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Toroidic and antitoroidic orders in hexagonal arrays of dielectric trimers: Magnetic group approach
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Herein, we investigate symmetry-protected toroidal dipole resonances and conditions of their excitation in
a new type of electromagnetic metamaterials. These metamaterials are all-dielectric planar periodic arrays of
dielectric disks disposed on a dielectric substrate. The elementary building blocks of the array are trimers which
are distributed in hexagonal unit supercells. The highest geometrical symmetry of the unit supercell is C6v . The
analysis is fulfilled by using the representation theory of groups with application of the magnetic group theory,
which is a new approach in solving such problems. We have shown that to get access to the toroidal supermodes
of the array, the symmetry of the unit supercell must be broken twice: firstly, the C3v symmetry of the trimer,
and secondly, the C6v symmetry of the unit supercell needs to be reduced. Selection rules for the symmetric
and antisymmetric orders of the toroidal dipole moments in the arrays are defined. In particular, we have shown
that with the reduction of the unit supercell symmetry to the C2v group, the array exhibits the toroidal dipole
resonance with antitoroidic order. The arrays with the lower Cs symmetry can provide resonances with both
toroidic and antitoroidic orders. It is also shown that these arrays are always polarization sensitive. Full-wave
simulations and experiments confirm the theoretical predictions. The suggested metamaterials can provide an
enhanced light-matter interaction due to the spatially and temporally confined light in resonant systems with
very high quality factors.
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I. INTRODUCTION

The majority of physical systems possess intrinsic sym-
metries which define the areas of possible solutions of
the equations governing these systems. With the use of
group-theoretical methods, one can classify the corresponding
solutions defined by the underlying symmetries. In particular,
symmetry analysis by the group-theoretical approach has been
successfully applied to simplify the description of different
physical phenomena and used as a general guideline to design
many practical devices in electronics, acoustics, and optics
[1–7]. To date, there exist many textbooks describing the use
of group theory for solving specific physical problems [8–14].

Besides simplification of numerical calculations, group
theory can be applied to classify promising systems for further
investigations, such as in the case of search for multiferroic
materials (ferroics) [15,16]. Different ferroics are classified
in terms of spatial inversion and time reversal symmetry of
their order parameter [17]. In general, four primary orders
are distinguished in ferroics: ferroelasticity, ferroelectricity,
ferromagnetism, and ferrotoroidicity [18–20] (in what fol-
lows, the prefix “ferro” for the ferrotoroidicity is omitted).
The magnetoelectric coupling is a secondary ferroic effect,
which is inherent to toroidic order. It is of special interest in
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applications [21]. The occurrence of multiple ferroic proper-
ties in one phase is related to specific symmetry conditions a
material has to accomplish.

The lack of natural ferroic materials usable in optics has
motivated a search for structures and systems that may exhibit
magnetoelectric coupling arising from the metamaterial de-
sign. In particular, specifically designed particles (meta-atoms
or metamolecules) can acquire coupled electric and mag-
netic polarizabilities associated with the conduction currents
that occur when metamaterials are irradiated by electromag-
netic fields [22–24]. Such particles typically are metallic
split-ring resonators (SRRs) whose dynamic magneto-optical
response somewhat resembles the static one of natural ferroic
substances [25–30]. To describe the properties of such meta-
materials composed of SRRs, the group-theoretical approach
can be used. It allows one to calculate the electromagnetic
modes of a resonator and determine whether this resonator
exhibits a desired magneto-optical response [31,31–38]. Nev-
ertheless, as far as we know, such an approach has not
previously been used to describe the properties of SRR-based
metamaterials exhibiting toroidicity.

Recent progress in the area of metamaterials is related
to the investigation of their all-dielectric implementations
[39–42] that are promising candidates to overcome some is-
sues inherent to metallic SRR-based metamaterials at higher
frequencies. In all-dielectric metamaterials, Mie resonances
are related to electric and magnetic multipoles produced
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by oscillating polarization charges and currents, respec-
tively, providing an alternative route for achieving dynamic
magneto-optical response [43–47]. Symmetry of the dielec-
tric resonators is tightly related to the mode structure which
determines the electromagnetic features of the resonator. The
structure of fields can be derived using the group-theoretical
approach [48,49].

Group-theoretical methods are especially useful for meta-
materials whose constitutive particles have a complex shape
[50] or possess an in-plane broken symmetry [51–55]. The
resonant conditions in such metamaterials are stipulated by
inherently nonradiating symmetry protected (dark) modes ex-
isting in the particles. Such modes become weakly radiative
when the symmetry of the particles is broken (such symmetry
protected states are also referred to as trapped modes [56]
or, recently, as bound states in the continuum (BICs) [57]).
The coupling to these trapped modes with incoming radiation
can be controlled by the strength of asymmetry introduced in
the particle. After a group-theoretical analysis of asymmet-
ric particles, it is revealed that the dynamic magneto-optical
response of the entire metamaterial can resemble the char-
acteristics of ferroics with the magnetic dipole arrangement
in either ferromagnetic or antiferromagnetic order when the
trapped mode is excited [58,59].

The mechanism of symmetry reduction for the trapped
mode excitation covered by the group-theoretical approach
is also applicable to all-dielectric metamaterials composed of
particle clusters [60]. In the context of ferroics, such meta-
materials can possess toroidicity arising from the collective
modes (supermodes) of the clusters [61–65]. Due to low in-
herent losses in constituent materials, the symmetry-protected
toroidal modes in all-dielectric metamaterials demonstrate
a very high quality factor (high-Q) resonant response ac-
companied by the near-surface confinement of the strong
electromagnetic field [66–68]. Remarkably, the conditions
for the appearance of toroidal dipole modes in cluster-based
all-dielectric metamaterials can be expressed in the explicit
electromagnetic formulation and described in the group-
theoretical language [69].

In the present paper, we aim to introduce a special approach
based on the magnetic group theory to describe characteristics
of the toroidal supermodes, which are implemented in cluster-
based all-dielectric metamaterials. The constitutive cluster of
these metamaterials has a hexagonal geometry, which is a
key design in the topological photonics [70–75]. We demon-
strate that in the given metamaterials, it is possible to realize
excitation of the toroidal supermodes possessing either sym-
metric order (toroidal order, TO), when the toroidal dipole
moments of all trimers are parallel, or antisymmetric order
(antitoroidal order, ATO), when the toroidal dipole moments
in the neighboring trimers are antiparallel having a staggered
distribution. We define the selection rules and show in detail
how these resonances can be excited by a specific breaking
of the metamaterial unit cell symmetry. We perform a set of
numerical simulations supported by microwave experiments
to reveal specific physical properties of such metamaterials.

The rest of the paper is organized as follows. Section II
introduces the concept of a toroidal dipole moment existing in
a trimer of dielectric disks. Then, in Sec. III, a metamaterial
composed of hexagonal unit supercells of trimers is designed

to obtain a system supporting a toroidal dipole moment. In
Sec. IV, the symmetry analysis of the hexagonal unit supercell
is performed. We explain what perturbations should be intro-
duced into the supercell to excite the toroidal dipole moments
of the hexagonal cluster by the field of a normally incident lin-
early polarized wave. The theory of magnetic groups applied
to the hexagonal structure is presented in Sec. V. This theory
predicts that the toroidal dipole moments of the supercell can
appear either in symmetric or antisymmetric order. The selec-
tion rules for these orders are derived in Sec. VI. Theoretical
description and numerical simulations of excitation of the
symmetric and antisymmetric orders in arrays due to specific
perturbations of their hexagonal unit supercell are given in
Secs. VII and VIII, respectively. In Sec. IX, the verification
of theory with a microwave experiment is provided. The pre-
sented results are discussed and summarized in Secs. X and
XI, respectively.

II. TOROIDAL DIPOLE MODE OF TRIMER

Clusters of dielectric particles (meta-molecules) possess
a set of natural modes (eigenmodes) that are defined by the
cluster symmetry and obey group theory rules. This is similar
to the case of conventional molecules. The eigenmodes can
be related to coefficients of the multipole decomposition of
the corresponding Mie solution derived for the problem of
particles interacting with an electromagnetic field [76]. When
the particles are arranged into a cluster, the eigenmodes of
individual particles strongly interact and form supermodes of
the cluster. The exact arrangement of the dielectric particles
within a cluster therefore has an essential impact on the sym-
metry of the resulting supermode.

In the present study, we consider a complex hexagonal
cluster consisting of six trimers of dielectric disk-shaped par-
ticles. Thus we have the following interaction hierarchy: the
eigenmodes of three individual disks are coupled into the
trimer eigenmodes, which are then coupled into the hexagonal
cluster supermode. We are interested in a particular eigen-
mode of the trimer, which exhibits a significant contribution
from the toroidal dipole moment [64,68,69]. Then we con-
sider the coupling of these toroidal eigenmodes within the
hexagonal cluster which can be realized as an antitoroidal or
toroidal state.

One should note that the analysis of eigenmodes of a com-
plex system of dielectric particles does not necessarily require
the involvement of the concept of a toroidal moment. For
instance, a mode coupling theory used for designing dielectric
antennas and microwave circuits can be considered as an alter-
native approach [77–79]. Nevertheless, we are convinced that
our description based on the toroidal modes makes it possible
to obtain a clear physical picture of the realization of a specific
resonant state in the system under consideration.

In what follows, we analyze the conditions of appearance
of a toroidal dipole moment in a single trimer of dielectric
disk-shaped particles. Each disk in the trimer is situated in the
vertex of an equilateral triangle, therefore the trimer symmetry
is described by the point group C3v . The triangle side size
is ad . The radius and thickness of the disks are rd and hd ,
respectively. The disks are made of a nonmagnetic material
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with permittivity εd and arranged in a homogeneous ambient
space with permittivity εs = 1.

A toroidal dipole moment of a system with electric current
density distribution j(r, ω) (where r is the radius-vector of a
volume element and ω is the angular frequency) is governed
by the following equation [80–83]

T = 1

10

∫
V

[(r · j)r − 2r2j]dr, (1)

where V is the volume occupied by the current density. Here
we omitted the arguments of the current density j(r, ω) and
consider that the toroidal dipole moment is located at the
origin of the chosen coordinate frame. Equation (1) can be
directly obtained from the Cartesian multipole decomposition
of the current density where toroidal dipole moment presents
a third-order multipole term [82,83]. This multipole decom-
position is based on the Taylor series of the Dirac δ function.

In the approach based on the spherical harmonic expansion
of radiated (scattered) waves [84,85], the explicit contribution
of the toroidal dipole moment in the multipole decomposition
does not appear, and it is associated with the exact electric
dipole moment [86]:

p = i

ω

∫
V

(
j0(kr)j + k2

ω

j2(kr)

(kr)2
[3(r · j)r − r2j]

)
dr, (2)

where j0(kr) and j2(kr) are the spherical Bessel functions of
the zero and second order, respectively, k is the wave number
in surrounding medium. Applying the corresponding Taylor
expansions to the Bessel functions in Eq. (2) and writing out
the first three terms explicitly, one obtains

p = i

ω

∫
V

jdr + ik

c

1

10

∫
V

[(r · j)r − 2r2j]dr

+ ik3

c

1

280

∫
V

[3r4j − 2r2(r · j)r]dr + . . .

= p0 + ik

c
T + ik3

c
T(R) + . . . , (3)

where c is the light speed in surrounding medium, p0 is the
Cartesian electric dipole moment obtained from the δ-function
Taylor expansion corresponding to the long-wavelength ap-
proximation (LWA) [84], T(R) is the mean-square radius of
the toroidal moment [87,88].

From Eq. (3), one can consider the toroidal dipole moment
as only a next correcting term to the Cartesian electric dipole
moment p0 used for calculation of the exact electric dipole
moment p, and, thus, the toroidal dipole moment cannot be
considered separately. However, this statement does not reflect
total physical role of the toroidal dipole moment. Indeed,
depending on the frequency of electromagnetic fields, shape,
size, and material parameters of an electric current system, it
can appear that the first term in Eq. (3) is very small, or even
equals to zero, so that the main contribution goes from the
toroidal term (ikT/c). In this case, the electric current systems
can be considered as supporting a purely electric toroidal
response, and, thus, the toroidal dipole moment acquires an
independent physical meaning.

To demonstrate this peculiarity, we consider the trimer
irradiation by an electromagnetic plane wave from both lateral
and frontal directions. The absolute value of the exact electric
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FIG. 1. Exact electric dipole moment with corresponding con-
tributions of the LWA electric dipole and toroidal dipole moments
of a single trimer for its (a) lateral and (b) frontal irradiation by a
linearly polarized wave. The designation of the vectors k and E of the
incident wave and an appearance of the trimer toroidal eigenmode
are given in the inserts. In the eigenmode, red and black arrows
correspond to the flow of electric polarization currents and magnetic
field respectively, the bold yellow arrow indicates the toroidal dipole
moment T, and the bold blue arrows indicate the magnetic dipole
moments m of individual disks. The eigenmode position on the
wavelength scale is marked by a red cross. Parameters of the trimer
are: εd = 22, hd/D = 0.45, and at/D = 1.125.

dipole moment p and the corresponding contributions of the
LWA electric dipole p0 and the toroidal dipole moments T
together with the mean-square radius T(R) are presented in
Fig. 1 for two irradiation conditions of the linearly polarized
plane wave. Calculation procedure corresponds to the descrip-
tion from [68]. In our calculations, we normalize the incident
wavelength and all geometrical parameters of the problem on
the disk diameter D = 2rd .

One can see that at the lateral irradiation condition
[Fig. 1(a)], the exact dipole moment of the trimer is reso-
nantly excited. Decomposition of its value on the basis of
Eq. (3) shows that the toroidal dipole T provides the main
contribution in the resonant exact electric dipole moment p
[the corresponding wavelength is indicated by a red cross in
Fig. 1]. In this case, the electric dipole response of the trimer
is associated with excitation of the trimer toroidal dipole mode
[see the inset with the trimer toroidal eigenmode in Fig. 1(a)].
For the other irradiation conditions [Fig. 1(b)], the toroidal
dipole mode is not excited. In this case, the exact dipole
moment p is basically determined by the interference between
the p0 and T dipole moments. Note that in this condition the
significant suppression of p appears at the region of large
wavelengths as a result of destructive interference. This state
can be attributed to the anapole state [89–92].

Therefore it is revealed that for the given eigenmode of
the trimer, the toroidal dipole moment provides a dominant
contribution, and this eigenmode can arise only for a certain
type of excitation of the incident field. In particular, this
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FIG. 2. Coordinate frame and schematic view of a dielectric
hexagonal array composed of trimer-based supercells. The unit su-
percell is outlined by a red dashed contour.

toroidal mode can be considered as a dark and bright state for
the field of frontally and laterally incident wave, respectively.
In what follows, we show the mechanism of access to this
indicated dark state under frontal irradiation conditions in
metamaterials composed of hexagonal clusters of trimers by
breaking their symmetry.

III. METAMATERIAL WITH HEXAGONAL
UNIT SUPERCELL

We consider a metamaterial composed of a pla-
nar array with trimers of dielectric disks (i.e., the
trimer is a minicell of the metamaterial). The six
trimers are arranged in such a way that hexagonal
clusters appear (i.e., the hexagonal cluster is a supercell of
the metamaterial). The hexagon lateral size is p. The array of
disks is situated in the x-y plane as it is shown schematically
in Fig. 2. To form a metamaterial, the dielectric disks are
immersed symmetrically (preserving the plane of symmetry
z = 0) into a dielectric substrate with relative permittivity εs

and thickness hs.
A peculiarity of this new type of metamaterial is a highly

symmetric hexagonal geometry of its unit supercells based on
dielectric trimers. The optical response of the entire metama-
terial is largely determined by the symmetry of the supercell,
which can be deliberately lowered by introducing certain per-
turbations into the hexagonal cluster.

Our goal is to find specific perturbations so that the toroidal
dipole mode of the trimers can be effectively excited in
the metamaterial by the field of a normally incident lin-
early polarized wave with the wave vector k = {0, 0,−kz}
and wavelength λ = 2πc/ω. We define that the metamate-
rial is irradiated by either x-polarized (E, H = {Ex, Hy,0}) or
y-polarized (E, H = {Hx, Ey, 0}) wave. Due to nature of the
toroidal dipole mode, it is appropriate to consider the problem
using the magnetic field H of the incident wave as the exciting
source.

σ

5v

C

C C
C

C 6

3 3

2

-1

-1
6

σ

σ

σ

σ

σ6d

4d

3v

2d

1v

y
x

FIG. 3. Hexagonal supercell described by the C6v group and ele-
ments of this group.

IV. SUPERCELL SYMMETRY ANALYSIS

For the given planar arrays of dielectric disks, one can con-
sider the problem in the framework of two-dimensional (2D)
symmetry. Since the center of the equilateral triangle of the
underlying trimer and the center of the minicell are the same,
the minicell geometry corresponds to the C3v symmetry. To
get access to the toroidal dipole mode, the minicell symmetry
must be reduced [69]. This symmetry reduction can be real-
ized in several ways. In particular, the thickness of particular
disks in the trimers can be resized (out-of-plane perturbation)
or these disks can be shifted aside (in-plane perturbation).

The geometry of the hexagonal unit supercell corresponds
to the C6v symmetry. As a main reference point, the scheme of
the supercell with planes of symmetry and rotational elements
of the C6v group are presented in Fig. 3 (the Schöenflies
notation of elements of point symmetry is given in Appendix
A). With such a supercell symmetry, the toroidal dipole mode
is a dark state of the hexagonal cluster and cannot be ex-
cited by the field of a normally incident linearly polarized
wave. Therefore the symmetry C6v must be reduced. Particular
perturbations lead to different manifestations of the toroidal
dipole mode in the metamaterial, which can arise in either
symmetric or antisymmetric order. The relationship between
the perturbed supercell symmetry and the toroidal dipole
mode order is the subject of our subsequent study.

Here we introduce a classification of possible reductions
of the supercell symmetry, assuming that only one disk in
each trimer forming the hexagonal cluster can be perturbed
and only one type of perturbation is allowed. With a set of
such allowed perturbations, one can design supercells having
the highest C6v symmetry as well as the symmetries of the
C6v subgroups (the subgroup decomposition of the C6v group
with the C6, C3v , C3, C2v , C2, and Cs subgroups is illustrated in
Fig. 11 of Appendix A).

The unique way to obtain the C6v symmetry in the per-
turbed supercell is shown in Fig. 4(a). In this geometry, all
six perturbed disks are closest to the center of the hexagonal
supercell. The perturbed supercells with the C6, C3v , and C3

symmetries are shown in Figs. 4(b)–4(d). Notice that these
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(c) (d)(a) (b)

(e) (f)

σ

(g)
σ

(h)

FIG. 4. Examples of the perturbed hexagonal unit supercells whose symmetry is reduced to the groups: (a) C6v , (b) C6, (c) C3v , (d) C3, (e)
C2v , (f) C2, (g) C (1)

s , and (h) C (2)
s . Perturbed disks are denoted by red circles.

geometries are not unique and the positions of the perturbed
disks can be different. The geometries of the supercells with
the C2v and C2 symmetries are presented in Figs. 4(e) and 4(f),
respectively. These geometries are also not unique.

The Cs symmetry can be realized in two variants, where
the plane of symmetry σ passes through an apex [Fig. 4(g)] or
between two apexes [Fig. 4(h)] of the hexagon. These variants
are designated as the C(1)

s and C(2)
s symmetries, respectively.

Again, different geometries are possible in the hexagonal clus-
ters with the C(1)

s and C(2)
s symmetries.

V. MAGNETIC GROUP DESCRIPTION

We investigate electromagnetic response of the given
metamaterial to external excitation by an alternating electro-
magnetic field. However, at a certain point in time, one can
get a fixed picture of the field distribution in the unit supercell.
This field pattern is associated with the characteristics of both
the eigenmode that is excited and the magnetic field vector
of the incident wave. Thus one can construct a general theory
which combines the geometric symmetry of the unit super-
cell and the “dynamic” symmetry of the alternating magnetic
fields and toroidal moment (see Appendix D).

In the eigenmode of unperturbed trimer, the toroidal dipole
moment T has only single component Tz [69]. In a fixed
moment of time, the normalized vector T can acquire only
two states being oriented either “up” (Tz = +1) or “down”
(Tz = −1). Accordingly, in a set of two trimers, two combi-
nations of the toroidal dipole moments are possible when they
are paired in either contradirectional or codirectional fashion.
These combinations also appear in the hexagonal clusters
composed of six trimers, where the toroidal dipole moments
can form either a set of contradirectional (staggered) pairs or
their co-directional distribution in all six trimers (see Fig. 5).
In what follows, we distinguish these eigenmodes as the ATO
and TO modes, respectively.

In the symmetry analysis, these eigenmodes can be
attributed to the one-dimensional (1D) irreducible represen-
tations (IRREPs) of the C6v group. The TO mode belongs

to IRREP A1, i.e., it is not changed under all the symmetry
elements. The ATO mode is transformed in accordance with
IRREP B1 and the toroidal dipole moment changes its sign un-
der the C2, C1

6 , and C−1
6 transformations, and three reflections

σd (see Table II of Appendix B).
Notice that the in-plane magnetic dipole moments in-

duced in dielectric disks by the external magnetic field can
be used to construct an alternative theory. In this case,
one has to work with 2D representations of the axial vec-
tor m rather than with 1D IRREPs of the polar vector T.

T(b)

T(a)

x
z

y

FIG. 5. Schematics of (a) ATO and (b) TO modes in a hexagonal
unit supercell. Blue and yellow arrows demonstrate the mag-
netic field flow and orientation of the toroidal dipole moments,
respectively.
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TABLE I. Possible symmetries of toroidal dipole modes: magnetic groups based on the C6v symmetry, their subgroups and elements

1st category C6v + T C6v C6 + T C6 C3v + T C3v C3 + T C3 C2v + T C2v C2 + T C2 Cs + T Cs

2nd category C6v C6 C3v C3 C2v C2 Cs

Content e, C6, C−1
6 , C2 e, C6, C−1

6 e, C3, C−1
3 e, C3, C−1

3 e, C2 e, C2 e, σ

C3, C−1
3 , 3σv , 3σd C3, C−1

3 , C2 σ1, σ2, σ3 σ1, σ2,

3rd category C6v (C6) C6v (C3v ) C6(C3) C3v (C3) C2v (C2) C2v (Cs ) C2(C1) Cs(C1)

Content e, C6, C−1
6 e, C3, C−1

3 e, C3, C−1
3 e, C3, C−1

3 e, C2 e, σ1 e, T C2 e, T σ

C2, C3, C−1
3 σ1, σ2, σ3 T C2, T C6, T σ1, T σ2, T σ1, T σ2 T C2, T σ2

3T σv T C2, T C6 T C−1
6 T σ3

3T σd T C−1
6

However, this alternative description involves more com-
plex transformation properties of m and this complicates the
analysis.

Taking advantage of the time reversal symmetry of the
toroidal dipole moment T, one can use this quantity to define
the magnetic symmetry of the alternating fields in the array.
Magnetic groups based on the C6v group of symmetry, its
subgroups and elements of these groups are summarized in
Table I. In this table, T is the time reversal operator. In terms
of magnetic groups, the vector T is odd in time. Application
of the time reversal operator T to the toroidal dipole moment
Tz results in the vector T reorientation, T Tz = −Tz.

Table II of Appendix B in the first seven columns presents
space transformation properties of the polar vector T. This
transformation is defined by the formula Tz

′ = χTz, where Tz

is a given toroidal moment, Tz
′ is the mapped moment, and

χ is 1D IRREP of the rotation-reflection symmetry element
R. The eighth column of this table consists of the space-time
transformation of T (which is an odd in time quantity) in
terms of magnetic groups. Thus Table II provides a descrip-
tion of two sides (two physical properties) of the toroidal
moment T.

It should be emphasized that we apply the theory of mag-
netic groups only to the fields and toroidal dipole moments
T of the corresponding eigenmodes. However, the possible
magnetic groups are defined by geometrical symmetry of the
unit supercell.

VI. SELECTION RULES AND POLARIZATION
PROPERTIES OF ARRAYS

A detailed description of selection rules for the quasibound
states in the case of photonic crystal slabs is presented in
Ref. [60], where the authors intensively used the theory of
nonmagnmetic groups. One of our motivations in this work is
to show that the magnetic group theory gives some advantages
in description of toroidal dipole mode resonances.

The problem of the toroidal dipole mode excitation in
the array of hexagonal supercells can be divided into two
subproblems: (i) excitation of the toroidal dipole mode in an
individual trimer and (ii) excitation of the whole hexagonal
unit supercell.

To resolve the first subproblem, one should reduce the
C3v symmetry of the trimer to the Cs group. This mech-
anism is studied both theoretically and experimentally in

Refs. [64,68,69], so we omit the details here (for a brief
description, see Appendix D). In the present consideration, we
concentrate on solving the second subproblem, i.e., defining
the selection rules for symmetries of the hexagonal supercell
which allow or forbid excitation of toroidal dipole modes in
the metamaterial by the field of a normally incident linearly
polarized wave.

A. Selection rules for ATO mode

The magnetic field H of the incident wave contains the
elements e, T C2, T σ2, and σ1 of magnetic symmetry (see
Appendix C). The element C2 is incompatible with T C2 of
the magnetic field H (these elements are “orthogonal” in the
sense that their application leads to opposite orientations of
the toroidal dipole moment). Therefore, if magnetic symmetry
contains the C2 element, excitation of an ATO mode in the
metamaterial with such a symmetry is forbidden. It imposes
a very rigid (hard) restriction, which does not depend on
the orientation of the magnetic field H. The same is true for
the groups of symmetries containing the C6 and C3 elements,
because the C6 element is always accompanied by the C2 ele-
ment, whereas, from the viewpoint of polarization properties,
the C2 element is “hidden” in the C3 group.

Now we apply to the restrictions imposing by planes σ

and antiplanes T σ of symmetry. The magnetic groups of
ATO mode cannot contain an element σ coinciding with T σ

of the magnetic field. Analogously, the magnetic groups of
the ATO mode cannot contain the element T σ coinciding
with σ of the magnetic field. Therefore the vector H of the
incident wave parallel to σ , or perpendicular to T σ (both σ

and T σ are possible elements of the toroidal eigenmode of the
supercell) cannot be coupled to this mode. However, a small
deviation of orientation of H from the discussed planes leads
to appearance of the field H component which can interact
with the corresponding mode of the hexagonal unit supercell.
Therefore these selection rules can be called soft restrictions.

The above analysis allows us to exclude from consideration
those symmetries for which excitation of the ATO mode in the
hexagonal unit supercell is forbidden. The magnetic groups
which permit excitation of the ATO mode are subgroups of the
group of magnetic field H. They are C2v (Cs) (the group of H
itself), C2(C1), Cs(C1), and Cs (see Table I). It means that the
corresponding geometrical symmetries of the unit supercells
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are C2v , C2, and Cs (see corresponding perturbations of the
hexagonal unit supercell in Fig. 4).

B. Selection rules for TO mode

Now we apply to the selections rules of the TO mode. After
application of any of the rotations C6, C3, and C2, the sign of T
must be preserved. Therefore rotations with T in the magnetic
groups which change the sign of T are prohibited (they are
T C2 and T C6; the T C3 element does not exist in the magnetic
groups). For the same reason, the T σ elements are also not
allowed. Summarizing, the antiunitary elements cannot enter
in the magnetic groups of the TO mode.

On the other hand, the elements C2, C3, and C6 are not
allowed due to their incompatibility with the field H sym-
metry. Therefore the plane σ is the only permissible element
of symmetry, and for the mode excitation, this element must
be oriented perpendicular to the field H. Thus the toroidal
dipole mode can be excited in the unit supercell with Cs
symmetry of the magnetic groups, which contains the element
σ . This condition is similar to that defining the excitation of
the toroidal dipole mode in an isolated trimer [69].

Two schemes of perturbation of the unit supercell de-
scribed by the Cs group are shown in Figs. 4(g) and 4(h). The
scheme presented in Fig. 4(g) permits excitation of both the
ATO and TO modes.

C. Polarization properties of arrays with ATO and TO modes

Polarization properties of the given arrays depend on their
symmetry conditions. As it is known, for the polarization in-
sensitivity the object must have the rotational symmetry with
the axis C3, C4, . . . ,C∞ [93]. From the foregoing analysis,
it follows that the symmetries allowing the excitation of the
ATO and TO modes do not contain rotational elements Cn with
n > 2. Therefore in the framework of the discussed symmetry
perturbation methods, polarization insensitivity of the arrays
is not possible for both the ATO and TO modes.

VII. SPECIFIC ARRAYS DESCRIPTION

A. ATO mode in C2v supercells

From the preceding consideration of the selection rules
it follows that to get access to the ATO mode, symmetry
of the hexagonal unit supercell needs to be reduced to the
C2v group and its subgroups [the corresponding unit supercell
perturbation is presented in Fig. 4(e)].

In the group-theoretical language, the ATO mode be-
longs to the IRREP B1 of the C6v group (see Table II in
Appendix B). In this symmetry, the toroidal dipole mode is a
dark state. The IRREP B1 of the C6v degenerates in the IRREP
B1 of the lower C2v group (see Tables III and V in Appendix
B). The geometrical symmetry described by the C2v group is
consistent with the C2v (Cs) symmetry of the incident magnetic
field H. Therefore, in this case, one can expect an efficient
excitation of the toroidal dipole mode by a normally incident
electromagnetic wave with a proper polarization.

To obtain the high-Q resonant conditions, the introduced
perturbation in the unit supercell should be small. When the
perturbation is small, the characteristics of the local electro-

σ

(a)

σ

(b)

H

H
y

x

FIG. 6. Excitation of (a) ATO mode and (b) TO mode in the
same hexagonal supercell whose symmetry is reduced to the C (1)

s

group. Perturbed disks are denoted by red circles. Orientation of the
magnetic fields H of the incident wave and flow of the inner magnetic
field of the toroidal dipole eigenmode are given by the dark and light
blue arrows, respectively. The test lines are denoted by grey color.

magnetic fields in the array with the C2v symmetry does not
differ significally from those of the B1 dark eigenmode in the
nonperturbed array with the C6v symmetry. One can conclude,
that the approximate symmetry of the electromagnetic field
in the hexagonal unit supercell with the C2v symmetry corre-
sponds to the IRREP B1 of the C6v group or, in the framework
of magnetic groups, to the C6v (C3v ) group.

B. ATO and TO modes in Cs supercells

Reduction of the C6v symmetry to the Cs group allows
one to excite the ATO and TO modes (see Tables IV and
V in Appendix B). Besides the unit element e, the Cs group
contains only one plane of symmetry σ . This plane can either
lie between the trimers [Fig. 4(g)] or pass through the centers
of the trimers [Fig. 4(h)]. Recall, that these geometries are not
unique, some other positions of the perturbed disks can also
result in the Cs symmetry.

Noteworthy that if the magnetic field H of the incident
wave is orthogonal to σ [see Fig. 6(a)], the ATO mode can be
excited, whereas for the same geometry but with the magnetic
field H parallel to σ [see Fig. 6(b)], the TO mode arises.

C. Rule of thumb for mode order

To determine the direction of in-plane rotation of the mag-
netic field in the trimers and therefore the orientation of the
out-of-plane toroidal dipole moments in the array, the follow-
ing simple rule of thumb can be used. One should draw test
lines through the centers of all trimers in the unit supercell
parallel to the magnetic field H. If the perturbed disk of a
given trimer is on one side of the test line, it corresponds
to a certain direction of rotation of the local magnetic field
of the corresponding mode. If the perturbed disk is on the
other side of the test line, this gives the opposite direction
of rotation of the local magnetic field. This allows one to
define immediately the order of the excited toroidal dipole
mode. If the test line passes through the center of the perturbed
disk, this resonator cannot be excited directly by the incident
field. However, it can be excited indirectly via the neighboring
resonators due to the coupling effect between particles in the
array.

This intuitive picture can be understood from Fig. 6,
where the hexagonal unit supercell with the C(1)

s symmetry is
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presented. When the vector H is parallel to the x axis
[Fig. 6(a)], the perturbed disks appear at different sides of
the test lines, which results in the staggered orientation of
the toroidal moments in the neighboring trimers, i.e., the ATO
mode can be excited. Contrariwise, for the same unit supercell
but when the vector H is parallel to the y axis [Fig. 6(b)],
the structure produces parallel orientation of the toroidal mo-
ments, i.e., the TO mode can be excited.

VIII. NUMERICAL RESULTS

We now proceed to check our group-theoretical description
of the excitation of toroidal dipole modes in the discussed
arrays by performing the full-wave numerical simulations.
To calculate both eigenmodes and transmitted spectra of
the array irradiated by a linearly polarized plane wave, we
use the RF module of the commercial COMSOL Multiphysics
finite-element electromagnetic solver. In the solver, we im-
pose the Floquet-periodic boundary conditions on four sides
of the unit cell to simulate an infinitely extended in the x-y
plane arrangement of dielectric disks. The code related to
the multipole decomposition with accounting for the toroidal
dipole term defined by Eq. (1) is incorporated into the solver
as a special component. The solver allows us to plot the distri-
bution of the inner electromagnetic field within the hexagonal
unit supercell at a specified resonant wavelength.

Initially we calculate the eigenmodes that exist in a refer-
ence metamaterial composed of unperturbed supercells. The
material losses in the disks are excluded in these simula-
tions. From the released results, two specific eigenmodes are
selected, which demonstrate the appearance of the parallel
or antiparallel orientation of the toroidal dipoles. Then the
transmitted spectra of the metamaterial are calculated in the
wavelength range where the selected eigenmodes exist. Both
x-polarized and y-polarized waves are under consideration.

The results of our simulations of characteristics of the
reference metamaterial are presented in Fig. 7. As before, we
present our results in the dimensionless parameters, where
all values are related to the disk diameter D. The eigenwave
solution shows that the corresponding mode of the trimer
exists in the array in the ATO and TO states, whose resonant
wavelengths are different from the resonant wavelength of the
toroidal dipole mode of a single trimer.

One can conclude, that the spectral characteristics of the
metamaterial are the same for waves of both polarizations, and
while the symmetry of the supercells is preserved, there are
no peculiarities in the transmitted spectra at the wavelengths
of the ATO and TO modes. This confirms the dark feature of
these modes.

Further two particular designs of the perturbed unit su-
percells are chosen to show a possibility to excite the ATO
and TO modes in the metamaterial. They are the supercells
with the C2v and C(1)

s symmetries [see Figs. 4(e) and 4(g),
respectively]. As a perturbance, we consider the change in
the thickness of a corresponding disk in each trimer forming
the unit supercells. This change is defined by the value 	hd ,
and the dimensionless unit supercell asymmetry parameter is
introduced as θ = (hd + 	hd )/hd .

×
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FIG. 7. (a) Transmitted spectra of the metamaterial with unper-
turbed unit supercells excited by the x-polarized (solid blue lines) and
y-polarized (dashed red lines) waves. The normalized magnitude and
flow of the magnetic near-field of the (b) ATO and (c) TO modes. The
material and geometrical parameters of the metasurface are: εd = 22,
εs = 1, hd/D = 0.45, at/D = 1.125, and p/D = 3.375.

A. Array with C2v symmetry of unit supercell

High-symmetry imposes severe constraints on the possi-
ble geometry of the electromagnetic field in the array. The
group-theoretical description suggests that the C2v group is
the highest symmetry that allows excitation of the ATO mode.
This mode can be excited by the wave whose vector H
is parallel to the x axis (y-polarized wave). This selection
rule is confirmed by our numerical calculations presented in
Fig. 8(a), where the resonance occurs in the transmitted spec-
tra directly at the wavelength of the ATO mode. Due to the
high symmetry of the unit supercell, the spectral characteristic
around the ATO resonance is rather “clean”, i.e., the toroidal
dipole mode appears to be well isolated from other resonances
in the spectra, and the wavelength separation of the ATO mode
is relatively large. When the vector H of the incident wave is
parallel to the y axis, none of the trimers is excited, which is
in full accordance with the rule of thumb.

The frequency shift and quality factor of the ATO res-
onance as functions of the asymmetry parameter θ are
presented in Fig. 8(b). It is evident that the less the asymmetry,
the higher the quality factor, which reaches values higher than
105. The resonant wavelength shifts up as the thickness of the
perturbed disks increases.

B. Array with the Cs symmetry of unit supercell

The group-theoretical description predicts that in a meta-
material composed of unit supercells with the Cs symmetry,
both ATO and TO modes can be excited. The results of corre-
sponding calculations are presented in Fig. 9(a). These results
confirm that the ATO and TO modes arise when the metama-
terial is irradiated by the x-polarized and y-polarized waves,
respectively. In general, these resonances occur at different
wavelengths. However, due to the low symmetry of the unit
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FIG. 8. (a) Transmitted spectra of the metamaterial with per-
turbed trimers excited by the x-polarized (solid blue lines) and
y-polarized (dashed red lines) wave. The trimers are perturbed by
resonators with different height. The unit supercell symmetry is C2v .
The normalized magnitude and flow of the magnetic near-field of the
ATO mode are given in the inserts, where the perturbed resonators
are denoted by dashed circles. (b) Evolution of the quality factor
(blue line) and normalized resonant wavelength (red line) of the ATO
mode as functions of the asymmetry parameter θ . All parameters of
the structure are the same as in Fig. 7.

supercell, in the transmitted spectra, the ATO and TO modes
appear to be closely spaced to several other resonances.

Since the material losses are excluded from the present
simulations, the maximal value of the quality factor of the
given resonances depends only on the asymmetry parameter
θ , which defines the coupling degree of the toroidal dipole
mode with free space. The toroidal dipole moment related to
the ATO mode is almost zero since the antisymmetric toroidal
dipole moments in adjacent trimers compensate each other
and reduce the electromagnetic coupling of this mode with
free space. The equally oriented moments of the TO mode are
lack of this property. Comparing quality factors of the ATO
and TO resonances presented in Fig. 9(b), one can conclude
that the ATO mode possesses the lower radiation losses and
consequently higher quality factor than that of the TO mode.
In particular, these quality factors differ by one order of mag-
nitude. Besides, the ATO and TO resonances experience the
same wavelength shift when the parameter θ changes.

IX. EXPERIMENTAL RESULTS

We further validate our theory in neat experiments. To this
end, we construct a metamaterial prototype based on the C(1)

s
unit supercells since this design provides the efficient coupling

TO
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FIG. 9. Same as in Fig. 8 but for arrays with the Cs symmetry of
the hexagonal unit supercell. The corresponding normalized magni-
tude and flow of the magnetic near-field of the ATO and TO modes
are given in the middle planes.

of the metamaterial with a linearly polarized incident wave
via both the ATO and TO modes. We assemble the array on
a dielectric substrate utilizing disks made of a low-loss, high-
permittivity microwave ceramic.

For our experiments, we use a well-established technique
that was described in detail earlier [94]. In particular, we
perform our experimental study in the microwave range (8–
15 GHz) using Rohde & Schwarz ZVA50 Vector Network
Analyzer as the main measurement platform. Our setup also
includes a pair of dielectric-lens antennas, a near-field imag-
ing system, and all other necessary accessories.

The results of our measurements are summarized in
Fig. 10. It includes a photo of the actual metamaterial proto-
type, simulated and measured transmitted spectra and electric
near-field patterns plotted at the corresponding resonant
wavelengths. In the simulations supporting our experimental
studies, the real material losses (tan δ) existing in the metama-
terial constituents are taken into account.
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FIG. 10. Simulated and measured transmitted spectra and resonant patterns of the real part and phase of the z component of the electric
near-field for an actual array with the C (1)

s symmetry of the hexagonal unit supercell. The array is irradiated by the (a) x-polarized and
(b) y-polarized waves to excite the ATO and TO modes, respectively. The inset demonstrates a photo of the metamaterial prototype. Parameters
of the prototype are: εd = 22 ± 1, tan δ ≈ 1 × 10−3, rd = 4, hd = 3.5, 	hd = −1 (θ ≈ 0.71), εs = 1.1, hs = 10, ad = 9, and p = 27. All
geometrical parameters are given in millimeters.

Foremost, one can conclude that our experimental data
are in good agreement with the simulation results. The
measurements performed confirm the existence of
polarization-dependent resonances for the ATO and TO
modes. Importantly, both resonances survive in a lossy
metamaterial. Since the TO mode has a lower quality factor,
it can be more easily detected in the experiment.

The calculated and measured characteristics of the electric
near-field show a fundamental difference in these two types
of toroidal dipole orders. For the ATO mode, the electric
near-field is confined in the centers of minicells, while it is
practically zero at the center of the hexagonal unit supercells.
In the trimers, one can clearly see the staggered distribution of
the real part of the normal (Ez) component of the electric near-
field. This staggered distribution is additionally confirmed
by the phase pattern of the Ez component. Contrariwise, for
the TO mode, the electric near-field has a bright hotspot in
the center of the hexagonal unit supercells complemented by
lower intensity hotspots at the center of each minicell. The
maximal field concentration is reached outside the dielec-
tric particles, which can be considered as a signature of the
toroidal dipole mode. Thus we have two different conditions
of the field concentration in the same metamaterial, where the
form of the field concentration is determined only by the given
polarization of the incident wave. We believe that this pecu-
liarity is a rather unique feature of the proposed metamaterial,
which is very promising for practical applications.

X. DISCUSSION

We have focused in this paper only on two possible eigen-
modes of the hexagonal unit supercells, namely, the ATO and
TO modes, which belong to IRREPs A1 and B1 (see Table II
in Appendix B). However, there are also possible resonant
modes belonging to other IRREPs, which can be defined

using, for example, the method of symmetry adapted linear
combinations (SALC) [69].

Symmetry breaking in the unit supercell of the proposed
metamaterials can be fulfilled in many different ways. Besides
the discussed above methods of the out-of-plane symmetry
breaking, the in-plane symmetry breaking can be introduced.
For instance, one trimer or a cluster of several trimers in a
hexagonal unit supercell can be dislocated or rotated with re-
spect to the other trimers. Effectiveness of the rotation method
in the metamaterial composed of square unit cells of trimers
was demonstrated recently [68]. However, the point symmetry
of the resulting unit supercell in this case is usually completely
lost, and the symmetry analysis cannot be applied for such
perturbed arrays.

In the framework of a chosen symmetry, the geometry is
not always defined uniquely due to a high number of disks
included in the unit supercell and different kinds of their
perturbation. Therefore the geometry can be optimized fol-
lowing simple rules introduced here. This optimization can be
performed before the full-wave numerical simulations, which
can significantly reduce the time needed to find the desired
configuration of the unit supercell.

The proposed configurations of hexagonal arrays based
on trimers possess a technological advantage to have a free
space in the center of the hexagonal unit supercell, where
an additional element (for example, a nonlinear or control
element) can be deposited. In particular, for the case of the
excitation of the TO mode, a strong concentration of electric
near-field appears in this free space which can be useful in
sensoric and lasing applications.

XI. CONCLUSIONS

We have proposed and studied all-dielectric metamaterials
composed of hexagonal trimer-based unit cells which are able
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to support two types of toroidal supermodes. These super-
modes differ in the order of the toroidal dipole moments.
The moments distributed in trimers can possess either codi-
rectional (symmetric, TO) or staggered (antisymmetric, ATO)
arrangement.

A new theoretical approach based on the magnetic group
theory is developed to analyze the mechanism of excitation of
these supermodes by the field of a normally incident linearly
polarized wave. This mechanism implies symmetry breaking
in the supercell of the metamaterial. It is revealed that the ATO
mode can be excited in metamaterials whose unit supercells
possess the C2v , C2, and Cs geometrical symmetries, whereas
the TO mode can be excited only in the supercells with the Cs

symmetry. All these symmetries can be realized by different
arrangements of perturbed trimers in the unit supercell.

It was demonstrated that the magnetic groups approach
simplifies greatly the analysis of the arrays and provides a
deeper physical insight into the mechanism of the toroidal
modes excitation.

We have found out that by adjusting the perturbation pa-
rameters of the trimers, it is possible to excite the ATO and
TO modes in the same metamaterial by the wave with a proper
polarization. Excitation of these modes results in different
characteristics of the electric near-field localization, which
can be important for practical applications.

The method of magnetic groups introduced in this paper
can be also applied for the analysis of arrays with square and
rectangular unit supercells as well as to the isolated oligomers
with high symmetries and their assemblies. In a more wide
aspect, this method can be used for the analysis of complex
systems with 3D symmetries and eigenmodes different from
the toroidal ones. We believe that the developed theoretical
method can extend traditional physical and physical-chemical
approaches [95,96] for the designing new materials and meta-
materials with special functional properties.
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APPENDIX A: ELEMENTS OF POINT SYMMETRY IN
SCHÖENFLIES NOTATION [13]

In Schöenflies system, an n-fold rotation through 2π/n
(where n is an integer; in our case n = 2, 3, 6) about the z axis
is denoted by the symbol Cn (C means Cyklus). The symbol
σv (the subscript v for vertical) defines reflection in a plane

C1

CC 32

C C6 2v

Cs

C6v

C3v

FIG. 11. Group decomposition of C6v group. Thick and dotted
lines indicate that the corresponding subgroup is not invariant and is
not of index 2 with respect to the higher group, respectively. It means
that these two groups cannot form a group of the third category [97].

passing through this axis. The symbol σd (the subscript d for
diagonal) designates a mirror plane containing the axis which
is diagonal to the already existing plane σv .

Let us apply now to the group notations. The groups with
one axis of symmetry are denoted by Cn. Notice that in
this case, the notations for the group elements and groups
themselves coincide. For example, the symbol C2 denotes the
operation of rotation about an axis by π , and also it may
denote the C2 group consisting of two elements: the identity
e and the rotation C2. The meaning of the notations can be
clearly understood from the context. The Cnv group has an
n-fold rotational axis Cn and a finite number of planes of
symmetry passing through the axis Cn. The Cs group contains
two elements: the identity e and the reflection σv .

The subgroup decomposition (the group tree) of the C6v

group, which is discussed in the main body of this paper, is
shown in Fig. 11. The C6v group has the following subgroups:
C6, C3v , C3, C2v , C2, Cs, and C1.

APPENDIX B: TABLES OF GROUP THEORY

In Tables II–V, irreducible representations and symmetry
degeneration table related to the C6v, C2v , and Cs groups used
in the main body of the paper are collected.

TABLE II. Character table of C6v group and magnetic groups of
the second and third categories, and corresponding possible toroidal
dipole mode orders.

C6v e C2 2C3 2C6 3σv 3σd Magnetic group Mode order

A1 1 1 1 1 1 1 C6v dark TO
A2 1 1 1 1 −1 −1 C6v (C6)
B1 1 −1 1 −1 1 −1 C6v (C3v ) dark ATO
B2 1 −1 1 −1 −1 1 C6v (C3v )
E1 2 −2 −1 1 0 0
E1 2 2 −1 −1 0 0
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TABLE III. Irreducible representations of C2v group and their
relation to magnetic groups, and corresponding possible toroidal
dipole mode orders.

C2v e C2 σ1 σ2 Magnetic group Mode order

A1 1 1 1 1 C2v dark TO
A2 1 1 −1 −1 C2v (C2)
B1 1 −1 1 −1 C2v (Cs) bright ATO
B2 1 −1 −1 1 C2v (Cs)

APPENDIX C: BRIEF DESCRIPTION OF
MAGNETIC GROUPS

Time reversal operator. The time reversal operator T can
be an element of magnetic groups entering in these groups
either separately or in combination with elements of the geo-
metrical symmetry. The T operator changes the sign of time
t (t → −t), commutes with all elements of the geometrical
symmetry, and has the property T T = T 2 = e, where e is the
unit element of the group.

Here we shall discuss only those properties of the T op-
erator which are necessary for our present consideration. In
particular, the T operator reverses the velocities and changes
the current directions, signs of magnetic fluxes, magnetic
fields, toroidal moments, wave vector, and Poynting vector.
All these quantities are odd in time.

Categories of magnetic groups. There exist three categories
of discrete and continuous point magnetic groups. The group
of the first category G consists of a unitary subgroup H (in
our case, it contains the usual rotation-reflection elements)
and products of T with all the elements of H . The full
group is then H + T H including T = T e (these groups are
also referred to as nonmagnetic ones, see the first column of
Table VI).

In the case of magnetic groups of the second category
G, there is no point group elements combined with the time
reversal operator T , and T itself is not an element of the
groups. The nomenclature and notations of the groups of the
first (nonmagnetic) and second (magnetic) category coincides.
Therefore, to distinguish them, we use bold letters for denot-
ing the groups of the second category (see second column of
Table VI).

The Schöenflies system is particularly suitable for notation
of the magnetic groups of the third category. In this case,
the notation presents explicitly the structure of the group,
i.e., the unitary subgroup (it contains only elements of the

TABLE IV. Irreducible representations of Cs group and their
relation to magnetic groups of the second and third categories, and
corresponding possible toroidal dipole mode orders. Superscripts in
Cs denote orientation of the σ plane in the hexagonal cluster [see
Figs. 4(g) and 4(h)].

Cs e σv Magnetic group Mode order

A 1 1 C(1)
s bright TO

B 1 −1 C (1)
s (C1) bright ATO

TABLE V. Symmetry degeneration table of C6v group into C2v

and Cs groups [60]. Superscripts in Cs denote orientation of the σ

plane in the hexagonal cluster [see Figs. 4(g) and 4(h)].

C6v C2v C (1)
s C (2)

s

A1 A1 A A
A2 A2 B B
B1 B1 A B
B2 B2 B A
E1 B1, B2 A, B A, B
E2 A1, A2 A, B A, B

geometrical symmetry) and the antiunitary elements (these
elements are the product of the operator T and an element
of the geometrical symmetry).

In addition to the rotation-reflection elements of the sub-
group H of pure geometrical operators, the magnetic groups
of the third category G(H ) also contain the elements which
are the product of T and the usual geometrical symmetry
elements. These combined elements cause the existence of the
so-called antiaxes and antiplanes of symmetry. The full group
is H + T H ′ without T . Notice that the elements of H ′ are
different from those of H (see third column of Table VI).

Geometrical elements of a magnetic group of the third cat-
egory form a subgroup of index 2. It means that in each group
of the third category, there is an equal number of elements
with and without T (see Fig. 11). In contrast to the groups of
the first category, the operator T itself is not an element of the
magnetic groups of the third category.

APPENDIX D: “DYNAMIC” MAGNETIC SYMMETRY OF
ALTERNATING MAGNETIC FIELD, MAGNETIC, AND

TOROIDAL DIPOLE MOMENTS

The term dynamic symmetry is used in classical and
quantum mechanical systems when describing dynamical in-
teractions and revealing the relations between dynamics and
geometry. Description of the dynamic symmetry is based on
the Lie groups. In particular, in electromagnetic theory, the
dynamic symmetry is related to the invariance of the Maxwell
equations under the conformal group of transformations [98].
In our present consideration, the notion of “dynamic” sym-
metry has another meaning, which is discussed below. That is
why we put the term dynamic in quotes.

The theory of nonmagnetic groups is frequently used to
describe optical properties of metamaterials without magnetic
inclusions (e.g., see Ref. [34]), while a traditional application
of magnetic groups is related to the description of systems
with a static magnetic field and a static magnetization in

TABLE VI. Content of magnetic groups of symmetry

1st category 2nd category 3rd category

G = H + T H G G(H ) = H + T H ′, H ′ �= H
including T without T T only in combination

with rotations-reflections
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FIG. 12. (a) Electric E and magnetic H fields of an incident wave
with the wave vector k and circular magnetic field h of an idealized
toroidal dipole mode. (b) Orientation of the magnetic dipole mo-
ments mi (i = 1, 2, 3) and toroidal dipole moment T in the magnetic
field H of the incident wave for the trimer with plane of symmetry σ .

magnetic substances. An external static magnetic field to-
gether with geometrical symmetry of the medium constituents
defines symmetry of the whole magnetic system. This is used,
for instance, to calculate the composition of permittivity and
permeability tensors (i.e., to impose some restrictions on the
elements of these tensors) and also to define the structure of
the scattering matrices [97].

In our case, we shall consider two alternating magnetic
fields with different symmetries. They are the fields of the
incident wave and toroidal dipole mode. Although these mag-
netic fields interact in a nonmagnetic environment of the array
of dielectric particles, an approach based on the magnetic
groups makes it possible to get a deep physical insight into
the problem of the toroidal mode excitation.

Let us consider a trimer based on an equilateral triangle il-
luminated by a normally incident linearly polarized wave with
the wave vector k. For the chosen geometry of the problem,
the magnetic field of the incident wave H lies in the x-y plane.
We suppose that a toroidal dipole mode is excited in the trimer.
This mode appears from the circular flow of the magnetic field
h, which also lies in the x-y plane. The appearance of the
vectors H and h is schematically given in Fig. 12.

To relate the symmetries of the magnetic fields of the
incident wave H and toroidal dipole mode h, two prerequisites
must be fulfilled: (i) the loop of the magnetic field h is uniform
along its circumference and (ii) a phase shift between the
fields H and h is absent. It means that these two dynamic
quantities are in phase being considered at a fixed point of
time. This time can be fixed at an arbitrary moment, for
example, when the fields reach their maximal values during
the oscillation period.

In nonmagnetic symmetry, the magnetic field H has only
one element of symmetry, namely, the plane perpendicular to
the vector H. In magnetic symmetry, the magnetic field H can

be described by the 2D (in the x-y plane) magnetic symmetry,
namely, by the group of the third category C2v (Cs), which
contains the following elements and antielements: (1) the unit
element e, (2) the antiaxis T C2 along the z axis, (3) the vertical
plane σ1 perpendicular to the vector H (the plane x = 0), and
(4) the vertical antiplane T σ2, parallel to the vector H (the
plane y = 0). In this group, the time reversal operator T is
combined with the geometrical elements C2 and σ2.

In an ideal case, the magnetic field h of the toroidal mode
presents a circle [see Fig. 12(a)]. Considering the x-y plane
where this circle is situated, the 2D group of symmetry of
h is C∞v of the second category with the z axis of infinite
order C∞, and an infinite number of the planes of symmetry
σv passing through this axis. The time reversal operator T is
not the element of C∞v since when t → −t , the sign of h
changes.

Comparing symmetries of the fields, one can see that the
fields H and h have the antiaxis T C2 and axis C2, respectively.
Moreover, the field H has the antiplane T σ , while the field
h has the plane σ which coincides with T σ . T C2 and C2,
and also T σ and σ are incompatible with each other. This
incompatibility can be considered as a selection rule. There-
fore, in the given symmetry, excitation of the toroidal dipole
mode having a circular flow of h induced by the field H is
impossible.

Now we apply to a realistic case. In an isolated trimer, there
is a particular eigensolution where three in-plane magnetic
dipoles mi (i = 1, 2, 3) appears to be arranged in a head-to-tail
fashion [Fig. 12(b)]. In the linear regime, the moment m of
the magnetic dipole in a dielectric disk is proportional to the
incident magnetic field H:

m = αH, (D1)

where α is the magnetic polarizability. The trimer based on an
equilateral triangle can be described by symmetry C3v with the
C3 axis directed along the z axis and three planes of symmetry
σ . Evidently, the cluster of three magnetic dipoles mi inherits
the magnetic symmetry C3v . In this case, the excitation of the
toroidal dipole mode in the trimer by the incident field H is
also impossible [69].

The excitation of the toroidal dipole mode in the trimer
becomes possible after removing the C3 axis and two planes
of its symmetry σ . It can be made by introducing some pertur-
bation to the trimer geometry (e.g., by changing the geometric
dimensions or material parameters of one disk in the trimer
[69]). This perturbation reduces the geometric symmetry of
the trimer to the Cs group. Notice that the position of the
perturbed disk in the trimer defines the orientation of its sym-
metry plane σ , and, consequently, imposes a constraint on the
orientation of the vector H necessary for the toroidal dipole
mode excitation.
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