Je
y = −eν

∑
p

τvxvy[ f (w/2, p) − f (−w/2, p)]. (27)
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FIG. 6. (a) Spatial distribution of the electron current density in
the strip, where electrons are scattered specularly at the left edge
(ζl = 1) and diffusely at the right edge (ζr = 0). The distributions are
plotted for different ratios between the strip width w and the mean
free path le. (b) Total electron current flowing in the strip as a function
of the strip width. The curves are calculated for the same parameters
as in Fig. 3(a).

The photocurrent is proportional to the difference of the dis-
tribution functions at the right and left edges of the strip and
vanishes in a strip possessing x → −x mirror symmetry. This
symmetry is violated if the strip has an asymmetric shape, as
shown in Fig. 5, or an asymmetric static potential U (x). The
current Je

y is also nonzero in a strip with different roughnesses
for the left and right edges.

Substituting the distribution function (25) at x = ±w/2
into Eq. (27), we finally obtain

Je
y = eν(ζr − ζl )

∑
p

τ 2vxvy
[exp(w/vxτ ) − 1]2gp

exp(2w/vxτ ) − ζlζr
�(px ).

(28)
As expected, the total current in the strip is proportional to the
difference ζr − ζl .

Figure 6(a) shows the distribution of the electron photocur-
rent je

y (x) in the cross section of the strip. The distributions
are calculated by numeric summation of Eq. (9) with the
distribution function given by Eq. (25). It is assumed that the
strip edges have different scattering properties: Electrons are
reflected specularly at the left edge (ζl = 1) and diffusely at
the right edge (ζr = 0). When the strip width w is much larger
than the electron mean free path le, the photocurrents are con-
centrated at the edges and vanish in the bulk of the strip. The
current densities in that case coincide with those calculated in
Sec. II B for a semi-infinite structure. The currents on opposite
sides of the strip flow in opposite directions. The total current
at the left edge is two times larger than the current at the right
edge, in agreement with Eq. (15). In narrow strips, when the
strip width approaches the mean free path, the edge currents
merge, and the photocurrent is generated in the whole cross
section of the strip.

The total photocurrent Je
y generated in the strip as a func-

tion of the strip width is shown in Fig. 6(b). The photocurrent
increases with the strip width w in narrow strips and satu-
rates at w ≈ 3le. A further increase of the strip width does
not affect the current magnitude. Projecting the results to a
3 × 3 mm2 sample with N = 103 strips, we estimate a total
current of about 1 μA per W cm−2 in the terahertz spectral

range. Such structures based on 2D Dirac materials can be
used as fast detectors of terahertz and infrared radiation and
its polarization.

V. SUMMARY

To summarize, we have studied theoretically the edge pho-
togalvanic effect in 2D materials caused by direct interband
optical transitions. The dc electric current emerges due to the
optical alignment of electron and hole momenta by a linearly
polarized electromagnetic wave followed by scattering of car-
riers at the edge. The current is formed in a narrow strip near
the edge with the width defined by the mean free path at zero
magnetic field and by the diameter of the cyclotron orbit at
large magnetic fields. At zero magnetic field the edge pho-
tocurrent behaves as sin 2α, where α is the angle between the
electric field of the wave and the edge. The current contains
counterflowing electron and hole contributions with different
magnitudes due to electron-hole asymmetry. The excitation
spectrum of the edge current calculated for short-range scat-
terers shows that the current magnitude is larger in gapless
materials and reaches 1 nA per W cm−2. Under application
of a static magnetic field normal to the sample plane, the
edge current is also excited by the electric field parallel or
perpendicular to the edge, and the net current is nonzero even
in structures possessing electron-hole symmetry. In a narrow
strip made of a 2D material, the photocurrent is generated in
the whole cross section of the strip, and its value integrated
over the strip is nonzero in the strip with an asymmetric
shape or asymmetric static potential. The maximum value of
the photocurrent is already reached in strips with a width of
several mean free paths, which allows one to use a ratchet-
like multistrip structure for a significant increase of the total
photocurrent. Our estimations show that the total current can
reach 1 μA per W cm−2 in a 3 × 3 mm2 sample. Such ratch-
etlike structures can be used as fast detectors of terahertz and
infrared radiation and its polarization.
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APPENDIX

The equation for the electric current (15) can also be ob-
tained without explicit calculation of the distribution function
(14). To directly calculate Jy, we multiply Eq. (10) by evy, sum
up the result over p and integrate by x, and take into account
that

∑
p vygp = 0 since the optical transitions do not induce a

bulk electric current. This yields

Je
y = −eν

∑
p

τ1vxvy[ f (∞, p) − f (0, p)], (A1)

where τ1 is the relaxation time of the first angular harmonics
of the distribution function (also called momentum relaxation
time) defined by 〈vSt f 〉 = −〈v f 〉/τ1. The distribution func-
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tion far from the edge can readily be found from the kinetic
equation (10) with the first term being neglected, which gives
〈vxvy f (∞, p)〉 = τ2〈vxvygp〉, where τ2 is the relaxation time
of the second angular harmonics of the distribution function,
〈vxvySt f 〉 = −〈vxvy f 〉/τ2. For specular electron reflection

from the edge (ζ = 1), the term
∑

p τ1vxvy f (0, p) vanishes,
and Eq. (A1) coincides with Eq. (15) and specifies that τ 2 is
τ1τ2. Note that τ1 and τ2 may be different. Electron-electron
scattering may significantly affect the relaxation times, partic-
ularly, the relaxation time of the second angular harmonic.
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