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Disorder effects in topological insulator thin films
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Thin films of topological insulators (TI) attract large attention because of expected topological effects from the
intersurface hybridization of Dirac points. However, these effects may be depleted by unexpectedly large energy
smearing � of surface Dirac points by the random potential of abundant Coulomb impurities. We show that
in a typical TI film with large dielectric constant ∼50 sandwiched between two low dielectric-constant layers,
the Rytova-Chaplik-Entin-Keldysh modification of the Coulomb potential of a charge impurity allows a larger
number of the film impurities to contribute to �. As a result, � is large and independent of the TI film thickness d
for d > 5 nm. In thinner films � grows with decreasing d due to reduction of screening by the hybridization gap.
We study the surface conductivity away from the neutrality point and at the neutrality point. In the latter case,
we find the maximum TI film thickness at which the hybridization gap is still able to make a TI film insulating
and allow observation of the quantum spin Hall effect, dmax ∼ 7 nm.
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I. INTRODUCTION

Topological insulators (TI) continue to generate a strong
interest because of their surfaces host massless Dirac states on
the background of the bulk energy gap. Typically, as-grown TI
crystals are heavily doped semiconductors with concentration
of donors ∼1019 cm−3. (For certainty, we talk about n-type
case where the Fermi level is high in the conduction band.)
However, to employ Dirac states in transport, one has to move
the Fermi level close to the Dirac point. In bulk crystals, this
is done by intentional compensation of donors with almost
equal concentration of acceptors. With increasing degree of
compensation, the Fermi level shifts from the conduction band
to inside the gap and eventually arrives at the surface Dirac
points.

This seemingly easy solution of the Fermi-level problem,
however, comes with a price [1]. In fully compensated TI, all
donors and acceptors are charged, and these charges randomly
distributed in space create random potential fluctuations as
large as the TI semiconductor gap. These fluctuations create
equal numbers of electron and hole puddles, and substan-
tially reduce the activation energy of the bulk transport [2,3].
At the same time, near the surface, the random potential of
charged impurities smears the Dirac point by the energy �

self-consistently determined by the surface electrons screen-
ing [4,5]. This smearing was observed by the scanning tunnel
microscopy [6]. It also should determine the width of Landau
levels of Dirac electrons and quantum relaxation time τq =
h̄/�, as measured by Shubnikov-de-Haas oscillations.

Recently TI research shifted to thin TI films of thick-
ness d < 20 nm range [7–13]. This interest is related to
observations of the intersurface hybridization leading to the
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Dirac points hybridization gaps �(d ) and related topological
effects, including the quantum spin Hall effect [10]. However,
such observations are obscured by unexpectedly large effects
of disorder. One might think that the role of disorder in thin
TI films should be smaller than in the bulk TI. Indeed, at a
given total 3D concentration of charged impurities N , the 2D
concentration of them Nd in a thin TI film is quite small.
In a thin film, the Fermi level can be shifted to the Dirac
point by the gate parallel to the TI film gate (see Fig. 1).
Therefore, one might expect that the compensation by accep-
tors can be avoided to get a much smaller �(d ). However, a
distant gate can only compensate the average charge density
of donors. Local fluctuations of the donor concentration and
charge density still create a large random potential that, after
self-consistent screening by surface electrons, results in a
large Dirac point smearing energy �(d ).

In this paper, we show that in a typical TI film with
large dielectric constant ∼50 sandwiched between two low
dielectric-constant layers, the Rytova-Chaplik-Entin-Keldysh
modification of the Coulomb potential of a charge impurity
slows down the potential decay in space, and allows a larger
number of the film impurities to contribute in �. As a result,
� is large and independent on the TI film thickness d for
d > 5 nm. At smaller thickness, � grows with decreasing d
due to reduced by hybridization gap screening. We also study
the surface conductivity both far away from neutrality point
when kinetic energy is much larger than � and at the neutrality
point. In the latter case, we find the maximum thickness at
which the hybridization gap makes a TI film insulating and
allows observation of the quantum spin Hall effect, dmax ∼
7 nm.

Contrary to the bulk case, what happens in the thin TI
film strongly depends on the average dielectric constant of
the film environment κ = (κ1 + κ2)/2, where indexes 1 and
2 are related to two sides of the film (see Fig. 1). Below, we
consider three different cases κ f � κ, κ f = κ, and κ f � κ.
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FIG. 1. TI thin film of thickness d with dielectric constant κ f

deposited on the substrate with dielectric constant κ2. The top metal-
lic gate is separated from the film by a spacer of thickness D with
dielectric constant κ1. The topological surfaces are shown by blue
lines. In the case κ f � κ , a typical charge impurity is shown by a
red circle with its electric field E (black) channeling through the film
for a distance λ before exiting outside. In similar topologically trivial
films, the electric field exits at a larger distance r0.

In Sec. II we calculate � at the neutrality point for the
most interesting first case when the potential of a charge
impurity as described by Rytova [14], Chaplik and Entin [15],
and Keldysh [16]. In Sec. III we study the cases κ f = κ and
κ f � κ. In Sec. IV we comment on the role of the gate when
it is close to the film surface. In Sec. V we calculate the con-
ductivity of a TI film ignoring hybridization gap. In Sec. VI
we concentrate on the effect of the hybridization gap on the
conductivity at the neutrality point and find the maximum
thickness dmax at which TI film is still insulating so that one
can observe spin Hall effect.

II. THIN TI FILM IN SMALL DIELECTRIC-CONSTANT
ENVIRONMENT

In this section, we calculate �(d ) in the case of κ f � κ. For
example [10,13], a BiSbTeSe2 (BSTS) thin film with κ f ∼ 50
can be sandwiched between two h-BN layers with κ1,2 ∼ 5
[17]. In this case κ ∼ 5 is 10 times smaller than κ f . If κ f � κ,
the electric field of a charged impurity inside the thin film is
trapped inside the film for a distance r0 = (κ f /2κ)d , and only
after r > r0 the electric field exits to the environment. This
leads to the effective Coulomb interaction with asymptotic
expressions [15],

v0(r) ≈
{

e2

κr r > r0,

− e2

κr0
[ln(r/2r0) + γ ] d < r < r0,

(1)

where r is a 2D vector in the plane of TI film and γ = 0.577
is the Euler constant. The Fourier transform of v0(r) is

v0(q) = 2πe2

κq(1 + qr0)
, (2)

valid for q < 1/d .
In a TI film, the electric field of a charged impurity expe-

riences additional screening by Dirac electrons living on the
surfaces of the film. To describe this screening, we start from
the equation for the electric potential of screened charged
impurities φ(r),

μ[n(r)] − eφ(r) = EF , (3)

FIG. 2. Log-log plot of the screened interaction v(r) for dif-
ferent qs. The gray lines are obtained by the Fourier transform of
2πe2/κ(q + qs ), which shows ∼r−3 in large distance.

where EF = const. is the Fermi level (electrochemical poten-
tial), μ[n(r)] = h̄vF kF [n(r)] is the (local) chemical potential,
vF is the velocity near the Dirac cone, and kF [n(r)] =√

4π |n(r)| is the local Fermi wave vector. If the average
chemical potential μ is large enough so that μ2 � e2φ2, then
μ[n(r)] can be linearized in the local carrier-density variation
δn(r),

μ[n(r)] ≈ μ + δn(r)/ν(μ), (4)

where ν(μ) = dn/dμ = μ/(2π (h̄vF )2) is the thermody-
namic density of states (TDOS) at zero temperature. Introduc-
ing the effective fine structure constant α = e2/κ f h̄vF , we can
write the TDOS as

ν(μ) = κ2
f α

2

2πe4
μ. (5)

In the Thomas-Fermi (TF) approximation [18], the screening
by surface electrons can be described by the dielectric func-
tion

ε(q) = 1 − v0(q)�T F , (6)

where the TF polarization bubble is �T F = −ν(μ), and the
bare interaction v0(q) is given by Eq. (2). We arrive at the
screened potential of one charge impurity within a thin TI film

v(q) = v0(q)

ε(q)
= 2πe2

κ[q(1 + qr0) + qs]
, (7)

where qs = 2πe2ν/κ and q < 1/d .
We see that if qsr0 � 1 then, unlike in uniform 3D di-

electrics, inside the TI film a strong screening happens at the
distance

λ = (r0/qs)1/2. (8)

Indeed, the behavior of v(q) changes at q = λ−1:

v(q) ≈
{

2πe2

κqs
q < λ−1,

2πe2

κq2r0
λ−1 < q < d−1.

(9)

The behavior of v(r) for different values of qs is shown
in Fig. 2. At large distance r � λ, we get v(r) � e2/κq2

s r3

like for a quadrupole. The difference between topological and
topologically trivial films is also schematically illustrated in
Fig. 1.
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Assuming that impurities are randomly distributed inside
the film, the mean squared fluctuation of the potential is given
by [19]

〈φ2〉 = 1

e2

∫
drv2(r)Nd

= 2πNde2

κ2
f (qsr0), (10)

where the function f (x) reads

f (x) = 2

4x − 1

+
{

2
(1−4x)3/2 tanh−1

√
1 − 4x 0 < x < 1/4,

− 2
(4x−1)3/2 tan−1

√
4x − 1 x > 1/4.

(11)

We are interested in two limiting cases of the dimensionless
parameter qsr0 = (r0/λ)2,

〈φ2〉 = 2πNde2

κ2

{
(2qsr0)−1 λ � r0,

−2 − ln(qsr0) λ � r0.
(12)

There is a simple qualitative interpretation of the limiting
expression of 〈φ2〉. In the case when λ � r0 (or qsr0 � 1),
surface-electrons screening cuts off the impurity potential at
distance λ from the impurity center. The fluctuation of number
of impurities inside radius λ is equal to (Ndλ2)1/2. Since
each charge impurity of this area contributes to the potential
∼e/κr0 [see Eq. (1)], we get 〈φ2〉 ∼ (Ndλ2)(e/κr0)2, namely
the first line of Eq. (12). On the other hand, at λ � r0 (or
qsr0 � 1) the potential of impurity v(r) follows Eq. (1) with
effective screening length r0. Taking into account that fluctua-
tion of number of impurities inside radius r0 is ∼

√
Ndr2

0 , we
arrive at the second line of Eq. (12).

We are interested in the charge neutrality point where EF =
0, and φ has the Gaussian distribution function with 〈φ〉 =
0 and 〈φ2〉 = �2/e2. Next, we want to calculate the average
density of states 〈ν〉 using the Gaussian distribution function
of φ,

〈ν〉 =
∫ ∞

−∞
d (eφ)2ν(eφ)

e−e2φ2/2�2

√
2π�2

= 2α2κ2
f �

(2π3)1/2e4
. (13)

Here, we multiply the density of states by a factor of 2 be-
cause the potential at each surface is screened by electrons
of both the top and bottom TI surfaces. The above use of the
potential ∼e2/κr0 inside the the TI film at distance d < r < λ

from a Coulomb impurity apparently is valid only for d < λ.
This condition is equivalent to d � dc = α−4/3N−1/3 [20]. For
thicker films, d > dc, one should think about two separate
surfaces like in a bulk sample where each surface screens its
own random potential [4]. Then one also can find the lower
limit of applicability of large d theory [4], dc, as the screening
radius rs of a single surface found in Ref. [4].

At d � dc replacing ν by 〈ν〉 in qs = 2πe2ν/κ , we have

qs =
√

8

π

α2κ2
f �

κe2
. (14)

Now one can solve for � and qs self-consistently using
Eqs. (12) and (14). If λ � r0, then

� =
(

π3

2

)1/6 e2N1/3

κ f α2/3
, (15)

qs = 24/3α4/3 κ f

κ
N1/3, (16)

λ = 2−7/6α−2/3(Nd3)−1/6d. (17)

The result for � is independent on d , and up to a numerical
factor is the same as the results earlier obtained for a bulk
samples [4]. Therefore, our � easily matches that of Ref. [4]
at d = dc. To ensure the self-consistency, one should check
whether the assumption qsr0 � 1 with qs given by Eq. (16)
is correct. We find that Eqs. (15), (16), and (17) are valid
if d � d1 = (κ/κ f )2α−4/3N−1/3. Note that at the neutrality
point Eq. (17) provides the typical size of puddles, while
the concentration of electrons and holes in puddles is np ∼
(Ndλ2)1/2/λ2 ∼ (αN )2/3. This concentration does not depend
on d and is the same as the puddle concentration at the surface
of a bulk sample [4].

In the other limiting case λ � r0, in the first approximation
we have

� ≈
{

2πNde4

κ2
ln

[(
κ

κ f

)3 1

2α2(Nd3)1/2

]}1/2

, (18)

qs ≈ 4

(
ακ f

κ

)2√
Nd

{
ln

[(
κ

κ f

)3 1

2α2(Nd3)1/2

]}1/2

. (19)

Equations (18) and (19) are valid if d � d1, i.e., the arguments
of logarithms are much larger than unity.

In order to derive the above results we assumed that elec-
tric potential fluctuations follow Gaussian distribution. This
assumption is valid if the number of substantially contributing
to the potential impurities M � 1. If λ > r0, or qsr0 < 1, then
Eq. (19) yields M = Ndr2

0 ∼ Nd3(κ f /κ)2 � 1 when d �
d2 = (κ/κ f )2/3N−1/3. On the other hand, if λ < r0, or qsr0 >

1, using Eq. (17) we get that M = Ndλ2 ∼ (Nd3)2/3α−4/3 �
1 when d � d3 = α2/3N−1/3.

In Fig. 3 we schematically summarize our results for �(d )
for two scenarios covering generic situation with α−1 > 1
and κ f /κ > 1: Scenario (a) is defined by inequality κ f /κ >

α−1 > 1. In this scenario the energy �(d ) is a constant given
by Eq. (15) for d > α2/3N−1/3, while for d < α2/3N−1/3 the
Gaussian approach fails.

Scenario (b) is defined by inequality α−1 > κ f /κ �
1. In this case the energy �(d ) is a constant given
by Eq. (15) for d > d1 = (κ/κ f )2α−4/3N−1/3, while �(d )
crosses over to Eq. (18) for (κ/κ f )2/3N−1/3 = d2 < d < d1 =
(κ/κ f )2α−4/3N−1/3. In this scenario, the Gaussian approach
fails at d < d2. Scenario (b) includes the case κ = κ f for
which d2 = N−1/3 and d1 = dc, so that for thin films d < dc,
d-independent part of the function �(d ) does not exist.

Let us see how these two scenarios work for TIs based on
BSTS-like systems with vF ∼ 3 × 105 m/s, κ f ∼ 50, α−1 ∼
7, and N � 1019 cm−3. If such a TI film is sliced between h-
BN layers, then κ � κa = 5 [17], κ f /κ � 10 > α−1 bringing
us to scenario (a). If the same film is sliced between two layers
of HfO2 with κ � κb = 25 [21], then κ f /κ � 2 < α−1 and
we find ourselves in scenario (b). These two examples are
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FIG. 3. Log-log plot of the disorder potential amplitude � as a
function of thickness d for two examples of scenarios (a) and (b).
We use N = 1019 cm−3, κ f = 50, and α−1 = 7 in order to relate
the dimensionless left-vertical and bottom-horizontal axes to the
right-vertical and top-horizontal dimensional axes. The blue solid
line corresponds to the scenario (a): κ f /κ > α−1 > 1 (in this ex-
ample we use such κ = κa that κ f /κa = 10). The red dashed curve
corresponds to the alternative scenario (b): α−1 > κ f /κ � 1 (for this
example we use such κ = κb that κ f /κb = 2). On the left-vertical
axis, dimensionless potential amplitude � in units of γ e2N1/3/κ f

where γ = (π 3/2)1/6 is shown. On the right-vertical axis, we show �

in units of meV. On the bottom-horizontal axis we show the charac-
teristic dimensionless TI film widths d̃1a,b = (κa,b/κ f )2α−4/3, d̃2a,b =
(κa,b/κ f )2/3, d̃3 = α2/3, and d̃c = α−4/3. On the top-horizontal axis,
the film thickness d in units of nm is shown. Numbers of Eqs. (15)
and (18) describing parts of �(d ) plots are shown next to them.

used in Fig. 3 to plot functions �(d ) for both scenarios. In
both scenarios, dc ∼ α−4/3N−1/3 � d1,2,3 is the largest length
scale.

In the first example, Eq. (15) obtained for bulk samples [4]
gives � ∼ 35 meV, which remains valid till very small film
widths d ∼ d3 � 2 nm, in spite of smaller concentration of
impurities Nd . Such an unexpectedly strong role of disorder
in thin BSTS-like TI films sandwiched between two low-κ
layers is a result of the dielectric constant contrast between the
TI film and its environment leading to the large contribution
from distant Coulomb impurities into potential fluctuations.

In the above we ignored the concentration of charged im-
purities in the environment outside the TI film Ne. Let us
now evaluate the role of such impurities. To save electrostatic
energy, the electric field lines of an impurity at distance z � r0

from the film surface first enter inside the TI film and then
radially spread inside the film to distance ∼r0 before exiting
outside the film to infinity. Thus, one can think that effec-
tively each outside impurity is represented inside the film by a
charge e disk, with radius z and thickness d . In the presence of
screening, only small minority of the outside impurities with
z < λ contribute in fluctuating charge of the volume dλ2. As
a result, total effective concentration of impurities projected
from outside the film is Neλ/d . If Neλ/d < N , where λ is
given by Eq. (17), outside impurities can be ignored and our
results are valid. For example, in our scenario (a), for the
BSTS TI film with d ∼ 5 nm on silicon oxide substrate with
[22] Ne ∼ 1017 cm−3, λ/d ∼ 2 and our results are valid [23].

Let us now discuss the effect of the hybridization gap on
the disorder potential. In a thin enough clean TI film, the
surface states of two opposite surfaces hybridize and their

Dirac spectra acquires the hybridization gaps,

�(d ) = �0 exp(−d/d0), (20)

where �0 ∼ 1 eV and d0 ∼ 1.8 nm for Bi0.7Sb1.3Te1.05Se1.95

while d0 ∼ 1.2 nm for BiSbTe1.5Se1.5 [10]. Such a hybridiza-
tion gaps �(d ) equals to the scenario (a) �(d ) = 35 meV at
d = 4 nm for d0 = 1.2 nm, or d = 6 nm for d0 = 1.8 nm.
Thus, our results should be valid for d � 5 nm.

More accurately speaking in the presence of gap, the lo-
cal dispersion relation at the Fermi level becomes μ(r) =√

h̄2v2
F k2

F (r) + �2/4, and the corresponding thermodynamic
density of states is given by Eq. (5) multiplied by a Heaviside
theta function �(μ − �/2). Below, we use �� for disorder
potential amplitude in presence of hybridization gap � while
we continue to use �(d ) for obtained above result for � = 0.
If � � �(d ), or d � 5 nm, one gets perturbatively [5] �� ≈
�(d )[1 + �2/24�2(d )]. On the other hand, if � � �(d ), or
d � 5 nm, surface electrons and holes screen the disorder
potential in a nonlinear way, only when it exceeds �/2. Such
nonlinear screening leads to �� � �/2 > �(d ).

III. THIN TI FILM IN THE SAME OR LARGER
DIELECTRIC-CONSTANT ENVIRONMENT

In this section, we first consider the case when κ f = κ and
the Coulomb interaction with a charged impurity is v0(r) =
e2/κr. In the TF approximation, the interaction screened by
the surface electrons is given by

v(r, z) = e2

κ

∫ ∞

0
dq

J0(qr)

1 + qs/q
e−qz, (21)

where J0(x) is the zeroth Bessel function of the first kind. The
potential fluctuation squared reads

〈φ2〉 = 1

e2

∫
Ndr

∫ d

0
dz v2(r, z)

= 2πNde2

κ2
[−e2qsd Ei(−2qsd )], (22)

where Ei(x) is the exponential integral function. Eq. (22) has
the following limits

〈φ2〉 = 2πNde2

κ2

{
(2qsd )−1 qsd � 1,

−γ − ln(2qsd ) qsd � 1.
(23)

Next, we solve � and qs self-consistently similarly to previous
sections. If qsd � 1, one obtains the results for � and qs given
by Eqs. (15) and (16) with κ f = κ and smaller by 21/3 in
coefficients. On the other hand, if qsd � 1 one gets the results
of � and qs given by Eqs. (18) and (19), with κ f = κ. The
first solution exists only at d > dc, i.e., in the bulk case, while
the second corresponds to the thin film case, d < dc. Thus, for
κ f = κ we arrived to the same result as in Sec. II, scenario (b).

For BSTS film with κ f ∼ 50, α−1 ∼ 7, and the impurities
concentration N ∼ 1019 cm−3 surrounded by the dielectrics
with κ ∼ κ f , we get � ∼ 30 meV at d > q−1

s ∼ 20 nm.
Let us now briefly consider the case of large-κ environ-

ment, when κ f � κ1, κ2. For example, we can imagine thin
TI films sandwiched between two STO layers which have
very large dielectric constant. They should screen the random
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potential of impurities �1 and �2 on both side 1 and 2 surfaces
and make �1,2 � e2N1/3/κ f .

If STO is only on side 2 of the TI film, it dramatically
reduces �2 of this side, while on the other side potential is
screened by STO only at the distance r > d . The number of
impurities contributing to �1(d ) is ∼

√
Nd3, so that �1(d ) ∼

(e2/κ f d )
√

Nd3.
For BSTS film with κ f ∼ 50, α−1 ∼ 7, and impurities con-

centration N ∼ 1019 cm−3 sitting on top of STO, we have
�1(d ) ∼ 3

√
d meV where d is measured in units of nm. For

example, if d = 10 nm, then �1 ∼ 10 meV.

IV. METALLIC GATE

In this section, we return to the case κ f � κ1,2 and discuss
the effect on � from the metallic gate on top of the low
dielectric-constant layer with thickness D (see Fig. 1). To get
some intuitions, we will start from the question how such a
gate affects the electric field of a point charge inside the film,
namely, how the gate modifies the Rytova-Keldysh potential
Eq. (2) for the case of topologically trivial semiconductor film
without surface electrons and their screening. This question
was carefully studied in Ref. [24]. The main result is that, at
small enough separation D < 4dκ f κ1/κ

2
2 ∼ r0, large distance

part of the potential Eq. (2) is truncated (screened) at the
distance � = √

Ddκ f /κ1 � r0. This happens because electric
field lines exits the film in the direction to the gate at the
distance r � � [25].

Let us now recall what surface electrons screening does to
the point charge potential in a TI film without gate. We saw in
Sec. II that TI surface electrons screening length is given by
λ = √

r0/qs. Now for a TI film with the gate we have both gate
and surface electron screening working together. Comparing
the expressions of � and λ we see, as one could expect, that
the distance D(2κ/κ1) ∼ D, which is essentially the distance
to the gate, should play the role of q−1

s [26]. This means that
if D � q−1

s the gate plays only a perturbative role, while for
in the case D � q−1

s the distance D should replace q−1
s in the

final result for �. Replacing q−1
s by D(2κ/κ1) in the case of

λ � r0 in Eq. (12) yields

� = 2

(
πe4ND

κ f κ1

)1/2

. (24)

This result is valid when it is smaller than Eq. (15), i.e., at
D � Dc = N−1/3α−4/3(κ1/κ f ).

In most experiments, D > Dc, so the screening by gate
is negligible compared to surface electrons screening. For
example, in Ref. [10], the gate separation is D � 20 nm, while
Dc ∼ 5 nm assuming κ f /κ1 ∼ 10 and N ∼ 1019 cm−3.

V. CONDUCTIVITY

In this section, we calculate the conductivity of the surface
for the scenario (a) in Sec. II assuming that D > Dc. In the
linear screening region μ2 � e2φ2, where the electron density
is weakly perturbed by impurities, using Boltzmann kinetic
equation for Dirac electrons, one has the expression of the

conductivity for a single surface [27],

σ = e2

h

μτ

4h̄
. (25)

Here τ is the transport relaxation time whose inverse is given
by

1

τ
= ακ f NdkF

π h̄e2

∫ π

0
dθv2(q)(1 − cos θ )

1

2
(1 + cos θ ), (26)

where v(q) is given by Eq. (7) with q = 2kF sin θ/2, and
qs = kF ακ f /κ . The factor (1 + cos θ )/2 in Eq. (26) arises
when the backscattering is suppressed as a consequence of the
spin texture at the Dirac point, as in Weyl semimetals [28].
Changing the integral variable from θ to q, Eq. (26) can be
rewritten as

1

τ
= 4πe2κ f αNd

κ2h̄kF

∫ 2kF

0

dq

2kF

q2
√

1 − (q/2kF )2

[q(1 + qr0) + qs]2
. (27)

Using x = q/2kF , the integral in Eq. (27) can be expressed in
a dimensionless form

I =
∫ 1

0
dx

x2
√

1 − x2

[x(1 + 2kF r0x) + (αr0/d )]2
. (28)

In the scenario (a) we are considering d > d3 = α2/3N−1/3

and d < dc = α−4/3N−1/3. First inequality means that kF d >

α, because kF > �/h̄vF � (αN )1/3. Therefore we are inter-
ested in Eq. (28) in the limit kF d � α. In this case kF r0 �
ακ f /κ > 1, so the integral in Eq. (28) is approximated by

I ≈
∫ 1

0
dx

x2
√

1 − x2

[2kF r0x2 + (αr0/d )]2
. (29)

The integral kernel peaks at x � (α/2kF d )1/2 � (2kF λ)−1,
which corresponds to a momentum transfer qmax � λ−1 �
kF . [Here we used Eq. (17) for λ.] The peak value is
(4qsr0)−1 = (2kF dακ2

f /κ
2)−1. The width of the peak is �x ∼

(kF λ)−1. As a result, the integral in limit kF d � α is given by

I ≈ π

2
√

2

κ2/κ2
f

(kF d )3/2α1/2
, (30)

and Eq. (27) is

1

τ
≈

√
2π2 α1/2e2N

κ f h̄k5/2
F d1/2

. (31)

Substituting Eq. (31) into Eq. (25) with kF = √
4πn, we have

the conductivity

σ ≈ e2

h

2

π1/4

n7/4d1/2

α3/2N
, (32)

where d3 � d � dc. At d ∼ dc ∼ n−1/2/α or n ∼ (αd )−2, our
conductivity Eq. (32) becomes of the order of

σ ∼ e2

h

n3/2

Nα2
(33)

and with logarithmic accuracy crosses over to the bulk one
[4]. At the charge neutrality point n = np ∼ (αN )2/3, we get
the minimum conductivity

σmin ∼ (e2/h)(Nd3/α2)1/6, (34)
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which is larger than e2/h in the range of its validity d �
d3 = α2/3N−1/3. At d ∼ dc = α−4/3N−1/3 our σmin ∼ e2/hα

and with logarithmic accuracy crosses over to the bulk one
[4].

It is remarkable that due to Rytova-Chaplik-Entin-Kedysh
modification of the Coulomb potential of charged impurity at
large range of electron concentrations (αN )2/3 � n � (αd )−2,
not only �, but also the conductivity Eq. (32), is determined
by the long range potential with q ∼ λ−1 � kF . Only at large
n and d the conductivity Eq. (33) is determined the large
momentum q ∼ kF scattering on standard Coulomb potentials
of impurities located at distances smaller than k−1

F from the TI
film surface [4].

The condition of validity of the above conductivity theory
is that the local kinetic energy is larger than h̄/τ . In the
worst case when μ = 0 and the local kinetic energy is of
the order of �(d ), using Eqs. (15) and (31), we get �τ/h̄ ∼
α−1/3(Nd3)1/6 > 1, because d > α2/3N−1/3. This justifies our
conductivity results.

VI. CONDUCTIVITY AND HYBRIDIZATION GAP

So far we have ignored the the effect of hybridization gap
on the conductivity near neutrality point μ = 0. In the absence
of disorder potential and the Fermi level located inside the
hybridization gap TI film becomes an insulator. There is a big
interest to realize such an insulator in BSTS system [9,10],
which is expected to show the quantum spin Hall effect and
a corresponding four probe resistance h/2e2 [29]. Below, we
suggest a modification of the theory [9] of disorder effects
on conductivity of the very thin TI film near neutrality point
μ = 0, using our theory of the random potential developed in
Sec. II.

We consider the case �(d ) > � so that �� � �(d ). Then
the potential of charged impurities φ(r) bends both bands on
each surface up and down with characteristic scale a, creat-
ing at the Fermi level large electron and hole puddles with
diameter ∼a(�/�)4/3 [30]. These puddles are separated by
thin insulating stripes of the width x = a�/�, which form

insulating infinite cluster (see Fig. 4 in Ref. [4]) residing at
the potential φ(r) percolation level φ(r) = 0.

At low temperatures, this system can conduct only if elec-
trons can easily tunnel across these insulating stripes. In a
relatively thick TI film where the hybridization gap � is small
enough to allow easy tunneling, the conductivity of surface
states is still metallic. Let us find the upper limit of � for such
metallic films, �c. The probability of the Zener-like tunneling
across a thin insulating stripe of width x is [9]

P ∝ exp

(
− x�

h̄vF

)
= exp

(
− a�2

�h̄vF

)
. (35)

For the case κ f /κ > α−1 � 1 studied in Sec. II using a =
λ, substituting Eqs. (15) and (17) into Eq. (35), we find that
the critical value of the hybridization gap at which P loses its
exponentially small factor is

�(d ) = e2

κ f d

(Nd3)1/4

α1/2
. (36)

Substituting Eq. (20) into Eq. (36) we solved it for the largest
thickness dmax at which TI films can be considered insulating.
We got dmax = 5 nm for d0 = 1.2 nm and dmax = 8 nm for
d0 = 1.8 nm. In both cases �(dmax) < �(dmax), so that our
theory is applicable.

For the STO case studied in Sec. III, � = �1(d ) ∼
(e2/κ f d )

√
Nd3 and a = d . Substituting these values into

Eq. (35) we arrive to the same �c(d ) Eq. (36) [31]. Thus, our
neutrality point conductivity is valid if d > dmax, while spin
Hall effect can be achieved only at d < dmax. This result is in
qualitative agreement with results of Ref. [10]. On the other
hand, the fact that in Ref. [9] the TI film thickness d = 4 nm
was not sufficiently small still remains unexplained.
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