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Role of the reorganization energy for charge transport in disordered organic semiconductors
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While it is commonly accepted that the activation energy of the thermally activated polaron hopping transport
in disordered organic semiconductors can be decoupled into a disorder and a polaron contribution, their relative
weight is still controversial. This feature is quantified in terms of the so-called C factor in the expression for
the effective polaron mobility: μe ∝ exp[−Ea/kBT −C(σ/kBT )2], where Ea and σ are the polaron activation
energy and the energy width of a Gaussian density of states (DOS), respectively. A key issue is whether the
universal scaling relation (implying a constant C factor) regarding the polaron formation energy is really obeyed,
as recently claimed in the literature [Seki and Wojcik, J. Chem. Phys. 145, 034106 (2016)]. In the present work,
we reinvestigate this issue on the basis of the Marcus transition rate model using extensive kinetic Monte Carlo
simulations as a benchmark tool. We compare the polaron-transport simulation data with results of analytical
calculations by the effective medium approximation and multiple trapping and release approaches. The key result
of this study is that the C factor for Marcus polaron hopping depends on first the degree of carrier localization,
i.e., the coupling between the sites, further whether quasiequilibrium has indeed been reached, and finally the
σ/Ea ratio. This implies that there is no universal scaling with respect to the relative contribution of polaron and
disorder effect. Finally, we demonstrate that virtually the same values of the disorder parameter σ are determined
from available experimental data using the C factors obtained here irrespective of whether the data are interpreted
in terms of Marcus or Miller-Abrahams rates. This implies that molecular reorganization contributes only weakly
to charge transport, and it justifies the use of the zero-order Miller-Abrahams rate model for evaluating the DOS
width from temperature-dependent charge transport measurements regardless of whether or not polaron effects
are accounted for.

DOI: 10.1103/PhysRevB.103.165202

I. INTRODUCTION

Charge-carrier transport in amorphous organic semicon-
ductors (AOSs) occurs by noncoherent hopping through the
manifold of localized states distributed in space and energy,
which is commonly described by a Gaussian density of states
(DOS) distribution of energetic width σ . The latter is a mea-
sure of the energetic disorder that is generally accepted to be a
dominant factor governing the charge transport in AOS films.
Although the pertinent energetic disorder can account for a
broad variety of experimental observations in AOSs, such
as the mobility temperature and electric-field dependences,
or the transition from nondispersive to dispersive transport
regimes upon lowering temperature [1], in some organic sys-
tems polaron formation is sometimes taken into account. This
is because an organic molecule or a subunit of a conjugated
polymer can undergo structural reorganization upon charging.
Depending on the value of the reorganization energy, this
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could result in a significant polaronic nature of charge trans-
port, and consequently, the observed temperature dependence
of the carrier mobility may be governed by the superposition
of disorder and polaron effects.

Although a large amount of work was done on the descrip-
tion of charge-carrier transport in AOSs for the last decades,
an adequate theoretical description of the polaronic transport
in disordered media remains challenging. In particular, there
has been a long-standing discussion concerning the expression
for the effective polaron mobility μe obtained for energetically
disordered organic semiconductors when using a Marcus-type
intersite hopping rate model. The commonly accepted rela-
tion, which was heuristically suggested, splits the activation
energy of the zero electric field mobility into a disorder and a
polaron term. It reads as follows [2]:

μe = μ0 exp

[
− Ea

kBT
− C

(
σ

kBT

)2]
. (1)

The argument presumes that transport occurs by hopping in
a Gaussian-shaped distribution of energy sites, but each jump

2469-9950/2021/103(16)/165202(13) 165202-1 ©2021 American Physical Society

https://orcid.org/0000-0001-5349-599X
https://orcid.org/0000-0001-8673-5048
https://orcid.org/0000-0002-5807-709X
https://orcid.org/0000-0001-5406-1982
https://orcid.org/0000-0002-4019-5979
https://orcid.org/0000-0001-5029-4420
https://orcid.org/0000-0001-8459-7825
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.103.165202&domain=pdf&date_stamp=2021-04-26
https://doi.org/10.1063/1.4958835
https://doi.org/10.1103/PhysRevB.103.165202


R. SAXENA et al. PHYSICAL REVIEW B 103, 165202 (2021)

is associated with an additional constant activation energy,
that is, the polaron activation energy Ea, which is equal to a
quarter of the total reorganization energy associated with the
charge transfer (Ea = λ/4). The prefactor μ0 is the infinite
temperature mobility. What has been in dispute for decades
is the numerical value of the C factor (coefficient) which
weights the relative contribution of disorder and polaron ef-
fects. In their original paper [2], Bässler et al. suggested a
long time ago to consider the C factor in Eq. (1) as a constant
that is determined entirely by the energetic disorder effects
and, consequently, to adopt the same value as that derived
before for the charge transport in a polaron free system (i.e.,
C = 4/9 ≈ 0.44) within the Miller-Abrahams rate model [1].
Recently, this issue was thoroughly investigated [3–5] by
combining Monte Carlo simulation studies and analytical cal-
culations using an effective medium approximation (EMA),
and a dependence of the C factor on the σ/Ea ratio was shown.
The latter effect has also been confirmed by several different
theoretical approaches [6–8].

Nevertheless, recently Seki and Wojcik [9] have questioned
the variability of the C factor in Eq. (1) and the existence
of a nonlinear dependence of the relative weights of polaron
and disorder contributions to the hopping transport on the
σ/Ea ratio. They performed both kinetic Monte Carlo (KMC)
numerical simulations and EMA calculations considering the
nearest-neighbor hopping regime. They used Marcus rates
and found that the C factor is virtually independent of Ea.
A value of C ∼= 1/2 was obtained by EMA, while the KMC
data revealed slightly different values of C = 0.42 and 0.5 for
three-dimensional (3D) and two-dimensional (2D) transport
systems, respectively. This would imply a universal scaling
relation for the polaronic mobility with the polaron formation
energy. A similar conclusion was also drawn in Ref. [10]
where a very weak σ/Ea dependence of the C factor was
reported. It is important to mention that the authors of Ref. [9]
actually used a simplified Marcus relation, where the prefactor
was assumed to be constant.

In the present paper, we reinvestigate the C factor issue
on the basis of Marcus theory for polaron hopping rates by
combining kinetic Monte Carlo simulations and two alterna-
tive theoretical approaches EMA and a multiple trapping and
release (MTR) formalism. We have advanced these methods
for considering the hopping transport problem for different
rates, and obtained the C factor in the context of Eq. (1). Our
work brings additional insights to light on aspects related to
polaronic hopping transport that have not been considered so
far. We demonstrate that the C factor turns out to depend on
whether transport has reached equilibration or not, and on the
degree of carrier localization. Moreover, it changes with the
σ/Ea ratio. Thus, our study is in sharp contrast to the notion
of a “universal scaling law” recently published by Seki and
Wojcik in Ref. [9], and we clarify that and why there is no
universal scaling regarding the polaron formation energy. The
present results help to build an understanding on the interplay
of disorder and polaronic effects, and their quantitative depen-
dence on different transport parameters.

This paper is organized as follows. First, we describe
our kinetic Monte Carlo simulation method (Sec. II) and
the theoretical formulation of our EMA and MTR analytic
approaches (Sec. III). In Sec. IV we present the results

of the KMC simulations and the theoretical calculations
of the temperature-dependent diffusivity obtained for Miller-
Abrahams (MA) and Marcus hopping rates for the nearest-
neighbor hopping regime, and the corresponding C factors are
evaluated as a function of the σ/Ea ratio. Subsequently we
consider the impact of variable-range hopping. In Sec. V we
apply our results to reanalyze available experimental data, and
a concluding discussion is given in Sec. VI.

II. MONTE CARLO SIMULATIONS

The thermally activated hopping of excitations in a disor-
dered organic solid is studied using a grid-based kinetic Monte
Carlo (KMC) method to monitor the motion of excitations
as hopping events. We place a particular emphasis on the
dependence of the C factor on the σ/Ea ratio and the degree
of excitation localization. The excitation can, in principle,
be equally well a charge carrier or a triplet exciton since (i)
both move by an exchange mechanism, and (ii) the transfer
of a triplet can, to first order, be described as a correlated ex-
change of two charges. The physical meaning of the excitation
depends on the value chosen for the energetic disorder and
the reorganization energy. The KMC simulations were done
by employing an isotropic three-dimensional (3D) simulation
box (50×50×50 lattice sites) with a lattice constant of 1.5
nm. Since energetic disorder is inherent to conventional thin-
film organic semiconductors, the lattice sites are assigned a
random energy drawn from a Gaussian distribution g(ε) with
a standard deviation σ centered at zero energy, i.e., ε0 = 0.

g(ε) = N

σ
√

2π
exp

[
−1

2

(
ε − ε0

σ

)2]
, (2)

where N is the density of localized states. To describe the
diffusion of excitations through the disordered medium, both
Miller-Abrahams (MA) and Marcus hopping rates have been
used. This is done to find out whether the hopping process
and thus the value of the C factor is altered by the hopping
rate chosen for determining the diffusivity of the excitations.
The MA hopping rate between an initial site of energy εi and
final site of energy ε j is given by [11]

Wi j = W0 exp

[
−|ε j − εi| + (ε j − εi )

2kBT

]
,

W0 = ν0 exp(−2γ Ri j ), (3)

where W0, the MA rate prefactor, is determined by the hopping
distance Ri j . The inverse localization radius γ is related to
the electronic coupling matrix element between adjacent sites.
ν0 is the attempt to escape frequency usually being close
to an intermolecular phonon frequency, kB is the Boltzmann
constant, and T is temperature. The parameter γ is assumed
to be isotropic in all directions. The MA formalism does not
consider any polaronic effects related to the reorganization
energy. These effects can be taken into account by considering
a semiclassical Marcus-type hopping rate [12,13]:

Wi j = W1 exp

[
− Ea

kBT
− ε j − εi

2kBT
− (ε j − εi )2

16EakBT

]
,

W1 = (Ji j/h̄)
√

π/4EakBT , (4)
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where W1 denotes the Marcus prefactor that, in contrast to
the MA rate, depends on temperature. Ji j = J2

0 exp(−2γ Rij )
represents the electronic coupling, J0 is the nearest-neighbor
coupling constant, Ea is the small-polaron activation energy
related to the reorganization energy λ by Ea = λ/4.

In conventional Monte Carlo simulations, the initial site en-
ergy is typically sampled from the DOS distribution centered
at ε0 = 0. Therefore, an excitation generated at a site with
arbitrary energy in the DOS first energetically relaxes toward
the tail states. While the energetically downward hops are
dominant initially, a quasiequilibrium between the thermally
activated upward hops and the downward hops is eventually
obtained at later times. Therefore, the diffusivity within a dis-
ordered semiconductor is time dependent until the excitation
has relaxed to a mean equilibrium energy below the center
of the DOS (εeq = −σ 2/kBT ). This time dependence, i.e.,
the nonequilibrium nature of the simulated diffusivity, affects
the resulting transport properties [14,15]. Thus, the diffusion
coefficient can critically depend on whether the initial energy
is chosen from the DOS (centered at 0 eV) or the occupied
DOS (ODOS) distribution centered at the equilibrium energy
εeq below the DOS center, with the same σ . The analytical
theories in the present paper (and, in general) are formulated
under the premise of equilibrium transport; in order to pro-
vide an adequate comparison with the analytical results, our
KMC simulations are thus performed under the conditions
that the initial energy of an excitation is sampled from a Gaus-
sian ODOS distribution of width σ centered at ε0 = εeq =
−σ 2/KBT . Hereafter we refer to this as the “ODOS approach”
to distinguish it from the conventional “DOS approach.”

At the beginning of the simulation, t = 0, an excitation is
generated randomly at one of the lattice sites. In the case that
the simulation is intended to start with an excitation in the
ODOS, the energy of that lattice site is manually adjusted
to be part of the ODOS. At each kinetic step, the excitation
can hop to any of the nearest-neighbor sites. For the case
of variable-range hopping (VRH) simulations, excitations are
also allowed to access non-nearest hopping sites. Every per-
missible hop is treated as an event and for each event i, the
rate Wi is calculated. For the selection of an event, firstly,
for each event i the partial sum Si = ∑i

β=1 Wβ is calculated.
A random number ϕ is drawn from the interval (0, WT ],
with WT = ∑NE

β=1 Wβ , NE being the total number of events
(permissible hops). From all possible events, the event i for
which Si−1 < ϕ � Si holds is selected. The selected event is
executed for the corresponding excitation and the simulation
time (t) is updated by the waiting time, τw = −ln(X )/WT

where X is a random number between 0 and 1. The simulation
stops after 105 hops. The initial (t = 0) and final (after
105 hops) position of the excitation in the lattice are used to
determine the values for mean diffusivity, D = �x2/t . Results
are obtained by averaging over 5000 simulation trials account-
ing for different disorder configurations. The simulations do
not take the effect of conjugation or correlated disorder into
consideration.

III. THEORETICAL FORMULATION

A. Effective medium approximation approach

The effective medium approximation (EMA) is an ana-
lytic method that has been often used to describe different
aspects of the charge transport properties in disordered semi-
conducting materials. This approach is conventionally used
for the nearest-neighbor hopping transport in a periodic cubic
lattice of different spatial dimensionalities from one dimen-
sional (1D) to 3D. Within the EMA approach, the disordered
organic medium with localized states for charge carriers
is replaced by an effective ordered cubic 3D lattice with
spacing a = N−1/3 equal to the average distance between
the localized states, where N is the density of the local-
ized states. We consider that the energy ε of the localized
states is randomly distributed and their DOS can be de-
scribed by a Gaussian function with width σ , represented
by Eq. (2). Such kind of DOS distribution is applicable
for both charged and neutral excitations (excitons) in or-
ganic disordered solids. Polaron effects arising at sufficiently
large electron-phonon coupling and/or high enough tem-
peratures can be accounted for by employing the Marcus
rate for nonadiabatic hopping transfer given by Eq. (4).
Recently, we suggested a generalized EMA approach [5]
which is applicable for an arbitrary polaron activation energy
Ea compared to the energetic disorder parameter σ . This
approach is based on the following self-consistency equa-
tion suggested earlier by Kirkpatrick [16] for the effective
conductivity σe = Ge/a characterizing the whole disordered
system,

〈
σ12 − σe

σ12 + (d − 1)σe

〉
= 0, (5)

where σ12 = G12/a is conductivity in two-site cluster
approximation, d is the dimensionality of the hopping
transport system, G12 is two-site conductance, and angular
brackets 〈· · · 〉 denote the configuration averaging. The
above-mentioned EMA study, similar to that in the paper by
Seki and Wojcik [9], was done using a constant Marcus rate
prefactor W1 = 1 in Eq. (4). This approach will be hereafter
referred to as a “simplified Marcus” rate approach.

In the present work, we performed EMA calculations of
the effective diffusion coefficient by using the full Marcus rate
equation, i.e., explicitly taking into account the temperature-
dependent prefactor. We focus our consideration here on the
low carrier concentration transport regime and the limit of
weak electric fields, when eF�Ri j � σ . �Ri j is the hopping
distance which, implicitly, depends on the energetic disorder.
As demonstrated in Ref. [5], the effective diffusivity is De =
a2We, where We is the effective jump rate between neighboring
localized sites. It can be derived within the EMA approach
by the following integral equation obtained as a result of
configuration averaging in Eq. (5):

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 exp

[
−1

2

(
t2
1 + t2

2

)2
] x1/2 exp

[− x
16xa

(t1 − t2)2 − x
2 (t1 + t2) − 1

2 x2
] − Xe

x1/2 exp
[− x

16xa
(t1 − t2)2 − x

2 (t1 + t2) − 1
2 x2

] + (d − 1)Xe
= 0, (6)
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where Xe = De/D0, D0 = a2(J/h̄)
√

π/4Eaσ exp(−x xa), x =
σ/kBT , and xa = Ea/σ . It is worth noting that in the EMA
approach we use direct configurational averaging over a DOS
distribution, which avoids shortcomings involved in the ef-
fective transport energy εtrans or percolation concepts. The
EMA is in particular a suitable method for studying hopping
transport in disordered materials with not very large energetic
disorder and it naturally allows accounting for the dimension-
ality of the system.

B. Multiple trapping and release approach

The multiple trapping and release (MTR) theory was
initially developed for the description of trap-controlled trans-
port in inorganic semiconductors with band conduction. Thus,
according to the MTR, charge carriers can only be transported
via conductive delocalized states lying above the so-called
mobility edge εc. The carriers interact with localized states
(traps) through trapping and thermal release. Despite the fact
that all electronic states in conventional organic semiconduc-
tors are localized, a relatively simple MTR formalism can still
be used to describe the hopping transport. The MTR descrip-
tion is commonly based on the concept of the transport energy
εtrans playing the role of the mobility edge in the classical
MTR model. There are two general approaches to defining
the transport energy. The first one considers the transport level
εtrans as a characteristic energy of the states predominantly
contributing to the electric conductivity [17–20]. Due to the
energetic disorder, such “conductive states” are actually dis-
tributed over a certain energy interval. Another approach (the
effective transport energy concept) [18,19,21–26] considers
the transport level as a parameter in the mean release rate
of carriers from rather deep, mostly populated states. This
release rate can be approximated in a form similar to the MTR
model:

ω(ε) = ω0 exp

(
−εtrans − ε

kBT

)
, (7)

where ε is the energy of the initial state, and ω0 is the fre-
quency factor which is different from W0 in Eq. (3).

It should be noted that there are many reports (see, for
instance, [17–21,24,25]) on derivations of the transport energy
for nonpolaronic hopping transport in Gaussian DOS, which
were formulated for the Miller-Abrahams rate. There have
been few applications of the effective transport energy concept
to the Marcus rate model, except to its truncated form [22,23].
On the other hand, the transport energy approach does not
need to be invoked explicitly to apply the MTR method to
the hopping transport. Instead, the problem of defining the
transport energy can be circumvented in the event that one
can split all the available states into “transporting” states,
which provide the principal contribution to the transport and
“trapping” states, which delay carriers. The former states can
be referred to as conductive states in a similar manner to the
classical MTR model, and the latter ones can be considered
as traps. This idea was proposed long ago by Schmidlin [27];
however, more work needs to be done on developing a gen-
eral calculation method to obtain transport parameters with
this approach. Below, we present our MTR approach, which
makes use of this idea by Schmidlin. Our approach is quite

general and is suitable for the description of hopping transport
irrespective of a jump rate model. We apply it to the analysis
of temperature-dependent carrier diffusivity for both MA and
Marcus rates in the limit of small carrier concentration and
low electric fields. The gist of our approach lies essentially
in reducing the well-known master equation of hopping trans-
port [24,27,28] to the balance equation of the MTR model at
arbitrary jump rates (see the Appendix for more details).

In practice, we identify a “conductive” state by the con-
dition that the escape time from this state does not exceed a
certain time t0. Since the carrier release is a stochastic process,
the probability that a given state is conductive, is determined
by the Poisson distribution as

ϕ(ε) = 1 − exp[−ω(ε)t0] ≈ ω(ε)t0, ω(ε)t0 � 1, (8)

provided that the critical time t0 is rather small relative to a
typical hopping time. Note that the approximation (7) is not
relevant anymore to Eq. (8) and to the subsequent equations.
The trap-controlled diffusivity in the MTR approach can then
be expressed as [25,29]

D = Dc
pc

p
≈ (a2/t0)

∫∞
−∞ dεgODOS(ε)ϕ(ε)

∫∞
−∞ dεgODOS(ε)

, (9)

where pc and p are the carrier concentration in “conduc-
tive” states and the total concentration, respectively. Dc ≈
a2/t0 is the carrier diffusivity in conductive states, a ≈
N−1/3 is the mean hopping distance in conductive states,
and gODOS(ε) is the ODOS distribution proportional to the
product g(ε)exp(−ε/kBT ) under quasiequilibrium conditions.
The parameter t0 cancels in Eq. (9) after combining Eqs. (8)
and (9), and therefore the diffusivity is proportional to the
mean release rate averaged over the ODOS distribution. The
resulting relation reads as

D ≈ a2〈ω(ε)〉 = a2

∫ ∞
−∞ dεω(ε)g(ε) exp (−ε/kBT )∫ ∞

−∞ dεg(ε) exp (−ε/kBT )
. (10)

Further, to determine the mean release rate ω(ε) and to
consider the variable-range hopping (VRH) regime, we use
the mean hopping parameter method suggested by Arkhipov
et al. [30], which is very similar to the method proposed by
Apsley and Hughes [31] for a weak electric field and low car-
rier concentration limit. The function ω(ε) can be expressed
as follows:

ω(ε) = ω0e−〈u〉(ε), 〈u〉(ε) =
∫ ∞

0
du e−n(ε,u), (11)

where u is the hopping parameter; n(ε, u) is the average
number of target neighbor sites whose hopping rates are not
smaller than a given value of ω0 exp(−u). An important mod-
ification was done here with respect to the previous works
[30,31] in order to preclude multiple carrier jumps within
pairs of occasionally close localized states: Hopping neigh-
bors for which return jumps to initially occupied states are
more probable than jumps to other states are excluded from
n(ε, u). This also implies including the percolation effects
[24,32,33] in a first approximation (see the Appendix for
details). If the oscillations of a carrier within pairs of local-
ized states are not excluded, then our MTR approach for the
MA rate leads to a similar low-field mobility as obtained in
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Ref. [30]. This similarity applies within the accuracy of the
prefactor a2, and using the Einstein relation μ = eD/kBT .
It should be mentioned that results of the calculation with
Eq. (11) for the MA rates showed that Eq. (7) can be consid-
ered as a good approximation for the release frequency ω(ε)
when the localized states are rather deep, ε < εtrans. Upon
applying Eq. (7) and the Einstein relation, Eq. (10) reduces to
the well-known result from the transport level method: μ ≈
(eω0a2/kT )exp [−εtrans/kBT −0.5(σ/kBT )2] [17–21,24,25].
However, using Eq. (7) as an approximation is generally in-
appropriate in the case of the Marcus rate model.

IV. RESULTS

A. C factor in the limit of purely disorder-controlled transport

To find the value of the C factor, which weighs the
polaronic and disorder contributions to the temperature depen-
dence of the mobility [Eq. (1)], we first consider simulations
of charge-carrier transport using the kinetic Monte Carlo
method. We differentiate between two cases, that is, transport
in thermal equilibrium, and transport out of thermal equilib-
rium. It is well known that, in many experimental situations,
e.g., in time of flight (TOF) and transient electrolumines-
cence (TEL) measurements, one observes an initial short,
sharp spikelike decay of the signal. This is because imme-
diately after carrier injection or creation somewhere within
the DOS, the carrier is usually not in thermal equilibrium.
Rather, it relaxes energetically through a sequence of ener-
getically downhill jumps until a quasiequilibrium transport
is achieved, where thermally activated uphill jumps are in
balance with downhill jumps. Experimentally, this is visible as
a plateau in the intensity of the transient signal. This implies
that the carrier moves between states that are energetically
distributed, statistically with the same width (σ ) as before,
yet centered around an equilibrium energy, εeq = −σ 2/kBT ,
below the center of the full DOS. The energetic distribution
of these states is referred to as occupied density of states
(ODOS). The relaxation behavior is well reproduced in KMC
simulations when a carrier is initially placed at a random
site within the full DOS. Following the carrier’s trajectory
implies following the relaxation process [1,14,15]. Transport
in thermal equilibrium is reached and monitored eventually,
yet long simulation times may be needed to arrive at this
stage. A different situation prevails when the carrier moves
under equilibrium conditions. This is the case, for example,
in charge extraction by linearly increasing voltage (CELIV)
experiments. Here, the carrier moves only within the ODOS.
In KMC simulations, this can be realized by imposing the con-
dition that the carrier starts its trajectory on a site within the
equilibrium distribution, i.e., within the ODOS. The impact of
nonequilibrium transport on the diffusivity is thus eliminated.
For our KMC study, we consider both transport under equi-
librium and out of equilibrium. The analytical EMA method
and the MTR formalism in the present study apply only to the
case of equilibrium transport.

Here, we first assess the impact of the two different KMC
simulation approaches (DOS vs ODOS) on the temperature
dependence of a quasiparticle diffusion coefficient (D) within
the premise of the Miller-Abrahams rate model, using Eq. (3)

FIG. 1. Kinetic Monte Carlo simulations (symbols) of the diffu-
sion coefficient as a function of disorder-normalized temperature for
the Miller-Abrahams rate and the nearest-neighbor hopping regime
in an isotropic 3D disordered organic system with different energetic
disorder values (σ = 50, 70, and 100 meV, indicated by red squares,
green circles, and blue triangles, respectively). The KMC simulations
are performed (a) for equilibrium transport, using the ODOS and (b)
for nonequilibrium transport, using a conventional DOS as starting
distribution. Dotted lines in both figures represent a linear fit to
ln(D) ∝ −C(σ/kBT )2. Dashed and solid curves in (a) are the results
obtained by MTR and EMA theories, respectively. These calculated
curves are shifted vertically relative to each other for clarity. The
arrow in (b) depicts the crossover from nondispersive to dispersive
transport.

for the hopping rate. This implies that we neglect any po-
laronic disorder, corresponding to the situation of Ea = 0 in
Eq. (1). We expect ln(D) to be proportional to −C(σ/kBT )2

from Eq. (1), so that the value of C corresponds to the slope
in a ln(D) vs (σ/kBT )2 plot, as shown in Fig. 1. The results
obtained for equilibrium transport are compared against those
obtained using the EMA method and the MTR formalism in
Fig. 1(a). The simulations were done employing our ODOS-
simulation method for a lattice representing an isotropic
3D disordered organic system with different widths of the
Gaussian ODOS (σ = 50, 70, and 100 meV), and consider-
ing solely the nearest-neighbor hopping (coordination number
N = 6). Since all excitations are thermally equilibrated right
from the start of the simulation, a perfect linear dependence
of ln(D) vs (σ/kBT )2, depicted by a dotted line, is observed
over a broad temperature range irrespective of the energetic
disorder. The slope of this dependence yields a C factor of
about 0.47. The temperature dependences of the diffusion
coefficient calculated by effective medium and MTR theories
are presented by solid and dashed lines, respectively, and are
vertically translated for clarity of display. They demonstrate
almost perfect agreement with the KMC simulation data over
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FIG. 2. Temperature dependencies of the diffusion coefficient obtained for the Marcus rate by kinetic Monte Carlo simulations (symbols)
for the nearest-neighbor hopping in an isotropic 3D disordered organic system at different number of hops during simulations (ranging from
103 to 105) performed using (a), (c) conventional DOS and (b), (d) equilibrated ODOS-simulation approaches. Simulations are done at σ =
100 meV and Ea = 30 meV. Straight lines in (c), (d) represent the linear fit of the above simulated super-Arrhenius plot (symbols) made in the
temperature range where the ln[D/exp(−Ea/kBT )] ∝ (σ/kBT )2 law is obeyed.

a broad range of σ/kBT , yielding virtually the same C factor
(0.43–0.44) for the Miller-Abrahams hopping in conjunction
with the nearest-neighbor hopping regime. This testifies the
reliability of our ODOS-based simulation approach, which
can be adequately compared against analytic theories formu-
lated just for the nondispersive transport in disordered organic
solids.

Figure 1(b) presents the temperature-dependent diffusivity
simulated in the more conventional way, i.e., when the energy
of an initial site is sampled from the DOS distribution. The fig-
ure demonstrates that the diffusion coefficient obtained by the
conventional DOS-simulation approach follows the predicted
ln(D) ∝ −C(σ/kBT )2 dependence (depicted by a dotted line)
only at relatively low energetic disorder or high temperatures
(σ/kBT � 3.3). The dependence progressively deviates from
a straight line at larger σ/kBT values. This is a well expected
result indicative of the contribution from the nonequilib-
rium (dispersive) transport to the simulated diffusivity, which
consequently leads to an overestimation of diffusion co-
efficients at larger σ/kBT . Hence, the C factor can be
derived only from the high-temperature branch of the obtained

dependence, where it is 0.47 as in the case of equilibrium
transport.

B. C factor when a polaronic contribution is considered

Next, we test our equilibrated Monte Carlo simulation
approach for the Marcus rate model, using Eq. (4) for the
hopping rate. This is equivalent to the situation of Ea �= 0, and
σ �= 0 in Eq. (1). Figures 2(a) and 2(b) show temperature-
dependent diffusion coefficients, parametric in the number
of hops during simulations, obtained for equilibrium trans-
port (ODOS approach) and nonequilibrium transport (DOS
approach), respectively. We used σ = 100 meV and Ea =
30 meV, and hopping is restricted to the nearest-neighbor
lattice sites. A general observation is that the diffusivity in-
creases as the temperature increases, and this is accompanied
by a decrease in the rate of increment. This is a typical behav-
ior for thermally activated hopping transport [1]. The results
for the two simulation approaches differ insofar that for the
ODOS approach, representing equilibrium transport, the tem-
perature dependence of diffusivity remains almost identical
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irrespective of the number of hops after which the diffusion
coefficient is evaluated. When plotting ln[D/exp(−Ea/kBT )]
vs (σ/kBT )2 such as to readily read off the value of C from the
slope in Fig. 2(c), the expected linear dependence (with C =
0.4) is obtained irrespective of the number of hops executed
by the excitation (with minor deviations at lower number
of hops). In contrast, when transport is not in equilibrium,
represented by the conventional DOS approach, the temper-
ature dependence of the diffusivity depends on the number
of hops executed, and ln[D/exp(−Ea/kBT )] deviates signif-
icantly from the linear dependence on (σ/kBT )2, suggesting
an overestimation of diffusivity values at lower temperatures
[Fig. 2(d)], analogous to the behavior of the diffusivity for
the case of MA rates in Fig. 1(b). Moreover, the dependence
on the number of hops complicates the determination of the
exact C factor even when considering the high-temperature
(low σ/kBT ) range since the lower the number of hops, the
further away the transport is from equilibrium. Extrapolating
the high-temperature regime by linear fits, shown as dashed
lines in Fig. 2(d), yields a C factor that increases progressively
from C = 0.22 (for 103 hops) to 0.32 (104 hops) and to 0.35
(105 hops).

To summarize the results obtained so far, in Sec. IV A we
considered the value of C, allowing for only nearest-neighbor
hops, for a purely disorder-controlled transport for the case
of transport both in and out of equilibrium. In thermal equi-
librium, the values obtained by three independent approaches,
that is, KMC simulation, EMA theory, and the MTR formal-
ism, agree on a value of C = 0.45 ± 0.02. Out of thermal
equilibrium, KMC predicts a lower value that depends on
the deviation from the equilibrium situation. In Sec. IV B we
extended our KMC study to the case of transport in a disor-
dered energy landscape with consideration of reorganization
energy, exemplarily using σ = 100 meV and Ea = 30 meV
( σ

Ea
= 3.3). A value of C = 0.40 is approached asymptotically

as carriers reach thermal equilibrium. This value is lower than
what we obtained for the case when polaronic contributions
are neglected. In the next section, we focus on the depen-
dence of the C factor on the relative size of the disorder to
the reorganization energy, still restraining our simulations to
nearest-neighbor hops.

C. Impact of the reorganization energy on the C factor

Having seen that the value of the C factor is modified when
a polaronic contribution to the transport is taken into account,
we systematically addressed the dependence of the C factor on
the magnitude of the polaronic contribution. Figure 3 presents
the C factor as a function of the σ/Ea ratio. As before, we
used the Marcus-type hopping rate in the presence of disor-
der, Eq. (4), and allowed only for nearest-neighbor hops. In
addition to the results obtained for equilibrium (ODOS) and
nonequilibrium (DOS) transport, we show the results from
the MTR formalism and the EMA calculations, which treat
the equilibrium situation. For comparison, we also include the
values obtained with the simplified Marcus expression used
previously by Seki and Wojcik [9], where the preexponential
factor [W1 in Eq. (4)] is approximated by a constant (W1 = 1).

For all approaches we obtain the same qualitative result,
that is, that the factor C increases with increasing σ/Ea ratio,

FIG. 3. C factor vs σ/Ea derived from kinetic Monte Carlo sim-
ulations of the nearest-neighbor hopping diffusivity D(T ) using a
Marcus rate in an isotropic 3D system and 2γ a = 10. Also shown
are results from analytic MTR and EMA calculations. The KMC
simulations marked “DOS, full” refer to the case of nonequilibrated
transport; all other data are obtained for transport under equilibrium.
For comparison, values obtained using a Marcus-type hopping rate
with a constant preexponential factor is also shown (“ODOS, simpl.”)

i.e., with increasing the relative strength of the disorder effect.
This is in line with our previous finding [5]. We note that the
C factor obtained under inclusion of polaronic effects is al-
ways smaller than that obtained using a pure Miller-Abrahams
rate (C ∼= 0.44). Evidently, any contribution from geometric
reorganization of the molecule reduces the relative weight of
the disorder contribution to transport. However, in the limit of
vanishing Ea, exemplified by the data point at σ/Ea = 10 in
Fig. 3, the MA result is recovered asymptotically.

Regarding the results, we again find a gratifying quan-
titative agreement between the three different equilibrium
nearest-neighbor hopping (NNH) approaches used, that is, the
KMC simulation (ODOS), the MTR formalism, and the EMA
calculations, as depicted in Fig. 3 by stars and solid line,
respectively. As expected, the EMA calculations agree with
simulation data only at low to moderate energetic disorder
(σ/Ea < 2), where EMA formalism is more justified. In the
present study we used a conventional EMA approach based
on a self-consistency equation (5), which is not suitable for
a strongly inhomogeneous medium, or in other words, for
high disorders. This explains the disagreement between the
KMC ODOS simulations and EMA at large σ/Ea values [34].
The agreement between the three different and independent
approaches gives confidence in the absolute values obtained
for the factor C.

Analogous to the results in the previous sections, calcula-
tions carried out using a conventional KMC approach, where
the carrier is placed at random in the DOS and then relaxes,
yield a reduced value of the factor C as compared to the ODOS
approach, i.e., a lower contribution of the disorder to trans-
port, depending on how far from equilibrium the transport
takes place. In contrast, an increased value of the factor C is
obtained when the Marcus-type hopping rate is simplified by
assuming a constant prefactor. We obtain principally the same
results as that obtained before for W1 = 1 in the paper by Seki
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FIG. 4. The C factor as a function of localization derived from
kinetic Monte Carlo simulations of hopping diffusivity D(T) in both
the nearest-neighbor hopping (empty symbols) and variable-range
hopping (filled symbols) regimes using (a) a Miller-Abrahams or (b)
a Marcus-type hopping rate. Results of analytic MTR calculations in
the VRH regime for MA and Marcus rates are shown by red stars in
(a), (b), respectively.

and Wojcik [9]. Evidently, this simplification is a rather coarse
approximation that overestimates the C factor.

D. C factor in variable-range hopping (VRH) regime

The nearest-neighbor hopping (NNH) considered in the
preceding section was modeled assuming just six nearest
neighbors of a site i on a cubic 3D lattice (N = 6). However, it
is well known that hops between the non-nearest-neighboring
sites can also contribute to the hopping transport. This is
described by variable-range hopping (VRH) [6] which is a
more general approach and considers transitions of carriers
to further neighbors than the nearest ones. Here VRH was im-
plemented in the KMC simulations by allowing long-distance
jumps to as many as N = 26 neighbors in total, i.e., up to
the third-nearest neighbor. The probabilities of such jumps
are determined by the carrier localization parameter (2γ a).
Figure 4 presents the C factor obtained as a function of 2γ a,
with larger values implying stronger localization. Simulation
results are shown for jumps to the third-nearest neighbor
(N = 26 sites), thus enabling the VRH regime (filled trian-
gles), and they are compared to those allowing for hopping
to next-nearest neighbors (N = 6, empty triangles). We only
considered the case of equilibrium transport, once for purely
disorder-controlled transport, using a Miller-Abrahams type
hopping rate [Eq. (3)] and once when including polaronic
effects through a Marcus-type hopping rate [Eq. (4)]. Also
shown are values obtained using the MTR formalism. For
the EMA calculations that we used in the previous section,
a distinction between NNH and VRH cannot be implemented
explicitly.

As expected, no dependence of the C factor on the local-
ization length was observed for the case of NNH because
this regime is preserved at N = 6 irrespective of the inverse
localization length (γ ) value. On the other hand, Figs. 4(a) and
4(b) demonstrate a clear decrease in C factor with decreasing

2γ a in the VRH regime as found by both the KMC simula-
tions (filled triangles) and the MTR theoretical calculations
(stars). At large localization, the values converge to the value
of NNH for all the simulations, which is a trivial observation,
since at large localization or very poor electronic coupling,
the NNH regime becomes dominating. We note the difference
between the KMC and the MTR obtained values for C in
the limit of large localization. While this is a minor effect
for pure disorder-dominated transport, it is significant when
polaronic contributions are included. We speculate whether in
this case, MTR is less suitable, since the distinction between
“transporting” and “trapping” states, on which this formalism
is based, becomes blurred [33].

Overall, the results obtained so far have demonstrated that
(i) There is very good agreement between three ap-

proaches for the C factor for equilibrium transport. Depending
on conditions, values range from 0.30 to 0.47.

(ii) The value of the C factor decreases when transport is
out of equilibrium.

(iii) The value of the C factor decreases when reorganiza-
tion contributes to the transport.

(iv) The value of the C factor decreases when the wave
function of the charge or excitation is less localized.

This behavior is not consistent with the notion of a “univer-
sal scaling law,” at least not in the strict mathematical sense.
For practical purposes, one may consider that, in thermal
equilibrium, the values for C range around 0.40 ± 0.05. We
shall therefore evaluate the impact of this variation in the next
section.

V. ANALYSIS OF EXPERIMENTAL DATA

The theoretical and simulation results obtained in the pre-
vious sections are utilized here to analyze earlier experimental
transport data. A frequently encountered albeit problematic
procedure adopted in the community to obtain the polaronic
activation energies (Ea) for transport is to analyze the 1/T de-
pendence of zero-field mobility using Eq. (1) presuming zero
disorder, i.e., Eq. (12a). Similarly, the energetic disorder can
be obtained by analyzing the temperature dependence of the
zero-field mobility (1/T 2 dependence) assuming C = 0.44
within a purely disorder-controlled MA formalism, i.e., Ea =
0, as established by previous KMC and EMA approaches [1];
see Eq. (12b):

μ(T ) = μ0 exp

[
−

(
Ea

kBT

)]
, (12a)

μ(T ) = μ0 exp

[
−0.44

(
σ

kBT

)2]
. (12b)

However, this procedure has serious shortcomings, because
disorder and reorganization energy are entangled, as reflected
in the use of the unified model, Eq. (1).

In this section, we illustrate how much difference can
be expected in the σ and Ea values when using different
formalisms to fit the data. For this assessment, we analyze
the temperature dependence of the zero-field TOF mobility
for holes in a series of conjugated alternating phenanthrene
indenofluorene copolymers reported by Hoffmann et al. [35].
We analyze four copolymers from this paper labeled as
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TABLE I. Ea and σ values obtained from fitting with Eq. (12).
Also given are Ea values obtained from DFT calculations (from
Ref. [35]).

Ea (meV) σ (meV) Ea (meV)
Copolymer by Eq. (12a) by Eq. (12b) by DFT

1 178 ± 2 109 ± 2 46
3 235 ± 2 102 ± 2 38
7 329 ± 2 89 ± 2 25
9 397 ± 2 91 ± 2 31

copolymers 1, 3, 7, and 9 (see Sec. 1 of the Supplemental
Material [36] or Ref. [35] for chemical structure). For refer-
ence, we quote in Table I the values obtained in Ref. [35] from
fitting the mobilities of the copolymers with Eq. (12).

As discussed in detail in Ref. [35], it turns out that the
σ values obtained from Eq. (12) are consistent with those
obtained by other methods, while the Ea values are unre-
alistically large. Thus, one needs to obtain estimation for
Ea by other means, such as density-functional theory (DFT)
calculations.

If we wish to assess how the values derived for σ and Ea

depend on the C factor used, a straightforward test is therefore
to take the DFT-calculated Ea value and subsequently employ
Eq. (1) to determine σ for several values of C. Figure 5(a)
presents the experimental mobility data reported by Hoffmann
et al. [35] (symbols) plotted against 1/T 2 on a semilogarith-
mic scale. The solid lines are the corresponding fits done
using Eq. (1) with C = 0.40 and using the DFT-calculated
Ea values summarized in Table I. A comparison of the fits
to the experimental data with Eq. (1) for C = 0.35, 0.40,
and 0.44 is shown exemplarily for copolymer 1 in Fig. 5(b).
It illustrates that the fits with different approaches coincide
perfectly and are almost indistinguishable. Given the limited
temperature range from 300 to 350 K for which the mobility
was determined, this is expected. The data for copolymers
3, 7, and 9 agree similarly well and are shown in Sec. 2
of the Supplemental Material [36]. The disorder parameters
obtained as a result of fittings are summarized in Table II.

We observe that the σ values obtained when using a pure
MA approach, Eq. (12b), or a unified approach, i.e., Eq. (1),
with different values for C differ by less than 10% from each
other. This is within the typical experimental error range (note
that the error given refers to the fitting procedure). Our result
implies that the consideration of the polaronic contribution
to the transport description, and the question of how much

TABLE II. The σ values obtained from fitting with Eq. (1), using
the DFT-calculated Ea values from Table I.

σ (meV) σ (meV) σ (meV)
by Eq. (1), by Eq. (1), by Eq. (1),

Copolymer C = 0.35 C = 0.40 C = 0.44

1 116 ± 2 108 ± 2 103 ± 2
3 108 ± 2 101 ± 2 96 ± 2
7 95 ± 2 89 ± 2 85 ± 2
9 97 ± 2 91 ± 2 86 ± 2

FIG. 5. (a) The temperature dependence of the mobility plotted
as μ vs 1/T 2 on a semilog scale, along with the zero-field TOF
mobility for copolymers 1 (red squares), 3 (green circles), 7 (pink
triangles), and 9 (blue diamonds) as reported in Ref. [35]. Solid lines
represent the fitting results using Eq. (1) with C = 0.40 and Ea

values presented in Table I. (b) Comparison of the fits done by using
Eq. (1) with C = 0.35, 0.40, and 0.44, and by using Eq. (12b) (MA
rate).

weight this should be given, is not critical for the deter-
mination of the disorder value as long as C ranges around
C = 0.40 ± 0.05.

However, a very different result is obtained when the dis-
order value from the pure MA approach is used in Eq. (1),
and Ea is determined parametric in the C factor. Table III
summarizes the values obtained. The fits to the experimental
data are as good as in Fig. 5. They can be found in Sec. 2
of the Supplemental Material [36] for reference. However, the

TABLE III. Ea values obtained from fitting with Eq. (1), using σ

values from Table I.

Ea (meV) Ea (meV) Ea (meV)
by Eq. (1), by Eq. (1), by Eq. (1),

Copolymer C = 0.35 C = 0.40 C = 0.44

1 78 ± 2 35 ± 2 0 ± 2
3 69 ± 2 33 ± 2 0 ± 2
7 50 ± 2 21 ± 2 0 ± 2
9 54 ± 2 24 ± 2 0 ± 2
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Ea values span a much wider range, implying that the fitting
approach has a huge effect. This demonstrates that the value
obtained for Ea depends more strongly on the correct choice
of the C factor than the values obtained for σ . It seems that the
range of values obtained using Eq. (1) with C = 0.40 ± 0.03
is reasonably realistic (cf. Sec. 3 of the Supplemental Material
[36] for detailed discussion), while a full neglect of disorder
contributions as in a pure Marcus model, Eq. (12a), results in
values that are at variance with other experiments.

VI. DISCUSSION AND CONCLUSIONS

This study illuminates several points regarding the de-
scription of charge transport. It clarifies that the relative
contribution of polaron and disorder effects to the charge-
carrier mobility, as quantified through the value of the C
factor, depends on various factors.

One aspect is whether charge transport takes place in equi-
librium or out of equilibrium: The further away the transport is
from equilibrium, the lower is the contribution of disorder, and
thus the lower is the C factor. It is straightforward that disorder
should play a lesser role when hops occur mostly downward in
energy. One may need to bear this in mind when analyzing ex-
perimental data where transport is far out of equilibrium, e.g.,
on very short timescales after carrier generation. Our study,
notably Figs. 1 and 2, indicates that this is of relevance to both
MA as well as Marcus rates. Correspondingly, it can become
important to perform the KMC calculations under equilibrium
conditions, e.g., by starting from the ODOS distribution in-
stead of the full DOS, if one wishes to obtain a reliable value
that is independent of simulation time or temperature. This
is an important insight, as most available KMC simulations
are premised on the condition that the initial energy of an
excitation is sampled from a DOS distribution.

Another aspect is that the value of the C factor depends
on the ratio between the reorganization energy and the dis-
order. This had been noted before by several groups [5,6,22],
though there are also disagreeing calculations [9]. The grat-
ifying feature in our work is the quantitative agreement of
C(σ, Ea) obtained via three independent approaches, that is,
KMC simulations, EMA calculations, and the MTR formal-
ism. As discussed above, EMA calculations apply to the
range of lower disorder values, while the MTR formalism
is more meaningful for the range of higher disorder values
where the distinction between conducting and trapping states
is maintained. KMC applies over the entire range of disorder
values, though for comparison with the EMA and MTR for-
malism, one needs to ensure that the simulation is conducted
for the quasiequilibrium case. In this context, we noticed the
importance of using the full Marcus-type hopping rate, i.e., in-
cluding the temperature-dependent prefactor. The evolution of
C(σ, Ea) was only rendered consistently between the three ap-
proaches when using Eq. (4) with the temperature-dependent
prefactor. This may account for the difference to the work by
Seki and Wojcik, who assumed a constant Marcus prefactor
[9].

A further aspect concerns the dependence of the C fac-
tor on the delocalization of the carrier wave function. We
revealed the effect of the degree of carrier localization in
organic semiconductors on the C factor for Marcus polaron

hopping. It was found to feature a qualitatively similar trend
to that obtained for MA hopping of nonpolaronic carriers
(Fig. 4). In both cases the weak carrier localization gives rise
to a significantly lower C factor. This is equivalent to the
earlier noticed dependence of the C factor on lattice geometry,
coordination number, or dimensionality [37–39]. Our study
implies a reduced contribution of disorder when more lattice
sites are accessible for transport. It is easy to see that disorder
should matter less when a particular energy barrier can simply
be circumvented by a different pathway, so that increases in
dimensionality, coordination number, or accessible neighbor
sights all reduce the contribution of disorder. This aspect is
easily overlooked, and perhaps not always sufficiently appre-
ciated. For example, in our earlier work [5], we reported a
stronger dependence of the C factor on σ/Ea than here. The
reason is that in the earlier work, the lattice chosen was not
a strictly simple cubic lattice but a slightly orthorhombic one.
This was done in order to match the experimental conditions
and it resulted in a stronger evolution of C(σ, Ea). This depen-
dence on dimensionality and available lattice sites implies that
the distribution of chromophores in a film, and in particular,
any existence of partial order, will have a significant impact
on the appropriate value of the C factor.

Given the variation of the C factor with experimental
conditions, one may question what can be learned from an
analysis of temperature-dependent mobility data in the frame-
work of Eq. (1). The investigation we performed clearly
indicated that such an analysis provides a reasonable basis for
the assessment of disorder using a C factor of C = 0.40 ±
0.03. “Reasonable” means here that the values are within
10% of each other and the value obtained from a pure MA
approach, and agree with any other information available from
experiments [35]. In this way, our work eventually provides a
“legitimization” for the use of the simple MA rate model to
the description of the charge transport in realistic disordered
organic solids. This is a key message of our paper, especially
relevant for experimentalists, who routinely use the Gaussian
disorder model (GDM) for their data analysis and naturally
want to know to what extent this zero-order approach is
accurate in determination of the width of the DOS. We em-
phasize that Eq. (1) with C = 0.40 ± 0.03 is fully applicable
only when the carrier transport is in quasiequilibrium. This
is when (σ/kBT )2 < 10, i.e., σ/kBT < 3.3 as evident from
Figs. 1 and 2. Experimentally, these conditions are usually
fulfilled for CELIV measurements or for nondispersive TOF
measurements where the plateau and the subsequent kink in
the current transients are clearly visible. Note that our con-
clusion about the appropriateness of the MA rate is consistent
with the recent finding by de Vries et al. in Ref. [40] based
on full quantum mechanical treatment; however, in our work
the problem was tackled from the standpoint of established
hopping-transport theories and computer simulations. As also
mentioned by de Vries, the values obtained for the reorganiza-
tion energy are significantly less reliable. Typical values of the
reorganization energy in conventional organic semiconductor
have been estimated as λ = 100–200 meV [40].

Further, we would like to note that, although the impact
of carrier equilibration on the C factor was indeed shown
before for the case of nonpolaronic transport (MA rates), it
has rarely been considered for the polaronic hopping transport
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given by the Marcus rate. Also, the effect of the degree of
carrier localization in organic semiconductors on the C factor
was not reported before for the Marcus hopping rate, while it
has been demonstrated for the nonpolaronic transport regime.
In addition, almost all theoretical efforts in the description
of variable-range hopping (VRH) in organic semiconductors
were based so far just on the MA rate model and the VRH
remains virtually unexplored for the Marcus rate model. Our
work resolves the long-standing controversy regarding the C
factor and explains why different values were obtained in the
literature. We identify differences in the approaches used in
the previous works and their specific aspects leading to the
contradictory results.

Our initial question on how strongly the reorganization
energy contributes to charge transport in disordered organic
semiconductors may thus be answered in a brief way as “not
much.” The polymers of Ref. [35] that we used as experi-
mental example are typical conjugated polymers insofar that
their backbones consist of bridged or fused, i.e., rigid, phenyl
rings as well as more flexible triphenylamines. They have a
disorder parameter around 100 meV and an Ea of less than
50 meV, i.e., a reorganization energy λ of less than 200 meV.
These values can be considered as representative. We found
that entirely ignoring the polaronic contribution by analyzing
the μ(T ) data in terms of the simple Gaussian disorder model
overestimates the disorder by roughly 10%. This can be taken
as an indication that the polaronic contribution is small.

Finally, in the present paper we made important method-
ological advancements in both analytical treatment and
computer simulations of polaron transport. In particular, we
have extended the multiple trapping and release (MTR) the-
oretical approach to describe the Marcus polaron hopping.
An important advantage of the suggested approach is that
it allows avoiding the transport energy (TE) concept, as the
calculation of the TE for Marcus rates turned out to be very
problematic, which is in contrast to MA rates where this
concept is conventionally used. Further, we have improved
the algorithm of kinetic Monte Carlo simulations (KMC) to
consider adequately the equilibrated polaron transport in a
Gaussian DOS, which can be ensured under the conditions
that the initial energy of an excitation is sampled from a
Gaussian occupational DOS (ODOS) distribution shifted by
the equilibrium energy below the DOS center. We found that
this aspect has a significant impact on the polaron transport,
which has normally been overlooked in previous relevant
KMC simulation studies.

ACKNOWLEDGMENTS

The authors acknowledge funding through the VW Foun-
dation within the project “Understanding the dependence
of charge transport on morphology in organic semiconduc-
tor films.” This research was also supported by EU Marie
Skłodowska-Curie ITN TADFlife grant (Grant Agreement
No. 812872) and by the National Academy of Science of
Ukraine (Project No. VC/205) and NRFU 2020.01/0144. A.K.
acknowledges support of the European Research Council
grant under the European Horizon 2020 Programme/ERC,
Grant Agreement No. 835133 (ULTRA-LUX).

APPENDIX: APPLICABILITY OF THE MULTIPLE
TRAPPING MODEL TO THE DESCRIPTION

OF HOPPING TRANSPORT

We start from the well-known master equation of hopping
transport for the occupation probability, fi, of the ith hopping
state [24,28],

∂ fi/∂t =
∑
j �=i

[ν ji f j (1 − fi ) − νi j fi(1 − f j )], (A1)

where νi j is the hopping rate of a carrier from the ith state to
the jth state. We assume that the release of carriers from the
rather deep states i, the rate of release from which determines
the magnitude of diffusivity and mobility, occurs preferably
to relatively shallow energy states j having very low occupa-
tion probability, f j � 1. This contrasts with the mechanism
of the Mott-type conductance near the Fermi level, which
might typically be realized in the low-temperature limit and
is not considered here [25]. The low occupation probability
results from low mean occupation time of these states, since
most of the jumps per unit time occur via these shallow j
states. Particularly, capture of carriers by the deep i states
occurs from these “fast” j states. Further, we assume that
the population of the “fast” states (of the energies ε j) can
be described by the quasiequilibrium Boltzmann’s function,
f j = f0exp[−ε j/kBT ]. At the same time, the deep states of the
energies εi can be filled with much higher probability fi

∼= 1;
their population can also be far from a quasiequilibrium dis-
tribution if the initial energy distribution of the carriers is not
equilibrated as a consequence of a rather small number of
the release events from i states. Using the detailed balance
principle, ν ji = νi j exp[(ε j − εi )/kBT ], and introducing the
symbol ωi = ∑

j �=i νi j , one can rewrite the balance equation
(A1) as follows:

∂ fi/∂t = f0(x, t ) exp[−εi/kBT ](1 − fi )ωi − fiωi, (A2)

where x is the set of spatial coordinates. One may assume that
the prefactor f0 in Eq. (A2) is j independent, provided that
the spatial scale and timescale of variations of this prefactor is
much larger than several hopping lengths and several hopping
times, respectively.

The magnitude of the release frequency of a carrier from
the state i, ωi, not only depends on its energy, εi, but also on
other characteristics (such as energies, distances, and orienta-
tions) of the surrounding states. It is known from percolation
theory that the states, which contribute to the transport pre-
dominantly, form a network with some characteristic size rc0

(correlation radius of percolation cluster) [32–34]. One can
simplify the description of transport, provided that the func-
tion f in Eq. (A1) is averaged on the spatial scale of rc0 (which
is temperature and disorder dependent) and on the respective
timescale, tc0 (the diffusion time for the distance rc0). One
can select the “conductive” states among the “fast” states by
relating the prefactor f0(x, t ) and the concentration of carriers
(the “mobile” carriers) in these states, pc(x, t ),

f0(x, t ) = pc(x, t )/Nc, (A3)

where Nc is an effective concentration of “conductive” states.
This concentration does not depend on coordinates and time
due to quasiequilibrium occupation of conductive states and
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macroscopic uniformity of the material. The other “fast” states
and i states are considered below as traps (the shallower
and the deeper fraction, respectively). Then one can rewrite
Eq. (A2) in the continual form, introducing the spatially
uniform energetic distribution function of traps gt (ε), energy-
dependent release frequency ω(ε) instead of ωi, the averaged
occupation probability f (ε, x, t ), and the distribution of oc-
cupied traps ρ(ε, x, t ) = gt (ε) f (ε, x, t ). Multiplying Eq. (A2)
by gt (ε), and using Eq. (A3), one obtains the balance equation
of the MTR model [29],

∂ρ(ε, x, t )

∂t

1

c(ε)

= [gt (ε) − ρ(ε, x, t )]pc(x, t ) − NCρ(ε, x, t )exp

(
ε

kBT

)
,

(A4)

where c(ε) = [ω(ε)/NC]exp(−ε/kBT ) is the capture rate of a
carrier on a trap of given energy. A model of hopping rates,
ν ji, defines only the shape of the function ω(ε), and hence
c(ε), аnd the value of NC . One can find the latter value from
the equation which follows from Eq. (A3) and the definition
of the function, ϕ(E ); see Eq. (8),

pc(x, t ) = pc(x, t )

NC

∫ ∞

−∞
dEg(ε)ϕ(ε)exp

(
− ε

kBT

)
, (A5)

eliminating pc(x, t ) from both sides of this equation. Since
ϕ(ε) ≈ ω(ε)t0, hence gt (ε) ≈ g(ε). Provided that p(x, t ) ≈
∫∞

−∞ dερ(ε, x, t ), under quasiequilibrium Eq. (A4) yields

p(x, t ) = pc(x, t )
∫ ∞

−∞
dE

g(ε)

NC
exp

(
− ε

kBT

)
. (A6)

Equation (10) follows from Eqs. (9), (A5), and (A6).
Thus, one needs to calculate the release frequency ω(ε) for

defining c(ε) and NC in Eq. (A4). In this work, we calculate it
from Eq. (11), where

n(ε, u) =
∫∫

�(ε,u)
dε′d3rg(ε′)P(ε, ε′, u), (A7)

where the integration volume �(ε, u) in the ε′ − r space
(r is the distance to a neighbor state and ε′ is its en-
ergy) is defined by the condition that the hopping rate
from the initial state to any state in this volume is not
smaller than a given value, ω0 exp(−u), where u is the hop-
ping parameter; P(ε, ε′, u) is the probability that the jump
is not followed by returning to the initial state (of the
energy ε):

P(ε, ε′, u) =
{

0, n0(ε′, u′) � 1

1 − e−[n0(ε′,u′ )−1], n0(ε′, u′) > 1
, (A8)

where u′(ε, ε′, u) = u + (ε−ε′)/kBT is the hopping parame-
ter for the returning jump, and

n0(ε, u) =
∫∫

�(ε,u)
dε′d3rg(ε′). (A9)

Thus, the neighbor states, for which the initial state is
the nearest hopping neighbor (in u space), are not consid-
ered. The term n0 − 1 appears in Eq. (A8), because one
state (the initial state) definitely persists for the most relevant
(i.e., upward in energy) jumps. The integration volume �

depends on the model of hopping rates (for example, MA or
Marcus).
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