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Dielectric microcylinder makes a nanocylindrical trap for atoms and ions
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In the diffraction of visible light by a dielectric microcylinder, packages of evanescent waves always arise.
However, single plane-wave incidence corresponds to rather small impact of evanescent waves outside the
cylinder. In this paper, we theoretically show that a pair of plane waves impinging a glass microcylinder under
certain conditions may correspond to much higher impact of the evanescent waves. Namely, the interference of
the evanescent waves with the propagating ones results in the suppression of the electromagnetic field in an area
with very small cross section. This area is located in free space at a substantial distance from the rear side of the
microcylinder and along its axis. It may serve a linear optical trap for cold atoms and ions.
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I. INTRODUCTION

The most known near-field effect of the visible light
diffraction by a dielectric microcylinder is the waist of the
called photonic nanojet [1]. This nanojet is a wave beam
whose waist is centered at the rear edge of the particle [1–4].
In this area, the field spatial spectrum comprises a notice-
able evanescent-wave component [2,4] that implies a nonzero
longitudinal component of the electric field in the case of
the TM incidence [2,4]. However, the effective width of this
waist for a cylinder is not very subwavelength (on the order
of 0.5λ) and the local enhancement of the electric intensity is
modest (3 to 4). Such a near-field effect can be called slightly
subwavelength—the contribution of evanescent waves into
the field in the region of the waist is not dominant [4]. It
is dominant at the frequencies of well-known resonances—
those of whispering gallery modes and at Mie resonances of
the microcylinder [5–7]. However, the spatial regions where
evanescent waves dominate at these resonances are located
inside the cylinder, and this domination implies high val-
ues of the local electric intensity compared to that of the
incident wave. Briefly, for a dielectric microparticle (cylin-
der or sphere) known near-field effects are usually effects of
subwavelength-field concentration [7–9].

However, there are no theoretical restrictions for pro-
nounced near-field effects outside a microsphere or a micro-
cylinder. If a cylinder is made of a dielectric material with the
refractive index, say, n = √

ε = 1.5–1.8 the spatial variation
of the induced eigenmodes inside and outside the cylinder
have the same scale. Inside a microcylinder, the fields are
expressed via Bessel’s functions Jm(kcρ) (here kc = kn, and k
is the wave number in free space) and outside—via Hankel’s
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functions H (1)
m (kρ) which comprise the Bessel component as

well. Although it is usually thought that all practically im-
portant near-field effects for a glass microparticle (cylinder
or sphere) are effects of subwavelength concentration of the
electromagnetic fields, we will show that it is not so. We will
report an amazing near-field effect which arises for a micro-
cylinder and has nothing to do with the field concentration in
it. It arises at the frequencies slightly shifted from those of
high-order Mie resonances.

II. SPATIAL FANO RESONANCE BEHIND
THE MICROCYLINDER

Consider a microcylinder of radius R � λ impinged by a
wave beam consisting of two TM-polarized plane waves with
the same magnitude of magnetic fields but different phases,

H± = ±H0eik(±x sin β+y cos β )az, (1)

as depicted in Fig. 1(a). Here we adopt the time dependence
exp(−iωt ). The two incident waves are schematically shown
in Fig. 1. Let the wave-vectors k± be tilted to axis y with
sharp angle β so that the resultant transversely bisects the
cylinder. Expanding these two plane waves into cylindrical
Bessel functions Jm(kρ) and uniting the terms of the same
order we deduce after some algebra the following expression
for the magnetic field of the incident beam (Hib):

Hib = −4H0

+∞∑
m=1

imJm(kρ) sin mβ sin mφaz, (2)

The corresponding electric field of the incident beam can be
easily obtained by differentiation of every series term in (2),

Eib = i

ωε
∇ × Hib = i

ωε

[
1

ρ

∂Hib

∂φ
aρ − ∂Hib

∂ρ
aφ

]
, (3)

where aρ and aφ are two other unit vectors of the cylindrical
coordinate system.
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FIG. 1. (a) Two plane waves with the same electric-field amplitude and wave-vectors k± of the same length impinge a dielectric
microcylinder. (b) Normalized intensity I/I0 on the logarithmic scale on the axis y behind the cylinder versus normalized coordinate kρ ≡ ky
for different values of the permittivity ε. Fixed parameters: β = 0.01, kR = 10.

For the total magnetic-field H outside the cylinder we
further obtain

H = −4H0

∞∑
m=1

im
[
Jm(kρ) + TmH (1)

m (kρ)
]

∗ × sin mβ sin mφaz, (4)

The total electric field has two components E = Eρaρ +
Eφaφ , for which we have

Eρ = 4H0η

∞∑
m=1

im m

kρ

[
Jm(kρ) + TmH (1)

m (kρ)
]

∗ × sin mβ cos mφ,

Eφ = 4H0η

∞∑
m=1

i−m
{
J ′

m(kρ) + Tm
[
H (1)

m (kρ)
]′}

∗ × sin mβ sin mφ.

Here the prime for the cylindrical functions means the deriva-
tive with respect to the argument kρ, η represents the free

space impedance, and the coefficients,

Tm = kcJ ′
m(kR)Jm(kcR) − kJ ′

m(kcR)Jm(kR)

kJ ′
m(kcR)H (1)

m (kR) − kcJm(kcR)
[
H (1)

m (kR)
]′ (5)

are the Mie coefficients. The factor sin mφ in every term of
the series (4) and (5) nullifies both Hz and Eφ on the axis
y and drastically changes the total field spatial distribution
compared to the single-wave incidence. Moreover, the choice
of proper β allows one to turn the selected mth mode on
(when sin mβ = ±1) or off (when sin mβ = 0). The relative
contribution of the mth mode into the intensity of the scattered
field on axis y is shown in Fig. 2. From Fig. 2 one can see
that for β = π/11 the TM11,2 mode is not excited while for
β = π/14 the TM14,1 mode is not excited. (here and below the
resonance mode is characterized by two numbers since there is
no propagation along z). In what follows we optimize β so that
to provide a stronger impact of the selected resonant mode.

Near the high-order Mie resonance one of the series terms
with number m = M � 1 describing the Mth mode (strictly
speaking, quasimode) of the cylinder dominates over any
other modes. In the case of a single-wave incidence, the
almost-resonant Mth mode weakly interferes with the spa-
tial quasicontinuum of nonresonant terms. Numerical analysis
shows that in this case the sum of all nonresonant terms has the

FIG. 2. Modal amplitudes for kR = 10 when (a) β = π/11 and (b) β = π/14.
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FIG. 3. The dependence of Mie coefficients Tm for m = 6–10
(dashed curves) and m = 11–15 (solid curves) on cylinder permit-
tivity for size parameter kR = 10. Vertical black arrows correspond
to ε = 3.4975 (near TE11,2 Mie resonance, red curve) and to ε =
3.3606 (near TE14,1 Mie resonance, magenta curve).

smaller magnitude than the magnitude of the almost-resonant
mode. Outside the cylinder the evanescent part of the Mth
mode rapidly decays, whereas its propagating part [cylindri-
cal wave corresponding to the large-argument asymptotic of
H (1)

M (kρ)] varies in sync with the quasicontinuum. On the
contrary, when two slightly tilted plane waves illuminate the
cylinder with opposite phases, and the factor sin mβ in each
term of the Mie series arises the magnitude of the quasicon-
tinuum of other modes m �= M has the magnitude of the same
order as that of the Mth mode in the whole region of our
interest—near the backside of the illuminated cylinder.

This fact is the prerequisite of the pronounced interference.
As we have already seen, we may adjust this interference so
that to obtain a deep and narrow minimum of the electric-field
Eρ = Ey = (iωε0ρ)−1∂H/∂φ on axis y behind the cylinder.
In this minimum, the electric field of the Mth mode and
that of the quasicontinuum have the same magnitudes and
opposite phases. Inside the cylinder near its back edge their

FIG. 4. Normalized intensity I/I0 on the natural logarithmic scale in the cross section of the cylinder: (a) three-dimensional plot and
(b) two-dimensional (2D) color map. Fixed parameters: β = 0.01, kR = 10, ε = 3.4975 TE11,2 Mie resonance.

interference is constructive, and E (φ = 0, ρ) = Eρ has a local
maximum. A pair of maximum and minimum, adjacent to
one another over axis y, can be treated as the spatial Fano
resonance. When a Fano resonance occurs in the frequency
domain, the minimum neighboring to the Fano maximum is
always deep and narrow. Is it possible to observe a similar
sharp minimum in our spatial Fano resonance? Yes, it needs an
interplay among three parameters: The optical size of cylinder
kR, the permittivity of cylinder ε, and the illumination angle
of two plane-waves β. We may find this regime either for any
fixed ε or fixed size parameter kR and varying the other two
parameters to get a sharp minimum. In this section we study
this regime for the fixed size parameter, and in Sec. V we elab-
orate more on a practical approach to find this regime for fixed
ε. Dependence of Mie coefficients on ε for fixed size parame-
ter kR = 10 is presented in Fig. 3. Based on these coefficients
we can calculate the intensity in the area of our interest.

Since the incident beam intensity varies versus x, it is
reasonable to normalize the intensity of the total electric-field
I = E2

ρ + E2
φ to the intensity of the incident beam |Eib|2, aver-

aged over the relevant interval −R < x < R. The integration
is simplified by the condition β 	 1, and we obtain I0 =
(2ηH0)2 sin2(kR sin β )/ sin2 β. On the axis y the incident and
total electric fields are polarized longitudinally, and the total
intensity is equal I (φ = 0, ρ) = [Eρ (φ = 0)]2. We normalize
it to the mean intensity I0 of the incident beam.

The logarithmic plot of the normalized intensity in the area
of our interest is presented for some choices of ε (from the
values close to the resonant ones) in Fig. 1(b). The results are
based on the choice of β = 0.01 for the illumination angle.
The cylinder permittivity ε = 2.4445 (corresponds to TE12,1

Mie resonance) offers a weak minimum to the normalized
intensity at the distance on the order of λ behind the cylinder.
In Fig. 3 we can see how to tune the Fano resonance varying
ε near the region of Mie resonances. In this way we found
several values of ε corresponding to ultimately narrow and
deep minima of the electric field behind the cylinder. Two of
them are marked in Fig. 1(b) by vertical arrows. Permittivi-

165405-3



V. KLIMOV, R. HEYDARIAN, AND C. SIMOVSKI PHYSICAL REVIEW B 103, 165405 (2021)

FIG. 5. (a) Normalized intensity plot on the logarithmic scale for two pairs of β and ε offering the exact zero for the electromagnetic field.
(b) Real and imaginary parts of the normalized electric-field phasor in the area of the Fano minimum for β = 0.15, ε = 3.360 595. Fixed
parameter: kR = 10.

ties ε = 2.908 (correspond to the TE13,1 Mie resonance) and
ε = 3.4975 (near the TE11,2 Mie resonance), offer intensity
in minimum smaller than I0 by 10 and 14 orders of mag-
nitude, respectively. Since the magnetic field on the axis y
is identically zero, in these minima the electromagnetic field
practically vanishes.

Distribution of the normalized electric intensity on the
plane (x-y) confirms our insight that these minima are,
namely, those of spatial Fano resonances. In Fig. 4(a) we
present the plot of ln (I/I0) on the plane (x-y) for β =
0.01 and ε = 3.4975. Internal maxima corresponding to the
almost-resonant mode TE11,2 are located around the cylinder
near its surface. One of these maxima is higher than the
others and is located at axis y. It forms together with our
minimum a typical Fano resonance. Meanwhile, in the color
map Fig. 4(b) we see that the electric-field distribution is very
different from the typical picture of a mode M � 1 in the
range of its resonance excited by a single plane wave [6]. The

distorted modal distribution with sharp interference minima
is explained by the interference of the Mth almost-resonant
mode and the quasicontinuum of lower modes which have the
same magnitudes in the region of our interest.

Real and imaginary parts of the electric-field phasor
change sign at different points of axis y, and our Fano mini-
mum lies between these points being distant from the cylinder
by ρ − R ≈ 0.7λ. In the vicinity of our minimum the phase of
the electric and magnetic fields differ by nearly π/2, and that
clearly links the effect to evanescent waves generated on the
backsurface of the cylinder. Conventionally, near-field effects
cannot be observed far from the scattering object, and they
enhance the local fields. Our near-field effect is opposite—it
is the cancellation of the small longitudinal component of a
wave beam by the evanescent waves and it may nicely occur
at distances about λ from the object.

For fixed size parameter (in our case kR = 10), by tuning
ε and β we can nullify Re(Eρ ) and Im(Eρ ) at the same

FIG. 6. (a) Color map of ln (I/I0) in the cylinder cross section. (b) Color map of I/I0 (linear scale) in the area of the optical trap. Fixed
parameters: kR = 10, β = 0.15, and ε = 3.360 595.
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TABLE I. Main properties of alkaline atoms.

Transition dipole matrix element Systéme
Atoms Transition λ (nm) Decay rate s−1 Lifetime (nm) International (SI) (J = 1/2‖er‖J ′ = 3/2)/

√
2

133Cs D2 6 2S1/2 6 2P3/2 852.347 3.281 × 107 30.47 2.68 × 10−29

87Rb D2 5 2S1/2 5 2P3/2 780.241 3.811 × 107 26.24 2.53 × 10−29

23Na D2 3 2S1/2 3 2P3/2 589.158 6.154 × 107 16.25 2.11 × 10−29

point on the axis y. For two different illumination angles
this tuning is performed, and the results on the logarithmic
scale of intensity are presented in Fig. 5(a). For case β =
0.15 we found ε = 3.360 595, and the zero point is distanced
from the cylinder still by 0.7λ. For β = 0.1 we found ε =
3.461 723 345 3067 granting the similar zero at the distance
nearly equal λ. Thus, behind the cylinder there is an amazing
point in which Re(Eρ ) = Im(Eρ ) = 0 and electromagnetic
fields vanish. This situation is shown in Fig. 5(b) for the case
β = 0.15, ε = 3.360 595.

In Fig. 6(a) we depict the color map of the normal-
ized intensity on the plane (x-y) for the case β = 0.15, ε =
3.360 595. This distribution resembles the picture of the
TE14,1 resonance excited by a single plane wave. However,
there is a difference—a set of sharp minima. Four of them are
located on the axis y outside the cylinder. Only at the mini-
mum located behind the cylinder, the exact zero is achieved.
Three minima located in front of it are much weaker—in
them I/I0 ∼ 10−3–10−4. Figure 6(b) represents the same color
map as in Fig. 6(a) as a contour plot shown around the main
Fano minimum. This plot lets one see that the shape of the
minimum is not circular, it is elongated in the axial direction.

III. OPTICAL TRAP AT THE FANO MINIMUM

The revealed effect is, to our opinion, very promising for
trapping the atoms and ions. An atom with polarizability α,
experiences in the monochromatic light of nonuniform inten-
sity I (x, y) the so-called gradient force,

Fg(x, y) = 1
2 Re(α)∇I (x, y).

This formula, initially derived in Ref. [10] for dielectric
nanoparticles, was generalized for atoms in the laser light
field in Refs. [11,12]. In case of blue detuning (from the main
excited state of the atom) Re(α) < 0, and the direction of Fg

will be toward the minimum of the electric intensity [13].
Since our minima in Figs. 4 and 5 are ultimately sharp, an
atom will be trapped at the small region on the (x-y) plane
and free to move along z. With a simple glass microcylinder
we may prepare a unique object—a straight linear chain of
atoms in free space.

Our singular Fano minima can serve as a trap for ions too.
In accordance to Ref. [14], the paraxial region of a Bessel
beam with radial polarization and nonzero order can serve as a
subwavelength thin trap for charged particles. It is possible to
show that this trapping property remains in our 2D case when
the Bessel beam is replaced by our two-wave beam. Gradient
force will gather the ions to our intensity minimum from the
surrounding space.

When the incident light has the same wavelength as that
of the resonant optical absorption λA, or is slightly detuned
(so that λ is within the optical transition spectral line) and
has sufficiently high flux density, the optical transition of an
atom at λA is pumped and the atom turns out to be cooled
[15]. When the flux density is on the order of 1 kW/cm2,
the optical potential of an atom expressed in kelvins is on
the order of dozens of millikelvins. If the frequency detuning
 = ω − ωA of the incident light with respect to the transition
frequency is positive, the polarizability of an atom has the
negative real part, and the trapping effect arises in the minima
of the electric intensity where the atom optical potential drops

FIG. 7. (a) The optical potential of an atom of Cs varying along the beam axis for different dielectric constants of the cylinder material.
The black dashed rectangles show the width of the trap that can be reduced to 230 nm adjusting ε. (b) The same potentials depicted over
both x and y axes allow one to compare the trap width and height (both are subwavelengths). Transition in Cs is enabled by laser radiation at
wavelength λ = 852 nm. Poynting vector magnitude at the maximum of the incident beam intensity is equal to 1 kW/cm2. Fixed parameters:
kR = 10 and β = 0.15.
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FIG. 8. Contour plots of the optical potential of an atom of Cs: (a) ε = 3.36, (b) ε = 3.359, and (c) ε = 3.358. Dashed contours depict
levels of optical potential which are 1 mK higher than the local minimum. It defines the effective perimeter of the trap. Fixed parameters:
kR = 10 and β = 0.15.

from dozens of millikelvins to 1 mK or less [13,15,16]. Often
there is a need to trap the alkaline atoms. Such atoms as well
as the majority of atoms have an isotropic polarizability and
are not sensitive to specific polarization of the field in the trap
(in our trap it is linear polarization). For atoms with different
optical transition wavelengths the suitable resonance should
be chosen in accordance to the described procedure of the trap
engineering.

All alkaline atoms have similar properties. In our Table I
one can see the main parameters of these atoms, taken from
Ref. [17]. As an example, Figs. 7 and 8 depict the optical
potential U (x, y) in our optical trap for the case when the
trapped atoms are those of Cs, kR = 10 and β = 0.15. The
atoms of Cs experience the transition of type 6S1/2 − 6P3/2 D2
at the wavelength λA = 852 nm. U is calculated using the
formula (see, e.g., in Ref. [16]),

U = μ2E2/2kBh̄,

where μ = 2.68 × 10−29 SI is the dipole moment (matrix ele-
ment) of the optical transition, E2 = I is the electric intensity,
corresponding to the power flux 1 kW/cm2 in the intensity
maximum of our beam, kB and h̄ are Boltzmann and Planck
constants, respectively. In these calculations, we adopted  =
5 GHz. The laser pumping with the flux density 1 kW/cm2

and even a much higher one has been used for optical trapping
since the 1980s [18]. Approaching the minimum of the optical
potential to zero offers the long-time confinement of atoms
because the atoms located at the minimum practically do not
heat up. The trap transverse sizes are sensitive to the design

FIG. 9. Sketch of our optical trap.

parameters. This effect is illustrated by Fig. 7(a) where the
effective trap size in the y direction is shown for different
values of ε. A slight change in the permittivity (from 3.36
to 3.358) transforms the trap from that having the width on
the order of 0.5 μm and the potential at the trap center close
to 10 μK into a trap having twice smaller width but 50 times
higher potential at the trap center. Here the effective dimen-
sions of the trap were estimated in accordance to the criteria
formulated in Ref. [19] (1 mK above the potential minimal
value). In Fig. 7(b) trap dimensions in both x and y directions
are depicted. For better visualization, color map of optical
potential for the same parameters of Fig. 7(b) is shown in
Fig. 8 in which the dashed contours show the effective area of
the trap. One can see from Fig. 8 that the trap dimensions are
subwavelength and dependent to value of absolute minimum
of the potential in tarp region. If we do not target the minimal
possible size of the trap, the absolute minimum of the potential

FIG. 10. The color map of normalized intensity (logarithmic
scale) on the axis y versus both normalized coordinates ky = kρ and
β for TE14,1 resonance. Fixed parameters: kR = 10 and ε = 3.3606.

165405-6



DIELECTRIC MICROCYLINDER MAKES A … PHYSICAL REVIEW B 103, 165405 (2021)

FIG. 11. The dependence of the trap potential on the physical
coordinate y = ρ counted from the center of the trap for different
values of β for TE14,1 resonance. Fixed parameters: kR = 10 and
ε = 3.3606.

in the trap region can be engineered very close to zero because
the exact zero of the electromagnetic field at the trap center is
achievable.

Thus, a simple dielectric microcylinder illuminated by an
intensive cosine wave beam of coherent light with magnetic
field polarized along the cylinder axis creates in free space a
long optical trap with subwavelength cross section. This idea
is illustrated by Fig. 9. Cold atoms or ions can be guided
along this trap, e.g., by a static electric field. Then the trap
will operate as an atomic waveguide. The creation of such
atomic waveguides is an actual problem of modern physics.
Therefore, similar traps have been recently developed and
corresponding works form a body of literature (see, e.g.,
in Refs. [20–22]). However, all these traps, to our knowl-
edge, have been formed only inside the diffraction-free light
beams. In our opinion, this approach to the creation of the

cylindrical optical trap has an inherent drawback—complexity
of its implementation.

No realistic wave beam is ideally diffraction free. In fo-
cused Bessel beams of zero order [20] where the atoms are
trapped in the area of the maximal intensity centered by the
beam axis, the effective length of the cylindrical trap (whose
cross section has the diameter close to λ) does not exceed a
dozen of microns. There are other problems with the trapping
of atoms in these light needles where they are studied in
work [21]. In this paper it was shown that the trapping in the
zero-order diffraction-free beam (that demands an expensive
equipment) has no practical advantages compared to the trap-
ping in the usual Gaussian beam formed by a standard laser
optics. Only a hollow Bessel beam with radial polarization
which remains diffraction free up to the distance of hundreds
of microns from its birthplace (the apex of an axicon lens)
grants a really thin and long cylindrical atom trap similar
to what we suggest. Such a trap was demonstrated in work
[22]. However, in order to obtain such a magnificent light
beam one needs a very expensive optical equipment, more
expensive than is required for a zero-order Bessel beam. On
the contrary, our wave beam is a simple superposition of two
plane waves—practically of two laser beams with flat phase
fronts, e.g., of two Gaussian beams.

One may compare our trap with that suggested in work
[23]. However, this simple trap not only has different underly-
ing physics, but also it is formed on the surface of a cylinder.
Our trap is formed in free space at the distance of the order
of λ from the cylinder. In work [24] it was suggested to trap
nanoparticles and molecules in the waists of the twin photonic
nanojet obtained in this paper impinging a microcylinder by
two plane waves. In some sense this paper is close to ours,
however, the underlying physics and the results of Ref. [24]
are very different. In this paper the plane waves are TE polar-
ized with respect to the cylinder, and the Mie resonances of
the TM type are excited in it. This beam polarization allows
the excitation of two nanojets (which are prohibited in our
case) and makes our Fano resonance impossible. The waists

FIG. 12. The dependence of (a) normalized intensity (logarithmic scale) on ky = kρ and (b) the trap potential on the coordinate y = ρ

counted from the center of the trap for different values of β for TE11,2 resonance. Fixed parameters: kR = 10 and ε = 3.4975.
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FIG. 13. The dependence of the trap potential on the coordinate
y = ρ counted from the center of the trap for different size parame-
ters close to ten when the TE14,1 resonance is used. Fixed parameters:
β = 0.15 and ε = 3.3606.

of the two nanojets obtained in Ref. [24] have the slightly
subwavelength width but have the substantial length. Finally,
in Ref. [24] the trapping is implied in the two maxima of
intensity. On the contrary, our trap can have both subwave-
length height and width, and, what is even more important,
our trapping occurs in the minimum of the field (where the
heating of the atom due to atom-light interaction is consider-
ably reduced).

As to the realization of our trap, all we need is two col-
limated laser beams having the flat fronts in the area of our
cylinder. For fine-tuning the parameter β we may split a colli-
mated laser beam onto two beams with equivalent amplitudes
using the conventional optical scheme—a semitransparent
mirror and a fully reflecting one. The tilt of the reflecting
mirror will ensure the needed β. Perhaps, one will need a
diaphragm to get rid of the sidelobes. Tunable laser sources
will allow one to obtain the needed operation frequency if the
permittivity of our cylinder is predefined. A microcylinder can
be either a cylindrical optical resonator (rod resonator) used
for laser applications and in optical sensing or even a piece of
the optical fiber. Usual precision of the fiber manufacturing is

FIG. 14. The dependence of Mie coefficients on the size param-
eter for ε = 3.5.

about 10−3 of the diameter. For a fiber with radius R = 1 μm
it implies 2-nm roughness. Such imperfection of a cylinder
cannot be important because evanescent waves with very high
spatial frequencies are not involved into our effect.

IV. STABILITY OF THE SUGGESTED TRAP

Our trap is sensitive to the incident beam parameters. In
Fig. 10 the logarithm of normalized intensity on the axis y
behind the cylinder is shown dependent on both coordinates
and β for the case ε = 3.3606. In Fig. 11 the trap potential
of the same system for different values of β is plotted. From
Figs. 10 and 11 we see that the subwavelength trap disappears
with the 10% deviation of the incident beam angle parameter
from its optimal value β = 0.15. Another interesting feature
seen in Fig. 10 is the presence of a similarly deep trap for
β ≈ 0.5 for which sin(mβ ) ∼ 1 (where m = 14 is the number
of the resonant mode), and the resonant mode again dominates
over the quasicontinuum.

However, high sensitivity of the trap regime to β is only a
peculiarity of the selected Mie resonance. If we consider, e.g.,
a trap which is formed when ε = 3.4975 near the resonance
TE11,2 we see that the trap is more stable against small devi-
ations of the angle β. In Fig. 12(a) we presented a color map
of the normalized intensity similar to that depicted in Fig. 10
but for ε = 3.4975. From Fig. 12(b) we can see that the trap is
formed in a broad range of β. The exact null at the trap center
is achieved for β = 0.03 and remains negligibly small in the
range of 0 < β < 0.05. The regime without the exact zero of
the field, for example, that corresponding to β = 0.12–0.15
grants a narrower trap. However, the potential (and the field) at
its center become noticeable in this case. It means some heat-
ing of the trapped atoms that reduces their trapping lifetime.
There is a trade-off between the maximal trapping lifetime
and the minimal trap width. For long trapping small values

FIG. 15. Distribution of the electric-field intensity (logarithmic
scale) along the y axis for different kR’s. Yellow arrow shows the first
approximation for the trap optimal configuration. Fixed parameters:
β = 0.15 and ε = 3.5.
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FIG. 16. Real (red) and imaginary (blue) parts of Eρ (φ = 0, ρ ) as a function of kρ. (a) Initial distribution with arbitrary chosen β = 0.15.
(b) Optimized distribution achieved with β = 0.149 914. Fixed parameters: kR = 9.3278 and ε = 3.5.

of β are preferable, however, the trap is rather wide (few
microns). For rather smaller cross sections of the trap, values
of β = 0.12–0.15 are preferable, but the trapping lifetime of
an atom will reduce compared to that achievable for a more
substantial trap.

Now, let us study the sensitivity of our trap to the variation
of kR. In practice, the cylinder radius R and the permittivity
ε are fixed. We can tune our trap changing β and kR. The
size parameter is turned by varying the frequency. In Fig. 13
one can see how this frequency tuning affects the potential
distribution on the axis y for β = 0.15 and ε = 3.361. Varying
kR we not only displace the center of our trap, but also change
the trap dimensions and trapping lifetime.

V. PRACTICAL APPROACH TO OPTIMIZE
THE TRAP CONFIGURATION

So far we have analyzed the effect of a deep subwave-
length trap offered by a microcylinder illuminated by two
plane waves. In our examples, the permittivity values were

FIG. 17. Spatial distributions of the electric-field magnitude
across the trap (logarithmic scale) for initially selected β = 0.15 and
for optimized β = 0.149 914. Fixed parameters: kR = 9.3278 and
ε = 3.5.

adjusted. In this section we suggest a systematic approach
to find the trap configuration for the arbitrary experimental
condition. To exactly nullify the electric-field intensity at a
point (φ = 0, ρ = ρc > R) we have to satisfy two equations,

Re Eρ (kρc, β, kR, ε) = 0, Im Eρ (kρc, β, kR, ε) = 0.

For fixed ε these two equations define a line ρc(β, kR, ε) on
which any point corresponds to a zero-field trap. Using the
expression (4) for the electric field we have found several
lines ρc(β, kR, ε) near the high-order Mie resonances. Their
existence proves the variety of such zero-field traps. However,
this direct trap engineering is not an easy numerical task since
the calculation of the line ρc(β, kR, ε) implies the solution
of an inverse problem. Therefore, we have also developed a
rather straightforward optimization procedure. In accordance
to this simple procedure, one should implement the following
steps:

(1) Choose specific material and its specific permittivity ε.
(2) Choose resonant size parameter kR of the cylinder. It

can be found by analyzing Mie coefficients Tm. In experiment
it can be performed by frequency tuning.

(3) Finely tune size parameter kR and beam angle β to get
a deep trap. In experiment it can be performed by frequency
and optical element tuning.

This procedure is illustrated by an example of a popular
material with ε = 3.5 (so-called OHARA LAH size 75 optical
glass). To choose the resonance region we plot the dependence
of Mie coefficients on the size parameter kR for ε = 3.5,
Fig. 14. On this plot we select a suitable resonance, e.g., that
marked on the plot corresponding to TE13,1 and TE10,2 modes.
Then choose the initial value for β, here, for example, β =
0.15, and find the value of kR which provides the deepest trap.
In our case we found kR = 9.3278 as the first approximation
of our trap configuration as pointed out via the yellow arrow
in Fig. 15. After the trap position is found within the first
approximation, the next step is to finely tune β by considering
real and imaginary parts of Eρ . The target is to nullify the field
in the vicinity of this point. The result of this numerical tuning
of β is presented in Fig. 16. Figure 17 shows very deep trap
configuration for OHARA LAH75 which nicely grants a very
deep and narrow trap.
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VI. CONCLUSIONS

In this paper we have theoretically studied an unusual
near-field effect—spatial Fano resonance arising when a wave
beam formed by two plane waves with the small angle
between their wave vectors and antisymmetric polarization
impinges a dielectric microcylinder. The physics of this phe-
nomenon is the interference of the evanescent field of a nearly
resonant cylindrical cavity mode with the quasicontinuum of
all other modes. We have shown that the Fano minimum can
be very sharp and located at a substantial distance from the
rear edge of the microcylinder. Behind this minimum there is
a spread local maximum, located at a distance on the order of
λ/2 from the cylinder. Such features of the electromagnetic
field at a so long distance from the resonant object are very
unusual for a near-field effect. However, our main result is

the singularity of the Fano minimum. The electromagnetic
field in it decreases very sharply and may even utterly nullify.
Practically, it results in the possibility of creation of a long
optical trap that seems to be promising for cold atoms, and
molecules can be called an atomic/molecular waveguide. The
evident advantage of our optical trap compared to its known
analogs is the simplicity of its implementation. We hope that
our theoretical finding will be interesting for physicists devel-
oping optical traps especially particle waveguides for quantum
computing [25,26].
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