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Role of Berry curvature in the generation of spin currents in Rashba systems

Priyadarshini Kapri ,* Bashab Dey, and Tarun Kanti Ghosh
Department of Physics, Indian Institute of Technology-Kanpur, Kanpur-208 016, India

(Received 14 January 2021; revised 10 March 2021; accepted 22 March 2021; published 1 April 2021)

We study the background (equilibrium), linear, and nonlinear spin currents in two-dimensional (2D) Rashba
spin-orbit coupled systems with Zeeman splitting and in three-dimensional (3D) noncentrosymmetric metals
using a modified spin current operator by inclusion of the anomalous velocity. The linear spin Hall current
arises due to the anomalous velocity of charge carriers induced by the Berry curvature. The nonlinear spin
current occurs due to the band velocity and/or the anomalous velocity. For 2D Rashba systems, the background
spin current saturates at high Fermi energy (independent of the Zeeman coupling), linear spin current exhibits
a plateau at the “Zeeman” gap, and nonlinear spin currents are peaked at the gap edges. The magnitude of
the nonlinear spin current peaks enhances with the strength of Zeeman interaction. The linear spin current is
polarized out-of-plane, while the nonlinear ones are polarized in-plane. We witness pure anomalous nonlinear
spin current with spin polarization along the direction of propagation. In 3D noncentrosymmetric metals,
background and linear spin currents are monotonically increasing functions of Fermi energy, while nonlinear
spin currents vary nonmonotonically as a function of Fermi energy and are independent of the Berry curvature.
These findings may provide useful information to manipulate spin currents in Rashba spin-orbit coupled systems.
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I. INTRODUCTION

Spintronics is a field where the spin and charge degrees of
freedom of the carriers are used for controlling the properties
of materials and devices [1–4]. Thus, the generation, manipu-
lation, and detection of spin have received enormous impetus
in the field of spintronics. It has been a substantial issue
to uncover more efficient ways to generate the spin current.
Various techniques are available for the generation of spin
current, such as the spin injection or pumping from proximity
ferromagnets [5–10], spin battery [11–15], optical injection
methods that depend on optical selection rules [16,17], etc.

Recently, focus has been paid on the generation of spin
current and their manipulation without using any magnets,
where the spin-orbit (SO) coupling plays a crucial role. The
spin-orbit interaction is the coupling between the spin and
momentum, which intrinsically occurs in all materials, due to
relativistic effects. However, lack of surface inversion sym-
metry in the confinement potential of electrons in a quantum
well or a heterostructure gives rise to a particular type of
SO interaction known as Rashba spin-orbit interaction (RSOI)
[18,19]. The RSOI has great importance in the emerging field
of spintronics for fabricating novel devices with the possibility
of being able to tune the RSOI strength by an external gate
voltage or other techniques [20,21].

In Refs. [22,23], Rashba showed that a finite spin current
exists in noncentrosymmetric systems under thermodynam-
ical equilibrium (i.e., in the absence of an electric field),
which is known as background equilibrium spin current and
stated that such background equilibrium spin current cannot
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transport and accumulate electron spins. This is considered
to be the byproduct of using the conventional definition of a
spin current operator in a spin nonconserving system. So the
modification of the conventional definition of a spin current
operator was proposed to eliminate such equilibrium spin
current. Subsequently, immense debate regarding the defi-
nition of the spin current had started [24–27]. However, in
[28], the authors gave physical arguments to show that such
an equilibrium spin current in a spin-orbit coupled system
is the persistent spin current. It was asserted that spin-orbit
interaction plays the role of the spin driving force which leads
to a pure persistent spin current. Moreover, they argued that
the conventional definition of the spin current does not need
to be modified, as the equilibrium spin current, the noncon-
servation of spin current, and the violation of the Onsager
relation are intrinsic properties of spin transport irrespective
of the definition of the spin current operator. There have been
many works on the topic of persistent spin current [29–34].
Furthermore, this persistent spin current can also generate an
electric field [31,35] which offers a way for its detection. In
Ref. [36] the author has made an interesting proposal to detect
such equilibrium spin current by studying induced mechanical
torques on a cantilever at the edges of the Rashba system.
Furthermore, in Ref. [37] the authors have demonstrated how
to detect DC spin current with a static field applied at different
orientations within the plane of the sample through using an
epitaxial antiferromagnetic NiO layer.

In a spin-orbit coupled system, an electrical charge current
can yield a transverse pure spin current with polarization
perpendicular to the plane of the charge and spin current.
This is known as spin Hall current which arises mainly due
to an intrinsic mechanism governed by the geometry of the
Bloch wave functions [38–42]. Furthermore, it may appear
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because of the extrinsic mechanism such as the skew scatter-
ing [43–45]. Among several other possibilities, the spin Hall
effect (SHE) for creating and manipulating the spin current
has gained its distinct place [45,46].

Discrete symmetries of the Hamiltonian viz. inversion
symmetry (IS) and time-reversal symmetry (TRS) play a cru-
cial role in determining the fate of spin current. It has been
shown that the presence of IS and TRS requires even and
odd order contributions of electric field to the spin current
to vanish, respectively [47]. Thus, breaking at least one of
the symmetries is a necessary (but not sufficient) condition to
produce finite spin current. In recent years there is a growing
interest on the generation of nonlinear spin current [47–49] in
spin-orbit coupled systems. The nonlinear spin can arise in a
2D crystal of Fermi surface anisotropy [48] or in a noncen-
trosymmetric spin-orbit coupled system [47,49] with a simple
application of an electric field E.

Motivated by the above discussion, we redefine the spin
current operator by inclusion of the anomalous velocity so
that it can give rise to both the linear spin Hall current as well
as the nonlinear spin current. We provide a systematic study
of spin Hall current along with the nonlinear spin current
in Rashba systems having different Fermi surface topology
below and above the band touching point (BTP). It is ex-
plicitly shown that the spin Hall current arises solely due
to the anomalous velocity. We also find that the nonlinear
spin current may arise due to the anomalous velocity. In the
study of nonlinear spin current, we consider energy-dependent
relaxation time by solving the Boltzmann transport equations
self-consistently.

This paper is organized as follows. In Sec. II we provide
a discussion on the formalism of spin current for a generic
two-band system. Section III includes the basic information
of the 2D gapped Rashba system and its corresponding results
on spin currents. In Sec. IV we present the general information
as well as the results on the 3D Rashba system. Finally, we
conclude and summarize our main results in Sec. V.

II. FORMALISM OF SPIN CURRENT

Here we provide a general formalism of spin current for
a generic two-band system in the presence of an external
electric field. First we describe the ground state properties
of a generic two-band system. Then we discuss the modified
Fermi-Dirac distribution function due to an applied electric
field. Finally we present a general expression of spin current in
terms of the density of states and energy-dependent scattering
time.

A. Generalized system

A generic Hamiltonian of a two-band system is expressed
in the form

H (k) = h̄2k2

2m∗ σ0 + σ · d(k), (1)

where m∗ is the effective mass of a charge carrier, σ0 is the
2 × 2 identity matrix, σx,y,z are the Pauli’s spin matrices, and
d(k) = {dx(k), dy(k), dz(k)} with k being the wave vector
of the charge carrier. The energy spectra of the system is

obtained as

ελ(k) = h̄2k2

2m∗ + λd (k), (2)

with λ = ± denoting the band indices and d (k) =√
d2

x (k) + d2
y (k) + d2

z (k). In general there are two spin-split

Fermi surfaces due to the presence of the kinetic energy term
in Eq. (1), as compared to a single Fermi surface for massless
case. The corresponding eigenstates are

|k,+〉 =
(

cos θ ′
2 e−iφ′

sin θ ′
2

)
; |k,−〉 =

(
sin θ ′

2 e−iφ′

− cos θ ′
2

)
, (3)

where cos θ ′ = dz(k)/d (k) and tan φ′ = dy(k)/dx(k).
The spin orientation of a charge carrier with wave vector

k at the band λ is given by 〈σ〉λ = λd(k)/d (k) and thus
〈σ〉λ · k = λd(k) · k/d (k). The Berry curvature of a given
band can be obtained from the following expression: �λ(k) =
i∇k × 〈k, λ|∇k|k, λ〉. The band velocity of a charge carrier
is vλ

b = (1/h̄)∇kελ(k). In the presence of an external electric
field E, a charge carrier with charge q = −e acquires an
additional velocity (transverse to the electric field direction)
vλ

a = (e/h̄)�λ(k) × E. This additional velocity is also termed
as anomalous velocity. Thus, there may be a transverse current
to the electric field direction for a system having nonzero
Berry curvature. Therefore, the generalized velocity expres-
sion can be written as

vλ = 1

h̄
∇kελ(k) + e

h̄
�λ(k) × E.

B. The approximation in the carriers’ distribution function

When the system is subjected to a local perturbation in-
duced by a spatially uniform electric field E, the electron
energy is modified to ε′(r, k) = ε(k) + eE · r, where r is the
spatial coordinate. Typically this change in energy is very
weak as compared to the Fermi energy εF . The Fermi-Dirac
distribution function f (r, k) = (1 + eβ[ε′(r,k)−εF ] )−1 with β =
1/(kBT ) can be expanded in a series of terms proportional to
powers of the electric field E. The linear term is bound to
reproduce the solution of the Boltzmann transport equation
(BTE) and thus the spatial coordinate must be in the form
r = vbτ (ε) with τ (ε) being the energy-dependent relaxation
time. With this consideration, the modified distribution func-
tion in presence of the external electric field becomes [49,50]

f (ε, E, τ ) =
∑

n

fn =
∑

n

[eτ (ε)E · vb]n

n!

∂n f0(ε)

∂εn
. (4)

Here n = 0, 1, 2, . . . and f0(ε) = (1 + eβ[ε(k)−εF ] )−1 is the
equilibrium distribution function in the absence of the electric
field. Moreover, fn(ε) ∼ En is the nth order deviation from
the equilibrium distribution function f0(ε) due to the applied
electric field.

C. Modified definition of spin current

The conventional definition of the spin current operator
is given by v̂b,i j = (v̂b,iσ j + σ j v̂b,i )/2, where the first index
i and the second index j indicate the direction of propagation
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and spin orientation of a charge carrier, respectively, with
v̂b,i = 1

h̄
∂H (k)

∂ki
being the band velocity operator in i direction.

In this conventional definition of the spin current operator,
only the band velocity contribution has been considered, while
the contribution from the anomalous velocity is completely
neglected. The definition of the velocity operator including
the anomalous term [v̂i = v̂b,i + v̂a,i, where v̂b,i = 1

h̄
∂H (k)

∂ki
and

v̂a,i = −(e/h̄)εi jkE j
kσ0] is well known and has been used
extensively in literature [51–53], where the anomalous term is
responsible for the well known anomalous Hall effect (AHE).
In our study, a similar approach has been used to define the
spin current operator to check whether the anomalous part
of the spin current operator can produce the spin Hall effect.
Thus, the redefined spin current operator is given by

v̂i j = v̂b,i j + v̂a,i j, (5)

where v̂a,i j = va,iσ j with va,i = −(e/h̄)εi jkE j
k being the
anomalous velocity in i direction. Later it will be revealed that
the anomalous velocity is solely responsible for the linear spin
Hall current and may contribute to the nonlinear spin current.

The total spin current is given in the form of the integral
of the average of the generalized spin current operator v̂i j ,
weighted by the distribution function f (ε, E):

J (n)
i j = h̄

2

∑
n,λ

∫
dDk

(2π )D
〈λ, k|v̂i j |λ, k〉 fn. (6)

Here D denotes the spatial dimension of the system under
consideration. The spin current of the nth order appearing
from the band velocity is given by

J (n)
b,i j = h̄

2

∑
λ

∫
dDk

(2π )D
〈λ, k|v̂b,i j |λ, k〉 fn. (7)

Similarly, the (n + 1)th order spin current appearing from the
anomalous velocity is given by

J (n+1)
a,i j = h̄

2

∑
λ

∫
dDk

(2π )D
〈λ, k|v̂a,i j |λ, k〉 fn. (8)

Since the anomalous velocity va ∝ E is due to nonzero Berry
curvature, the lowest order spin current arising from the
anomalous velocity is one. Thus, the total spin current of order
n is given by J (n)

i j = J (n)
b,i j + J (n)

a,i j .
It is useful to express the various order spin currents in

terms of the density of states and relaxation time and thus they
(up to second order) are presented below.

The zeroth-order spin current (J (0)
i j = J (0)

b,i j) appears from
the band velocity and hence has the form [22,23]

J (0)
i j = h̄

2Dπ

∑
λ

∫ ∞

−∞
dε

∫
d
sDλ(ε)〈v̂b,i j〉λ f0, (9)

where 
s is the solid angle for the 3D and polar angle for the
2D systems and Dλ(ε) = 1

(2π )D

∫
dDkδ[ε − ελ(k)] is density

of states (DOS). The nonzero value of the zeroth-order spin
current indicates that the spin current persists even in thermo-
dynamic equilibrium (i.e., in the absence of an external field).
This is not associated with the real spin transport and cannot
yield any spin injection or spin accumulation. This is known
as the background or equilibrium spin current.

The linear spin current due to the band velocity and driven
by an electric field Eη (η = x, y, z) is given as

J (1),η

b,i j = (eEη )h̄

2Dπ

∑
λ

∫ ∞

−∞
dεPλ(ε)

(
∂ f0

∂ε

)
, (10)

where Pλ(ε) = ∫
d
sτλ(ε)Dλ(ε)〈v̂b,i j〉λ〈v̂b,η〉λ with τλ(ε) be-

ing the energy-dependent relaxation time.
On the other hand, the linear spin current due to the anoma-

lous velocity has the following form:

J (1),η

a,i j = h̄

2Dπ

∑
λ

∫ ∞

−∞
dε

∫
d
sDλ(ε)

〈
v̂

η
a,i j

〉
λ

f0, (11)

with η being the direction of electric field and always prop-
agates in the perpendicular direction to the applied electric
field. Later it will be shown that this linear spin current is
responsible for the spin Hall effect.

The general expression of quadratic spin current J (2),η

b,i j ap-
pearing from the band velocity is given by

J (2),η

b,i j = (eEη )2h̄

2D+1π

∑
λ

∫ ∞

−∞
dεHλ(ε)

(
∂2 f0

∂ε2

)
, (12)

where Hλ(ε) = ∫
d
sτ

2
λ (ε)Dλ(ε)〈v̂b,i j〉λ〈v̂b,η〉2

λ. Thus, for an
isotropic system, Hλ(ε) = τ 2

λ (ε)Dλ(ε)
∫

d
s〈v̂b,i j〉λ〈v̂b,η〉2
λ.

Performing integration by parts on Eq. (12), the general ex-
pression for the quadratic spin current arising from the band
velocity at zero temperature is obtained as

J (2),η

b,i j = (eEη )2h̄

2D+1π

∑
λ

Gλ(εF ), (13)

where Gλ(ε) = dHλ(ε)
dε

. Therefore, the zero temperature

quadratic spin current J (2),η

b,i j depends on the first derivative of
density of states (DOS).

Now the general expression of the quadratic spin current
J (2),η

a,i j appearing from the anomalous velocity and driven by an
electric field Eη is given by

J (2),η

a,i j = (eEη )h̄

2Dπ

∑
λ

∫ ∞

−∞
dεFλ(ε)

(
∂ f0

∂ε

)
, (14)

where Fλ(ε) =∫
d
sτλ(ε)Dλ(ε)〈v̂a,i j〉λ〈v̂b,η〉λ with 〈v̂a,i j〉λ ∝

E. Hence, at zero temperature the J (2),η

a,i j has the form J (2),η

a,i j =
− (eEη )h̄

2Dπ

∑
λ Fλ(εF ).

Here we would like to mention that in Refs. [47,49] the
study of nonlinear spin currents in the 2D Rashba systems are
carried out with constant relaxation time, while in our case the
relaxation time is energy dependent. Reference [49] depicts
that the second-order correction to the particle distribution
function ∂ f (2) of Ref. [47] (written as an iterative solution
to the Boltzmann transport equation within the relaxation-
time approximation) does not satisfy the collision term of the
Boltzmann transport equation (BTE), and hence it is not self-
consistent. In Ref. [49] the derivation of ∂ f (2) considers the
local change in the equilibrium distribution function induced
by the external fields and does not need to satisfy the BTE,
since the derivation is not associated with the evaluation of
collision integral. In our study we consider the approach of
Ref. [49] [see Eq. (4)].
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FIG. 1. Sketch of spin-split band structure of a 2D Rashba sys-
tem with a Zeeman like term (Mσz), when M < 2εα .

III. GAPPED 2D RASHBA SYSTEM

We consider a gapped two-dimensional electron gas
(2DEG) with the Rashba spin-orbit interaction, where the
Hamiltonian is given by

H = h̄2k2

2m∗ σ0 + ασ · (k × ẑ) + Mσz. (15)

Here k = {k cos φ, k sin φ} is the electron’s wave vector, α de-
notes the Rashba spin-orbit interaction (RSOI) strength which
measures the spin splitting induced by structural inversion
asymmetry, and M is the mass gap generated by breaking the
time-reversal symmetry. The mass term M can be generated
either by applying an external magnetic field [54] or by appli-
cation of circularly polarized electromagnetic radiation [55].

Comparing Eq. (15) with Eq. (1), dx = αky, dy = −αkx,
dz = M, φ′ = −(π/2 − φ), θ ′ = tan−1(sk/ck ), thus the en-
ergy spectrum is obtained as

ελ(k) = h̄2k2

2m∗ + λ
√

M2 + α2k2, (16)

and the corresponding normalized eigenstates are

|k, λ〉 =
√

1 + λck

2

[
1

−i λskeiφ

1+λck

]
, (17)

where ck = M/
√

M2 + α2k2 and sk = αk/
√

M2 + α2k2.
There is a finite gap 2M at k = 0 due to the time-reversal
symmetry breaking term Mσz. The spin orientation of an
electron with wave vector k in the gapped Rashba system is
〈σ〉λ = λ{sk sin φ,−sk cos φ, ck} and thus the spin and linear
momentum lock in such a way that 〈σ〉 · k = 0. Moreover,
there is an out-of-plane spin orientation (〈σz〉λ = λck) which
is antiparallel for the two bands and arises because of the
time-reversal symmetry breaking term. The Berry curvature
corresponding to λ band is given by

�λ(k) = −λ
Mα2ẑ

2(M2 + α2k2)3/2
. (18)

The isotropic Berry curvature is peaked at k = 0 and decays
with k.

In Fig. 1 the band structure for the gapped Rashba systems
given in Eq. (16) is depicted with a fixed value of εα for
M < 2εα . The band ε+(k) attains a minimum energy ε+

min =
+M at k = 0 for all values of M. On the other hand, the

band ε−(k) attains a minimum energy ε−
min = −εα (1 + M̃2)

at km = kα

√
1 − M̃2, where kα = m∗α/h̄2, εα = m∗α2/(2h̄2),

and M̃ = M/(2εα ). It should be mentioned here that the above
expression for ε−

min is valid only when M̃ < 1. When M̃ � 1,
the minimum energy becomes ε−

min = −M at k = 0.
The wave vectors corresponding to ε > M [regime (i), see

Fig. 1] are given by kλ = kα

√
(Ẽ − λ)2 − M̃2, where Ẽ =√

1 + ε̃ + M̃2 with ε̃ = ε/εα . Here k± represent the radii of
the two concentric circular constant energy surfaces. For ε >

M, the topology of the Fermi surface has convex shape for
both λ = + and λ = − bands. The density of states in each
band is given by Dλ(ε) = D0(1 − λ/Ẽ ) with D0 = m∗/2π h̄2.

As mentioned earlier, for ε < −M [regime (iii), see Fig. 1]
there exists only one energy band ε− and the topology of
energy surface is completely different as compared to ε > M.
For ε < −M and M < 2εα , the topology of the Fermi surface
has a concave-convex shape on the inner and outer branches,
respectively. For this regime, the wave vectors are represented
by kν = kα

√
[1 + (−1)ν−1Ẽ ]2 − M̃2 with ν = 1, 2 (ν = 1 →

outer branch and ν = 2 → inner branch). The DOS in each
branch is given by Dν = D0|1 + (−1)ν−1/Ẽ |.

For the regime −M � ε � M [regime (ii), see Fig. 1] only
ν = 1 branch exists with λ = −1. Hence the DOS in this
branch is given by Dν=1 = D0(1 + 1/Ẽ ).

The generalized velocity components in regime (i) are
obtained as

〈v̂x〉λ = h̄kα

m∗ Ẽ

[
1 − M̃2

(Ẽ − λ)2

]1/2

cos φ + λ
βEyM̃

(Ẽ − λ)3
,

〈v̂y〉λ = h̄kα

m∗ Ẽ

[
1 − M̃2

(Ẽ − λ)2

]1/2

sin φ − λ
βExM̃

(Ẽ − λ)3
, (19)

where β = e/(2h̄k2
α ). The velocity components in regime (iii)

with M < 2εα can be obtained from Eq. (19) with λ = −1
and Ẽ replaced by (−1)ν−1Ẽ . For regime (ii) the 〈v̂x〉 and 〈v̂y〉
have similar forms with ν = 1.

Similarly, the expectation values of spin velocity operators
for the three regimes can be obtained. It is to be noted that the
spin velocity 〈v̂xz〉 and 〈v̂yz〉 are zero for M = 0.

For calculating the second-order spin currents, we need
to know the relaxation time, which is calculated using the
framework of the semiclassical Boltzmann transport equation
including interband and intraband elastic scattering for regime
(i), and intrabanch and interbranch scattering within λ = −1
band for regime (iii) (see Appendix A). The expressions for
the relaxation time for regime (i) are obtained as

τ+ = 4τ0D0

A+D+ + (B+ + P+/R)D−
,

τ− = 4τ0D0

A−D− + (B− + P−R)D+
, (20)

where Dλ is the DOS, τ0 = 2πnimV 2
0 D0/h̄, Aλ =

1 + 3c2
kλ

, Bλ = 2(1 − ckλ
ckλ′ ), Pλ = skλ

skλ′ v
λ′
b /vλ

b , and R =
[D−(A− − P+) + D+B−]/[D+(A+ − P−) + D−B+]. Sim-
ilarly, for regime (iii) the relaxation times are obtained
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FIG. 2. The background spin current J (0)
xy (in units of J0) as a

function of rescaled Fermi energy ε̃F for different values of M̃.

as

τ1 = 4τ0D0

A1D1 + (B1 − P1/R)D2
,

(21)

τ2 = 4τ0D0

A2D2 + (B2 − P2R)D1
,

where Dν is the DOS in each branch, Aν = 1 + 3c2
kν

, Bν =
2(1 + ckν

ckν′ ), Pν = skν
sk′

ν
vν ′

b /vν
b , and R = [D2(A2 + P1) +

D1B2]/[D1(A1 + P2) + D2B1]. For regime (ii), only the ν = 1
branch persists. Thus, there exists only the intrabranch scat-
tering and hence the relaxation time is τ− = 4τ0D0/D1A1.
The analytical expressions for τλ and τν in terms of ε are
cumbersome, thus not given here.

A. Background spin current

First we present the results for the nonpropagating back-
ground spin current [22]. It can be easily shown that J (0)

xx =
J (0)

yy = 0. Similarly, J (0)
xz = J (0)

yz = 0. On the other hand, we
obtain J (0)

xy = −J (0)
yx �= 0. At zero temperature J (0)

xy [in units
of J0 = −h̄2k3

α/(24πm∗)] has the following form:

J (0)
xy = 4, εF � M,

J (0)
xy = (

2 + 3ẼF − Ẽ3
F − 2M̃3 + 3ẼF M̃2

)
,

−M � εF � M,

J (0)
xy = 2ẼF

(
3 − Ẽ2

F + 3M̃2
)
, εF � −M, (22)

where ẼF =
√

1 + ε̃F + M̃2 with ε̃F = εF /εα . The back-
ground spin current J (0)

xy (in units of J0) as a function of
rescaled Fermi energy ε̃F for different values of M̃ is shown
in Fig. 2. When εF � M [or ε̃F � 2M̃, i.e., regime (i)], the
background spin current is independent of M and εF , whereas
in the other two regimes it depends on M and εF . Moreover,
J (0)

xy with M �= 0 shows nonmonotonic behavior for εF < M
[regimes (ii) and (iii)]. The background spin current attains a
maximum value J (0)

max = 2J0[1 + (1 + M̃2)3/2 − M̃3] at εF =
0 and vanishes at εF = ε−

min. The zeroth-order spin current is
continuous, while their first and second derivatives are discon-
tinuous at the band edges ε̃F = ±2M̃.

It is instructive to compare these results with the results
for the M = 0 case [22]: J (0)

xy = 4J0 for εF � 0 and J (0)
xy =

2J0
√

1 + ε̃F )(2 − ε̃F ) for εF � 0. These two equations and
their first derivatives are continuous; and the second derivative
is discontinuous at εF = 0.

B. Linear spin Hall current

Here we present the results of linear spin current calcu-
lated using Eq. (11) for all possible combinations, where we
find that J (1),η

xx = J (1),η
xy = J (1),η

yx = J (1),η
yy = 0 and J (1),y

xz =
−J (1),x

yz . The above results reveal that the electric fields cannot
drive linear spin currents having in-plane spin polarization,
whereas it can produce linear spin currents having out-of-
plane spin polarization. The linear spin current is always
transverse to the electric field direction.

The expression for J (1),y
xz (= J (1),y

xz,a ) at zero temperature is
obtained as

J (1),y
xz = −eE0

8π

(
2M̃2 − M̃2ε̃F − ε̃2

F

)
(ε̃F + M̃2)2

, εF � M,

J (1),y
xz = −eE0

16π

[ M̃2

(1 + ẼF )2
− 1

]
, −M � εF � M,

J (1),y
xz = eE0

4π

M̃2ẼF

(ε̃F + M̃2)2
, εF � −M. (23)

The linear spin current transverse to the electric field aris-
ing solely from the nonzero Berry curvature is the well
known spin Hall current. This spin Hall current can be re-
versed by changing the electric field direction E to −E.
The spin Hall conductivity can be defined as σs = J (1),y

xz,a /E0.
For εF 
 M, the spin Hall conductivity is obtained as σ 0

s =
e/8π , which is exactly the same as obtained by using the
Kubo formula for the M → 0 case by various groups [40,56]
previously. However, this universal result vanishes in the
presence of an arbitrary weak disorder [57]. Reference [58]
also justifies this disappearance of static spin Hall conduc-
tivity for any nonvanishing disorder strength in the case of
the momentum-dependent Rashba strength and nonparabolic
energy spectrum. Electron-electron interaction also modifies
this universal value of spin Hall conductivity [58]. A similar
disorder effect can be performed on our calculation, which
may provide the correction terms in the expressions of spin
Hall conductivity.

The linear spin Hall current J (1),y
xz (in units of J1 = σ 0

s E0)
as a function of ε̃F for different values of M̃ is shown in Fig. 3.
It is interesting to note that the spin Hall current displays a
nearly quantized plateau at J (1),y

xz = (J (1),y
xz )/2 (i.e., half of

the maximum value of spin Hall current) when Fermi en-
ergy lies between the two gap edges, i.e., −2M̃ < ε̃F < 2M̃.
It reminds us of the half-quantized anomalous charge Hall
conductance in gapped Rashba systems [54,55]. Furthermore,
J (1),y

xz decreases with an increase of M̃ when ε̃F > 2M̃, but it
increases with an increase of M̃ when ε̃F < −2M̃.

C. Nonlinear spin current

In the previous subsection it is seen that a finite trans-
verse linear spin current exists while the longitudinal one
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FIG. 3. The spin Hall current J (1),y
xz (in units of J1 = σ 0

s E0) as a
function of rescaled Fermi energy ε̃F for different values of M̃.

vanishes. The first nonvanishing contribution to longitudinal
spin current in this system is quadratic in E, as is the feature
of IS-broken systems. In this subsection the quadratic spin
current has been studied for all possible configurations of
spin orientation, directions of charge propagation, and applied
electric field. First, we present results where only band veloc-
ity contributes to the quadratic spin current and then we show
that the current with certain spin polarization arises only due
to Berry curvature.

Results for J (2),η
xy : First we consider the quadratic spin

current J (2),x
xy , so that only the band velocity contributes. It

is to be noted that although a Hall field sets up along ŷ
direction due to anomalous drift of carriers, its contribution to
the nonlinear spin current (J (2),y

xy ) is negligible as compared to
that of the applied field, and hence not considered throughout
the paper. We present J (2),x

xy as a function of ε̃F for different
values of M̃ in Fig. 4(a). The spin current is independent
of the Fermi energy as well as M when ε̃F > 2M̃. For the
regime −2M̃ < ε̃F < 2M̃ and ε̃F < −2M̃, the spin current
is independent of M, but depends on the Fermi energy. The
spin current starts decreasing when ε̃F < −2M̃. There are two
peaks with their values opposite in sign appearing at the gap
edges, i.e., at ε̃F = ±2M̃. The absolute value of peak at ε̃F =
+2M̃ is greater than that of the ε̃F = −2M̃. Furthermore, the
peak value increases with the increasing strength of M̃. There
is a sharp transition in the spin current around εF = 0 when
M = 0. For M = 0, using the formula in Eq. (13), the spin
current J (2),x

xy at zero temperature is obtained as

J (2),x
xy = 16J2, εF > 0,

(24)
J (2),x

xy = J2

√
1 + ε̃F

[
48 + 72ε̃F + 21ε̃2

F

]
, εF < 0,

where J2 = (eτ0E0/h̄)2α/(32π ) with τ0 being the unit of
scattering time.

When the electric field is directed along the ŷ direction
(E = Eyŷ), the anomalous component (∝ Ey) of spin velocity,
i.e., va,xy, exists. However, this anomalous spin velocity gives
no net contribution to the nonlinear spin current. So J (2),y

xy

appears from the band component only. The plots for J (2),y
xy as

a function of ε̃F for different values of M̃ is shown in Fig. 4(b).
Similar to the previous case, two peaks appear at ε̃F = ±2M̃.

FIG. 4. The nonlinear spin current (a) J (2),x
xy and (b) J (2),y

xy in
units of J2 as a function of ε̃F for different values of M̃.

Here, at ε̃F = −2M̃ the peak values are negative and positive
at ε̃F = +2M̃, thereby following the opposite trend of the spin
current when the electric field is directed in the x̂ direction.
Thus, the polarization of these currents are opposite when
driven by E = E0x̂ and E = E0ŷ. For M = 0, the analyti-
cal expressions of spin current J (2),y

xy at zero temperature is
obtained as

J (2),y
xy = 0, εF > 0,

J (2),y
xy = −J2

√
1 + ε̃F

[
32 + 16ε̃F − 7ε̃2

F

]
, εF < 0. (25)

Thus, for the electric field in ŷ direction, the spin current
propagating in the x̂ direction with the polarization in the ŷ
direction is zero for εF > 0, whereas it is nonzero for εF < 0.
When εF > 0, the contribution from λ = + and λ = − bands
are the same in magnitude but opposite in sign, so their net
contribution vanishes. However, it does not vanish when the
relaxation time is taken to be constant.

Results for J (2),η
yx . Here we consider the opposite scenario,

i.e., ŷ directed spin current with polarization in x̂ direc-
tion. As expected, we find J (2),x

a,yx = 0 and J (2),x
b,yx �= 0 with

J (2),x
b,yx = −J (2),y

b,xy and thereby J (2),x
yx = −J (2),y

xy . Similarly we

find J (2),y
yx = −J (2),x

xy .
Results for J (2),η

xx andJ (2),η
yy . Now we shall present results

for quadratic spin currents J (2),η
xx and J (2),η

yy when both prop-
agation and polarization are in the same direction. For J (2),x

xx ,
the anomalous component of the spin velocity is zero and
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FIG. 5. The spin current J (2),y
xx (in units of J ′

2) arising from the
anomalous velocity as a function of ε̃F for different values of M̃.

contribution from the band velocity is also zero. Thus we have
J (2),x

xx = 0. Similarly one can show that J (2),y
yy = 0.

On the other hand, we obtain that J (2),y
b,xx is also zero, while

J (2),y
a,xx would survive. Using a similar analysis, we find that

J (2),x
a,yy is finite. Thus, one can generate pure anomalous non-

linear spin currents having propagation and polarization in the
same direction, while the electric field is in their transverse
direction. Because of the isotropic nature of the Berry cur-
vature, we find J (2),y

xx = J (2),x
yy . The plot of J (2),y

xx (= J (2),y
a,xx )

[in units of J ′
2, where J ′

2 = (J2h̄)/(τ0αkα )] as a function
of ε̃F is shown in Fig. 5. It displays that J (2),y

xx is nearly
flat when −2M̃ < ε̃F < 2M̃. The appearance of the nonlinear
anomalous spin current is reminiscent of the Berry curvature
induced nonlinear charge current which arises from the dipole
moment of the Berry curvature [53,59].

Results for J (2),η
xz andJ (2),η

yz . It is not possible to generate
a quadratic spin current having polarization in the ẑ direction,
as we find J (2),η

xz = J (2),η
yz = 0.

All the above results of spin current (whether it is zero
or nonzero) for a 2D gapped Rashba system are tabulated in
Table I.

TABLE I. Nature of spin currents in the 2D gapped Rashba
system for different orientations of electric field E.

Spin
current E = 0 η = x (Ba) η = x (Ab) η = y (B) η = y (A)

J (0)
xx 0 NAc NA NA NA

J (0)
xy Finite NA NA NA NA

J (0)
xz 0 NA NA NA NA

J (1),η
xx NA 0 0 0 0

J (1),η
xy NA 0 0 0 0

J (1),η
xz NA 0 0 0 Finite

J (2),η
xx NA 0 0 0 Finite

J (2),η
xy NA Finite 0 Finite (for εF < 0) 0

J (2),η
xz NA 0 0 0 0

aBand component contribution.
bAnomalous component contribution.
cNot applicable.

FIG. 6. Comparison between the magnitudes of spin currents for
different orders in a 2D gapped Rashba system.

Here in Fig. 6 we compare the magnitudes of differ-
ent orders of spin currents for a 2D gapped Rashba system
with E0 = 103 V/m, τ0 = 2.5 ps, m∗ = 0.3me (me: electronic
mass), α = 0.1 eV nm, and M̃ = 0.1.

IV. 3D NONCENTROSYMMETRIC SYSTEM

We consider 3D noncentrosymmetric metals such as
Li2(Pd3−xPtx)B and B20 compounds having cubic crystal
structure. Based on symmetry analysis [60–62], the Hamil-
tonian for low-energy conduction electron is given by

H = h̄2k2

2m∗ σ0 + ασ · k. (26)

Here k = k(sin θ cos φ, sin θ sin φ, cos θ ) is the 3D Bloch
wave vector and α is the strength of the linear spin-orbit
coupling. Comparing Eq. (26) with Eq. (1) we have di = αki

with i = x, y, z and the energy spectrum is given by

ελ(k) = h̄2k2

2m∗ + λαk, (27)

where λ = ± denotes two chiral bands. The band ε−(k) has
a minimum energy εmin = −εα at kα . Using the eigenstates
given in Eq. (3), the Berry curvature corresponding to λ band
is given as

�λ = −λ
k

2k3
. (28)

The spin-momentum locking follows the constraint 〈σ〉λ · k =
λk (or 〈σ〉λ × k = 0), which is completely opposite to the 2D
case. Here we would like to mention that in the 3D system,
a gap in dispersion cannot be created by adding the Zeeman
term and hence it is neglected in our calculation.

Using the Heisenberg’s equation of motion, the band veloc-
ity operator is given by v̂b = h̄k

m∗ σ0 + α
h̄ σ. The band velocity

expression for a given energy ε � 0 is vb = vα

√
1 + ε̃ k̂ for

both bands λ = ±. Here vα = h̄kα/m∗, ε̃ = ε/εα , and k̂ =
k/k is the unit vector along the vector k. Contrary, for ε < 0,
the band velocity expression for the two branches ν = 1, 2 is
vb = (−1)ν−1vα

√
1 + ε̃ k̂.

For a given energy ε � 0, the wave vector corresponding
to band λ is kλ = kα[−λ + √

1 + ε̃] and the density of states
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is given by

Dλ(ε) = D3
√

εα

[
2 + ε̃√
1 + ε̃

− 2λ

]
,

where D3 = 1
4π2 ( 2m∗

h̄2 )3/2.
On the other hand, for a given energy −εα < ε < 0,

the wave vector corresponding to branch ν is kν = kα[1 +
(−1)ν+1

√
1 + ε̃] and the density of states is given by

Dν (ε) = D3
√

εα

[
2 + ε̃√
1 + ε̃

+ 2(−1)ν+1

]
.

The energy-dependent relaxation times used for calculating
spin currents in 3D noncentrosymmetric metals have the fol-
lowing forms [63]:

τλ = u0

2D3

[ √
1 + ε̃√

εα (2 + ε̃)

][
1 − λ

√
1 + ε̃

2 + ε̃

]
, ε � 0,

τν = u0

2D3

[ √
1 + ε̃√

εα (2 + ε̃)

][
1 + (−1)ν−1λ

√
1 + ε̃

2 + ε̃

]
, ε < 0,

(29)

where 1/u0 = πnimpV 2
0 /h̄ with nimp being the impurity

density.

A. Background spin current

For a 3D Rashba system, the equilibrium background spin
current J (0)

ii with i = x, y, z is obtained as

J (0)
ii = h̄2k4

α

3π2m∗
√

1 + ε̃F , ∀ εF . (30)

Thus the background spin current and its derivative are con-
tinuous across the BTP. On the other hand, we find all other
components are zero, i.e., J (0)

i j = 0 with i �= j. The nature
of the background spin current in 3D is completely different
from that of the 2D Rashba system. For ε̃F 
 1, J (0)

xx ∼ α3,
but J (0)

xx ∼ α4 when ε̃F � 1.

B. Spin Hall current

Using symmetry analysis, the linear spin current due to the
band velocity becomes zero. On the other hand, the anomalous
velocity gives rise to the linear spin current which propagates
transverse to the external electric field. The spin Hall current
expression is obtained as J (1),ν

i j = σsεi jνEν , where the spin
Hall conductivity σs is given by

σs = − e

12π2
kα

√
1 + ε̃F , ∀ εF . (31)

Here εi jν is the fully antisymmetric Levi-Civita tensor. The
same expression of σs can be obtained using the Kubo formula

(see Appendix B). For ε̃F 
 1, σs � (−e/12π2)
√

2m∗ε0
F /h̄2

with ε0
F being the Fermi energy for conventional 3D metals.

On the other hand, σs ∼ kα at the band touching point k = 0.

C. Nonlinear spin current

Here we present the results of nonlinear spin currents for
the 3D Rashba system. The off-diagonal spin current J (2),η

i j
with i �= j from both the band and anomalous component of

FIG. 7. Spin current (a) J (2),x
xx and (b) J (2),y

xx in units of J3 as a
function of ε̃F .

the spin velocity are zero, whereas the diagonal spin currents
J (2),η

ii,b arising from the band component have nonzero values.
The anomalous component of the diagonal spin current,

i.e., J (2),η
ii,a , is also zero. Thus, unlike the 2D case (with Zem-

man term) there is no nonlinear current in 3D due to the
anomalous component because of the time-reversal symmetry.

Results forJ (2),η
xx . As already mentioned for the 3D Rashba

system, the nonlinear spin current arises solely from the
band component. The spin current J (2),x

xx for a 3D system is
obtained as

J (2),x
xx = −J3

√
1 + ε̃F

(2 + ε̃F )5

[
90 + 239ε̃F

+ 199ε̃2
F + 58ε̃3

F + 5ε̃4
F

]
, ∀ εF , (32)

where J3 = (h̄2eu0E0π )2/(30m∗3).
Expression (32) depicts a smooth variation of the quadratic

spin current across εF = 0 (band touching point) in 3D
Rashba, which ensures continuity of the first derivative of
the spin current, unlike its 2D counterpart. This is because
the forms of DOS are different for ε > 0 and ε < 0 in 2D
Rashba, while for the 3D case they are the same. The spin
current J (2),x

xx (in units of J3) as a function of ε̃F is shown in
Fig. 7(a) which depicts an increasing trend of spin currents
(considering absolute value) with ε̃F , except in the region
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FIG. 8. Comparison between the magnitudes of spin currents for
different orders in a 3D Rashba system.

−0.9 < ε̃F < −0.75. The spin current changes sign at ε̃F ∼
0.75.

Now we consider the electric field in ŷ direction. Similar to
the previous case (electric field in x̂ direction), here also the
spin current arises from the band component only. The spin
current J (2),y

xx for a 3D system is obtained as

J (2),y
xx = J3

√
1 + ε̃F

(2 + ε̃F )5

[
90 + 97ε̃F + 2ε̃2

F − 11ε̃3
F

]
, ∀ εF .

(33)

The plot for J (2),y
xx as a function of ε̃F is shown in Fig. 7(b).

The figure shows that the spin current J (2),y
xx is zero at ε̃F =

−1 and then it starts to increase, attends maxima at ε̃F ∼
−0.6, and then again decreases. There is no sign change for
the considered range of ε̃F .

Similarly, the spin currents J (2),z
xx is obtained, where we

find J (2),z
xx = J (2),y

xx .
Results for J (2),η

yy and J (2)η
zz . Here we find J (2),x

yy =
J (2),z

yy = J (2),x
zz = J (2),y

zz = J (2),y
xx = J (2),z

xx . Similarly we ob-

tain J (2),y
yy = J (2),z

zz = J (2),x
xx .

Figure 8 depicts the comparison of the magnitudes of dif-
ferent orders of spin currents for a 3D Rashba system with
E0 = 103 V/m, τ0 = u0/(2D3

√
εα ) = 2.5 ps, m∗ = 0.3me

(me: electronic mass), and α = 0.1 eV nm.
The results of spin currents in the 3D noncentrosymmetric

system are concisely summarized in Table II.
Here we would like to emphasize the differences of the

2D and 3D results. In the case of the 2D Rashba system, the
spin currents arising from the band component always have
the polarization and propagation direction perpendicular to
each other, whereas in the 3D system, the propagation and
polarization directions are the same. This may be attributed
to the fact that for the 2D case, the Rashba spin-orbit inter-
action [ασ · (k × ẑ)] locks the spin orientation perpendicular
to the momentum and thereby yields no contribution for the
spin currents having the same propagation and polarization
directions. For the 3D case, the Rashba spin-orbit interaction
(ασ · k) locks the spin orientation parallel to the momentum
and hence the spin currents having the propagation and po-
larization directions perpendicular to each other become zero.
For the 3D case, the expressions for the spin currents depicts
a smooth variation across εF = 0, unlike the 2D case. This is

TABLE II. Nature of spin currents in the 3D noncentrosymmetric
system for different orientations of electric field E.

Spin η = x η = x η = y η = y η = z η = z
current E = 0 (Ba) (Ab) (B) (A) (B) (A)

J (0)
xx Finite NAc NA NA NA NA NA

J (0)
xy 0 NA NA NA NA NA NA

J (0)
xz 0 NA NA NA NA NA NA

J (1),η
xx NA 0 0 0 0 0 0

J (1),η
xy NA 0 0 0 0 0 Finite

J (1),η
xz NA 0 0 0 Finite 0 0

J (2),η
xx NA Finite 0 Finite 0 Finite 0

J (2),η
xy NA 0 0 0 0 0 0

J (2),η
xz NA 0 0 0 0 0 0

aBand component contribution.
bAnomalous component contribution.
cNot applicable.

because of the different forms of DOS for εF > 0 and εF < 0
in 2D Rashba, while for the 3D case, they are the same. For the
2D gapped Rashba system, the Berry curvature induces a pure
nonlinear spin current, whereas in the 3D system, there is no
anomalous nonlinear spin current because of the time-reversal
symmetry.

V. CONCLUSION

We have studied the background, linear, and nonlinear
spin currents in 2D Rashba spin-orbit coupled systems with
Zeeman coupling and in 3D noncentrosymmetric metals. We
have incorporated the correction due to the Berry curvature
induced anomalous velocity in the semiclassical equations
of motion, which contributes to spin currents transverse to
the applied field. We have considered energy-dependent re-
laxation time obtained by solving the Boltzmann transport
equations self-consistently with (i) interband and intraband
scattering for ε > M, (ii) intrabanch scattering for −M �
ε � M, and (iii) interbranch and intrabranch scattering for
ε < −M in the presence of the short-range impurity.

For 2D Rashba systems, the background spin current has
only an in-plane component with spin polarization perpendic-
ular to the direction of propagation. It increases with εF and
attains a fixed value (independent of the Zeeman coupling)
when Fermi energy is above the Zeeman gap. The linear spin
current has only a transverse component due to the anomalous
velocity of carriers. The spin Hall conductivity rises with εF ,
exhibits a plateau at the Zeeman gap (similar to the Hall
plateau), and saturates to the intrinsic value e/(8π ) at higher
εF , which is independent of the Zeeman gap. This linear
current has out-of-plane spin polarization. The nonlinear spin
current (arising from band component) has both longitudinal
and transverse components in general and are polarized in-
plane. When εF is above the gap, the longitudinal part is
constant in εF while the transverse one vanishes. Both non-
linear components are sharply peaked at the gap edges with
opposite spin polarizations at the upper and lower edges. The
magnitudes of peak values get enhanced with the strength of
the Zeeman coupling. We get a pure anomalous nonlinear spin
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current with polarization along the direction of propagation
with extrema near the gap edges.

In 3D noncentrosymmetric metals, the background spin
current has spin polarization along the direction of propa-
gation and is an increasing function of εF . The linear spin
current has its directions of propagation, spin polarization, and
applied electric field mutually orthogonal to one another and
increases as a function of εF . For very high εF , the linear spin
Hall conductance is nearly independent of Rashba coupling

strength and varies as
√

ε0
F . Both the transverse and longitu-

dinal components of the nonlinear spin current have their spin
polarization aligned parallel or antiparallel to the direction of
propagation.

Thus, gapped 2D Rashba systems and 3D noncentrosym-
metric metals are valuable assets to explore the Berry
curvature induced spin currents. The correction due to Berry

curvature in the spin velocity operator results in an “extrinsic”
spin Hall current and gives an additional xx (or yy) component
of nonlinear spin current. The magnitudes of these currents
in gapped Rashba systems can be controlled by tuning the
external magnetic field, which makes it suitable for exper-
imental studies. The plateau of linear spin current and the
sharp peaks of nonlinear spin currents may act as a probe
for detection of Zeeman coupling from magnetic impurities
and its corresponding strength in 2D Rashba systems. In 3D
noncentrosymmetric metals, the Berry curvature results in
a linear spin Hall current but does not affect the nonlinear
ones.
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APPENDIX A: DERIVATION OF RELAXATION TIME FOR A 2D GAPPED RASHBA SYSTEM

Here we present the derivation of relaxation time of a gapped 2D Rashba system with a spin-independent short-range scatterer
using the semiclassical BTE self-consistently. Following Refs. [63,64], the coupled equations for the relaxation time τζ (ε) are
given by

1

τζ (ε)
= 1

2π

∑
ζ ′

∫
dεζ ′dφ′Dζ ′ (εζ ′ )Wζ ′ζ (εζ , εζ ′ )

[
1 − cos(φ′ − φ)

v
ζ ′
b τζ ′

v
ζ

b τζ

]
. (A1)

Here ζ ≡ (λ, k) and ζ ≡ (ν, k) is the eigenstate index for the regime ε > M and ε−
min < ε < −M respectively, and the transition

rate between the states ζ and ζ ′ is

Wζ ′,ζ = 2π

h̄
|〈ζ ′|V (r)|ζ 〉|2δ(εζ − εζ ′ ),

where V (r) = V0
∑

i δ(r − Ri ) with a constant strength V0.
After performing the integral and summation of Eq. (A1), for the regime ε > M, it reduces to

1

τλ

= DλAλ

4τ0D0
+ Dλ′[Bλ + (Pλτλ′ )/τλ]

4τ0D0
, (A2)

where Aλ = 1 + 3c2
kλ

, Bλ = 2(1 − ckλ
ckλ′ ) = Bλ′ , and Pλ = skλ

skλ′ v
λ′
b /vλ

b . Also, τ0 = 2πnimV 2
0 D0/h̄ with nim being the impurity

concentration and D0 = m∗/(2π h̄2). Solving the coupled equations for 1/τ+ and 1/τ−, the relaxation times of the two bands for
ε > M are obtained as

τ+ = 4τ0D0

A+D+ + (B+ + P+/R)D−
; τ− = 4τ0D0

A−D− + (B− + P−R)D+
, (A3)

with R = D−(A−−P+ )+D+B−
D+(A+−P− )+D−B+

.

Similarly, for the regime ε−
min < ε < −M, the coupled equations for the relaxation time τν (ε) are

1

τν

= DνAν

4τ0D0
+ Dν ′[Bν − (Pντν ′ )/τν]

4τ0D0
. (A4)

Here Aν = 1 + 3c2
kν

, Bν = 2(1 + ckν
ckν′ ) = Bν ′ , and Pν = skν

skν′ v
ν ′
b /vν

b . Solving Eq. (A4), the relaxation times of the two
branches for ε−

min < ε < −M are obtained as

τ1 = 4τ0D0

A1D1 + (B1 − P1/R)D2
; τ2 = 4τ0D0

A2D2 + (B2 − P2R)D1
, (A5)

where R = D2(A2+P1 )+D1B2
D1(A1+P2 )+D2B1

.

165401-10
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APPENDIX B: SPIN HALL CURRENT IN THE 3D NONCENTROSYMMETRIC SYSTEM FROM KUBO FORMALISM

The spin Hall conductivity in a clean 3D Rashba system using the Kubo formula [56] is obtained as

σs = eh̄2

2

∑
λ �=λ′

∫
d3k

(2π )3
( fkλ′ − fkλ

)Im
〈k, λ′|v̂xz|k, λ〉〈k, λ′|v̂y|k, λ〉

(εkλ
− εkλ′ )2

= eh̄2

4m∗α

∫
d3k

(2π )3
( f− − f+)

sin2 θ cos2 φ

k
= ekα

12π2

√
1 + ε̃F . (B1)
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