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We investigate the effect of the mass anisotropy on Friedel oscillations, Ruderman-Kittel-Kasuya-Yosida
(RKKY) interaction, screening properties, and Boltzmann transport in two-dimensional (2D) metallic and doped
semiconductor systems. We calculate the static polarizability and the dielectric function within the random
phase approximation with the mass anisotropy fully taken into account without making any effective isotropic
approximation in the theory. We find that carrier screening exhibits an isotropic behavior for small momenta
despite the anisotropy of the system and becomes strongly anisotropic above a certain threshold momentum.
Such an anisotropy of screening leads to anisotropic Friedel oscillations, and an anisotropic RKKY interaction
characterized by a periodicity dependent on the direction between the localized magnetic moments. We also
explore the disorder limited dc transport properties in the presence of mass anisotropy based on the Boltzmann
transport theory. Interestingly, we find that the anisotropy ratio of the short-range disorder limited resistivity
along the heavy- and light-mass directions is always the same as the mass anisotropy ratio, whereas for the
long-range disorder limited resistivity the anisotropy ratio is the same as the mass ratio only in the low-density
limit and saturates to the square root of the mass ratio in the high-density limit. Our theoretical work should
apply to many existing and to-be-discovered anisotropic 2D systems.
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I. INTRODUCTION

There has been considerable interest, going back to the
early 1970s, in two-dimensional electron gas (2DEG) systems
due to their importance both in pure theoretical studies and
technological applications [1]. The integer quantum Hall ef-
fect was originally observed in 2D Si-SiO2 based inversion
layers [2] and then in many 2D systems over the last 40 years.
Subsequently, the fractional quantum Hall effect was seen in
2D GaAs-AlGaAs systems, and later in many other systems
[3]. The 2DEG is typically formed at the interface between
bulk materials [1], where electrons are confined to a potential
that restricts and quantizes their motion along one direction,
allowing only two degrees of freedom along the 2D interface
plane. More recently, graphene and related materials provide
examples of intrinsic 2D materials made of electrons confined
in one atomic monolayer. Very recently, researchers suc-
cessfully fabricated atomically thin 2D materials (e.g., black
phosphorus [4–6], transition metal dichalcogenides [7], etc.)
with the help of advanced techniques that enable to exfoliate
a single layer of atoms from the bulk layered counterpart [8].

The most common theoretical approach to understanding
physics in 2D materials is to start from the ideal isotropic
2DEG model where the energy dispersion is given by εk =
h̄2k2

2m . The effective mass m is determined by an isotropic aver-
aged mass such as density-of-states mass or conductivity mass
[9–12], depending on the carrier property being studied. Here,
the density of states mass, mDOS, and the conductivity (or
optical) mass, mCON, are defined by: mDOS = (mxmy)1/2 and

mCON = 2mxmy/(mx + my), where mx,y are the anisotropic
effective masses along the 2D cartesian axes. We mention
that mDOS typically appears in thermodynamic quantities such
as the specific heat whereas mCON appears in transport and
optical properties such as the conductivity. Despite its sim-
plicity and neglect of the anisotropy, the isotropic 2D model
has been reasonably successful in capturing many physical
properties of anisotropic 2D systems [1,11,13–17]. Recent
work, however, has demonstrated that such a neglect of mass
anisotropy could lead to the incorrect suppression of key
anisotropic features that have no corresponding isotropic ana-
log [18–21]. In addition, there have been several reports of
mass anisotropy in new emerging 2D materials due to the low
in-plane symmetry, with the observation of rich anisotropic
physics absent in isotropic materials [6,22–26]. Thus, it is
imperative to develop a general electric theory incorporating
the mass anisotropy to correctly describe physical properties
of 2D electronic materials.

In this paper, we discuss the effect of the mass anisotropy
on screening, Friedel oscillations, RKKY interaction, and
dc Drude transport by taking the explicit effective mass
anisotropy into account using the anisotropic 2DEG model
described by

εk = k2
x

2mH
+ k2

y

2mL
, (1)

where mH and mL denote the heavy and light masses, re-
spectively, taken without loss of generality to be along the
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cartesian coordinates x and y in the 2D plane of confine-
ment. We provide detailed analytical and numerical analysis
of anisotropic behaviors of these properties, comparing them
with the extensively used and well-known isotropic results
where anisotropic masses are averaged into a single effec-
tive isotropic effective mass. We also discuss the validity of
the isotropic approximation by exploring several regimes of
electron density where the isotropic approximation works (or
fails). We find that, contrary to prevalent expectations, the
isotropic approximation often leads to incorrect and mislead-
ing results.

This paper is organized as follows. In Sec. II, we discuss
screening properties of anisotropic 2DEG, presenting ana-
lytic results for the polarizability and the dielectric function,
highlighting their anisotropic features. We also discuss the
Friedel oscillations associated with 2kF-screening in Sec. II.
From the obtained screening results in Sec. II, we calculate
the RKKY interaction between localized magnetic moments
[27–29] in Sec. III and analyze anisotropic effects on its os-
cillatory behavior. Section IV presents the calculated disorder
scattering induced carrier resistivity results obtained using the
Boltzmann transport equation with the anisotropic electron
structure fully taken into account. We consider both short-
range defect and long-range Coulomb disorders, and provide
detailed analytical and numerical analysis of the resistivity
behaviors for both types of scatterer. Section V contains a
summary and conclusions. Our theory is entirely restricted to
the zero temperature situation although a finite temperature
generalization is straightforward and cumbersome, by using
finite temperature Fermi distribution function and chemical
potential everywhere.

II. ANISOTROPIC SCREENING

The 2D static screening function in the random phase ap-
proximation (RPA) is given by

ε(q) = 1 − vc(q)�0(q), (2)

where vc(q) = 2πe2

q is the 2D Coulomb interaction (note that
the Coulomb interaction itself is isotropic even in the presence

of mass anisotropy), q =
√

q2
x + q2

y and �0(q) is the noninter-

acting irreducible static polarizability given by

�0(q) =
∫

d2k

(2π )2

nF(ξk) − nF(ξk+q)

εk − εk+q
, (3)

where nF(ξk) is the Fermi-Dirac distribution function, ξk =
εk − μ, and μ is the chemical potential. The polarizability
for an anisotropic 2D electron gas can be obtained using the
existing result for the isotropic polarizability [30] by rescaling

me → mDOS, qx →
√

mDOS
mH

qx and qx →
√

mDOS
mL

qy, where me is

the electron mass. We obtain the anisotropic static polarizabil-
ity function to be

�0(q) = −D(EF)

⎡
⎣1 − �

(
qiso − 2kDOS

F

)√
q2

iso − (
2kDOS

F

)2

qiso

⎤
⎦,

(4)

FIG. 1. (a) the polarizability and (b) the dielectric function plot-
ted along several different directions θ = 0, π/8, π/4, 3π/8 and π/2
where θ is the angle from the heavy mass axis. Here we set rs = 2.0
and mH/mL = 10.

where D(EF) = mDOS
π h̄ is the 2D density-of-states and qiso is

defined as satisfying

q2
iso

2mDOS
= q2

x

2mH
+ q2

y

2mL
. (5)

Figure 1(a) shows the polarizability function plotted along
several different directions. All the curves show the typical
2D polarizability behavior [30], being a constant up to a
certain critical momentum qc(θ ) at which the polarizability
suddenly drops, resulting in a kink structure characterized by
the discontinuity in its first derivative, and falls off rapidly
(∼1/q2) with q increasing further. Here θ is the angle from
the heavy-mass direction (i.e., x-axis) defined through θ =
tan−1(qy/qx ). The constancy of the low momentum screen-
ing function in Fig. 1 up to a finite momentum is directly
connected to the constant energy-independent form of the 2D
density of states. At large momenta, the anisotropy is strongly
suppressed because of the decay of the short distance (i.e.,
large q) screening. qc(θ ) can be obtained analytically using
Eq. (5) with qiso substituted by 2kDOS

F :

qc(θ ) = 2kF(θ ), (6)
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where

kF(θ ) = kDOS
F√

mDOS
mH

cos2 θ + mDOS
mL

sin2 θ
, (7)

For small q, more precisely q < qc(π/2) =
√

mL
mDOS

kDOS
F , the

polarizability is constant and isotropic with �0(q) = − m
π h̄

despite the mass anisotropy of the system. Note that for the
isotropic system with mH = mL, the screening function is
constant up to 2kF, where kF is the isotropic Fermi momentum.
Thus, kF(θ ) is simply the effective anisotropic Fermi momen-
tum defined by Eq. (7).

In Fig. 1(b), we present the corresponding dielectric func-
tion plotted along several different directions. Note that the
screening is isotropic in the long-wavelength limit due to the
isotropic polarizability as discussed above. Using Eq. (4), it is
easy to see that the dielectric function in the long wavelength
limit is given by

ε(q) = 1 + qTF

q
, (8)

where qTF = 2mDOSe2/h̄2 is the Thomas Fermi wave vector.
Note that Eq. (8) is indeed identical to the long-wavelength
dielectric function of a 2D isotropic electron gas with only
the effective mass m replaced by the density of states mass
mDOS. This shows that for sufficiently small q the isotropic
approximation employing the density-of-states mass works
well in describing the screening properties of the anisotropic
system. This may be the underlying reason for the widespread
practice of ignoring anisotropy effects in the screening prop-
erties of anisotropic metals and doped semiconductors since
the long wavelength Thomas-Fermi screening is the standard
approximation used extensively. We point out that the long
wavelength Thomas-Fermi screening is strictly proportional
to the density of states of the system which for the anisotropic
system is indeed defined by the density-of-states effective
mass, explaining why screening becomes isotropic in the
small momentum limit. At large momentum, obviously the
isotropic approximation fails as described in this work.

It is worth noting that the finite wave vector screening
is stronger along the the heavy mass direction (θ = 0) than
that along the light-mass direction (θ = π/2). This can be
understood as follows: for an anisotropic electron gas, we
can define two different Wigner-Seitz radius parameter rH

s
and rL

s , which represent the effective strength of the Coulomb
interaction along the heavy mass and the light mass direc-
tions, respectively. Since rH

s > rL
s , which can be easily seen

by noting that rs ∼ m, the screening along the heavy direction
should be stronger in general than that along the light-mass
direction. An equivalent physical way of explaining this is that
screening being proportional to the effective mass in the long
wavelength limit (through its proportionality on the density
of states), it is stronger (weaker) in the direction of heavier
(lighter) mass.

Before concluding this section, it is worth investigating the
consequence of the directional-dependent kink behavior of
the polarizability on the real space properties of anisotropic
screening behavior. The 2kF-kink in the screening function
arises directly from the discontinuity in the Fermi function

at kF, and is closely related to the Kohn anomaly [31].
Anisotropy obviously maintains the sharpness of the Fermi
surface, and hence the 2kF kink is preserved anisotropically
[see Eq. (10)] in the polarizability. One of the well-known
consequences of the kink is electron density oscillation near a
charged impurity, known as Friedel Oscillation, arising from
the 2kF kink in screening. The effective screened potential at
large distances (rkDOS

F � 1) from a charged impurity in an
anisotropic electron gas is calculated to be

φ(r) =
∫

d2q

(2π )2

vc(q)

ε(q)
eiq·r

∼ 4qTF
(
kDOS

F

)2

(
2kDOS

F + qTF
)2

sin[2kP(θ )r]

[2kP(θ )r]2
, (9)

where

kP(θ ) = kDOS
F

√
mH

mDOS
cos2 θ + mL

mDOS
sin2 θ, (10)

and r =
√

x2 + y2 and θ = tan−1(y/x). Note that due to the
anisotropy of the polarizability, the oscillation term in Eq. (9)
is highly anisotropic varying as a function of θ . The oscil-
lation along the heavy-mass and light-mass direction has a
periodicity π/kH

F and π/kL
F , respectively, where kH

F (kL
F ) is the

magnitude of the Fermi-wave vector along the heavy-mass,
i.e., x axis, (light-mass, i.e., y axis) direction. The period of
oscillations along an arbitrary direction off the symmetry axis
lies in between π/kH

F and π/kL
F . Such a direction-dependent

Friedel oscillation is a clear prediction of our theory which
should manifest itself in 2D anisotropic systems, e.g., Kohn
anomaly should manifest strong angular dependence in the 2D
plane.

The singularity in the polarizability also plays an important
role in the interaction between localized magnetic moments
mediated by the itinerant electrons, the so called “RKKY
interaction” [27–29]. In the next section, we briefly introduce
the formalism for the RKKY interaction showing its relation
to the polarizability, and discuss anisotropic features of the
RKKY interaction arising from mass anisotropy.

III. RKKY INTERACTION

The localized spin moment interacting with an itiner-
ant electron via the exchange interaction is described by
[27–29,32]

Hex = −Jex

∑
i=1,2

Si · s(Ri ), (11)

where Jex is the exchange coupling constant, Si is the magnetic
impurity moment located at Ri and s(r) = h̄

2

∑
i δ(r − ri )σi is

the spin density for an electron located at r. Treating Hex as
a perturbation and expanding it up to the second order, we
obtain

HRKKY =
∑
i, j

JRKKY(r)Si · S j (12)

where r = Ri − R j and

JRKKY(r) = J2
ex

4
�(r). (13)
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FIG. 2. Plots of J (r, θ ) for several different directions θ = 0,
π/4, and π/2 along with the isotropic one obtained using mDOS

(black-dashed line). The bottom figure shows two dimensional plot
of J (r, θ ), highlighting the anisotropy of RKKY interaction. Here

J0 = − J2
ex
4 D(EF )(kDOS

F )2.

Eq. (12) and Eq. (13) show that the exchange-mediated in-
teraction between two magnetic impurities is proportional to
�(r), which is the real space Fourier transform of the static
polarizability in the momentum space given by Eq. (4), i.e.,

�(r) =
∫

d2q

(2π )2
�(q)eiq·r

= −2
(
kDOS

F

)2

mDOSh̄

× {J0[kp(θ )r]N0[kp(θ )r] + J1[kp(θ )r]N1[kp(θ )r]},
(14)

which is similar to the isotropic counterpart [33] with the
isotropic Fermi wave vector replaced by kp(θ ). Here r =√

x2 + y2, and Jn(x) and Nn(x) are Bessel functions of the first
and second kind, respectively.

Figure 2(a) presents plots of RKKY interaction JRKKY(r)
along various directions. For small r < 1/kDOS

F , the RKKY

interaction is stronger along the heavy-mass direction than
along the light-mass direction, and starts showing an oscil-
latory behavior as r increases. The oscillation period along
the light mass axis is much larger than that along the heavy-
mass direction, similar to the Friedel oscillation discussed in
the previous section. It is also worth noting that the RKKY
interaction decays much more rapidly along the heavy-mass
direction than along the light-mass direction. These results
show that the RKKY interaction is anisotropic in the presence
of mass anisotropy, strongly deviating from the isotropic re-
sult obtained using the isotropic approximation (black-dashed
line). This clear prediction of our theory should be directly
observable in 2D anisotropic metals and doped systems.

To understand the anisotropic features of the RKKY inter-
action, here we provide the asymptotic form of the real space
polarizability [Eq. (14)]. In the short distance limit (kFr � 1),
Eq. (14) is written as

�(r) ≈ −2
(
kDOS

F

)2

mDOSh̄

2γ − 1 − 2 ln[kp(θ )r/2]

π
, (15)

where γ is the Euler constant. This shows that the RKKY in-
teraction diverges logarithmically as r → 0 with its diverging
rate along the heavy mass direction (∼ ln rkH

F ) being faster
than that along the light-mass direction (∼ ln rkL

F ). Also note
that since kp(θ ) increases with increasing θ , one can easily see
from Eq. (15) that the RKKY interaction becomes stronger as
one moves from the heavy-mass axis (i.e., x axis) to the light
mass axis (i.e., y axis). In the long distance limit, i.e., kFr � 1:

�(r) ≈ −8
(
kDOS

F

)2

mDOSh̄π

sin[2kP(θ )r]

[2kP(θ )r]2
. (16)

Note that the period of oscillation is given not by π/kF(θ )
but by π/kp(θ ), implying that unlike the isotropic case the
RKKY oscillation period for an anisotropic system is not
necessarily determined by the Fermi wave vector. Along the
symmetry axis, however, the period of oscillation is associ-
ated with the Fermi wave vector, given by π/kH

F and π/kL
F

along the heavy- and the light-mass directions, respectively.
Also note that whereas the RKKY interaction decays with the
same power law (∼1/r2) along all directions, the decay rate
depends on the direction, being much faster along the heavy-
mass direction with ∼1/(2kH

F r)2 than along the light-mass
direction ∼1/(2kL

F r)2 as determined by the 2D anisotropy of
the effective mass.

Figure 2(b) shows the two-dimensional plot of the RKKY
interaction in the x-y plane. This figure highlights that the
RKKY interaction is highly anisotropic, showing that the
period of the oscillation varies as a function of the direction
between the localized magnetic moments.

IV. TRANSPORT

In this section, we investigate the dc transport properties of
an anisotropic electron gas, arising from impurity scattering,
using the Boltzmann-transport equation within the relaxation
time approximation. For an isotropic system, the Boltzman
equation is well known to provide the dc transport scattering
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rate to be [34]

1

τ iso
εk

=
∫

d2k′

(2π )2
Wkk′ (1 − cos θkk′ ), (17)

where the disorder scattering matrix element is given by

Wkk′ = 2π

h̄
nimp|Vkk′ |2δ(εk − εk′ ). (18)

and cos θkk′ is the angle between k and k′. Here nimp de-
notes the impurity density and |Vkk′ | is the impurity potential.
One should be cautious when applying this equation since
it has been shown that the equation can lead to inaccurate
transport results in the presence of an anisotropic Fermi sur-
face, and thus should instead use a modified version of the
Boltzmann transport formalism in an integral equation form
[35]. Basically, the relaxation time approximation must be
carried out incorporating the anisotropy explicitly, which is
straightforward to do. For completeness, we briefly introduce
the derivation of the anisotropic Boltzmann transport theory
before we present our results.

In this paper, we assume that the system is stationary and
homogeneous so that spatial and temporal changes of the
distribution after collisions are negligible, i.e., f (r + vdt, k +
Fdt, t + dt ) = f (r, k + Fdt, t ), where v is the velocity and
F is the Lorentz force acting on electron in an external
uniform and static electric field. Then, the difference in the
distribution over time dt induced by scattering is given by
f (r + vdt, k + Fdt, t + dt ) − f (r, k, t ) = eE · vdt ∂ f

∂εk
, lead-

ing to the Boltzmann equation

eE · v
∂ f

∂εk
=

(
∂ f

∂t

)
coll

, (19)

where ( ∂ f
∂t )

coll
is the collision integral. Using the detailed

balance condition, Eq. (19) is written as

eE · v
∂ f

∂εk
=

∫
d2k′

(2π )2
Wkk′[ f (k) − f (k′)]. (20)

We assume that the applied electric field is sufficiently weak
so that the deviation of the distribution from equilibrium is
small (δ f = f − f 0 � 1). Then the collision integral can be
approximated, within the generalized relaxation time approx-
imation, as ( ∂ f

∂t )
coll

= − f − f 0

τ i
εk

where τ i
εk

is the relaxation time

along the ith direction with i = H and i = L denoting the
heavy- and the light-mass directions, respectively. Using this,
we find the solution of Eq. (19) to be in the form of

f (k) = f 0(k) − eτ i
εk

E · v
∂ f

∂εk
. (21)

By inserting Eq. (21) into Eq. (20), we obtain the following
integral equation for the relaxation time that fully takes into
account the anisotropy of the system,

1

τ i
εk

=
∫

d2k′

(2π )2
Wkk′

(
1 − vi

k′

vi
k′

τ i
εk′

τ i
εk

)
, (22)

where vi
k = ∂εk/h̄∂ki is the velocity. Equation (22) is the

generalization of Eqs. (17) and (18) from the isotropic Drude
transport to the anisotropic case. For a single band system, the

current density is given by

j = −e
∫

dk
(2π )2

v(k) f (k). (23)

By substituting Eq. (21) into Eq. (23), it is easy to see that the
dc conductivity at zero temperature is obtaind to be

σii = e2
∫

dk
(2π )2

τ i
εk

vi
kv

i
kδ(εk − εF). (24)

Since only the relaxation time evaluated at the Fermi surface
contributes to the conductivity, in the following we present
results only for τ i

εF
(θkF ) where θkF is the angle between the

Fermi wave vector and the heavy-mass direction (x axis).
For a constant isotropic effective mass, Eq. (24) immediately
gives the well-known Drude formula for the dc conductivity
in terms of the transport scattering time: σ = ne2τ/m, where
n is the carrier density [34].

A. Short-range disorder

We first consider s-wave short-range scatterers such as
dislocation, point defect, atomic vacancy, etc. The impurity
potential for short-range scatterers is extremely localized (ac-
tually zero range) in the real space, and thus in the momentum
space it is given by a constant, i.e., |Vkk′ | = V0. Then the
relaxation time in Eq. (22) is expressed as

1

τεF

(
θkF

) =2π

h̄
nimp

∫
d2k′

(2π )2
V 2

0 δ(εF − εk′ )

×
(

1 − vi
k′

vi
k

τεF

(
θ ′

kF

)
τεF

(
θkF

)
)

. (25)

Note that due to the symmetry of the system, the second term
in the parenthesis is canceled out by integration, leading the
relaxation time to be isotropic given by

1

τεF

=2π

h̄
nimp

∫
d2k′

(2π )2
V 2

0 δ(εF − εk′ )

=2π

h̄
nimp

V 2
0 D(EF)

2

=2π

h̄
nimp

V 2
0 mDOS

2π h̄2 . (26)

This result shows that the isotropic approximation replacing
anisotropic mass with the density-of-states mass works per-
fectly well for short-range disorder for all electron densities.
Using Eqs. (24) and (26), we can obtain the equation for the
anisotropic short-range disorder resistivity

ρii = 2πnimp

h̄

V 2
0

e2εF
mi, (27)

which is the same formula as the isotropic resistivity with
the effective mass being mi for ith direction. Note that the
anisotropy of the resistivity ratio is the same as the mass ratio
for all range of densities, i.e.,

ρH

ρL
= mH

mL
. (28)

We comment that the disappearance of the (1 − cos θ ) vertex
correction factor in the relaxation time here is the general
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FIG. 3. (a), (b) Plots of relaxation time as a function of θ for different values of kDOS
F , i.e., electron densities. Here we set mH/mL = 10 and

the relaxation time is normalized by τ0 = [ 2π

h̄ nimpV 2
0 D(εF )]

−1
. (c) Plot of the angular average of the relaxation time as a function of kDOS

F for
mH/mL = 10, and (d) the ratio between the averaged relaxation times along the heavy-mass and the light-mass directions for mH/mL = 2 (red)
and mH/mL = 10 (blue).

result of s-wave scattering where the vertex correction
vanishes. The direct prediction of our theory is that the short-
range defect scattering induced anisotropic resistivity would
reflect the precise mass anisotropy inserted into the isotropic
Drude formula with the resistivity in the heavy (light) mass
direction being higher (lower) by the effective mass ratio. It
is easy to see that the resistivity in an arbitrary direction at an
angle θ to the heavy mass direction (i.e., x axis) will be given
by the same standard Drude formula [Eq. (27)] except that the
effective mass will be θ -dependent with m(θ ) replacing mi in
Eq. (27), where 1/m(θ ) = cos2 θ/mH + sin2 θ/mL.

B. Long-range disorder

In this section we consider long-range charged Coulomb
scatterers which often dominate the resistivity of 2D elec-
tronic materials [36]. We model the charged impurity potential
as the RPA statically screened Coulomb potential given by
|Vkk′ | = 2πe2

ε(q)q where q = k − k′ is the scattering wave vec-
tor. Then the anisotropic direction-dependent relaxation time
[Eq. (22)] is written as

1

τεF

(
θkF

) =2π

h̄
nimp

∫
d2k′

(2π )2

[
2πe2

ε(q)q

]2

δ(εF − εk′ )

×
[

1 − vi
k′

vi
k

τεF

(
θ ′

kF

)
τεF

(
θkF

)
]
. (29)

The second term in the parenthesis in Eq. (29) is not canceled
out by integration unlike the case for short-range disorder be-
cause the vertex correction does not vanish for the long-range
non-s-wave scattering. The easiest way to solve Eq. (29) is to
discretize the angular variable θkF so that Eq. (29) is converted
into a standard discretized matrix eigenvalue problem [35,37].

Figures 3(a) and 3(b) show the numerically calculated
relaxation time as a function of θkF for kDOS

F /qTF = 0.2
and 2.0. Note that in contrast to the short-range relaxation
time [Eq. (26)], the long-range relaxation time varies rapidly
with θkF exhibiting a manifest anisotropy arising from mass
anisotropy. This angular-dependent behavior of the relaxation
time cannot be reproduced by the isotropic approximation
(black line). When the electron density is low [Fig. 3(a)], the
relaxation time is maximum at θ = 0, monotonically decreas-
ing with increasing θ , and being the minimum at θ = π/2.
At a higher density [Fig. 3(b)] the relaxation time behaves
in the opposite manner, being smallest at θ = 0 and maxi-
mum at θ = π/2. One can also see by comparing Fig. 3(a)
with Fig. 3(b) that the relaxation time varies more rapidly
as a function of θkF at a higher density, implying that the
anisotropy becomes stronger as the density increases. This
can be understood by looking at the screened Coulomb po-
tential in Eq. (29). Using the Thomas-Fermi approximation,
the screened Coulomb potential is written as vsc(q) = 2πe2

q+qTF
.

Note here that the screened potential in the Thomas-Fermi
limit is isotropic since the static dielectric function is isotropic
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at small momenta as discussed in Sec. II. For sufficiently low
densities where qTF � kDOS

F , the screened Coulomb potential
can be further approximated as a constant,

vsc(q) = 2πe2

q + qTF
≈ 2πe2

qTF
, (30)

which is so called “complete screening approximation.” This
shows that in the low-density limit the 2D impurity potential
for long-range Coulomb disorder is given by a constant in the
momentum space similar to the short-range impurity poten-
tial. The short-range nature of the screened Coulomb disorder
in the low-density limit appears counterintuitive, but is true by
virtue of the fact that kF in 2D goes as the square root of carrier
density but qTF is a constant. By substituting V0 in Eq. (26)
with Eq. (30) we obtain the long-range relaxation time in the
low-density limit

1

τεF

= 2π

h̄
nimp

π h̄2

2mDOS
, (31)

which is isotropic and constant, similar to the short-range
relaxation time. This indicates that the isotropic approxima-
tion using the isotropic density-of-state mass works well for
long-range disorders when the electron density is sufficiently
low. Note that such an isotropic low-density strongly screened
behavior of the long-range relaxation time comes from the
2D screening becoming isotropic in the long-wavelength limit
which is discussed in-depth in Sec. II.

Figure 3(c) shows the relaxation time averaged over θkF ,
i.e.,

τ i
εF

= 1

2π

∫ 2π

0
dθτ i

εF

(
θεF

)
, (32)

along the heavy-mass and the light-mass directions as a func-
tion of kDOS

F . Note that τH
εF

> τL
εF

always with τ iso
εF

lying in
between them. The relaxation time along the heavy-mass di-
rection increases more rapidly than that along the light-mass
direction with increasing electron density. This can be more
explicitly seen in Fig. 3(d) where we plot the anisotropy ratio
of the relaxation time. In a reasonable range of density up to
kDOS

F = 50qTF, the anisotropy of the relaxation time is smaller
than the mass anisotropy, i.e., τH

εF
/τL

εF
< mH/mL [see the inset

in Fig. 3(d)]. Note that the relaxation time becomes isotropic,
as expected, in the zero-density strong-screening limit with
τH

εF
/τL

εF
converging to unity as kDOS

F /qTF → 0.
Figure 4(a) shows the calculated resistivity as a function

of kDOS
F . All the curves show the typical behavior of the

resistivity, diverging at zero density and decreasing monoton-
ically with increasing density. We find that ρH > ρL always
for all density ranges in spite of the relaxation time itself
satisfying τH

εF
> τL

εF
. This is because the resistivity goes as

m/τ , and the relaxation time being larger does not necessarily
imply a lower resistivity because of the mass factor. The
black dashed and dotted lines show the resistivity calculated
using the existing isotropic results with the effective mass
given by mH and mL for ρH and ρL, respectively. Note that
the isotropic resitivity results well reproduce the anisotropic
resistivity in the low-density regime where the long-range
Coulomb disorder is strongly screened, whereas it fails when
the density becomes higher, especially along the heavy-mass

FIG. 4. (a) Calculated resistivity along the heavy-mass (blue)
and the light-mass (red) directions along with the isotropic resistivity
(black) calculated with the effective isotropic mass being mH and mL

for ρH and ρL, respectively. Here we set mH/mL = 10, and the re-
sistivity is normalized by ρ0 = π h̄nimp

2e2k2
F

(b) The anisotropy ratio of the

resistivity for mH/mL = 2 (blue) and mH/mL = 10 (red). The inset
in (b) shows the the convergence of the resistivity ratio to the square
root of the mass ratio in the high-density limit (i.e., kDOS

F � qTF).

direction. In Fig. 4(b) we present the calculated long-range
resistivity ratio for two different mass ratios mH/mL = 2 and
10. In the zero density limit, the anisotropy of the long-range
disorder limited resistivity is equal to the mass ratio as that
of the short-range resistivity, which can be easily proven by
substituting V0 in Eq. (27) with the strongly screened Coulomb
potential Eq. (30). Note that the anisotropy of the resistivity
is suppressed with increasing density. The amount of suppres-
sion is larger for larger mass ratios. In the inset of Fig. 4(b), we
plot the resistivity ratio up to very high-density kDOS

F = 60qTF

showing that ρH > ρL saturates to
√

mH/mL as the density
increases. This result indicates that the anisotropy ratio for
long-range scattering limited resistivity is between mH/mL

and
√

mH/mL in the low and high-density limits. Note that the
anisotropy ratio of the long-range resistivity strongly depends
on the electron density in contrast to that of the short-range
resistivity, which is just given by the mass anisotropy ratio
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regardless of the electron density. Using such contrasting
resistivity behaviors, one may possibly distinguish between
short-range and long-range disorder in the sample using a
measurement of transport as a function of density. In a recent
experiment on GeAs, which exhibits a strong anisotropy, it
has been reported that the resistivity anisotropy ratio varies as
a function of electron density [38]. Our results imply that the
long-range disorder-limited resistivity contributes to such a
density dependent behavior of the resistivity anisotropy ratio.
We hope that our detailed theoretical predictions will lead to
experimental density-dependent resistivity measurements in
various anisotropic 2D systems such as 110 Si inversion layers
and AlAs quantum wells, where our predicted results can be
directly verified.

The square root mass ratio dependence of the high-density
long-range disorder-limited resistivity can be analytically un-
derstood as arising from the fact that for high densities
screening weakens by virtue of kF � qTF, and therefore,
the disorder potential is effectively unscreened. Such an un-
screened Coulomb disorder leads to a 2D resistivity going
as ρ ∼ m1/2 simply on dimensional ground as can be shown
easily by following in arguments in Ref. [39]. This leads to
the very high-density asymptotic resistivity ratio approach
(mH/mL)1/2 as we find numerically. Given that the limit-
ing resistivity in the low- and high-density limit goes as
mH/mL and (mH/mL)1/2, respectively, the actual resistivity
ratio at any physical density will be less than the effective
mass anisotropy, i.e., mH/mL > ρH/ρL > (mH/mL)1/2, which
provides a weak rationale for neglecting mass anisotropy in
transport theories of 2D systems

Interestingly, and perhaps coincidentally, this square root
transport behavior of the anisotropy we find in the unscreened
high-density limit at zero magnetic field, has also been found
in both experiments and theories of the high-field compos-
ite fermions in 2D anisotropic systems at half-filled Landau
levels [40]. Whether this agreement between our Boltzmann
transport theoretic for unscreened Coulomb scattering and the
composite fermion results in high magnetic field is a coinci-
dence or a deep connection is unknown and worthy of future
theoretical consideration. It is worth noting in this context that
our finding of the transport anisotropy going as the effective
mass anisotropy in the completely screened low-density limit
also agrees with certain Chern-Simons theories for composite
fermions at half-filling [41].

V. SUMMARY AND CONCLUSION

In this paper, we have provided theoretical studies of
screening properties, RKKY interaction, and Drude transport
properties of an anisotropic 2D electron gas as occurring in
2D metals and doped semiconductors.

We first investigated the screening properties by obtaining
the exact form of the static polarizability and the correspond-
ing RPA dielectric function. In the long-wavelength limit, the
polarizability exhibits a constant isotropic behavior, leading
the screening to be isotropic despite the anisotropy of the

system. The polarizability loses its isotropy above a critical
momentum qc(θ ) where the polarizability suddenly drops.
The screening is stronger along the heavy-mass direction than
along the light-mass direction. The resultant Friedel oscilla-
tions of the screened potential manifest strongly anisotropic
oscillations with dramatic angle-dependent spatial periodicity,
which should have direct experimental consequences.

We also obtained the RKKY interaction which is the
indirect exchange interaction between localized magnetic mo-
ments mediated by the itinerant electrons. The key anisotropic
features are (i) the period of the RKKY oscillation along
the heavy- and light-mass directions is determined by the
magnitude of the Fermi wave vector along the corresponding
direction, (i.e., π/ki

F along the ith direction), and (ii) the
RKKY interaction decays much faster along the heavy-mass
direction with its decay rate given by ∼1/(2ki

Fr)2 along ith
direction. This should have experimentally observable conse-
quences in 2D anisotropic materials.

We then presented the theory for transport properties of
anisotropic 2DEG using the Boltzmann transport theory fully
incorporating the anisotropic mass. We consider two types
of scatterers: short-range disorder and long-range Coulomb
disorder. We find that the short-range relaxation time at the
Fermi surface is perfectly isotropic, being actually the same
as the existing result for an isotropic 2DEG with the effective
mass replaced by the density-of-states mass. Therefore, the
short-range resistivity is proportional to the mass correspond-
ing to the direction of the applied electric field, i.e., ρ ∼ mi

and thus the resistivity ratio is always the same as the mass
ratio (i.e., ρH/ρL = mH/mL). For the long-range scatterers,
we find that the relaxation time is strongly anisotropic, vary-
ing as a function of the momentum direction on the Fermi
surface (θkF ). We find τH > τL always, and the anisotropy of
the relaxation time is reduced as the density decreases (i.e.,
as the screening becomes stronger). We find that the long-
range resistivity ratio varies with electron density: in the zero
density limit the resistivity ratio is the same as the mass ratio
(i.e., ρH/ρL = mH/mL) whereas it is equal to the square root
of the mass ratio (i.e., ρH/ρL = √

mH/mL) in the high-density
limit. In the intermediate density regime, the resistivity ratio
lies in between these two values. Our results show that the
resistivity for the short-range and long-range disorder has
quite different dependence on electron density, and thus one
may be able to distinguish between the two scatterers through
measuring the transport as a function of density. In general,
ρH > ρL always although at the same time τH > τL also
always. But, generically, at any arbitrary density the resistiv-
ity ratio, with mH/mL > ρH/ρL > (mH/mL)1/2, is suppressed
compared with the effective mass anisotropy, offering a weak
justification of the widespread use of the isotropic transport
approximation in the theoretical literature.
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