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We theoretically study the spectrum induced by one and two magnetic impurities near the boundary of a
one-dimensional nanowire in proximity to a conventional s-wave superconductor and extract the ground-state
magnetic configuration. We show that the energies of the subgap states, supported by the magnetic impurities,
are strongly affected by the boundary for distances less than the superconducting coherence length. In particular,
when the impurity is moved towards the boundary, multiple quantum phase transitions periodically occur in
which the parity of the superconducting condensate oscillates between even and odd. We find that the magnetic
ground-state configuration of two magnetic impurities depends not only on the distance between them, but also
explicitly on their distance away from the boundary of the nanowire. As a consequence, the magnetic ground
state can switch from ferromagnetic to antiferromagnetic while keeping the interimpurity distance unaltered by
simultaneously moving both impurities away from the boundary. The ground-state magnetic configuration of
two impurities is found analytically in the weak coupling regime and exactly for an arbitrary impurity coupling
strength using numerical tight-binding simulations.
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I. INTRODUCTION

Magnetic impurities on conventional superconductors ex-
hibit many interesting properties. One such example is the
appearance of localized states within the superconducting gap.
These states, known as Yu-Shiba-Rusinov (YSR) states [1–3],
are induced via the exchange interaction between a magnetic
impurity and the superconductor. The YSR states have been
well studied theoretically [4–23] and observed experimentally
in bulk s-wave superconductors by scanning tunneling mi-
croscopy (STM) techniques [24–36] as well as in proximitized
semiconducting nanowires with quantum dots by transport
measurement techniques [37–42]. Recently, these states have
attracted renewed interest in the context of magnetic atomic
chains. The YSR states induced by the individual impurities
in a magnetic chain can hybridize to form a subgap energy
band that can host Majorana bound states (MBSs) [43–59].
The zero-energy bias peaks have been recently observed in
such chains [60–64]. However, the formation of such MBSs
critically depends on the magnetic order inside the spin chain.
This magnetic order is itself determined by the effective ex-
change interaction between the impurities that is mediated by
the underlying superconductor.

When the exchange interaction is small compared to the
Fermi energy, the effective interaction between two magnetic
impurities (see Fig. 1) in such a system is mediated via the
quasiparticles in the superconductor and, is well described
by the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction

[65–90]. The RKKY interaction between two spin impurities
located inside the bulk of the system results in the magnetic
ordering of the Heisenberg type in the absence of spin-orbit
interaction and depends only on the relative angle between
the impurity spins, ensuring that the ground-state magnetic
configuration is either ferromagnetic (FM) or antiferromag-
netic (AFM). As the sign of the effective exchange interaction
oscillates as a function of the interimpurity distance, the
magnetic ground state, likewise, oscillates between FM and
AFM ordering. When the exchange interaction between the
impurity and quasiparticles is increased beyond the Fermi
energy of the superconductor, the approximations invoked by
the RKKY interaction break down and the ground state of the
magnetic impurities departs from such a simple description.
This is because (1) the coupling of the impurities to the quasi-
particles can no longer be treated perturbatively (as known
from gapless systems [83]) and (2) the YSR states can be close
to the chemical potential and thereby strongly renormalize the
superconducting gap under the impurity [17].

However, a description of magnetic impurities close to the
boundaries of realistic finite-size samples received very little
attention so far. Studies of this type are particularly relevant
for low-dimensional systems, where the superconductivity is
induced via the proximity effect by a bulk superconductor
because both the longer range of the RKKY interaction and
reduction or absence of a power-law decay of the YSR wave
functions. Motivated by this, in this work we study how
the boundary of such proximitized superconducting systems

2469-9950/2021/103(16)/165403(12) 165403-1 ©2021 American Physical Society

https://orcid.org/0000-0003-2648-2020
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.103.165403&domain=pdf&date_stamp=2021-04-07
https://doi.org/10.1103/PhysRevB.103.165403


DEB, HOFFMAN, LOSS, AND KLINOVAJA PHYSICAL REVIEW B 103, 165403 (2021)

FIG. 1. One-dimensional nanowire with superconducting gap
aligned along the x axis with two magnetic impurities with classical
spins S1 and S2 separated by the interimpurity distance x12 = x2 − x1.
The impurity spins are exchange coupled to the quasiparticles in the
nanowire. This gives rise to YSR subgap bound states (not shown)
and effective interactions between the magnetic impurities which are
both affected by the boundaries of the nanowire.

modifies the energy of the YSR states and, subsequently, the
magnetic ground state. In the following, we consider one and
two magnetic impurities placed close to the boundary of an
effective semi-infinite one-dimensional (1D) superconductor
(see Fig. 1). Such a 1D system is particularly suitable for our
analysis as (1) we are able to obtain analytic results for the
YSR energies and the RKKY interaction and (2) we expect
an enhancement of the boundary effects in such 1D setups
as compared to magnetic impurities embedded in two- and
three-dimensional superconductors [91].

For one magnetic impurity, we find a position-dependent
energy of the induced YSR bound state. Consequently, for
sufficiently strong exchange interaction, the superconducting
condensate undergoes multiple quantum phase transitions as
the distance to the boundary is changed. For two magnetic
impurities, we find phase transitions between the FM and
AFM ground states by changing only the distance to the
boundary and keeping the interimpurity distance fixed. In the
weak exchange interaction limit, we analytically show that by
tuning the interimpurity distance appropriately, the effect of
the boundary can occur even when the impurities are deep
in the bulk of the nanowire. When the exchange interaction
between the impurity and quasiparticles is large and cannot
be treated within the RKKY framework, we find the mag-
netic ground state numerically and again observe a similar
dependence of the ground-state configuration on the distance
to the boundary. In this limit, the contributions from both the
quasiparticle states and the YSR bound states become crucial
in determining the ground state of the system.

The outline of the paper is as follows. In Sec. II, we
introduce a continuum Hamiltonian of an effective 1D su-
perconductor hosting the magnetic impurities and find the
Green’s function in the presence of the boundary analytically.
We first describe the analytical results for the YSR energy of
a single magnetic impurity in a semi-infinite superconductor
in Sec. II A. This is followed by a study of the RKKY inter-
action between two magnetic impurities in a semi-infinite 1D
superconducting wire in Sec. II B. Next, using a discretized
Hamiltonian corresponding to the continuum model, we nu-
merically include contributions to the total energies of both
the subgap YSR states and the supragap quasiparticle states to
determine the ground-state configuration in Sec. III. Although
the ground-state configuration is primarily determined by the
contribution from the bulk states, we show that the YSR states

dominate in determining the phase boundary between the FM
and the AFM phases in the limit of large exchange interaction.
Finally, we present a summary of our results.

II. ANALYTICAL RESULTS

We consider two classical magnetic impurities placed on a
1D wire, aligned along the x axis, in proximity to an s-wave
superconducting (SC) substrate (see Fig. 1). The impurities S1

and S2 are located at a distance x1 and x2 from the boundary
of the wire, respectively. The interimpurity distance is denoted
by the relative coordinate x12 = x2 − x1.

The system is described by the Hamiltonian H = H0 +
Himp, which is a sum of the kinetic term, of the supercon-
ducting pairing term, and of the exchange term describing
coupling between the spins of magnetic impurities to the
electrons in the 1D wire:

H0 = 1

2

∫
dx �†(x)

[(
− h̄2

2m

d2

dx2
− μ

)
τz + �τx

]
�(x)

≡ 1

2

∫
dx �†(x)H0�(x) , (1)

Himp = JS

2

∑
n=1,2

�†(xn) sn · σ�(xn)

≡ 1

2

∑
n=1,2

�†(xn)H(n)
imp�(xn) , (2)

respectively, and H0 and H(n)
imp are referring to the correspond-

ing Hamiltonian densities. The Pauli matrices σx,y,z (τx,y,z)
operate in spin (Nambu) space. The Hamiltonian is written
in a basis which corresponds to the four-component Nambu
operator �(x) = [ψ↑, ψ↓, ψ

†
↓,−ψ

†
↑]T , where ψσ (x) is the

electron field operator with spin σ =↑,↓. Here, μ denotes the
chemical potential, � is the superconducting pairing strength
(induced by the proximity effect), and J denotes the strength
of the exchange coupling between magnetic impurities and
the electrons in the superconducting wire. We assume J > 0
without loss of generality such that the exchange interaction
is antiferromagnetic. The magnitude S of the impurity spin is
much larger than unity so that quantum spin fluctuations are
negligible and, therefore, S is treated as a fixed classical spin
vector. Although we are going to focus on the case of identical
magnetic impurities, which is substantially simplifying our
analytical expressions, the directions of the magnetic impuri-
ties, sn = (sin θn cos φn, sin θn sin φn, cos θn), can be different.
We also note that, due to the spin rotation symmetry of the
system, the magnetic ground state depends only on the rela-
tive angle between two impurity spins. It is a straightforward
task to generalize our model to treat magnetic impurities of
different strengths.

The full Green’s function G = (E + i0+ − H)−1, corre-
sponding to the energy E , where i0+ represents an infinites-
imal small imaginary shift in energy, is written in position
representation as G(x1, x2; E ) = 〈x1|(E + i0+ − H)−1|x2〉.

In the absence of impurities, the unperturbed Green’s func-
tion G0 is obtained by replacing H by H0. For a translational
invariant 1D SC, i.e., in the absence of boundaries, we find
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G0(x2, x1; E ) ≡ G0(x12; E ), with

G0(x; E ) = − iπνF

[
E + �τx√
E2 − �2

cos(kF x) + iτz sin(kF |x|)
]

× e−|x|/ξE , (3)

where we have assumed that the energy E is counted from the
chemical potential and |E | � �. Here, ξE = √

�2 − E2/h̄vF

is the exponential decay length due to the gap, vF the Fermi
velocity, and νF = m/(π h̄2kF ) the 1D density of states (per
spin) at the Fermi energy of the metallic (gapless) phase,
with kF the Fermi wave vector. Below, we will also need the
Green’s function for energies |E | � �. In this case, we can
just use the Green’s function for gapless systems

G0
0(x; E ) = −i

m

h̄2(k + i0+)
eik|x|, (4)

where k = √
2m(E + μ). We note that in 1D there is no

power-law decay prefactor in terms of |x| in the above Green’s
function (with and without gap) in contrast to higher dimen-
sions [18].

In a semi-infinite 1D wire with a boundary at x = 0, the
wave function ψb,σ (x) must satisfy vanishing boundary con-
ditions at x = 0. Hence,

ψb,σ (x) = 1√
2

[ψσ (x) − ψσ (−x)] , (5)

where ψσ (x) is the wave function in the bulk. Con-
sequently, using the eigenstates H0ψn = Enψn for the
Green’s function representation G0(x1, x2; E ) = ∑

n(E +
i0+ − En)−1ψ∗

n (x1)ψn(x2), we see that the Green’s function

for the semi-infinite system has the corresponding form

Gb(x1, x2; E ) = G0(x12; E ) − G0(X ; E ), (6)

where X = x2 + x1. We note that the Green’s functions are
diagonal in spin space as the Hamiltonian H0 is spin indepen-
dent.

A. Single magnetic impurity

We first explore the energy of the YSR state induced by
a single magnetic impurity in the vicinity of the boundary.
In this case, as there is no contribution from the RKKY in-
teraction, we focus only on the renormalization of the YSR
energy. In the standard case of a magnetic impurity located
deeply inside the bulk of a 1D system, the energy of the YSR
bound states is well known [1–3] and given by ±Ēs, where
Ēs = �(1 − α2)/(1 + α2), with α = πνF JS.

In the presence of a boundary, we start from the Dyson
equation [18] G = G0 + G0VG, with V = ∑

n=1,2 H
(n)
impδ(x −

xn). Taking position-state matrix elements of this equa-
tion, and keeping only one impurity at a distance x1

to the boundary of the 1D SC, we find G(x1, x; E )[1 −
G0(x1, x1; E )H(1)

imp] = G0(x1, x; E ). For vanishing boundary
conditions, G0(x1, x1; E ) is given by Gb(x1, x1; E ). The sub-
gap bound-state energy Es is then found from the pole
of G(x1, x; E ) and thus must satisfy the equation det[1 −
Gb(x1, x1; Es)H(1)

imp] = 0.
Assuming the coherence length being weakly dependent

on the YSR energy, i.e., h̄vF /
√

�2 − E2 → h̄vF /� in the
exponent of Eq. (3), we obtain the YSR bound-state energy
Es after a straightforward calculation:

Es

�
= 1 − α2 + 2α2 cos(2kF x1)A − α2A2√

(1 + α2)2 + 4α4A2 + A4α4 − 4α2A[1 + (1 + A2)α2] cos(2kF x1) + 2A2α2(1 + α2) cos(4kF x1)
, (7)

where A = e−2x1/ξsc and ξsc = h̄vF /� is the superconducting
coherence length.

For the impurity sufficiently away from the boundary x1 �
ξsc, this expression considerably simplifies, reducing to the
bulk expression for the bound state Ēs, with an exponentially
small correction that exhibits Friedel oscillations induced by
the boundary:

Es

�
≈ 1 − α2

1 + α2
+ 4α2

(1 + α2)2
cos(2kF x1)e−2x1/ξsc . (8)

In Fig. 2, showing only the positive-energy solutions, we
consider two typical cases: α � 1 and α ≈ 1. If the impurity
is relatively weak, α � 1, the YSR state energy is inside
the superconducting gap and still away from zero energy
if the impurity is placed far away from the boundary [see
Fig. 2(a)]. Close to the boundary, the YSR energy oscillates
around the bulk value Ēs with the period given by λF /2,
where λF = 2π/kF is the Fermi wavelength. If the impurity
is stronger, α � 1, the YSR energy is close to but still above
zero energy for impurities far away from the boundary [see
Fig. 2(b)]. Moving the impurity closer to the boundary drives
the YSR state to a negative energy [due to the second term

in Eq. (8)] which induces a quantum phase transition of the
ground state from even parity to odd parity [8–12,17]. As the
energy continues to oscillate between positive and negative
values as the impurity approaches the boundary, the system

FIG. 2. The energy of the YSR state Es/� [see Eq. (7)] as a
function of the distance kF x1 of the impurity away from the boundary
for (a) α = 0.55 and (b) α = 0.96. The energy Es oscillates around
its bulk value. (b) If the YSR energy is close to zero energy for a
magnetic impurity placed far away from the boundary, then moving
it closer to the boundary can induce a quantum phase transition and
change the occupancy of the YSR bound state. The coherence length
is fixed to kF ξsc = 40.
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undergoes a series of quantum phase transitions in which
the parity of the ground state oscillates. The parity change
occurs at positions x1 for which Es(x1) = 0. From Eq. (7) we
see that this is the case if x1 > 0 satisfies the transcendental
equation

cos(2kF x1) = 1

2
e−2x1/ξsc − 1 − α2

2α2
e2x1/ξsc . (9)

From this expression we conclude that the quantum phase
transitions are possible for values of α close to one. Generally,
Eq. (9) has multiple solutions [see Fig. 2(b)]. Evidently, the
parity of the ground state can be chosen by appropriate posi-
tioning of a magnetic impurity with respect to the boundary.
We note that in this work we have neglected the local effect of
the magnetic impurity on the superconducting order parame-
ter, which should be determined self-consistently [12,18]. In

this case, the YSR energy will change discontinuously at zero
energy.

B. Two magnetic impurities

Next, we consider two identical magnetic impurities lo-
cated at positions x1 and x2, respectively. There are now two
energetic contributions which we need to consider: One are
the YSR energies of the bound states associated with each im-
purity, and the other one is the RKKY interaction between the
two magnetic impurities transmitted by the electrons of the su-
perconductor. First, the energy spectrum, generally, contains
two in-gap YSR states. Similarly to the single-impurity case,
the two-impurity YSR energies can be found by determining
the poles of the Green’s function dressed by scattering from
two impurities. Using again the Dyson equation, we readily
find that the energies must satisfy the following equation:

det
{
1 − [

1 − H(1)
impGb(x1, x1; Es)

]−1H(2)
impGb(x1, x2; Es)

[
1 − H (2)

impGb(x2, x2; Es)
]−1

H (1)
impGb(x2, x1; Es)

} = 0. (10)

Although far away from the boundary x1, x2 � ξsc, the so-
lution of this equation can be found analytically [17], the
analysis is considerably more complicated when the impuri-
ties are near the boundary of the wire. We thus postpone a
discussion of this case to Sec. III where we solve the problem
exactly within a tight-binding approach.

Second, we turn now to the RKKY interaction, which is
valid when the exchange coupling J is weak, and Himp can be
treated perturbatively. In this case, the YSR states are near the
gap edge and their energies and correlations can be neglected.

Following the usual RKKY type of analysis [65–82,84–
87,89,90], we find an effective exchange interaction between
magnetic impurities si located at positions xi, i = 1, 2, given
by the following expression:

HRKKY
1,2 = − (JS)2

π
Im

∫ EF

−∞
dE Tr[(s1 · σ )

× Gb(x1, x2; E )(s2 · σ)Gb(x2, x1; E )], (11)

where EF is the Fermi energy and Tr is the trace over the elec-
tron spin degrees of freedom. When the distance between the
impurities is smaller than ξsc, the superconducting correlations
can be neglected and, using Eq. (6) with Eq. (4) we find that
Eq. (11) reduces to

HRKKY
1,2 = 2m(JS)2

π h̄2 [F (x12) + F (X ) − 2F (x2)]s1 · s2

≡ 2m(JS)2

π h̄2 Fsum(x1, x2) s1 · s2, (12)

where F (x) = Si(2kF x) − π/2, with Si(y) denoting the sine
integral function. λF = 2π/kF is the Fermi wavelength and
the asymmetric dependence of the RKKY Hamiltonian on x1

and x2 originates from our assumption x2 � x1, i.e., x12 �
0. Evidently, the interaction between the impurity spins is
of Heisenberg type. The ground-state configuration is ferro-
magnetic for Fsum < 0 and antiferromagnetic for Fsum > 0.
Although F (x) oscillates, upon averaging over a Fermi wave-

length, we expect F (x12) to be generally a dominant term
in Eq. (12) as F (x) scales inversely with the distance x and
x12 � x2 � X . For distances greater than the coherence length
ξsc, the RKKY interaction is exponentially suppressed. When
the impurities are located far away from the boundary while
remaining close to each other such that x1, x2 � ξsc � x12,
F (X ) and F (x2) can be neglected and Eq. (12) takes the usual
form of the RKKY interaction in the absence of the boundary
effects [65–67,69,70,72,92–96] with the position dependence
given by HRKKY

1,2 ∝ F (x12) s1 · s2.
In Fig. 3, we plot Fsum(x1, x2) as a function of x1 and x2,

where the red (yellow) regions denote Fsum < 0 (Fsum > 0)
indicating a FM (AFM) ground state. The lines parallel to
the diagonal x2 = x1, i.e., x12 = 0, are the regions of constant
x12, while X remains constant along the lines parallel to the
antidiagonal x2 = −x1. In the region around the line x12 = 0,
the RKKY coefficient Fsum does not change sign along the
constant x12 lines, implying no transition in the ground-state
spin configuration as x12 is unaltered. This arises from the
fact that for x12 → 0, the RKKY Hamiltonian HRKKY

1,2 defined
in Eq. (12) is dominated by F (x12). Therefore, near these
points in parameter space, the ground-state configuration is
only a function of x12, similar to the conventional RKKY
interaction in the absence of boundaries. However, with in-
creasing magnitude of x12, |F (x12)| decreases and even goes
through zero and, as a consequence, the two other terms F (X )
and F (x2) in Eq. (12) become significant. The interplay be-
tween these terms can then induce oscillations in Fsum, even
along lines of constant x12. In particular, for large x12, e.g.,
|x12| = 2.6λF (green dotted line in Fig. 3), the transitions
between the FM and the AFM phases upon changing X are
particularly pronounced. Evidently, these transitions in the
magnetic ground state are solely due to the boundary effects
whose contributions are encoded in the terms F (X ) and F (x2)
in the RKKY Hamiltonian. Conversely, for some values of
x12, e.g., the blue dotted line in which |x12| = 1.75λF , the
ground-state configuration is independent of X . We always
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FIG. 3. Color plot of the RKKY coefficient Fsum as a function of
x2/λF on the x axis and x1/λF on the y axis, where λF = 2π/kF is
the Fermi wavelength. The red (yellow) color denotes the region in
which Fsum is negative (positive) and hence the ground state is FM
(AFM). The green dotted line and the blue dashed line parallel to
the diagonal are two lines of constant x12, while X remains constant
along the black dashed-dotted line perpendicular to them. The figure
exhibits oscillations between the FM and AFM ground states along
the constant x12 lines, unlike the conventional RKKY interaction
obtained far away from boundaries.

observe oscillations between the FM and the AFM phases
along the lines of constant X (black dashed-dotted line in
Fig. 3) as F (x12) generally dominates over F (X ).

Qualitatively, one can easily interpret Fig. 3 in the limit x1,
x2, x12 � λF , in which Si(2kF x) − π/2 ≈ cos(2kF x)/2kF x,
wherein we can make use of the following approximation
[72]:

Fsum ≈ cos(2kF x12)

2kF x12
+ cos(2kF X )

2kF X
− cos(2kF x2)

kF x2
. (13)

If the interimpurity distance x12 is chosen such that 2kF x12 ≈
(2n + 1)π/2, where n is an integer, then F (x12) ≈ 0. Thus, at
such values of the interimpurity distances, the RKKY coeffi-
cient Fsum will be dominated by the boundary-induced terms
F (X ) and F (x2). The green dotted line in Fig. 3 corresponds
to |x12| = 2.6λF (n ≈ 10). Hence, as x1 and x2 are modified
keeping x12 unaltered, oscillations in the ground-state con-
figuration can be seen along this line, originating from the
interplay between F (X ) and F (x2) in Eq. (13). On the other
hand, when 2kF x12 ≈ nπ , |F (x12)| is a local maximum and
hence dominates over the other two terms in Eq. (13). The
blue dashed line with |x12| = 1.75λF in Fig. 3 satisfies this
condition (n ≈ 7) and the ground state exhibits the predicted
behavior.

III. NUMERICAL RESULTS

In this section we depart from an analytical analysis
and use a tight-binding Hamiltonian description of our two-
impurity system. This allows us to go beyond the small-J limit
to find numerically the energies of hybridized YSR states and
to determine the magnetic ground state of the two impurities
for any value of J .

The tight-binding Hamiltonian has the following form:

H0 = − t
∑
n,σ

c†
n,σ cn+1,σ − μl

2

∑
n,σ

c†
n,σ cn,σ

+
∑

n

�c†
n,↑c†

n,↓ + H.c., (14)

Himp = JS
∑

n

c†
nsn · σ

(
δn,n1 + δn,n2

)
cn,

where cn = [cn,↑, cn,↓]T and cn,σ is the annihilation op-
erator acting on an electron with spin σ =↑,↓ at a lattice
site n = x/a, a being the lattice spacing; t is the hopping
amplitude, μl denotes the chemical potential, and J denotes
the exchange interaction strength between the impurity and
the substrate. We have identical magnetic impurities, while
the spin directions sn = (sin θn cos φn, sin θn sin φn, cos θn) of
the magnetic impurities can be different, as also considered
previously. The spin-rotation symmetry of the system ensures
that the magnetic ground state depends only on the relative
angle θ = θ2 − θ1 between the impurity spins. The total num-
ber of lattice sites is N . We define a quantity J̃ = JS which we
will use later in our calculation to simplify the representation
of results. As usual, the tight-binding description is just the
discretized version of the continuum Hamiltonian H given
in Eq. (2), and as such the lattice spacing a has no relation
to an atomistic structure, it is just a discrete length chosen
sufficiently small such that the numerics converges and the
tight-binding description becomes an accurate approximation
of the continuum model.

A. Single magnetic impurity

We first check our results for a single impurity discussed
in Sec. II A using the above tight-binding Hamiltonian. The
energy of the YSR bound states is calculated numerically by
diagonalizing the lattice Hamiltonian and plotted as a func-
tion of the dimensionless distance x1/a between the impurity
and the boundary. We choose μl = −1.9t and � = 0.005t ,
which corresponds to a Fermi wavelength λF ≈ 20a and a
superconducting coherence length ξsc ≈ 126a, respectively.
Here, we choose the chemical potential to be close to the
bottom of the band. In this case, the Fermi wavelength λF � a
and the lattice model is a good description of the contin-
uum: the deviation from the quadratic dispersion due to the
higher-order terms is negligible. The superconducting gap �

is chosen to be much smaller than the Fermi energy to be in
the regime typical for realistic systems where ξsc � λF . In
Figs. 4(a) and 4(b), we plot the YSR bound state energy as
a function of distance x1 away from the boundary for J̃ = t
and J̃ = 0.644t , respectively. We choose our parameters such
that for impurities far away from the boundary the energy of
the corresponding YSR states are the same as in Fig. 2 for the
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FIG. 4. The figure shows YSR energy Es/� as a function of
the distance x1/a of the impurity away from the boundary for (a)
J̃ = 1.0t and (b) J̃ = 0.644t . We used the following values of the
parameters: N = 1000, μl = −1.9t , � = 0.005t . As the impurity
approaches the boundary, the YSR energy oscillates with a period-
icity of λF /2 around its value obtained deep inside the bulk. The
amplitude of oscillations decays exponentially due to the presence
of the superconducting gap. In (b), close to the boundary, the YSR
energy crosses the chemical potential indicating the quantum phase
transition.

continuum case. Evidently, at these values of J̃ , the energy of
the YSR states lies close to the middle of the superconducting
gap for impurities placed far away from the boundary. Hence,
these J̃ values correspond to the limit of strong coupling with
α being close to one. As the impurity is moved closer to the
boundary, we observe oscillations in the YSR energies around
their bulk values. The oscillations have a periodicity of λF /2
with an exponentially decaying amplitude of the form e−x1/ξsc

originating from the superconducting gap, in accordance with
the analytical result. In Fig. 4(b), the YSR energy lies close
to zero when the impurity is placed deeply inside the bulk of
the system and oscillates around zero as the impurity is placed
closer to the boundary. Evidently, this indicates the quantum
phase transitions, in which the parity of the ground state of
the system changes as the impurity-boundary distance is al-
tered. These features, observed numerically, are in very good
agreement with the analytical results for the YSR energies
presented in Fig. 2.

B. Hybridization between the YSR states

Next, we investigate how the closeness to the boundary
affects the YSR energies of two magnetic impurities and, thus,
the magnetic ground state of the system. In previous studies, it
has been observed that, far away from the boundary, the total
energy of such a system is extremized when the impurities
are collinear [17]. In this study, we also focus on ferromag-
netic and antiferromagnetic configurations. First, we consider
two impurities aligned ferromagnetically with equal exchange
coupling strengths. Due to the spatial overlap between the
YSR states created by the two impurities, their energy levels
split, lifting the initial twofold degeneracy [17,48]. We nu-
merically calculate the energy of the hybridized YSR states
for different positions of the impurities with respect to the
boundary, keeping the interimpurity distance fixed to the value
x12 = 28a for J̃ = 1.0t . Here, we choose J̃ to be large such
that we work in the strong coupling limit in which the hy-
bridization between the YSR states is substantial. In Fig. 5(a),
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FIG. 5. The energies Es for two YSR states (blue and red) for
(a) the FM configuration and (b) the AFM configuration of the
magnetic impurities as a function of the distance x1/a between the
first impurity s1 and the boundary for a fixed interimpurity distance
x12 = 28a. Note that in (a) the two YSR states are strongly hy-
bridized, whereas this is not the case in (b). In (a) the hybridized
energy levels of the YSR states oscillate around their bulk value
with an increasing amplitude of oscillation close to the boundary.
The YSR energies for the AFM configuration in (b) do not hybridize
with each other but exhibit oscillations induced by the boundary.
Each of the YSR energies oscillates with a different amplitude as
they originate from impurities sitting at different distances from the
boundary. The various parameters are chosen as J̃ = 1.0t , N = 1000,
μl = −1.9t , and � = 0.005t .

the energy Es of two YSR states is plotted as a function of the
distance x1/a. We find that the boundary effects influence the
hybridization between the YSR states leading to oscillation
of the energy levels with a λF /2 periodicity, similar to the
single-impurity system. As the impurity-boundary distance
increases, the amplitude of oscillation decays exponentially
with a decay length of ξsc. In the case of AFM orientation,
the YSR wave functions are orthogonal to each other, which
keeps the YSR energy levels degenerate when impurities are
far from the boundary. As the impurities approach the bound-
ary, the YSR energies corresponding to each impurity exhibit
oscillations with a periodicity of λF /2 caused by the boundary
effects described above in the case of a single impurity. The
amplitudes of the oscillations of the YSR energies are differ-
ent as the impurities are located at different distances from the
boundary. The presence of boundary, thus, lifts the degeneracy
of the YSR energies as shown in Fig. 5(b).

C. Magnetic ground state of two impurities

The ground-state energy of the system is dependent on
the relative angle θ between the magnetic impurities. The
total energy of the system Eg(θ ) = Eqp(θ ) + EYSR(θ ) is
calculated by summing over all the negative-energy states,
i.e., all the energies below the chemical potential [9,15].
Generally, Eg(θ ) can be divided into two contributions:
EYSR(θ ) coming from the YSR states and Eqp(θ ) coming
from the quasiparticle states. The ground-state energy
difference between the collinear configurations of the
impurities is given by δEg = Eg(0) − Eg(π ) where θ = 0
(θ = π ) denotes a FM (AFM) configuration, respectively.
For δEg > 0 (δEg < 0), the ground state of the system
is AFM (FM). In this section, we investigate how the
ground-state configuration depends on the impurity positions
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(a) (b) (c)

(d) (e) (f)

FIG. 6. The energy differences δEYSR (left panel), δEqp (middle panel), and δEg (right panel) between FM and AFM configuration as a
function of x1/a along the x axis and J̃/t along the y axis. In the first and second rows of the figure, the interimpurity distance is x12 = 28a
and 40a, respectively, such that 2kF x12 is approximately an odd integer multiple of π/2 in the first row and an integer multiple of π in the
second row. The red (yellow) patches indicate a FM (AFM) configuration of impurities. The magnetic configuration alternates between the
FM and AFM phases with a periodicity of λF /2. The amplitude of oscillations decays exponentially as a function of x1 due to the presence
of the superconducting gap �. The blue dashed line in the figures denotes the exponentially decaying envelope function. The phase diagram
for the total magnetic ground state is a sum of the contributions coming from the YSR and the quasiparticle states. Evidently, the oscillations
in δEg are observed for a larger range of J̃ in (c) than in (f) in the second row, indicating the stronger effect of boundary when 2kF x12 is an
odd-integer multiple of π/2. The various parameters are chosen as μ = −1.9t , � = 0.005t , and N = 500.

x1 and x2 as well as on the exchange interaction strength
J̃ . We also pay attention to the relative contributions of the
YSR and quasiparticle states. The former should dominate
at longer distances since the YSR states do not have a
power-law decay in one dimension. As such, we analogously
define δEYSR = EYSR(0) − EYSR(π ) and δEqp = Eqp(0)
− Eqp(π ).

In Fig. 6, we plot δEYSR [Figs. 6(a) and 6(d)], δEqp

[Figs. 6(b) and 6(e)], and δEgr [Figs. 6(c) and 6(f)] as a
function of x1 and J̃ , for two different values of the interim-
purity distance x12; the preference of the FM (AFM) ground
state is indicated by red (yellow) patches in the figure. In the
first row of Fig. 6, we choose x12 = 28a such that 2kF x12 ≈
(2 × n + 1)π/2 with n = 5. According to our analysis of the
RKKY interaction in Sec. II B, the boundary effects should
be relatively strong for x12 satisfying such a condition. Here,
we investigate numerically such boundary effects for various
values of the exchange interaction strength J̃ . We start with
small values of J̃ at which the YSR energies lie close to the
superconducting gap edge and then increase J̃ to reach the
strong coupling limit.

In Fig. 6(a), the magnitude of δEYSR is negligibly small for
small J̃ . With increasing J̃ , we observe oscillations in δEYSR

between the FM (red) and the AFM (yellow) configurations

as a function of x1 and with a periodicity of λF /2. Further in-
crease in J̃ reduces such oscillations in δEYSR as a function of
x1. Moreover, the relative size of the red (FM) region shrinks
as the impurities move away from the system boundary as
shown in Fig. 6.

The salient features in Fig. 6(a) can be understood as fol-
lows by considering the energies of the YSR states: When
J̃ is small, the YSR energies lie close to the gap edge and,
consequently, the energy difference between the FM and AFM
configurations is small. With increasing J̃ the YSR states
move deeper inside the superconducting gap. The boundary-
induced hybridization between these states then results into
oscillations in the YSR energies around zero as a function of
x1, thereby giving rise to phase transitions between the FM
and the AFM configurations with varying impurity-boundary
distances [17]. As we keep on increasing J̃ , the YSR energies
move back towards the gap edge, thus again reducing the
oscillations between the FM and the AFM phases. To analyze
the decay in the relative phase space of the FM phases as x1

increases, we perform a curve fitting of the envelope function
[shown by the blue dashed curve in Fig. 6(a)] obtained by
connecting the topmost points of the phase boundary between
the red and yellow regions. We find that the envelope is an
exponentially decaying function of x1 with a decay length of
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order of ξsc. This feature originates from the exponential de-
cay of the boundary-induced hybridization between the YSR
states as discussed in Sec. III B.

Next, in Fig. 6(b), we plot δEqp to analyze the contribution
of the quasiparticle states to the total energy. Here too, the
magnetic configuration oscillates between the FM (red) and
AFM (yellow) phases as a function of x1. For small values of
J̃ , we observe strong boundary-induced oscillations in δEqp

around zero. As we increase J̃ , the oscillations between FM
and AFM phases get suppressed and the magnetic configu-
ration becomes almost independent of the impurity-boundary
distance x1. With further increase in J̃ , δEqp again exhibits
oscillation around zero as a function of x1, similar to that in
the small-J̃ limit.

To understand the origin of the oscillations in δEqp, we
first note that at small values of J̃ , the exchange interaction
between the impurities is of the RKKY type. At interimpurity
distances satisfying the condition 2kF x12 = (2n + 1)π/2, the
RKKY Hamiltonian in Eq. (12) is independent of x12 and
depends only on the boundary-induced RKKY coefficients
as described in Sec. II B, thus giving rise to the strongest
boundary effect for this choice of x12. The phase oscillations
have a periodicity of λF /2 as also predicted by the RKKY
interaction. The envelope function marked by the blue dashed
line in Fig. 6(b) exhibits exponential decay as a function of
x1, induced by the presence of the superconductivity. We also
obtained that for very large values of J̃ , the oscillation ampli-
tude of δEqp decays and the preferable magnetic configuration
is an AFM ordering, independent of x1 values.

Finally, in Fig. 6(c) we plot the energy difference δEg

including both the subgap YSR states and the bulk quasi-
particle states. The phase diagram is a composite of the
contributions coming from both YSR states and quasiparti-
cles. Evidently, the phase boundary between the magnetic
configurations is largely determined by the YSR states [14].
This arises from the fact that at 2kF x12 = (2n + 1)π/2, the
strongest term F (x12) in the RKKY interaction expression,
mediated by the quasiparticle states, goes to zero. As a re-
sult, the boundary-induced effect in the RKKY interaction is
substantially overpowered by the contribution from the YSR
states, which do not have any power-law decay prefactor in
one-dimensional systems. In Fig. 6(c), for small values of J̃ ,
the oscillation in δEg around zero is negligible, showing a
weak effect of the boundary on the magnetic ground state.
With increasing J̃ , the ground-state configuration begins to
alternate with λF /2 periodicity, as also seen in the phase
diagram of δEYSR in Fig. 6(a). We observe an expansion
of the FM ground state in phase space compared to that in
Fig. 6(a), arising from the bulk contributions to the total mag-
netic ground state. As J̃ is increased further, the oscillations
in δEg decrease similar to the small exchange limit and an
AFM orientation of the impurities is favored. We find that for
large x1, the phase diagram is mostly determined by the YSR
states since the quasiparticle contributions decay as a power
law with increasing impurity-boundary distances whereas the
YSR contribution does not. Here also, the envelope function
denoted by the blue dashed curve in the figure is an expo-
nentially decaying function of x1. Our results reemphasize the
fact that the YSR states play a crucial role in determining the
correct ground-state configuration, thereby making it impor-

tant to include both the YSR states and the quasiparticle states
while finding the magnetic ground state.

In the second row of Fig. 6, we choose x12 = 40a such that
2kF x12 = n × π with n = 2. In this regime of x12, the effect
of boundary on the ground-state configuration is minimal
in the RKKY limit discussed in Sec. II B. In Fig. 6(d) for
δEYSR, the energy difference between the FM and the AFM
configurations is negligible at small values of J̃ , similar to the
phase diagram in Fig. 6(a) for x12 = 28a. With increasing J̃ ,
the energy difference exhibits oscillations around zero with a
significant amplitude and a periodicity of λF /2. These oscilla-
tions in δEYSR arise from the boundary-induced hybridization
of the YSR states whose energies lie deep inside the su-
perconducting gap at such J̃ values. With further increase
in J̃ , the oscillations in the magnetic configuration become
negligible as the YSR states go back to the gap edge, similar
to the YSR physics discussed for x12 = 28a. The envelope
(blue dashed line) obtained by connecting the critical points
of the phase boundary as discussed above is an exponentially
decaying function of x1, as also observed in the previous
regime.

In Fig. 6(e), we show the energy contribution δEqp com-
ing from the quasiparticle states. We do not observe any
oscillation in δEqp around zero as a function of x1, in-
dicating a suppression of the boundary effect. To analyze
this, we first recall that for small values of J̃ , the ex-
change interaction between the impurities is governed by the
RKKY Hamiltonian in Eq. (12). At interimpurity distance
satisfying 2kF x12 = nπ , the x12-dependent RKKY coefficient
F (x12) dominates over the boundary-induced coefficients
F (X ) and F (x2) in Eq. (12), thereby suppressing the bound-
ary effect at this regime of x12. We checked our results
for very large values of J̃ and find that such behavior
of δEqp is not limited to small-J̃ values but instead holds
for the entire range of J̃ within the checked parameter
range.

Finally, in Fig. 6(f), we plot the energy difference δEg

calculated from the total energies of two competing magnetic
ground states. In this regime too, both the YSR states and
the quasiparticle states contribute significantly to the total
energy δEg. For small-J̃ values, δEg exhibits some oscillations
between the FM and the AFM ground states as a function of
x1 but these oscillations vanish completely upon increasing J̃ .
The oscillations in δEg originate from the interplay between
the YSR and the bulk contributions to the total magnetic
ground state. Unlike the previous regime where the YSR
contribution tends to dominate over the bulk, here the bulk
contribution is of the same order as the YSR contribution
since the strongest term F (x12) in the RKKY interaction at-
tains the maximum magnitude at this regime. Therefore, the
phase boundary in the phase diagram of δEg does not closely
follow that of δEYSR. As J̃ increases, the bulk contribution
overpowers the YSR contribution, leading to the decay in the
oscillations in δEg. We also observe that the oscillations in the
ground-state configuration at small values of J̃ vanish with
increasing x1. This arises from the fact that the boundary-
dependent RKKY coefficients F (X ) and F (x2) decay with
increasing x1, whereas F (x12) remains unaltered, resulting in
an increasing magnitude of Fsum = F (x12) + F (X ) − 2F (x2)
as a function of x1. Hence, the bulk contribution begins to
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 7. The energy differences δEYSR (left panel), δEqp (middle panel), and δEg (right panel) as a function of x1/a along the x axis and x2/a
along the y axis. In the first, second, and third rows, J̃ = 0.05t , 0.5t , and 1.5t , respectively. The red regions in the phase diagrams indicate a
FM configuration while the yellow regions indicate an AFM one. The energy difference δEYSR exhibits oscillations around zero along the lines
of constant x12, originating from the boundary-induced hybridization between the YSR states. The plots for δEqp also show similar oscillations
except close to the region x12 ≈ 0. Both the YSR states and the quasiparticle states contribute significantly in the phase diagram of δEg for
the total magnetic ground state. When |x12| < λF , the phase diagram of δEg is governed by the quasiparticle contribution, while beyond this
regime, the YSR contribution dominates. The other parameters are fixed as μ = −1.9t , � = 0.005t , and N = 500.

dominate over the YSR contribution leading to the decay in
the oscillations in δEg as the impurities are moved away from
the boundary.

Next, to explore how the ground-state configuration devi-
ates from the one predicted by the RKKY analysis (see Fig. 3),
we calculate the magnetic ground state as a function of x1

and x2 for J̃ = 0.05t [weak coupling regime, Figs. 7(a)–7(c)],
0.5t [intermediate coupling regime, Figs. 7(d)–7(f)], and 1.5t
[strong coupling regime, Figs. 7(g)–7(i)]. The red and yellow
patches denote the FM and AFM configurations, respectively.

In the first row of the figure, we use J̃ = 0.05t . In Fig. 7(a),
the energy difference δEYSR for the YSR states is presented.

Again, δEYSR exhibits oscillations around zero energy along
the lines of constant x12, arising from the boundary-induced
hybridization of the YSR states. The phase diagram has sim-
ilar patterns along the constant x1 and the constant x2 lines,
respectively, indicating the symmetric nature of the boundary
effect as a function of the impurity-boundary distance. In
Fig. 7(b), we show the energy difference δEqp for the quasi-
particle states at J̃ = 0.05t . We observe transitions between
the FM and AFM configurations along the constant x12 lines.
However, close to the region x12 ≈ 0, there is no transition in
the magnetic configuration if x12 is unaltered. These features
look similar to those in the phase diagram in Fig. 3 for the
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RKKY limit of the exchange interaction. This is due to the
fact that at such a small value of J̃ , the exchange interac-
tion mediated by the quasiparticle states is of the RKKY
type.

Finally, in Fig. 7(c), we plot the energy difference δEg

between two magnetic ground states obtained by calculating
the total energy of the system. The phase diagram is obtained
from a sum of the YSR and the quasiparticle contributions,
being mostly governed by the quasiparticle states for |x12| �
λF and by the YSR states beyond that limit. As a result, we
do not observe much oscillations in the ground-state config-
uration along the constant x12 lines around x12 = 0, similar
to that in Fig. 7(b) for the quasiparticle states. With increas-
ing interimpurity distance, the RKKY interaction decays as
1/kF x12 but the YSR states, not having any power-law de-
cay in 1D, contribute significantly in determining the total
magnetic ground state. Thus, for |x12| > λF , we observe os-
cillations in the ground-state configuration along the constant
x12 lines, exhibiting a strong boundary effect in this regime.
It is interesting to note that even for such a small J̃ , the YSR
states play an important role in determining the total magnetic
ground state, thereby making it necessary to consider both
the YSR and the quasiparticle states while calculating the
magnetic ground state of impurities, even in the limit of weak
exchange interaction.

In the second row of the figure, we choose J̃ = 0.5t . The
energy difference δEYSR, plotted in Fig. 7(d), exhibits oscil-
lations around zero along the constant x12 lines except when
x12 ≈ 0. To understand this feature, first note that the YSR en-
ergies lie deep inside the superconducting gap at such a large
value of J̃ . For inter-impurity distance x12 ≈ 0, the strong
hybridization between these YSR states pushes their energies
close to the superconducting gap edge. Hence, the energy
difference δEYSR does not exhibit any oscillation around zero
along this constant x12 line [17]. In Fig. 7(e) we plot δEqp

for the same value of J̃ = 0.5t . Close to the region x12 ≈ 0,
we do not observe pronounced oscillations in the magnetic
configuration along the constant x12 lines, similar to that in
Fig. 7(b) for weak J̃ . As the magnitude of x12 increases, the
magnetic configuration starts oscillating between the FM and
the AFM phases as shown in the figure. However, the number
of constant x12 lines along which the oscillations occur is
much less compared to that in Fig. 7(b). This behavior is con-
sistent with the features seen in Fig. 6(b), where we observe
less oscillations between different magnetic configurations in
δEqp for such a strong value of J̃ .

Finally, Fig. 7(f) shows the total ground-state energy
difference δEg, which is a sum of the YSR and the quasi-
particle contributions as also seen previously. Similar to the
features in Fig. 7(c), the phase diagram of δEg is dom-
inated by the bulk contributions for |x12| � λF and thus
does not exhibit oscillations in the magnetic configuration
in a region around x12 = 0. Beyond x12 = λF , the YSR
contribution wins over the bulk one and, as a result, the
phase diagram of δEg is similar to the one of δEYSR in
Fig. 7(d).

To conclude, we increase J̃ further and in the last row of
Fig. 7, we have J̃ = 1.5t . At such a large value of the exchange
interaction, the YSR states again move towards the supercon-
ducting gap edge. The boundary-induced hybridization gives

rise to oscillations in the magnetic configuration between the
FM and the AFM phases as seen in Fig. 7(g).

In Fig. 7(h) obtained from the quasiparticle energies, there
is no oscillation along the constant x12 lines close to the region
x12 ≈ 0, as also seen above. With increasing x12, we find
that the oscillations between the two magnetic configurations
occur only along the lines satisfying the condition 2x12kF =
(2n + 1)π/2. The phase diagram for δEg in Fig. 7(i) gets
contributions from both the YSR and the quasiparticle states
as seen above for two other values of J̃ . The magnetic ground
state follows the quasiparticle states for x12 smaller than λF ,
and beyond that δEg is dominated by the YSR contribution as
shown in Fig. 7(i).

IV. CONCLUSIONS

We investigated the effects of a boundary on the YSR
states and on the magnetic ground state of two classical spins
in a 1D superconductor. We showed the change in the hy-
bridization between the YSR states as the impurities move
close to the boundary. For small exchange interaction strength
(between impurity spin and electron spins) compared to the
Fermi energy, we calculated the RKKY interaction between
the magnetic impurities in a semi-infinite system. The RKKY
interaction not only depends on the interimpurity distance, but
also on the distances of the impurities from the boundary. It is
therefore possible to drive a phase transition between differ-
ent magnetic ground-state configurations by solely changing
the impurity-boundary distances. While it is expected that
the boundary will induce Friedel oscillations in the wave
functions, the possibility that this leads to a phase transi-
tion is rather surprising and interesting. We also found that
depending on the distance between the magnetic impurities,
the boundary effect can be suppressed or enhanced. Thus,
the interimpurity distance acts as a tuning parameter of the
boundary-induced physics. Next, we numerically explored the
boundary effect for small exchange interactions and away
from this limit. Our numerical plots exhibit phase transitions
occurring as a function of the impurity-boundary distances,
similar to the analytical results for weak coupling. Moreover,
the distinctive features of the boundary effects, dependent on
the choice of the interimpurity distance, also remain unal-
tered in the limit of strong exchange interactions. We observe
that the numerically obtained phase diagram demonstrates
that the energy difference between the FM and the AFM
ground states is governed by the sum of both the YSR and
the quasiparticle contributions. Our findings thus reemphasize
the importance of including both the YSR bound states and
the quasiparticle states when determining the total magnetic
ground state. It is straightforward to generalize our results
to account for spin-orbit interactions in a 1D system as it
can be easily absorbed into the tilt of one of the spin impu-
rities by making use of the position-dependent gauge [72],
resulting in magnetic configurations that are not collinear.
We also note that, if the Fermi surface is more complicated
and consists of multiple Fermi points coming from different
bands, as is the case, for example, for carbon nanotubes, we
expect beating patterns [79] that will make the phase diagram
even richer. Our findings can be tested experimentally, e.g.,
in atomic chains, where additional magnetic impurities can
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be placed closed to the end of the chain [60–64]. Alter-
natively, one can use graphene nanoribbons with magnetic
impurities [97–99]. The spin configuration can be probed
by spin-resolved STM tips. In addition, the spin suscepti-
bility could be measured by using source-probe techniques
[91]. Finally, we note that the predicted behavior of the YSR
states can be also observed in semiconducting nanowires with
proximity-induced superconductivity, where the presence of
the YSR states was demonstrated in recent experiments
[37–42].
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