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Fermi arcs and pseudogap in a lattice model of a doped orthogonal metal
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Since the discovery of the pseudogap and Fermi arc states in underdoped cuprates, the understanding of
such non-Fermi-liquid states and the associated violation of Luttinger’s theorem have been the central theme in
correlated electron systems. However, still lacking is a well-accepted theoretical framework to unambiguously
explain these metallic states that are clearly beyond Landau’s Fermi liquid and Luttinger’s theorem of a Fermi
surface and electron filling. Here, we design a lattice model of orthogonal metals with fermion and Ising matter
fields coupled to topological order and, by solving the model via unbiased quantum Monte Carlo simulation
at generic electron fillings, find that the system gives birth to phenomena of the Fermi arc and pseudogap in
the single-particle spectrum that go beyond the Luttinger sum rule with broken Fermi surface but no symmetry
breaking. The pseudogap and Fermi arcs coexist with a background of a deconfined Z2 gauge field, and we
further find that the confinement transition of the gauge field triggers a superconductivity instability and that
the hopping of the gauge-neutral fermions brings the “large” Fermi surface back from the Fermi arc state. Our
unbiased numerical results provide a concrete model realization and theoretical framework for the coupling
between gauge field and fermions and, in the process, generate the rich phenomena of the pseudogap, the Fermi
arc, and superconductivity in generic correlated electron systems.
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I. INTRODUCTION

The time-honored Landau’s Fermi liquid (FL) theory states
that at zero temperature, a Fermi liquid has a closed Fermi
surface (FS) marked by the momenta of gapless quasiparti-
cle excitations. When the electron number is held fixed, the
volume inside the FS is invariant upon interaction; this is the
so-called Luttinger’s theorem (LT) [1], and the perturbative
argument has been modernized from the topological perspec-
tive [2–5]. Under these guidelines, the volume inside the FS is
conserved even in an interacting FL, and the reduction of the
FS must come from the breaking of symmetries.

Given the stringent requirement of LT, the ample ex-
perimental observations of correlated electron systems that
obviously violate the relation between the volume of a quasi-
particle FS and the electron filling therefore pose a serious
challenge and show how little we know about interacting
metallic states. These systems include the Cu-, Fe-, Cr-,
and Mn-based superconductors [6–11], heavy fermion com-
pounds [12–17], and the recently discovered twisted graphene
heterostructures [18–21]. In particular, the experimental ob-
servation of Fermi arcs and pseudogap states in underdoped
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cuprates [22–28], where the FS does not form a continuous
contour in momentum space but breaks up into disconnected
segments and shrinks with decreasing temperature to the point
nodes below Tc, offers the clearest violation of Luttinger’s
theorem and still awaits a well-accepted explanation.

Many theoretical proposals have been put forward to ad-
dress the pseudogap and Fermi arcs, such as massless Dirac
fermions coupled to gauge fields [29–31], fluctuations of
the d-wave pairing [32], competing order with supercon-
ductivity [33], finite-temperature lifetime effects [34], the
fractionalized FL∗ phase [4,35–38], and the Sachdev-Ye-
Kitaev (SYK) type of non-Fermi liquid (nFL) [39–43]. The
violation of the Luttinger counting has been seen in dynamical
cluster approximation (DCA) and high-temperature quan-
tum Monte Carlo (QMC) simulations of a doped Hubbard
model [44,45]. However, there exists no lattice realization of
a strongly correlated model at generic fillings which can be
unambiguously shown to produce the pseudogap and Fermi
arcs. Even the FL∗ phase still has a closed Fermi surface,
enclosing an area that is different from the prediction of LT by
half of the Brillouin zone (BZ), with the other half taken by
fractionalized excitations to conserve the momentum [3,4,35].

This is the knowledge gap we would like to fill. Here, we
show that the pseudogap and Fermi arc state at generic filling
can be observed in a lattice model of correlated electrons
with unbiased QMC simulations. The state of the Fermi arc
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can indeed happen without any symmetry breaking—close
to the recent observations of similar simulations at half fill-
ing [46,47]—and therefore violate LT. Moreover, we discover
that the superconducting and normal metal states live in the
parameter space neighboring the Fermi arc phase, therefore
providing a concrete model realization and theoretical frame-
work for the coupling between the gauge field and fermions;
in the process, we generate the rich phenomena of the pseudo-
gap, the Fermi arc, and superconductivity in generic correlated
electron systems.

The lattice model we constructed is composed of fermions
and Ising matter fields which are minimally coupled to
a Z2 gauge field. Similar models have been proposed as
candidates for low-energy effective theories of underdoped
cuprates [29–31,36,37]. We find that the Fermi arc phase with
a broken FS can transition into a “large” FS that respects
LT, either via the the enhancement of the hopping of the
gauge-neutral composite fermions or the confinement of the
Z2 gauge field. The confined FL state at small hopping shows
strong superconductivity instability. Our simulations reveal
that the Fermi arc state also acquires pseudogap features in
the single-particle spectrum and the transitions from Fermi arc
to large FS look continuous. These findings offer an unbiased
realization of the Fermi arc and pseudogap phenomena from
a lattice model at generic fillings.

II. MODEL

Our model, inspired by the orthogonal fermion con-
structions [48,49] and subsequent lattice model simula-
tions [46,47], has the following Hamiltonian on a two-
dimensional (2D) square lattice: H = Hf + Hz + Hg + Hc,
where (as shown in Fig. 2) Hf = −∑

〈i, j〉( f †
i,ασ z

b〈i, j〉 f j,α +
H.c.) − μ

∑
i f †

i,α fi,α describes the orthogonal fermion, with
nearest-neighbor (NN) hopping amplitude set at unity,
the chemical potential μ, and the spin α =↑,↓; Hz =
J
∑

〈i, j〉 Sz
i σ

z
b〈i, j〉S

z
j − h

∑
i Sx

i is the Ising matter field, with
NN antiferromagnetic interaction J = 0.1 and the trans-
verse field h = 0.25 to promote quantum fluctuations; Hg =
K
∑

�
∏

b∈� σ z
b − g

∑
b σ x

b describes the Z2 gauge field, with
K = 1 such that π flux per plaquette � is favored, and g
triggers the confinement transition of the gauge field; and
Hc = −t

∑
〈i, j〉 f †

i,αSz
i f j,αSz

j + H.c. defines the NN hopping of

the physical—gauge neutral—composite fermion c†
i,α (ci,α ) =

f †
i,αSz

i ( fi,αSz
i ) [denoted as blue ellipses in Fig. 2(b)], and

we tune t to enhance the c-fermion hopping such that
the Fermi-arc-to-large-FS transition can be realized. The
QMC implementation of this model is presented in detail in
Appendix A.

As shown in Refs. [46,47], at half filling of the f elec-
trons (μ = 0), the π flux of the Z2 gauge field produces an
orthogonal semimetal (OSM) state in which the FS of the c
fermions reduces to four Dirac points located at the nodal
point (±π

2 ,±π
2 ) of the BZ. Here, we start from the orthogonal

semimetal state but tune the chemical potential μ away from
half filling.

The most striking results are shown in Fig. 1. With param-
eters L = 24, T = 0.05, g = 0.5, we first contrast the Fermi
arc phase in Fig. 1(a) (t = 0.3) with the large-FS phase

FIG. 1. Quasiparticle fraction and spin susceptibility. The param-
eters are L = 24, T = 0.05, g = 0.5 with t = 0.3 (filling n = 1.12)
in (a) and (b) and t = 1.0 (filling n = 1.11) in (d) and (e). The blue
and green squares are the representative momenta along nodal and
antinodal directions, respectively, where quasiparticle fractions are
extrapolated in Fig. 4(b). The Fermi arcs are shown in (a), and the
large FS is shown in (d). (b) shows the c-fermion spin susceptibility
χ (q, ω = 0) inside the Fermi arc phase, and (c) shows it in free
doped Dirac cones at the same filling as in (b). They acquire the
same magnetic response meaning that the Fermi arc phase has a
hidden FS of f fermions with the same shape of a doped Dirac cone.
(e) shows the c-fermion spin susceptibility for the large-FS case,
and (f) shows that of the free Hamiltonian H = −∑

i, j (ti j f †
i,α f j,α +

H.c.) − μ
∑

i f †
i,α fi,α with nearest-neighbor (NN) and next-nearest-

neighbor (NNN) hoppings.

in Fig. 1(d) (t = 1). The c-fermion spectral function can
be approximated via its Green’s function as A(k, ω = 0) ∝
βG(k, β/2). The chemical potential in both cases is μ = 1.2,
and their corresponding fillings are n = 1.12 and n = 1.11.
At such fillings, the large FS in Fig. 1(d) respects LT, and the
Fermi arc in Fig. 1(a) certainly violates it. We have also per-
formed the finite-size extrapolation of quasiparticle fractions,
shown in Appendix C.

Figures 1(b) and 1(e) show the magnetic response of
the Fermi arc and deconfined FL in Figs. 1(a) and 1(d).
We measure the gauge-neutral magnetic susceptibility of
the c fermions, χ (q, ω = 0) = 1

βN

∫ β

0 dτ
∑

i, j eiq·ri j 〈(n↑
i,c −

n↓
i,c)(τ )(n↑

j,c − n↓
j,c)(0)〉. It is interesting to see that in both

cases the magnetic responses are strongest in the vicinity of
(π, π ) (the ring-shaped circles), which means that both cases
acquire a similar shape of FS giving rise to a similar magnetic
response, only that in the former it is the gauge-dependent,
hidden FS of f fermions but in the latter, it is the FS of
gauge-neutral c fermions.

To make the contrast clearer, in Figs. 1(c) and 1(f) we plot
the magnetic susceptibility for free fermions. In Fig. 1(c) we
compute the χ (q, ω = 0) for doped Dirac fermions, which
is generated by the π -flux square lattice with Hf only, and
replace the Z2 gauge field therein by static phase factor ei π

4 . At
the filling n = 1.13 we observe almost identical χ (q, ω = 0)
to that of Fig. 1(b); this again implies that the Fermi arc state
actually acquires hidden Fermi pockets of f fermions with
the same shape of doped Dirac cones and consequently gives
rise to the same magnetic response, although the actual FS
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FIG. 2. (a) t-g phase diagram. At g < gc and t < tc (where gc

and tc are denoted by the horizontal dashed line and vertical solid
line, respectively), the Fermi arc state is obtained by doping the or-
thogonal semimetal. At g < gc, t > tc, the deconfined FL phase with
Z2 topological order coexists with large FS. At g > gc, the Z2 gauge
field is confined, and the fermion then forms a conventional confined
FL with large FS. It is unstable towards s-wave superconductivity
(SC) at small t . The solid and open circles are the parameters where
we study the pairing instability, where the solid circle has a finite
Tc. (b) The model on a square lattice. There are composite fermions
(blue ellipses) ci,α = fi,αSz

i on each site i, composed of an orthogonal
fermion field fi,α and Ising matter field Sz

i . The Z2 gauge field σ z
b lives

on the bond. (c) The red pockets are the hidden f -fermion FS inside
the Fermi arc phase (g < gc, t < tc ), undetectable through single-
particle spectra, but they can be inferred from the spin susceptibility
data [Fig. 1(b)]. The blue arcs are the Fermi arc in this phase that
can be detected from experiments as shown by the single-particle
spectra in Fig. 4(c). (d) The blue circle is the c-fermion large FS
inside the confined FL phases, as shown by the single-particle spectra
in Fig. 4(d). High-symmetry points inside the BZ (	, X, M, and S)
are denoted.

of doped orthogonal metal is the broken Fermi arcs, which
violates LT.

Lastly, in Fig. 1(f), we plot the magnetic susceptibil-
ity of free fermions with a large FS, obtained from H =
−∑

i, j (ti, j,α f †
i,α f j,α + H.c.) − μ

∑
i f †

i,α fi,α , and we tune the
hopping ti, j with tNN = 1.0, tNNN = 0.1, and μ = −0.5 such
that this free system will also give rise to a FS similar to that
of Fig. 1(d). The χ (q, ω = 0) of such a large FS is shown with
the bright response close to (π, π ).

III. PHASE DIAGRAM

With the Fermi arc and large-FS phases seen, we move on
to the entire t-g phase diagram, as shown in Fig. 2(a). It con-
tains three different phases: the Fermi arc with pseudogap, the
deconfined FL, and the confined FL (an overview of the three

FIG. 3. (a) Z2 flux susceptibility at t = 0.3, L = 20, T = 0.1. By
tuning g the model goes from Fermi arc to confined FL. The peak in
∂〈B〉/∂g denotes the transition point. (b) Similar measurement from
deconfined FL to confined FL at t = 1.0, L = 20, T = 0.1. (c) Data
collapse of the s-wave pairing susceptibility Ps at t = 0.3, g = 1.4
[solid circle in Fig. 2(a)]. The collapse signifies the KT transition
L2−ηPs ∼ L · exp [− A

(T −Tc )1/2 ] with η = 1/4. Tc = 0.12 gives the best

collapse. (d) Z (k = ( 4π

5 , 0)) at the antinodal point with g = 0.5, L =
20, T = 0.1, through the transition from Fermi arc to the deconfined
FL. In the former, the antinodal direction is gapped with small
weight, and in the latter the large FS is formed with substantial
weight; the transition point is t ∼ 0.5.

phases can be found in Appendix E). The transition between
Fermi arc and deconfined FL phases is triggered by the com-
posite fermion hopping t , as shown in Figs. 1(a) and 1(d) with
t = 0.3 and t = 1, respectively. A heuristic understanding of
the FS of these two phases is shown in Figs. 2(c) and 2(d).
Inside the Fermi arc phase, the f fermion acquires the FS of
doped Dirac cones, denoted by the red pockets, but the FS
of the c fermion here is only the broken solid blue arcs in
Fig. 2(c). However, when the c-fermion hopping is enhanced,
the system enters a metallic phase with large FS, shown as the
solid blue circle in Fig. 2(d). Inside this phase, the Z2 gauge
field is still deconfined, coexisting with the large FS.

The confined FL phase appears with the enhancement of
g in Hg. Here, the Z2 gauge field is treated as a Higgsed
field, and the phase corresponds to the normal metal phase in
our previous orthogonal metal work [47]. The transition from
Fermi arc phase and deconfined FL phase to the confined FL
phase can be seen from the the average Z2 flux per plaquette,
B = 1

N

∑
�
∏

b∈� σ z
b , and its susceptibility, ∂〈B〉/∂g, which

were used to detect the confinement transition [46,50,51].
Figures 3(a) and 3(b) show the results in sample paths as g
increases. There exist a change in 〈B〉 and a peak in ∂〈B〉/∂g
for t = 0.3 in Fig. 3(a), and for t = 1.0 in Fig. 3(b). These
results signify the transitions from Fermi arc with Z2 decon-
finement to the confined FL at gc ∼ 0.75 and from deconfined
FL to the confined FL at gc ∼ 0.75. The corresponding phase
boundary in Fig. 2(a) is drawn in this way.

It is interesting to note that we find that the confined FL
is unstable towards s-wave pairing of c fermions; we see
this instability from the corresponding pairing susceptibil-
ity, Ps = 1

L2

∫ β

0 dτ 〈�(τ )�†(0) + H.c.〉 with �
†
i = c†

i↑c†
i↓. The
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FIG. 4. (a) Angle dependence of Z (φ) inside the Fermi arc and the deconfined FL phases. The angle φ = arctan ky

kx
. (b) Temperature

dependence of the quasiparticle fraction at nodal points Z (k = ( 7π

12 , π

2 )) and Z (k = ( 7π

12 , 7π

12 )) and antinodal point Z (k = ( 5π

6 , 0)) inside the
Fermi arc and deconfined FL phases. The parameters are the same as in Figs. 1(a) and 1(d), respectively. (c) and (d) A(k, ω) of the c fermion,
with L = 20, T = 0.1 inside the Fermi arc (t = 0.3, g = 0.5) and the confined FL (t = 1.0, g = 1.4) phases along the high-symmetry path in
the BZ. The dashed circle in (c) denotes the discontinuous dispersion, signified by a spectral peak near ω = 0 close to the nodal points (from
	 to S), which is consistent with the pseudogap behavior. (e) A(k, ω) of the c fermion at high temperature, with L = 20, T = 0.2, at the same
parameters as in (c) (t = 0.3, g = 0.5); the pseudogap feature disappears due to thermal fluctuations.

finite-size collapse of Ps with the exponent of the Kosterlitz-
Thouless (KT) transition determines the Tc (TKT) as Ps =
L2−η f [L · exp (− A

(T −Tc )1/2 )] for T → Tc with η = 1/4 [52,53].
The representative collapse is shown in Fig. 3(c), and A = 0.4,
Tc = 0.12 are obtained. In a similar manner, we performed
the Ps collapse in the phase diagram and found that Tc reduce
quickly as t increases; the region of noticeable superconduc-
tivity is denoted by the blue shading in Fig. 2(a). Details of
the finite-size analysis of Ps are shown in Appendix C.

Figure 3(d) locates the Fermi arc to the deconfined FL
transition, via the quasiparticle fraction Z (k) ∼ βG(k, β/2),
and we chose the antinodal point k = ( 4π

5 , 0) with g = 0.5
as a function of t . It is clear that inside the Fermi arc phase,
Z (k) is vanishingly small at this finite size (L = 20), while
when t ∼ 0.5, there is a change in the slope of Z (k) in-
crease at the antinodal point suggesting the formation of a
large FS, although the topological order still persists as shown
in Fig. 3(b). The transition between the Fermi arc and the
deconfined FL is estimated in this way.

IV. FERMI ARC AND PSEUDOGAP SPECTRA

Finally, we go back to the Fermi arc phase and clarify a
few important points. The first one is whether the FS is indeed
broken close to the zone boundary, and this can be confirmed
from the comparison of the quasiparticle fraction along the
nodal and antinodal directions. As shown in Fig. 4(a), it is
clear that at finite temperature, inside the Fermi arc phase,
the quasiparticle fraction along the antinodal direction is van-
ishingly small compared with that along the nodal direction,
suggesting the existence of a pseudogap. In contrast, inside the
deconfined FL, the quasiparticle fraction along both directions
is finite. Another question is about the properties at the ground
state. As shown in Fig. 4(b), as the temperature decreases, the
finite quasiparticle fraction along the nodal direction inside
the Fermi arc slowly extrapolates to a small but finite value,
suggesting that the true ground state of the Fermi arc phase in-
deed has a finite density of states (we stress that the finite-size
extrapolation has been applied to system sizes L = β = 24;
see Appendix C for details).

To make a closer comparison with the cuprate pheno-
menology [22–25,28], we further compute the real-frequency

single-particle spectra A(k, ω) of c fermions in the Fermi
arc and confined FL phases. The spectra are obtained from
stochastically analytic continuation of the imaginary time
Green’s function from the QMC simulation. Such a method-
ology has been successfully employed in various strongly
correlated systems [54–65]. The obtained spectra are shown
in Figs. 4(c) and 4(d); it is interesting to see that along the
high-symmetry-path, the Fermi arc phase [Fig. 4(c)] has a
discontinuous dispersion, signified by a spectral peak near
ω = 0 close to the nodal points [from 	 to S, indicated by
the dashed circle in Fig. 4(c)] and its disappearance along the
other parts of the path (especially along the antinodal direction
X-	). This is consistent with the pseudogap and Fermi arc
phenomena, i.e., the breaking of the FS and the violation of
Luttinger’s theorem, and is in sharp contrast with the contin-
uous dispersion of the confined FL phase [Fig. 4(d)], where
the quasiparticle peaks are pronounced at all the momenta, in
particular, close to ω = 0. We also find, as the temperature
rises (with T = 0.2), the pseudogap near X disappears due to
the thermal fluctuations, as shown in Fig. 4(e).

V. DISCUSSION

By doping the orthogonal metal, we reveal a Fermi arc and
pseudogap state at generic filling in a lattice model of correlate
electrons with unbiased QMC simulations. Our observations
share a phenomenological similarity with the cuprate experi-
ments [22–28]: There is a strong depletion in the quasiparticle
weight at antinodal points; there is no translational symmetry
breaking, and the state appears to violate LT; and the large
and closed FS emerges as the hopping of gauge-neutral c
fermions increases and superconductivity therein. In a more
general sense, our results therefore provide a concrete model
realization and theoretical framework for the coupling be-
tween gauge field and fermions and, in the process, generate
the rich phenomena of the pseudogap, the Fermi arc, and
superconductivity in generic correlated electron systems. The
deeper connection of our theoretical model with that of the
Hubbard-type model, where the emergent gauge field coupled
to fractionalized quasiparticles is expected [29–31,45], and
experimental reality is ready to be explored.
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APPENDIX A: QUANTUM MONTE CARLO IMPLEMENTATION

In this Appendix, we discuss how the quantum Monte Carlo simulation of the model is implemented; while part of this
introduction is given in our previous orthogonal metal work [47], the addition of the composite fermion hopping term Hc has
greatly increased the complexity of Monte Carlo simulations, and we have managed to maintain a similar level of the numerical
stability with the block update scheme. We will first recap the construction of the partition function and then pay more attention
to the update scheme of the Hc term.

After discretizing the imaginary time β = �τLτ and performing the trace of the Ising matter field in the Sz basis, the trace of
the Z2 gauge field in the σ z basis, and the trace of fermion degrees of freedom to obtain the fermion determinant, the partition
function of our model can be written as

Z = Tr{e−βH }

=
∑

{Sz
i ,σ

z
b }

exp

⎡
⎣∑

l,〈i, j〉
�τJSz

i (l )σ z
b (l )Sz

j (l ) +
∑

i,〈l,l ′〉
γsS

z
i (l )Sz

i (l ′)

⎤
⎦ × exp

[∑
l,�

�τK
∏
b∈�

σ z
b (l ) +

∑
b,〈l,l ′〉

γσσ z
b (l )σ z

b (l ′)

]

×
∣∣∣∣∣det

(
I +

1∏
l=Lτ

B(l )

)∣∣∣∣∣
2

, (A1)

where γs = − 1
2 ln[tanh(�τh)], γσ = − 1

2 ln[tanh(�τg)], and
matrices B(l ) = exp[V (l )] with V (l ) (imaginary time-slice
index l takes values 1, . . . , Lτ ; the spatial site indices i, j take
the values 1, . . . , L2) having elements V (l )〈i, j〉 = �τ tσ z

b (l )
and V (l )i,i = �τμ. We will leave the discussion of the Hc

term inside B(l ) to Appendix A 1. The square outside of the
determinant comes from two species of fermion (spin up and
down). As the bosonic parts of weights are always positive and
the fermion part of the weight is a square of the determinant of
the real matrix, the whole weight will always be semipositive,
and it is absent a sign problem.

We therefore use the determinant quantum Monte Carlo
(DQMC) approach to simulate this model, which has been
widely used in simulating fermion boson coupled lattice mod-
els, and more details can be found in the recent review in
Ref. [66]. The local updates are performed on the Ising matter
field {Sz

i } and Z2 gauge fields {σ z
b } in a space-time configura-

tional space with volume L × L × Lτ , where Lτ = β/�τ with
�τ = 0.1 and β = L = 12, 14, . . . , 20, 24.

Scheme to update the Hc term

Hc is the hopping of the composite c fermion as a combi-
nation of the orthogonal fermion fi,α and spin matter field Sz

i .
After the path integral of the partition function, it is equivalent
to view the spin variable Sz

i = ±1 entering the hopping matrix
of the f fermion.

Hc = −t
∑
〈i, j〉

f †
i,αSz

i f j,αSz
j + H.c. (A2)

Using Trotter decomposition, we can write the B matrix in
the fermion determinant in the following form:

Bτ = e−�τTσ,τ · e−�τTμ,τ · e−�τTSz ,τ , (A3)

where Tσ is the matrix from the Hf term and Tμ is the chemi-
cal potential matrix. TSz is the matrix TSz,i j = Sz

i Sz
j . As shown

in Fig. 5, we can further exploit the Trotter decomposition to
split the TSz matrix into A-B sublattice form

e−�τTSz ,τ

= e−�τTSz ,A1 ,τ · e−�τTSz ,A2 ,τ · · · e−�τTSz ,AN/2 ,τ + O(�τ 2)

(A4)

= e−�τTSz ,B1 ,τ · e−�τTSz ,B2 ,τ · · · e−�τTSz ,BN/2 ,τ + O(�τ 2),

(A5)

where N = L2 is the number of sites and A and B stand for
the elements between the Ai or Bi site and its four neighboring
sites, respectively. Matrix TSz,Ai/Bi is zero except for the en-
tries connected by site Ai or Bi and its four neighboring sites,
illustrated in Fig. 5 for the Eq. (A4) type decomposition.

Unlike the DQMC approach for the Hubbard model, where
in order to calculate the ratio of determinants and update
the Green’s function only one element of the Hubbard-
Stratonovich (HS) field matrix is involved, we have four
elements that are changed when we update one Sz

i in the
c-fermion hopping term Hc. Now we discuss how to calcu-
late the ratio and update the Green’s function with multiple
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A B

FIG. 5. Blue and red dots stand for the A and B sublattices of Sz
i ,

respectively, and the crosses originating from the blue and red dots
are the four nearest-neighbor (NN) interactions of Sz

i Sz
j .

changing matrix elements. Firstly, we introduce the � matrix

e−�τTSz ,A′
i ,τ = (1 + �)e−�τTSz ,Ai ,τ ,

e−�τ ·2·TSz ,Ai ,τ = (1 + �). (A6)

Once we propose an update Sz
i → −Sz

i , TSz,A′
i,τ

= −TSz,A′
i,τ

.
One lattice site has four nearest-neighbor hoppings, so we
have a total of 24 = 16 � matrices. We can compute all of
them in advance to avoid repeatedly calculating them during
the simulation.

Below is the general scheme to calculate the ratio and
update the Green’s function with the k-dimensional �

matrix [67].
Define

BM · · · Bτ+1 ≡ B(β, τ ), (A7)

Bτ · · · B1 ≡ B(τ, 0). (A8)

Try to flip si,τ ,

det[1 + B(β, τ )B(τ, 0)] → det[1 + B(β, τ )(1 + �)B(τ, 0)].

(A9)

The weight ratio is

det[1 + B(β, τ )(1 + �)B(τ, 0)]

det[1 + B(β, τ )B(τ, 0)]

= det (1 + �{1 − [1 + B(τ, 0)B(β, τ )]−1})

= det{1 + �[1 − G(τ, τ )]}. (A10)

If the update is accepted, we also need to update the
Green’s function

G′(τ, τ ) = [1 + (1 + �)B(τ, 0)B(β, τ )]−1

= [1 + B(τ, 0)B(β, τ )]−1

×([1 + (1 + �)B(τ, 0)B(β, τ )]

×{[1 + B(τ, 0)B(β, τ )]−1})−1. (A11)

As we have G ≡ G(τ, τ ) = [1 + B(τ, 0)B(β, τ )]−1, we
also denote A ≡ B(τ, 0)B(β, τ ) ≡ G−1 − 1; then we have

G′(τ, τ ) = G{[1 + (1 + �)A]G}−1

= G{[1 + (1 + �)(G−1 − 1)]G}−1

= G[1 + �(1 − G)]−1. (A12)

Note that �(1 − G) only has k rows that are nonzero;
thus �(1 − G) can be formulated as the cross product of two
rectangular matrices, �(1 − G) ≡ UV, with

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · ·
...

... · · ·
�ii �i j · · ·
...

... · · ·
� ji � j j · · ·
0 0 · · ·
...

... · · ·
0 0 · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×k

(A13)

and

V = −
⎡
⎣Gi1 · · · Gii − 1 · · · Gi j · · · · · · Gi,N

Gj1 · · · Gji · · · Gj j − 1 · · · · · · Gj,N
...

...
...

...
...

...
...

...

⎤
⎦

k×N

. (A14)

Then with the help of the generalized Sherman-Morrison formula (I + UV)−1 = I − U(Ik + VU)−1V, we have

G′(τ, τ ) = G[1 + �(1 − G)]−1 = G(1 + UV)−1 = G[I − U(Ik + VU)−1V] = G − GU(Ik + VU)−1V. (A15)

Now we try to formulate it in a more standard form (an easy extension to delay the update). We can factorize U as

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · ·
...

... · · ·
�ii �i j · · ·
...

... · · ·
� ji � j j · · ·
0 0 · · ·
...

... · · ·
0 0 · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×k

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · ·
...

... · · ·
1ii 0 · · ·
...

... · · ·
0 1 j j · · ·
0 0 · · ·
...

... · · ·
0 0 · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×k

⎡
⎣�ii �i j · · ·

� ji � j j · · ·
...

...
. . .

⎤
⎦

k×k

≡ ŨD. (A16)
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Redefine U = GŨ, S ≡ D(Ik + VU)−1, and V = −V with

U ≡ GŨ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G1i G2 j · · ·
...

... · · ·
Gii Gi j · · ·
...

... · · ·
Gji Gj j · · ·
...

... · · ·
...

... · · ·
GNi GN j · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×k

, (A17)

S ≡ D(Ik + VU)−1 (A18)

=
⎡
⎣�ii �i j · · ·

� ji � j j · · ·
...

...
. . .

⎤
⎦

k×k

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ik −
⎡
⎣Gi1 · · · Gii − 1 · · · Gi j · · · · · · Gi,N

Gj1 · · · Gji · · · Gj j − 1 · · · · · · Gj,N
...

...
...

...
...

...
...

...

⎤
⎦

k×N

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · ·
...

... · · ·
�ii �i j · · ·
...

... · · ·
� ji � j j · · ·
0 0 · · ·
...

... · · ·
0 0 · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1

,

(A19)

and

V ≡ −V =
⎡
⎣Gi1 · · · Gii − 1 · · · Gi j · · · · · · Gi,N

Gj1 · · · Gji · · · Gj j − 1 · · · · · · Gj,N
...

...
...

...
...

...
...

...

⎤
⎦

k×N

. (A20)

Then we have the weight ratio r = det(Ik + VU) and

G′(τ, τ ) = G + USV. (A21)

Back to our partition function in Eq. (A1) and the update of the Hc term, as discussed in the beginning of this section, we have
k = 5 for updating Sz

i . Because we use either Eq. (A4) or Eq. (A5) to calculate the determinant, we can only update half of Sz
i in

one Monte Carlo sweep (in the usual sense). So our scheme is to perform one sweep to update the A sublattice with the Green’s
function calculated using Eq. (A4) and recalculate the Green’s function using Eq. (A5), and then we update all B sublattice sites.
One “sweep” therefore contains two usual sweeps.

APPENDIX B: MEAN-FIELD CALCULATION OF THE DOPED OSM PHASE

In this Appendix, we present a mean-field calculation of the spectral properties in the Fermi arc phase of our phase diagram.
The calculation here is an extension to the doping case of the calculation for the orthogonal semimetal case in Ref. [46].

We consider the limit of g = t = 0 and neglect gauge field fluctuations and c-fermion hopping terms. Since the c-fermion
spectral function we calculate is a gauge-invariant quantity, we can choose a gauge condition which is σr,x̂ = (−1)ry and σr,ŷ = 1.
The f fermion (τ z field) is a free fermion (scalar field) hopping in the background of the static gauge field. So we take the
mean-field Hamiltonian

HMF
f = −

∑
r,η

tr,η f †
r,α fr+η,α − μ

∑
r

f †
r,α fr,α, (B1)

HMF
φ =

∑
r

1

2
π2

r + 1

2
ω2

(∑
r

�φ2
r + 1

2

∑
r,η

(φr − tr,ηφr+η )2

)
, (B2)

where φr is a real scalar field and πr is its canonical momentum. η takes a value in {±x̂,±ŷ}, and the hopping amplitude
tr,η = (−1)ryδη,±x̂ + δη,±ŷ.
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The gauge condition breaks the translation symmetry, so momentum space of the mean-field Hamiltonian is defined on a
reduced Brillouin zone (0 < kx < 2π , 0 < ky < π ). For the f fermion, substituting fr,α = 1√

N

∑
k fk,αeikr ,

HMF
f = −

∑
k,k′

f †
k,α

fk′,α

(∑
η

eik′η(δη,±x̂δk,k′+π k̂y
+ δη,±ŷδk,k′

) + μδk,k′

)

= −
∑

k

2 cos(kx ) f †
k,α

fk−π k̂y,α
+ [2 cos(ky) + μ] f †

k,α
fk,α

= −
′∑
k

(
f †
0,α (k) f †

π,α (k)
)(2 cos(ky) + μ 2 cos(kx )

2 cos(kx ) −2 cos(ky) + μ

)(
f0,α (k)
fπ,α (k)

)
, (B3)

where f0,α (k) = fk,α , fπ,α (k) = fk+π k̂y,α
and

∑′ is the sum of momentum in the reduced Brillouin zone. Diagonalizing the
Hamiltonian, we get the energy spectrum ε±(k) and the eigenmodes fρ,α (k) = Vρ,γ (k) fγ ,α (k), where γ = ±, ρ = 0/π , and Vρ,γ

diagonalize the Hamiltonian. It is useful to represent fk,α by fγ ,α (k):

fk,α = Vρ(k),γ [P(k)] fγ ,α[P(k)], ρ(k) =
{

0, ky ∈ [0, π )
π, ky ∈ [π, 2π ) , P(k) =

{
ky, ky ∈ [0, π )
ky − π, ky ∈ [π, 2π ) . (B4)

The f -fermion spectrum function is [it is equivalent to understand A f (k, k′, ω) as A f (k, ω)ρ,ρ ′ ; the momentum of the latter is in
the reduced BZ]

A f (k, k′, ω) = 1

2π

∫
dteiωt

〈{
fk (t ), f †

k′
}〉 =

∑
γ

δ{ω − εγ [P(k)]}δP(k),P(k′ )Vρ(k),γ [P(k)]Vρ(k′ ),γ [P(k)]. (B5)

For the scalar field, substituting φr = 1√
N

∑
k φreikr ,

HMF
φ =

∑
k

1

2
πkπ−k + 1

2
mω2

(
�φkφ−k + [4 − 2 cos(ky)]φkφ−k − [2 cos(kx )]φkφ−k−π k̂y

)

=
′∑

k,ρ

1

2
πk,ρπ−k,ρ +

′∑
k

1

2
ω2(φ0(k) φπ (k))

(
� + 4 − 2 cos(ky) −2 cos(kx )

−2 cos(kx ) � + 4 + 2 cos(ky)

)(
φ0(−k)
φπ (−k)

)
. (B6)

Diagonalizing the frequency matrix, we get the eigenfrequency ωκ (k) and the normal modes φρ (k) = Uρ,κ (k)φκ (k) [caution:
the eigenvalue of the matrix is the square of ωκ (k), so we must set � > 2

√
2 − 4; otherwise the eigenvalue will be negative]. To

diagonalize the Hamiltonian, we introduce the operators

aκ (k) =
√

1

2
ωκ (k)φκ (k) + i

√
1

2ωκ (k)
πκ (k)a†

κ (−k) =
√

1

2
ωκ (k)φκ (k) − i

√
1

2ωκ (k)
πκ (k); (B7)

then the Hamiltonian becomes

HMF
φ =

′∑
k,κ

ωκ (k)a†
κ (k)aκ (k) + const. (B8)

Representing φk by a and a†,

φk = Uρ(k),κ [P(k)]√
2ωκ [P(k)]

{aκ [P(k)] + a†
κ [−P(k)]}. (B9)

There is some subtlety in the commutation relation. Notice that φ0(−k)[φπ (−k)] is defined as φ−k (φ−k−π k̂y
); we will get a

strange commutation relation between positive ky and negative ky. In the calculation of the Hamiltonian, we do not meet any
problem because the commutation relations have the same momentum, but that is not the case in the calculation of the spectrum
function. At least, we can require k, k′ > 0 to avoid the subtlety.

Aφ (k, k′, ω) = 1

2π

∫
dteiωt 〈[φk (t ), φ−k′ ]〉

= 1

2π

∫
dteiωt

∑
κ,κ ′

Uρ(k),κ [P(k)]Uρ(−k′ ),κ ′[P(−k′)]
1√

4ωκ [P(k)]ωκ ′[P(−k′)]

× 〈{aκ [P(k)](t ) + a†
κ [−P(k)](t ), aκ [P(−k′)] + a†

κ [−P(−k′)]}〉
=

∑
κ

(δ{ω − ωκ [P(k)]} − δ{ω + ωκ [P(k)]})δP(k),−P(−k′ )Uρ(k),κ [P(k)]Uρ(−k′ ),κ ′ [−P(k)]
1√

4ωκ [P(k)]ωκ ′ [−P(k)]
.

(B10)
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Finally, we calculate the Matsubara Green’s function G(k, k′, ωn) = ∫
dω A(k,k′ω)

iωn−ω
and convolute the f -fermion and scalar field

Green’s function to obtain the c-fermion Green’s function; note that the c-fermion Green’s function is gauge invariant, so we can
simply set k = k′.

G(k, ωm) =
∑

q,q′,νm

G f (q, q′, νm)G f (k + q, k + q′, νm)

=
∑

q,q′,νm,γ ,κ

δP(q),P(q′ )δP(q+k),−P(−q′−k)Vρ(q),γ [P(q)]Vρ(q′ ),γ [P(q)]Uρ(q+k),γ [P(q + k)]Uρ(−q′−k),γ [−P(q + k)]

× 1

iνm − εγ [P(q)]

1

(νm − ωm)2 + ω2
κ [P(q + k)]

=
∑

q,q′,νm,γ ,κ

δP(q),P(q′ )δP(q+k),−P(−q′−k)Vρ(q),γ [P(q)]Vρ(q′ ),γ [P(q)]Uρ(q+k),γ [P(q + k)]Uρ(−q′−k),γ [−P(q + k)]

× −βωκ [P(q + k)] tanh
( βεγ [P(q)]

2

) + β{εγ [P(q)] − iωm} coth
(

βωκ [P(q+k)]
2

)
2ωκ [P(q + k)](ω2

κ [P(q + k)] + {εγ [P(q)] − iωm}2)
. (B11)

The last step is a Matsubara sum, which is calculated in the standard way. As an example, the c-fermion spectral function
from finite-size mean-field calculation, with the same temperature and filling compared with that in the QMC simulation inside
the Fermi arc phase, is given in Fig. 6.

APPENDIX C: FINITE-SIZE ANALYSIS
OF QUASIPARTICLE WEIGHT

In order to get a glimpse of the ultimate fate of our Fermi
arc phase from finite-size and finite-temperature simulations
to the L and β to ∞ limit, we perform finite-size analysis
of the quasiparticle weight Zk. Due to the fact that we only
have finite resolution in momentum space and the model is
doped away from half filling, the momentum point of interest
is, strictly speaking, not a high-symmetry point; therefore we
cannot simply focus on one specific momentum point k and
extrapolate its Zk to the L to ∞ limit. On the other hand,
the T → 0 (β → ∞) extrapolation is more controllable. Our
scheme therefore becomes to perform the zero-temperature
extrapolation for each system size first and then to make the
comparison between different sizes. The extrapolation itself is
done by second-order polynomial regression.

−π 0 π
kx

−π

0

π

k
y

FIG. 6. Mean-field c-fermion spectral function A(k, ω = 0). The
parameters are L = 20, T = 0.1, μ = 1.2, ω = 1, and � = −1.1.

We select the three largest system sizes L = 16, 20, 24 in
DQMC simulations with inverse temperatures β = 8, 9, 10,

12, 13, 15, 17, 20, 22, 24 in the Fermi arc phase (t = 0.3,

g = 0.5) and deconfined FL phase (t = 1.0, g = 0.5). The ex-
trapolated results are shown in Fig. 7. The upper panels are for
the Fermi arc phase, and the lower ones are for the deconfined
FL. For the cases with the largest lattice size, the antinodal
direction in the Fermi arc phase has vanishing quasiparticle
weight in the extrapolated zero-temperature Fermi surface.
In contrast, the Fermi surfaces of the deconfined FL have
persistent quasiparticle weight in the antinodal direction. The
important message from the comparison between different
sizes is that the quasiparticle weight increases with increas-
ing lattice sizes. In Fig. 7(a) with L = 16, Zk in the BZ all
extrapolate to zero, but as the system size increases to L = 20
and 24 [Figs. 7(b) and 7(c)], the extrapolated weight along the
Fermi arcs becomes more pronounced, verifying the existence
of such an exotic metal state in the limit of L and β to ∞ and
that the Fermi arcs are not closed pockets when one dopes the
Dirac cones of orthogonal fermions.

APPENDIX D: SUPERCONDUCTIVITY

We study the s-wave superconductivity in our t-g phase
diagram. The observables are the s-wave pairing structure
factor and the dynamical susceptibility defined as follows:

S(k) = 1

L2

∑
i, j

e−ik·ri j
〈
�

†
i � j

〉
, �i = ci↑ci↓, (D1)

and

Ps = 1

L2

∫ β

0
dτ 〈�(τ )�†(0) + H.c.〉,

�(τ ) =
∑

i

ci↓(τ )ci↑(τ ). (D2)

The results are shown in Figs. 8 and 9, respectively. The
four panels of each figure are the measurements performed
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FIG. 7. Zero-temperature extrapolation of quasiparticle weights Zk. The upper panels are for the Fermi arc phase with parameters t = 0.3,

g = 0.5, μ = 1.2, for system sizes L = 16 (a), L = 20 (b), and L = 24 (c). In each panel, the results are shown after extrapolation of
different temperatures β = 8, 9, 10, 12, 13, 15, 17, 20, 22, 24. The lower panels are for the deconfined FL phase with parameters t = 1.0,

g = 0.5, μ = 1.2, for system sizes L = 16 (d), L = 20 (e), and L = 24 (f) with extrapolation using the largest β = 20.

at the solid circle in the phase diagram in Fig. 2(a) of the
main text. In Figs. 8(a) and 9(a), both S(0, 0) and Ps show
strong enhancement with L and β, and in the main text, we
show the collapse of pairing susceptibility Ps making use of
the Kosterlitz-Thouless transition scaling form with Tc = 8.3.
As for Figs. 8(b) and 9(b), this is deep in the confined FL
with g = 1.0, t = 1.0, the temperature at which S(0, 0) and
Ps start to grow is lower than the g = 1.0, t = 0.3 case, and
their absolute values are significantly smaller in comparison
with those of g = 1.0, t = 0.3, meaning that although there is

FIG. 8. s-wave pairing structure factor in (a) g = 1.4, t = 0.3,
(b) g = 1.4, t = 1.0, (c) g = 0.5, t = 0.3, and (d) g = 0.5, t = 1.0
corresponding to four circles in the t-g phase diagram in Fig. 2(a) of
the main text. We show the observables for L = 4, 8, 12, 16 and
inverse temperature from β = 1 to β = 20.

superconductivity instability, the Tc is much lower. Attempts
to produce the scaling collapse of Ps yield poorer results
as t is increased, and from the temperature dependency of
the structure factor and pairing susceptibility, we reach the
conclusion that the critical temperature of the KT transition
versus t is decreasing monotonically. In the Fermi arc and
deconfined FL phase, i.e., Figs. 8(c), 8(d), 9(c), and 9(d),
as the temperatures are lowered, we observe no signals of
superconductivity in the s-wave channel, with similar be-
haviors in the d-wave channel as well, meaning that the

FIG. 9. s-wave dynamical pairing susceptibility in (a) g = 1.4,

t = 0.3, (b) g = 1.4, t = 1.0, (c) g = 0.5, t = 0.3, and (d) g = 0.5,

t = 1.0 corresponding to four circles in the t-g phase diagram in
Fig. 2(a) of the main text. We show the observables for L = 4, 8,

12, 16 and inverse temperature from β = 1 to β = 20.

165131-10



FERMI ARCS AND PSEUDOGAP IN A LATTICE MODEL … PHYSICAL REVIEW B 103, 165131 (2021)

deconfined phase in our model does not have superconduc-
tivity instabilities.

APPENDIX E: EXPLANATION OF THE THREE
PHASES IN THE PHASE DIAGRAM

In this Appendix, we briefly explain the names of the three
phases in the phase diagram in Fig. 2(a) of the main text. In
the main text, the three phases are referred to as the Fermi
arc phase, the deconfined Fermi liquid (FL) phase, and the
confined FL phase, respectively.

The Fermi arc phase and the deconfined FL phase both
have a deconfined Z2 gauge field and therefore a Z2 topolog-
ical order. The Ising field Sz is in a disordered state, and the
spin-flip excitation is a gapped bosonic quasiparticle carrying
a Z2 gauge charge. Therefore it can be viewed as the e anyon
in the Z2 topological order. The f fermion also carries a Z2

gauge charge, and it is another fractionalized anyon, which
differs from the e anyon by a physical electron c. In other
words, the bound state (or the fusion outcome) of an e anyon
and a f fermion is the physical electron c, which does not
carry a gauge charge. e and f are deconfined anyons in both
the Fermi arc and deconfined FL phases, and they differ only
in the shape of the Fermi surface of physical electrons: In the
Fermi arc phase, the c fermion has disconnected Fermi arcs,
while in the deconfined FL phase it has a connected large FS.

On the other hand, in the confined FL phase, the Z2 gauge
field is in the confined phase. As a result, it has neither topo-
logical order nor fractionalized anyon excitations. Both the f
fermion and spin-flip excitation of the Ising field Sz are now
confined, and they can only appear together as a c fermion.
Therefore the c fermion is the only low-energy quasiparticle
in this phase. Furthermore, it forms a large FS. Therefore this
phase is a trivial Fermi liquid with a large FS.
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