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Ab initio thermoelectric calculations of ring-shaped bands in two-dimensional
Bi2Te3, Bi2Se3, and Sb2Te3: Comparison of scattering approximations
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Materials with ring-shaped electronic bands are promising thermoelectric (TE) candidates since their unusual
dispersion shape is predicted to give large power factors. In this paper, we use density functional theory to
investigate single and double quintuple-layer Bi2Te3, Bi2Se3, and Sb2Te3 and to compare the TE properties
using three scattering approximations: constant relaxation time, constant mean free path, and scattering rates
proportional to the density of states (the so-called DOS model). Focus is placed on elucidating how these
particular dispersion shapes influence the TE characteristics and on understanding how each scattering model
impacts TE transport. The single quintuple-layer materials possess two ring-shaped valence-band maxima that
provide an abrupt increase in conducting channels, which benefits the power factor. Below the band edge a
ring-shaped minimum is found to further enhance TE performance within the DOS model due to a sharp
drop in the DOS and, thus, scattering. An analytic “octic” dispersion model, designed to capture the observed
characteristics of the band structure, is introduced and shown to qualitatively reproduce the first-principles
results. The double quintuple-layer materials display notably worse TE properties since their dispersions are
significantly modified compared to the single quintuple-layer case and lose much of the ring-shaped character.
Our analysis shows that the benefits of ring-shaped bands are sensitive to the alignment of the two ring maxima
and to the degree of ring anisotropy. Moreover, the predicted TE performance can vary significantly depending
on the choice of scattering approximation, which could benefit from further study to assess the accuracy of these
simple scattering models.
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I. INTRODUCTION

Thermoelectric (TE) materials can convert thermal energy
into useful electrical power and, thus, have the potential to re-
cuperate the large untapped global energy source that is waste
heat [1]. A major goal is to improve the thermoelectric conver-
sion efficiency, which is characterized by its figure of merit [2]
ZT = S2σT/(κe + κl ), where S is the Seebeck coefficient, σ

is the electrical conductivity, T is the temperature, and κe/l

is the electronic/lattice thermal conductivity. In the quest to
achieve higher efficiencies, or ZT , there are two broad strate-
gies based on lowering the lattice thermal conductivity and
increasing the power factor (PF), PF = S2σ . The former has
led to high ZT in many cases, for example, using nanostruc-
turing [3–5] or highly anharmonic materials [6–9] to increase
phonon scattering and reduce κl . Approaches for improved
PF include (among others) distorted electronic states [10,11],
band convergence [12–14], low electron-phonon (el-ph) cou-
pling materials [15–19], energy filtering [20–24], modulation
doping [25–27], and unusually shaped electron dispersions.

Focusing on this last strategy, the idea is to identify
or design materials with unique electronic band structures
that benefit the power factor, compared to typical effective
mass/parabolic dispersions common in semiconductors.
Proposed band structures for high PF include, for example,
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nonparabolic bands [28], “pudding-mold” band [29–31],
“camel-back” dispersion [32], semimetals [33,34],
topologically protected states [35,36], and ring-shaped
bands [37–42]—these dispersions have properties that help
circumvent the σ versus S trade-off [2] that limits the power
factor. Similar improvements have also been proposed in
lower-dimensional materials, even those with effective mass
bands [43–45]. Focusing specifically on ring-shaped bands
(also referred to as “Mexican hat” or “warped” bands), the
key characteristic from this unusual dispersion is a finite
number of states at the band edge (in the shape of a ring) that
results in an abrupt increase in the distribution of modes. This
feature allows for simultaneously larger S and σ , compared to
a parabolic band [42]. Ring-shaped bands are often displayed
in two-dimensional few-layer materials, such as [39]: GaSe,
GaS, InSe, InS, Bi2Te3, Bi2Se3, bilayer graphene under an
applied electric field, and elemental Bi.

Most theoretical studies on ring-shaped bands were carried
out using density functional theory (DFT) to obtain detailed
and accurate descriptions of the electronic states but often rely
on simple and approximate scattering models [37,39–42,46];
the two most common assume either a constant scattering
time or constant mean free path (MFP). Rigorous DFT-based
electron-phonon calculations have shown that the scattering
rates are often better approximated by the electron density of
states (DOS) [47–52] compared to either a constant scattering
time or MFP [51]. A recent study, based on analytical band
models, showed that the TE properties can depend sensitively
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on the details of the scattering approach and that, in particular,
the DOS-scattering model (wherein the scattering rates are
assumed to be proportional to the DOS) predicted signifi-
cantly better performance for ring-shaped bands compared to
assuming a constant relaxation time or MFP [42].

Motivated by these recent findings, this paper focuses on
investigating the TE properties of selected materials with
ring-shaped bands using DFT and understanding the differ-
ences that arise among the three aforementioned scattering
models—with an emphasis on the DOS-scattering model,
which has not to our knowledge previously been used with
ring-shaped bands. The materials investigated in this paper
are two-dimensional Bi2Te3, Bi2Se3, and Sb2Te3, in single
(1QL) and double quintuple-layer (2QL) form, which possess
warped dispersions originating from spin-orbit coupling. The
paper is outlined as follows. Section II introduces the theo-
retical approach and computational details. The results and
accompanying discussions are presented in Sec. III. Finally,
our findings are summarized in Sec. IV.

II. THEORETICAL AND COMPUTATIONAL APPROACH

A. Transport formalism

Within the linear-transport regime, the electrical conductiv-
ity, Seebeck coefficient, and electronic thermal conductivity
are defined as [53]

σ =
(

2q2

h

)
I0, (1)

S = −
(

kB

q

)
I1

I0
, (2)

κe = 2k2
BT

h

(
I2 − I2

1

I0

)
, (3)

with the quantity I j written as

I j = h

2

∫ ∞

−∞
�(E )

(E − μ

kBT

) j[
−∂ f0

∂E

]
dE , (4)

where �(E ) is the transport distribution, μ is the Fermi level,
and f0 is the Fermi-Dirac distribution. �(E ) is the central
quantity as it contains all material properties and is expressed
as [53–55]

�(E ) = 1

�

∑
k,s,n

v2
x (k)τ (k)δ[E − ε(k)], (5)

where � is the sample volume, ε(k) is the electronic dis-
persion (i.e., band structure), τ (k) is the scattering time, and
vx = (1/h̄)(∂ε/∂kx ) is the group velocity along the direction
of transport (here assumed to be the x̂ direction). The sum is
performed over band index n, spin state s, and all k states in
the Brillouin zone [note that the explicit s and n dependence
of the quantities in Eq. (5) are omitted for clarity].

The TE parameters of a given material depend solely on
its transport distribution and, thus, it is a useful function to
analyze. As previously discussed [42], two of the desired
features for �(E ) include a large overall magnitude (i.e.,
scaling factor) and a highly asymmetry distribution relative
to the Fermi level. The former provides a large electrical

conductivity, and the latter results in a large (absolute value)
Seebeck coefficient. Using these guidelines, one can easily
identify which transport distributions are beneficial for TE
transport.

Despite its utility, the transport distribution can be difficult
to interpret physically. Turning to the Landauer formalism, we
find that �(E ) can be written as the product of two physically
intuitive quantities [42,53,56],

�(E ) = 2

h
M(E )λ(E ). (6)

The first quantity M(E ) is known as the distribution of modes
(DOM), and is defined as [53]

M(E ) = h

4 �

∑
k,s,n

|vx(k)|, δ[E − ε(k)]. (7)

M(E ) can be interpreted physically as the number of “chan-
nels” available for transport with each channel (or mode)
contributing one quantum of conductance 2q2/h. Equation (7)
counts the number of modes (an integer) per cross-sectional
area, which varies with dimensionality—the units are m−2

in three dimensions (3D), m−1 in two dimensions (2D), and
unitless in one dimension (1D) [all cases in this paper are
in 2D]. The second quantity appearing in Eq. (6) is λ(E ) the
mean free path for backscattering [53],

λ(E ) = 2

∑
k,s,n

v2
x (k)τ (k)δ[E − ε(k)]

∑
k,s,n

|vx(k)|δ[E − ε(k)]
. (8)

λ(E ) is defined as the average distance along the transport
direction that an electron with energy E will travel before
scattering changes the sign of its vx component.

When the relaxation time τ (k) is only a function of energy
(as considered in this paper), i.e., τ (k) = τ [ε(k)] = τ (E ), the
mean free path for backscattering can be expressed as λ(E ) =
Vλ(E )τ (E ) [42]. Vλ(E ) is defined as

Vλ(E ) = 2

∑
k,s,n

v2
x (k)δ[E − ε(k)]

∑
k,s,n

|vx(k)| δ[E − ε(k)]
, (9)

and can be interpreted as an average velocity of carriers with
energy E along the transport direction. In this case, the trans-
port distribution takes on the following form:

�(E ) = 2

h
M(E )Vλ(E )τ (E ), (10)

which has a physically transparent interpretation. �(E ) is
determined by the number of channels available for transport
M(E ), the average carrier velocity Vλ(E ), and the average time
between scattering events τ (E ).

Both M(E ) and Vλ(E ) are calculated directly from a
material’s band structure. The carrier relaxation time τ (E ),
however, depends on the particular scattering physics. Rig-
orous and accurate scattering calculations of electron-phonon
and electron-impurity collision processes, for example, based
on DFT, are possible but fairly computationally inten-
sive [19,49,51,52,57–60]. As a result, simple scattering
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approximations are often adopted. In this paper, we compare
the results of three scattering models, based on an assumption
of a constant mean free path, constant relaxation time, and
scattering rates proportional to the DOS.

With a constant MFP λ0, the transport distribution takes the
following simple form:

�cmfp(E ) = 2

h
M(E )λ0, (11)

where λ0 is an adjustable parameter. We will refer to this scat-
tering approach as the constant MFP (cmfp) approximation.
A constant MFP is physically expected in the case of a 3D
parabolic band with acoustic deformation potential scatter-
ing [61] in which case the scattering rate is proportional to√

E . With a constant scattering time τ0, the transport distribu-
tion is written as

�crt (E ) = 2

h
M(E )Vλ(E )τ0, (12)

where τ0 is an adjustable parameter. This scattering model
will be referred to as the constant relaxation time (crt) ap-
proximation. A constant relaxation time (or rate) can be
justified physically in the case of a 2D parabolic band
with acoustic deformation potential scattering [61] in which
case the MFP is proportional to

√
E . Both cmfp and crt

approximations are reasonable as long as the MFPs and re-
laxation times are roughly constant within the energy range
(∼10kBT ) where transport occurs. Although both these simple
approximations have a connection to physical scattering due
to their simplicity and convenience they are more broadly
adopted, including cases in which their validity may be
questionable.

Lastly, assuming the scattering rates are proportional to the
DOS, the transport distribution is expressed as

�DOS(E ) = 2

h
M(E )Vλ(E )

K0

D(E )
, (13)

where K0 is an adjustable parameter. (Note that here we
choose to place K0 in the numerator, whereas in some pre-
vious studies it appears in the denominator [42,48,50].) This
approximation will be referred to as the DOS model. K0 is
inversely related to the deformation potential squared [61],
which has been shown to be an important material descriptor
for thermoelectrics [62]. Recent first-principles el-ph cal-
culations have shown that the rigorous scattering rates are
well described by the DOS-scattering approximation [47–52].
Physically, electron scattering is expected to scale with
the number of available final states and should follow the
DOS when the coupling matrix is roughly constant. This
is a decent approximation for nonpolar el-ph scattering as
well as for polar el-ph and electron-impurity scattering in
highly doped semiconductors in which screening effects are

significant [51,61]. It is worth mentioning that the two
physical examples described above for the cmfp and crt ap-
proximations are, in fact, specific cases of DOS scattering.
The concept of scattering rates following the electron DOS is
not new and goes back to earlier work [63–65] and has been
adopted in a number of studies [66–69].

In this paper, we compare the transport properties aris-
ing from the three scattering models with an emphasis on
the DOS-scattering approximation, which has not previously
been used to analyze these materials. We note, however,
that there are limited studies of scattering in ring-shaped
two-dimensional materials [70], thus, further investigation is
needed to confirm the validity of the DOS model for this
material class.

B. Numerical details

All DFT calculations were performed with the QUANTUM

ESPRESSO package [71,72], using the projector augmented-
wave method [73], the Perdew-Burke-Ernzerhof functional
of the generalized gradient approximation [74], and fixed
occupations. Spin-orbit interaction was included as well as
Grimme-D2 van der Waals corrections [75]. A plane-wave
cutoff energy of 110 Ry and a Monkhorst-Pack [76] generated
k mesh of 11 × 11 × 1 were adopted for all systems studied.
A vacuum layer of 15 Å along the ẑ direction was included
to prevent interactions between neighboring cells. The ex-
perimental lattice constants were used as has been adopted
previously [38,77,78], corresponding to an in-plane hexago-
nal lattice constant of a = 4.383 Å for Bi2Te3, 4.138 Å for
Bi2Se3, and 4.264 Å for Sb2Te3 [79–81]. The atomic coor-
dinates were relaxed until the forces on the atoms were less
than 0.01 eV/Å. In this paper, we focus on single and double
quintuple-layer Bi2Te3, Bi2Se3, and Sb2Te3—each quintuple
layer is five-atoms thick and contains strong intra-atomic
bonds, and the different QLs are held together via weak
van der Waals interaction. The primitive cell of these two-
dimensional materials is hexagonal with each QL containing
five atoms: two equivalent Bi or Sb sites, two equivalent Te or
Se sites (at the top/bottom surface of each QL), and a third
inequivalent Te or Se site (at the center of each QL).

The non-self-consistent DOS calculations were performed
using the tetrahedron method [82] on a uniform 51 × 51 × 1 k
grid. M(E ) and Vλ(E ) are computed using the “band count-
ing” method [53,83], which requires the eigenenergies on
a uniform k grid with a rectangular Brillouin zone. In this
case, the electron energies for a rectangular supercell of size
a × √

3a × 1 (with double the area of the primitive cell) were
calculated with 115 × 85 × 1 k points.

The scissor operator was used to adjust the DFT-calculated
band gaps to those obtained from the more accurate GW
method [84,85]—see Table I. All dispersion-related results,

TABLE I. DFT and GW band gaps of single and double QL materials: Bi2Te3, Bi2Se3, and Sb2Te3. The GW band gaps are taken from
Refs. [84,85].

Bi2Te3 (1QL) Bi2Se3 (1QL) Sb2Te3 (1QL) Bi2Te3 (2QL) Bi2Se3 (2QL) Sb2Te3 (2QL)

DFT band gap (eV) 0.23 0.45 0.46 0.046 0.09 0.16
GW band gap (eV) 0.64 0.90 0.82 0.06 0.24 0.25
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FIG. 1. Single quintuple-layer Bi2Te3. (a) Electron dispersion along high-symmetry points. (b) Energy contour plot of the valence band.
(c) Distribution of modes M(E ), (d) average velocity Vλ(E ), and (e) density of states D(E ) versus energy for the valence states. Shaded regions
indicate the energies of the rings and the moat feature.

including ε(k), M(E ), Vλ(E ), and D(E ), correspond to the
unadjusted DFT band gaps, whereas the GW band gaps
are adopted for the TE transport calculations (to correct for
bipolar effects). When evaluating ZT , for all the materials

considered, we used a lattice thermal conductivity of 1.5
W/m-K obtained from first-principles phonon transport cal-
culations of single QL Bi2Te3 [86]. This requires converting
our TE parameters from 2D units to 3D units using the

FIG. 2. Analytic octic band model. (a) Electron dispersion ε(k) versus k. (b) Distribution of modes M(E ), (c) average velocity, Vλ(E ),
and (d) density of states D(E ) versus energy relative to the valence-band edge. To illustrate the shape of the distributions, we used ε0,=
0.15 eV, ka = 2, and kb = 1, which gives a moat energy of −48 meV.
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FIG. 3. Single quintuple-layer Bi2Te3. (a) Transport distribution
�(E ) of the valence states versus energy. (b) PF and (c) figure-of-
merit ZT versus the Fermi level relative to the valence-band edge.
Comparison of cmfp-, crt-, and DOS-scattering approximations. T =
300 K.

following films thickness values: 7.61 Å (1QL) and 17.91 Å
(2QL) for Bi2Te3, 7.04 Å (1QL) and 16.60 Å (2QL) for
Bi2Se3, 7.47 Å (1QL), and 17.70 Å (2QL) for Sb2Te3. We
set the scattering constants (i.e., λ0, τ0, and K0) for the va-
lence and conduction states separately such that the average
MFP for backscattering is equal to 20 nm when the Fermi
level is located at either the valence- (Ev) or the conduction-
(Ec) band edges (see the Supplemental Material [87] for de-
tails on the definition of average MFP for backscattering and
how the scattering parameters are determined). This choice
was motivated by the fact that most TEs provide optimal
performance when the Fermi level is aligned near the band
edges [88,89]. This constraint connects the various scatter-
ing parameters (one cannot be arbitrarily modified relative to
the others) and allows us to make reasonable comparisons
among the scattering models. We note, however, that this
choice is not unique and other constraints could alter the
calculated TE properties. All calculations were performed
for T = 300 K.

III. THERMOELECTRIC PROPERTIES

We start by analyzing the thermoelectric properties for
each of the materials (Bi2Te3, Bi2Se3, and Sb2Te3) in single
QL form then present the results in the case of double QL.

A. Single quintuple-layer Bi2Te3

The band structure for 1QL Bi2Te3 is shown in Fig. 1(a).
The most significant feature is the presence of not one but
two ringlike features at the valence-band edge. From the band
structure, this simply looks like two valence-band maxima
along both � → M and � → K . However, from the contour
plot of the valence band presented in Fig. 1(b), we see that
the band edges do not correspond to points, but rather have a
ringlike shape; specifically a smaller radius (inner) ring and
a larger radius (outer) ring. Since this unusual feature in the
band structure is the main focus of this paper, combined with
the fact that our results show that the TE performance of the
warped valence states always surpasses those of the more
“regular” conduction states, our analysis will focus on the
transport properties of the valence states.

The resulting electronic properties, including
M(E ), Vλ(E ), and D(E ), are shown Figs. 1(c)–1(e). The
ringlike features result in abrupt increases in DOM and DOS
near the band edge. Although typical electron dispersions,
such as the parabolic or the Kane models (e.g., the conduction
band of 1QL Bi2Te3), possess a vanishing number of states
near the band edge, the valence band of 1QL Bi2Te3 has a
large finite number of states within a few meV of the band
gap. This gives a sharp steplike feature in the DOM and a
spike in the DOS. The large number of states provided by
these ringlike features, originating from spin-orbit coupling,
is the main reason why these QL materials are promising as
high power factor (PF = S2σ ) thermoelectrics [37–40]. Vλ(E )
by comparison increases smoothly as we move away from
the band edge. This happens because Vλ(E ) corresponds to an
average velocity over a constant energy surface [as opposed
to a sum, such as in the case of M(E ) or D(E )] and because
the states near the band edge have small velocities.

Previously, a 2D analytic dispersion model containing a
single ringlike band, known as the quartic or Mexican-hat
model, was used to analyze and explore the impact on the TE
properties (see Refs. [39,42,90] for details). The features in
M(E ), Vλ(E ), and D(E ), discussed above, are all in rough
agreement with the quartic model near the band edge. How-
ever, slightly away from the band edge, we observe abrupt
decreases in M(E ) and D(E ) near 0.05 eV below Ev and a
smaller abrupt increase in Vλ(E ). Although the quartic model
does predict a discontinuous decrease in D(E ) at an energy
below the band edge, it predicts that M(E ) and Vλ(E ) are
continuous and so cannot explain the observed characteristics.
To gain further insight into the origin of these features, we
examine the contour plot in Fig. 1(b).

The presence of the two aforementioned ringlike local
maxima at the band edge necessarily requires the existence
of a single ringlike local minimum nestled between them;
a feature observed in Fig. 1(b), which we will refer to as
the “moat feature” (in light of its topographic resemblance
to a moat). The bottom of the moat lies at the same energy
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FIG. 4. Single quintuple-layer Bi2Se3. (a) Electron dispersion along high-symmetry points. (b) Energy contour plot of the valence band.
(c) Distribution of modes M(E ), (d) average velocity Vλ(E ), and (e) density of states D(E ) versus energy for the valence states. Shaded regions
indicate the energies of the rings and the moat feature.

as the observed discontinuities in M(E ), Vλ(E ), and D(E ),
suggesting they originate from the disappearance of states
below −0.05 eV. The near-circular nature of the moat in-
dicates that this particular constant energy line is nearly
isotropic.

Although the aforementioned quartic band model can de-
scribe the impact of ringlike local maxima at the band edge,
it does not capture the effect of a ringlike local minima at
energies below the band edge. To investigate what effect such
a moat feature would have, we introduce a new analytic dis-
persion model that we refer to as the “octic model” (it is an
eighth-order polynomial in k),

ε(k) = − ε0(
kakb

)4

(
k2 − k2

a

)2(
k2 − k2

b

)2
. (14)

The octic model possesses three ring-shaped critical lines (two
maxima and one local minimum) and a single critical point at
k = 0, which are illustrated in Fig. 2(a). The parameters ka and
kb correspond to the radii of the critical lines at the band edge
[ε(k) = 0], i.e., the inner and outer ring radii. The constant ε0

determines the energy at the � point: ε(k = 0) = −ε0. From
the three parameters ε0, ka, and kb, the bottom of the moat
has an energy of −ε0(k2

a − k2
b )4/(16k4

ak4
b ). For comparison,

the quartic model captures a single ring-shaped maximum and
a minimum at k = 0.

The resulting M(E ), Vλ(E ), and D(E ) distributions for the
octic model are plotted in Figs. 2(b)–2(d) with the analytic

expressions provided in the Appendix and in the Supplemental
Material [87]. The presence of ring-shaped critical surfaces at
the band edge results in a M(E ) distribution that turns on,
such as a step function, just like in the case of the quartic
model. This discontinuity is, of course, sharper than the cor-
responding feature in the case of 1QL Bi2Te3 since the DFT
dispersion shows some small amount of anisotropy resulting
in the energy of a ring being spread over a couple meV. In our
discussion we will refer to abrupt features, arising from both
the analytic model and the DFT-computed results as being
discontinuous, even though only the former is technically
discontinuous.

The octic model also contains a second discontinuity in
M(E ) at the location of the moat in the form of a steplike
decrease. This occurs because a large number of transport
channels, provided by the moat feature, abruptly vanishes.
Again, this discontinuity is also observed in 1QL Bi2Te3.
Since these states have small velocities near the bottom of the
moat, Vλ(E ) discontinuously increases below the moat since
the average no longer includes a large number of zero-velocity
states. A singularity in the DOS occurs at the moat energy for
the same reason as the observed singularity at the band edge;
any constant energy containing a continuum of critical points
will cause the DOS to diverge (for 2D materials). Overall,
the features in M(E ), Vλ(E ), and D(E ) obtained from DFT
are found to have a strong resemblance with those from the
octic model—confirming that the two ring-shaped maxima in
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FIG. 5. Single quintuple-layer Bi2Se3. (a) Transport distribution
�(E ) of the valence states versus energy. (b) PF and (c) figure-
of-merit ZT versus Fermi level relative to the valence-band edge.
Comparison of cmfp-, crt-, and DOS-scattering approximations. T =
300 K.

addition to the ring-shaped minimum are key to understanding
the observed transport properties.

Next, we examine the transport distribution of 1QL Bi2Te3

for each scattering approximation (cmfp, crt, and DOS),
which are shown in Fig. 3(a). First, we note that �(E ) for each
scattering model is qualitatively different at the energy of the
moat (−0.05 eV). In the case of a constant MFP, the transport
distribution is simply proportional to M(E ) and, hence, de-
creases abruptly just below the moat energy. With the crt, the
transport distribution is proportional to the product of M(E )
and Vλ(E ); the latter of which steps abruptly upwards once
the moat states disappear. The resulting transport distribution
still steps downwards at the moat energy but less than in the
constant MFP case.

Lastly, with the DOS model, the transport distribution steps
abruptly upwards below the moat due to the discontinuity in
the D(E ) distribution. This results in the DOS model having
the largest magnitude in transport distribution, compared to
the cmfp and crt, over most of the relevant energy range
(several kBT around the Fermi level), coupled with a sharp

rise with increasing hole energy. Consequently, among the dif-
ferent scattering approximations, the DOS model predicts the
largest power factor and ZT for 1QL Bi2Te3. This improved
PF is mainly due to a higher Seebeck coefficient from the
sharp rise in �DOS(E ), which is independent of the scattering
parameter value (σ and S for the 1QL materials are presented
in the Supplemental Material [87]). This shows that the pres-
ence of a moatlike feature can produce an abrupt decrease in
D(E ) and increase in Vλ(E ) both of which are desirable for
thermoelectric performance. As such, single QL Bi2Te3 may
be a better thermoelectric than previously predicted using the
cmfp and crt approximations.

A similar result was previously shown with the quartic
model in which an abrupt decrease in DOS (and, hence, scat-
tering) provided improved power factor when comparing the
DOS model to the cmfp and crt [42]. One difference between
the quartic and the octic band models is that the decrease in
DOS originates from the removal of paraboliclike states and
ringlike states, respectively. As a result, only the octic model
presents discontinuities in M(E ) and Vλ(E ) below the band
edge; these sharper features may be more resilient to small
deviations from isotropicity that spread the critical points of
the ring over a small energy range [as seen in Fig. 1(b)].

B. Single quintuple-layer Bi2Se3

Next, we analyze the thermoelectric performance of single
QL Bi2Se3. The electronic structure of this material is shown
in Fig. 4(a). We observe that the valence band possesses two
ringlike features at the band edge, analogous to 1QL Bi2Te3.
As before, this results in a rapid increase in M(E ) near the
band edge. For this case, however, there are two noticeable
steps in the DOM. This occurs because both rings are slightly
misaligned in energy—the inner ring is roughly 0.03 eV below
the outer ring as seen in Fig. 4(b). This also gives a peak in
D(E ) at the inner and outer ring energies.

Unlike with 1QL Bi2Te3, however, there are no abrupt
features in M(E ) and Vλ(E ) due to the presence of a moat
feature. To help understand why, we examine the energy con-
tour plot in Fig. 4(b). We observe a moat feature that is highly
anisotropic, varying in energy between roughly −0.12 and
−0.07 eV as indicated by the presence of multiple shallow-
energy valleys. This anisotropy results in a “smearing out”
of the sharp features that would have resulted from a more
isotropic moat feature as the abrupt disappearance of a large
constant energy surface now happens gradually over an energy
range of non-negligible width.

The resulting transport distributions and thermoelectric
properties are shown in Fig. 5. There is a distinct lack of sharp
features in any of the transport distributions, compared to 1QL
Bi2Te3 as a consequence of the aforementioned anisotropy in
the moat feature in addition to the misalignment in energy of
the inner and outer rings. Nevertheless, the DOS-model trans-
port distribution displays the largest values and slope over a
significant portion of the relevant energy range near the moat
feature (around −0.1 eV), which yields the highest PF among
the scattering models. This suggests that 1QL Bi2Se3 may also
be a better thermoelectric than previously reported. We note,
however, that the relative improvement is not as significant
as with 1QL Bi2Te3, indicating that the TE characteristics are
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FIG. 6. Single quintuple-layer Sb2Te3. (a) Electron dispersion along high-symmetry points. (b) Energy contour plot of the valence band.
(c) Distribution of modes M(E ), (d) average velocity Vλ(E ), and (e) density of states D(E ) versus energy for the valence states. Shaded regions
indicate the energies of the rings and the moat feature.

sensitive to the degree of anisotropy of the rings/moat and
their relative alignment in energy.

The �DOS(E ) for 1QL Bi2Te3 benefits from abrupt in-
creases, which help increase its Seebeck coefficient, however,
1QL Bi2Se3 shows larger PF and ZT . This happens because
the transport distribution of 1QL Bi2Se3, while relatively
smooth, has an overall larger magnitude resulting in higher
conductivity.

C. Single quintuple-layer Sb2Te3

The third and final single QL material investigated is
Sb2Te3. Its electronic structure properties are presented in
Fig. 6. Similar to the previous two 1QL systems, there are
two ringlike features near the valence-band edge, however, the
M(E ), Vλ(E ), and D(E ) distributions display sharp features
not shared with the other cases. Namely, we observe large
increases in the DOM and DOS roughly 0.03 eV below the
band edge, accompanied with a sharp decrease in Vλ(E ). To
understand the origin of these features, we examine the energy
contour plot presented in Fig. 6(b).

As with 1QL Bi2Se3, the inner and outer rings of 1QL
Sb2Te3 are slightly misaligned in energy by roughly 0.03 eV.
However, the resulting effect on the electronic distributions is
somewhat stronger in this case because the inner ring turns on
before the outer ring (i.e., the outer ring has lower energy).
The outer ring tends to have a stronger effect since its larger
radius includes more states compared to the inner ring. The

sudden contribution from the outer ring at −0.03 eV causes
the abrupt increases in M(E ) and D(E ), which are somewhat
washed out due to the anisotropy of the outer ring. Because the
states near the top of the outer ring have very small velocities,
Vλ(E ) is dragged down. All these features are similar to 1QL
Bi2Se3 but are more pronounced in this case.

The effect of this lower-energy outer ring is exactly op-
posite to that of the moat feature in 1QL Bi2Te3. In the
latter case, the abrupt turn off of a ring-like dispersion fea-
ture caused sharp decreases in M(E ) and D(E ) and a sharp
increase in Vλ(E ), whereas in this case the abrupt turn on
of a ringlike feature has the opposite effect. Since the moat
feature in 1QL Bi2Te3 was shown to benefit TE performance
(within the DOS-scattering model), we anticipate the mis-
aligned outer ring in 1QL Sb2Te3 may have a detrimental
effect. The resulting transport distributions and their corre-
sponding thermoelectric properties are shown in Fig. 7.

Although �DOS(E ) takes on the largest values near the
band edge, the increased scattering and decreased velocity that
arise from the outer ring at −0.03 eV causes the transport
distribution to abruptly step down. As a result, it takes on
the smallest value of the three transport distributions over a
significant portion of the relevant energy range. Moreover,
having a segment of the transport distribution decrease with
increasing hole energy negatively impacts the Seebeck coef-
ficient. Examining the PF and ZT distributions, we observe
that the DOS-scattering case predicts the worst performance
for the reasons outlined above.

165406-8



AB INITIO THERMOELECTRIC CALCULATIONS OF … PHYSICAL REVIEW B 103, 165406 (2021)

FIG. 7. Single quintuple-layer Sb2Te3. (a) Transport distribution
�(E ) of the valence states versus energy. (b) PF and (c) figure-
of-merit ZT versus Fermi level relative to the valence-band edge.
Comparison of cmfp-, crt-, and DOS-scattering approximations. T =
300 K.

From our findings on the single quintuple-layer materials,
we conclude that the ring-shaped bands in addition to the
moat feature can benefit TE performance. This mainly comes
from abrupt increases in M(E ) from the rings at the band
edge, coupled with an abrupt decrease in D(E ) from the moat
feature (which decreases the scattering rates with the DOS
model). We also found that these benefits can be sensitive
to the relative alignment of the inner and outer rings, and
to the degree of anisotropy of the rings/moat that smooths
out the desired sharp features. When comparing the scattering
models we observe larger changes in PF than in ZT . This
occurs because: (i) the changes in PF are smaller when the
Fermi level is aligned near the peak in ZT (compared to
the variations in maximum PF), and (ii) increases in PF are
partially canceled by an accompanying increase in κe (our
results show that κe ≈ κl near the optimum ZT ).

Lastly, with 1QL Bi2Te3 and 1QL Bi2Se3 the DOS-
scattering model predicts a peak in PF for a slightly lower
Fermi level compared to the other scattering models. This

happens because the Seebeck coefficient is larger (see the
Supplemental Material [87]) due to the decrease in DOS from
the moat feature, which allows the PF to continue increasing
slightly as the Fermi level moves deeper before rolling over.
With 1QL Sb2Te3 as mentioned above, the DOS-scattering
model yields the smallest Seebeck coefficient, which results
in a PF peak located just above the valence-band edge in
the band gap. In all cases, the PF maxima from the different
scattering approximations are within a factor of 3 in hole
concentration.

D. Double quintuple-layer Bi2Te3, Bi2Se3, and Sb2Te3

Next, we analyze the thermoelectric properties of
Bi2Te3, Bi2Se3, and Sb2Te3 in double quintuple-layer form.
The 2QL materials are composed of two stacked 1QL layers
held together via van der Waals interaction. Although the
interlayer coupling is relatively weak, as we will show this
has a significant effect on the electronic and thermoelectric
characteristics.

Figure 8 presents the electron dispersions and energy con-
tour plots for all three 2QL materials. First, we note that all
three band gaps are significantly smaller than in the 1QL
case. This typically has a negative effect on thermoelectric
performance as it increases bipolar effects. Perhaps more
importantly, we observe a dramatic change in the band struc-
ture near the valence-band edge. Although the 1QL materials
display two ring-shaped maxima, in the 2QL systems one
of the rings is pushed away from the band edge and loses
most of its ringlike character. Both 2QL Bi2Se3 and Sb2Te3

show a small radius ring at the band edge with lower-energy
states near −0.1 eV showing a “starfish” like shape with six
“arms” stretching out from the zone center. However, the trend
is reversed with 2QL Bi2Te3, which presents a star-shaped
dispersion near the band edge with a large radius ring near
−0.15 eV.

The distribution of modes M(E ), average velocity Vλ(E ),
and density of states D(E ) for the 2QL materials are shown
in Figs. 9(a)–9(c). Similar to the 1QL case, all three 2QL
materials display an abrupt increase in M(E ) and D(E ) at
the band edge. However, in this case the magnitudes of these
discontinuities are not nearly as large as those of their 1QL
counterparts. This is particularly evident with 2QL Bi2Se3 and
Sb2Te3 due to their rings having small radii and, thus, con-
taining fewer states. The starfish-shaped band of 2QL Bi2Te3

includes many states within a small energy range and results
in an appreciable increase in M(E ) (although roughly half the
value of 1QL Bi2Te3).

After their small but abrupt initial rise, the M(E ) and
D(E ) distributions of 2QL Bi2Se3 and Sb2Te3 remain roughly
constant until approximately −0.1 eV at which point we
observe sharp increases due to the starfish feature that con-
tributes many states. With 2QL Bi2Te3, however, M(E ) and
D(E ) remain mostly constant throughout the relevant en-
ergy range for transport. Vλ(E ) increases gradually from the
band edge, then eventually drops with the presence of a lo-
cal maxima (e.g., the starfish feature at roughly −0.1 eV in
2QL Bi2Se3 and Sb2Te3). As mentioned earlier, such features
contribute a large number of low-velocity states that drag
down Vλ(E ).
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FIG. 8. Double quintuple-layer Bi2Te3, Bi2Se3, and Sb2Te3. (a)–(c) Electron dispersion along high-symmetry points. (d)–(f) Energy
contour plot of the valence band.

Next, we analyze the thermoelectric properties presented
in Figs. 9(d)–9(f). Note that we focus here on the results of
the DOS-scattering model, which is believed to be the most

physical and accurate (a comparison of all three scattering
models for the 2QL materials is provided in the Supplemental
Material [87]). The transport distributions for 2QL Bi2Se3 and

FIG. 9. Double quintuple-layer Bi2Te3, Bi2Se3, and Sb2Te3. (a) Distribution of modes M(E ), (b) average velocity Vλ(E ), and (c) density
of states D(E ) versus energy for the valence states. (d) Transport distribution �(E ) versus energy. (e) PF and (c) figure-of-merit ZT versus
Fermi level. �(E ), PF, and ZT are calculated using the DOS-scattering model. T = 300 K.
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Sb2Te3 initially rise but suddenly decrease below −0.1 eV.
This occurs as a result of the large DOS and, thus, scatter-
ing, associated with the starfish feature. Similar behavior is
observed with 2QL Bi2Te3, however, the decrease is more
gradual and begins below roughly −0.15 eV; this gives a
higher �(E ) over a larger energy range compared to 2QL
Bi2Se3 and Sb2Te3. These drops in �(E ) due to sudden in-
creases in DOS negatively affect the Seebeck coefficient and
conductivity.

The power factor and ZT of 2QL Bi2Te3 are higher than
2QL Bi2Se3 and Sb2Te3 because the increase in DOS from
the low-energy ring is located far enough from the Fermi
level that it has a minimal negative impact unlike the starfish
features. A comparison of the different scattering models
(see the Supplemental Material [87]) shows that the ZT
values are somewhat similar, but that the cmfp and crt ap-
proximations predict large PF peaks deeper in the valence
band—such peaks are suppressed with the DOS model due
to the large number of states at lower energies. The PF
peaks from the different scattering models are separated by
roughly one order of magnitude in hole concentration. Finally,
comparing the 2QL materials to their 1QL counterparts, the
latter present overall better TE performance as a result of
their ring-shaped dispersion which is mostly lost when going
to 2QL.

IV. CONCLUSIONS

In this paper we employed first-principles modeling to cal-
culate the thermoelectric properties of two-dimensional single
and double quintuple-layer Bi2Te3, Bi2Se3, and Sb2Te3 us-
ing the cmfp-, crt-, and DOS-scattering approximations. The
focus was to investigate how the unusual ring-shaped disper-
sions of these materials impact the TE characteristics and to
understand how the different scattering approximations influ-
ence TE transport—with an emphasis on the DOS-scattering
model, which had not (to our knowledge) previously been
adopted when studying these materials.

The single QL materials display two ring-shaped valence-
band maxima between which is nestled one ring-shaped local
minimum (i.e., the moat feature). The ring-shaped states at the
band edge result in discontinuous increases in M(E ) and D(E )
that benefit TE performance. This was previously pointed
out [38–40] but within the discussion of a single ring-shaped
maximum. Interestingly, below the band edge, the moat pro-
duces an abrupt drop in D(E ) as those states are removed.
This feature further enhances the power factor and ZT with
the DOS model as a result of reduced scattering compared to
either the cmfp or the crt. To confirm the role played by the
two ring-shaped maxima and single ring-shaped minimum,
we introduced an analytical octic band model that generally
resembles the DFT dispersion. The octic model is found to
reproduce the observed discontinuities in the DFT-computed
M(E ), Vλ(E ), and D(E ).

The 1QL materials show high TE performance with max-
imum ZT values above 3 in all cases and PF values roughly
three to ten times larger than those for a 2D parabolic band
(scaled for the same average MFP) [42]. The TE properties of
both 1QL Bi2Te3 and Bi2Se3 vary significantly with the choice
of scattering model with the maximum values predicted using

the DOS model. This arises because of the discontinuities
brought about by the ring-shaped maxima and moat. Our find-
ings indicate that the benefits of these unusually shaped bands
are sensitive to the relative alignment of the both ring maxima
and to the degree of ring anisotropy—the latter smooths out
the desired abrupt features in the transport distribution. For
these reasons, 1QL Sb2Te3 does not show as much improve-
ment in PF and ZT with the DOS model, compared to the
other 1QL materials.

With the 2QL materials, the electron dispersions are qual-
itatively different than their 1QL counterparts. 2QL Bi2Te3

shows a star-shaped dispersion near the band edge with a ring
feature near −0.15 eV. The 2QL Bi2Se3 and 2QL Sb2Te3

both possess a small ring near the band edge with starfish-
shaped bands at roughly −0.1 eV. Due to the relatively large
misalignment in energy of these features, lack of a distinctive
minimum (i.e., moat), and the small radii of the rings at the
band edge, these materials present significantly lower PF and
ZT compared to the 1QL case. Double QL Bi2Te3 shows
the best TE performance, among the 2QL materials since the
star-shaped dispersion provides a large number of states at
the band edge, similar to a ring-shaped band. The different
scattering models predict widely varying TE properties; 2QL
Bi2Te3 shows the best performance with the DOS model,
whereas 2QL Bi2Se3 and Sb2Te3 show the worst performance
with the DOS model.

When comparing the TE properties, it is important to re-
member that the scattering parameters (λ0, τ0, and K0) act as
scaling factors to the transport distributions, which are fixed
by setting the average MFP for backscattering to be 20 nm
with the Fermi level at the band edge. This choice connects
the scattering parameters such that one cannot be arbitrarily
changed relative to the others and for a given material yields
the same conductivity when the Fermi level is aligned at
the band edge (where typically the TE properties are near
optimal). A different choice in constraint could alter the rel-
ative scaling of �(E ) but not its shape. This means that the
particular values in σ and κe could change (S depends on the
shape of �(E ) not its magnitude) along with PF and ZT .

Overall, the ring-shaped dispersion materials investigated
in this paper display high PF compared to more typical
parabolic bands with the 1QL form of Bi2Te3 and Bi2Se3

predicted as most promising due to the double-ring maxima
at the band edge in combination with the local ring minimum.
The TE properties are found to be sensitive to the choice of
scattering approximation. This indicates that further study of
rigorous scattering in ring-shaped dispersions is needed to
validate which scattering model is best. If the DOS-scattering
model is ultimately the most physical and accurate, this paper
suggests that these materials may be even better thermo-
electrics than previously believed.
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APPENDIX: ELECTRONIC PROPERTIES OF THE OCTIC BAND MODEL

Here we summarize the expressions for M(E ), Vλ(E ), and D(E ) [42] for the octic dispersion model given by Eq. (14). More
details are provided in the Supplemental Material [87]. Since the octic model is two dimensional and isotropic in k space, the
constant energy surfaces are circles. There are as many as four constant energy circles with the octic band model and their radii
in reciprocal space are given by the following expressions:
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The distribution of modes M(E ), average velocity Vλ(E ), and density of states D(E ) can be written compactly in terms of
these constant-energy radii. Their expressions are provided below,
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