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We study the effects of electronic correlations on fragile topology using dynamical mean-field theory. Fragile
topological insulators (FTIs) offer obstruction to the formation of exponentially localized Wannier functions,
but they can be trivialized by adding certain trivial degrees of freedom. For the same reason, FTIs do not host
symmetry-protected flow of edge states between bulk bands in cylindrical boundary conditions but are expected
to have a spectral flow between the fragile bands and other bands under certain twisted boundary conditions.
We here analyze commonly observed effects of strong correlations, such as the Mott insulator transition and
magnetism, on a known model hosting fragile topology. We show that in the nonmagnetic case, fragile topology,
along with the twisted boundary states, is stable with interactions below a critical interaction strength. Above this
interaction strength, a transition to the Mott insulating phase occurs, and the twisted boundary states disappear.
Furthermore, by applying a homogeneous magnetic field, the fragile topology is destroyed. However, we show
that a magnetic field can induce a topological phase transition which converts a fragile topological insulator to a
Chern insulator. Finally, we study ferromagnetic solutions of the fragile topological model.
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I. INTRODUCTION

Stable topological insulators (STIs) are defined by the fact
that they cannot be continuously deformed into the atomic
limit without closing the bulk gap or breaking the underlying
symmetries [1–6]. Recently, a new class of topological insula-
tors, dubbed “fragile topological insulators” (FTIs), has been
discovered whose nontrivial bands, like STIs, do not allow the
formation of exponentially localized Wannier functions pre-
serving all symmetries; i.e., they offer Wannier obstructions
denoted as “non-Wannierizable.” But in contrast to STIs, an
FTI can be adiabatically changed into an atomic insulator by
adding a certain trivial set of bands, like that of a trivial band
insulator [7–13]. Furthermore, while stable topological bands
can be characterized by a nontrivial topological invariant, like
a Chern number or a Z2 index, fragile topological bands can-
not as they have trivial values for these topological invariants.

Another peculiar feature of fragile topological phases is
that they do not, in general, host symmetry-protected gapless
surface or edge states. Since FTIs can be trivialized by the
addition of atomic insulators without any surface or edge
states while maintaining the bulk gap, there is no bulk-edge
correspondence. However, Song et al. showed that there exists
a new type of “twisted” bulk-boundary correspondence for
FTIs [11]. When a set of fragile topological bands is taken
through some specific twisted boundary conditions (TBCs),
symmetry-protected spectral flow exists between the fragile
bands and other bands as a function of a single parameter (λ),
which controls the deformation of these TBCs. Thus, tradi-
tional methods of characterizing topological insulators, like
the bulk-boundary correspondence and topological indices,
would label FTIs as topologically trivial. Thus, in addition
to these methods, one also has to check whether each set of
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isolated bands is Wannierizable, or equivalently, whether the
Wilson loops of those bands do not wind [8,9,14–16]. If this
is not the case, the set of bands hosts nontrivial topology. The
twisted bulk-boundary correspondence also provides a way to
measure the effects of fragile topology theoretically as well
as experimentally, as has been recently realized in an acoustic
metamaterial [12].

However, fragile topology is not only a theoretical pe-
culiarity but also has significant practical consequences. As
an example, consider the tight-binding models of materials,
which are obtained from the Wannier functions of relevant
bands. If there is no nontrivial topological invariant, one may
conclude that the set of bands is trivial and hence Wannier-
izable. However, the bands could also be fragile topological,
which would result in an obstruction to the formation of Wan-
nier functions. Thus, it is essential to diagnose the topology in
the bands of interest properly. Otherwise, the construction of
a tight-binding model obeying the symmetries of the material
might fail. Furthermore, fragile topology is predicted to be
present in the band structures of a large number of real ma-
terials, including in the flat bands of twisted bilayer graphene
[10,17–21]. In particular, the authors in Ref. [21] studied the
effects of attractive Hubbard interactions in a flat band model
with fragile topology, with properties similar to the flat bands
in twisted bilayer graphene. They showed that fragile topol-
ogy plays an important role in achieving superconductivity.

Fragile topology was first realized in a noninteracting
model given by Po et al. [7], and much work has been done
in understanding these systems in the noninteracting regime.
In interacting systems, however, there have been relatively
fewer studies [13,21–23]. On the other hand, STIs have been
extensively studied with interactions and are predicted to
show unconventional correlated topological states [24–26].
Fractional Chern insulators, topological Mott insulators, topo-
logical Kondo insulators, and topological insulators without
edge states are some of the examples of novel phases produced
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by the interplay of nontrivial topology and strong interactions
[27–36]. In the case of FTIs, Ref. [13] discusses that certain
interacting fragile topological phases are stable as long as the
spatial symmetries are maintained and no additional set of
bands is introduced in the system. Interestingly, there are ex-
amples of FTIs that cannot exist in noninteracting regime but
only in interacting systems [13,23]. These FTIs require strong
electron correlations as a necessary ingredient for many-body
entanglement in their ground states. The already mentioned
study in Ref. [21] considers attractive interactions in a flat
band model to investigate its superconducting properties.

The effects of repulsive electron-electron correlations in
FTIs have not yet been explicitly studied and it is still an open
question whether electron correlations in FTIs can lead to
nontrivial physical properties or not. The effects of magnetism
and magnetic fields on fragile topology have not been studied
as well. It is also not clear up to what degree the new twisted
bulk-boundary correspondence in FTIs holds in the presence
of interactions and/or magnetic fields. Since FTIs, in general,
do not possess “normal” edge states which connect the bulk
bands (as seen in STIs), it would be of interest to study the
evolution of edge states in the interacting/magnetic regime. In
this work, we study the effects of electronic correlations in the
time-reversal symmetric (TRS) FTI introduced in Ref. [7]. For
this purpose, we use dynamical mean-field theory (DMFT)
[37] with numerical renormalization group (NRG) [38–40] to
solve the impurity model. We find that in the nonmagnetic
case, the fragile topological phase stays stable until a critical
interaction strength, after which a transition to a topologically
trivial Mott insulating phase occurs. We verify the presence
of spectral flow under some specific TBCs and show that
this band gap crossing is stable under interactions until the
transition to the Mott phase, after which these states disap-
pear. On applying a constant magnetic field, we show that
the fragile topological character is lost, and topological phase
transitions (as a function of field strength) to a stable topology
occur in different sets of bands. To analyze these topological
phases, we use Wilson loops. Finally, we investigate how
stable magnetic phases due to interactions affect the topology
of the system, and we find a stable ferromagnetic ordering
made up of two sets of Chern insulators as conduction and
valence bands above a critical interaction strength. We argue
that while we study the interaction effects on a particular
model, most of our results should apply to general fragile
topological phases as well.

The rest of this article is organized as follows: In Sec. II,
we briefly describe the honeycomb lattice FTI model and the
DMFT/NRG technique to study the effects of interactions. In
Sec. III, we discuss the FTI to Mott insulator transition. In
Sec. IV, we define the TBCs for the honeycomb lattice under
TRS and show the evolution of the twisted boundary states
under interactions. In Sec. V, we study the topological phase
transitions due to an applied magnetic field using Wilson
loops, and in Sec. VI, we analyze magnetic solutions of the
DMFT/NRG calculations. Finally, we conclude in Sec. VII.

II. MODEL AND METHOD

To study interaction effects on fragile topology, we use a
four-band honeycomb lattice model first proposed by Po et al.
in Ref. [7]. The full description of the model is given there,

FIG. 1. Band structure of the noninteracting FTI. The four bands
are labeled B1, B2, B3, B4 from low energies to high energies. The
valence bands (B1 and B2) are trivial while the conduction bands (B3
and B4) are fragile topological.

and here we only briefly describe it. The model consists of a
spinful pz orbital centered on each site (2b Wyckoff position)
of a honeycomb lattice with the origin at the center of the
hexagon (space group p6mm with time-reversal symmetry).
Thus, there are two atoms in one unit cell. Then, starting with
the Kane-Mele model [41], the authors introduce elaborate
spin-orbit couplings and long-range hoppings (up to fifth near-
est neighbor). This causes a band inversion at � and renders
the Z2 quantum spin Hall index trivial. Additionally, the in-
version symmetry is removed to give a zero Chern number
and leaves the model without stable topology.

Explicitly, the model is constructed in the following way.
Each time-reversal symmetric bond i (i = 1, 2, . . . , 5) (see
Fig. 1(c) in Ref. [7]) is defined by a spin-independent hopping
term τi and a spin-orbit interaction term γ i, and is given by

ĥi ≡
∑
α,β

ĉ†
2,α

(τiσ0 + iγ i · σ )αβ ĉ1,β , (1)

where ĉ1,α denotes the fermion annihilation operator acting
on an electron with spin α at site 1. σ j corresponds to the
usual Pauli matrices. The values of the hopping term and the
spin-orbit interaction term are real (necessary for the bonds to
be TRS) and are given in Ref. [7]. Now, summing over all the
g-related bonds for g ∈ G (where G is the space group p6mm),
i.e., summing over all the symmetrically equivalent bonds to
a given bond i, gives the noninteracting Hamiltonian Ĥ0 as

Ĥ0 = t

12

5∑
i=1

∑
g∈G

ĝĥiĝ
−1 + H.c., (2)

where we have used t = 1/3 in this work. We have also shifted
the band gap to ω = 0 by adding a constant. This is a four-
band model, in which the lowest two bands (valence bands, B1
and B2) allow the formation of symmetric localized Wannier
functions, whereas the other two bands (conduction bands,
B3 and B4) are topologically nontrivial and offer obstruc-
tion to the formation of localized Wannier functions (Fig. 1).
Wannier obstructions can also be inferred from the Wilson
loop windings [8,9,14–16]. Thus, with a set of trivial valence
bands but nontrivial conduction bands, this model shows no
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stable topology but fragile topology. It can be shown that
on the addition of a certain trivial set of bands, the Wannier
obstruction of the conduction bands can be trivialized, and the
FTI can be converted to the atomic limit adiabatically [13].
We study the interacting Hamiltonian Ĥ = Ĥ0 + ĤU , where
Ĥ0 is the noninteracting part defined in Eq. (2) and ĤU is the
Hubbard interaction term given by

ĤU = U
∑

j

n̂ j↑n̂ j↓, (3)

where U is the on-site interaction strength and n̂ jα is the
particle number operator for an electron with spin α located
at site j.

We use DMFT with NRG to investigate the physical prop-
erties of the full Hamiltonian Ĥ . DMFT is a nonperturbative
technique to study electron correlations [37] and has been suc-
cessfully used in the context of STIs [24,42–47]. It includes
local quantum fluctuations exactly and maps the many-body
lattice problem to a quantum impurity model. Due to the map-
ping on an impurity model, DMFT can only describe effects
of a momentum-independent self-energy, such as a renormal-
ization of the band structure, Mott insulating behavior, energy
shifts of bands, and magnetism. However, DMFT cannot de-
scribe long-range correlations or long-range entanglement.
The impurity model is then solved self-consistently, starting
with an initial guess for the self-energy. For this purpose, we
use the NRG method, which was specially designed to solve
quantum impurity models [38–40]. NRG can calculate highly
resolved Green’s functions near the Fermi energy but the res-
olution decreases away from the Fermi energy. However, this
does not affect our results as long as the gap does not close.
In the next section, we discuss the results of the DMFT/NRG
calculations.

III. MOTT TRANSITION

First, we discuss nonmagnetic solutions of the
DMFT/NRG calculations performed on a homogeneous
infinite lattice. We calculate the density of states (DOS) of the
ith band, Aii(ω), for our model using

Aii(ω) = − 1

π
Im

∫
dkGii(ω, k), (4)

where the integration is performed over the full Brillouin zone
(BZ) and G(ω, k) is the matrix of the single-particle Green’s
function, which is given by

Gi j (ω, k) = [ω + iδ + μ − H0(k) − �(ω)]−1
i j , (5)

where μ is the chemical potential and �(ω) is the ω-
dependent self-energy. The off-diagonal elements of the local
Green’s function between both lattice sites vanish, and we
find that the diagonal elements are equal. Thus, the DOS and
self-energy of both sites for spin-up and spin-down electrons
are the same and we show the DOS of only a single band in
Fig. 2. Figure 2(a) shows the noninteracting DOS with a gap
at the Fermi energy.

Now, we turn on the interaction while keeping μ = U/2
for the system to be half-filled at all times [Figs. 2(b)–2(e)].
For small U (U = 0.3), the self-energy is small, and the DOS

FIG. 2. (a)–(e) Density of states, A(ω), as a function of frequency
ω for different U . (f) Evolution of the band gap with U until the Mott
insulator transition.

is similar to the noninteracting case. On increasing U further,
we see the effects of the interactions as the DOS gets renor-
malized more strongly with U and Hubbard bands emerge.
Until a critical interaction strength (U = Uc), the band gap
decreases monotonically with increasing U [Fig. 2(f)]. At
U = Uc, the phase transition to a topologically trivial Mott
insulating phase takes place. That this is indeed a Mott transi-
tion can be verified by the appearance of poles near the Fermi
energy in the imaginary part of �(ω). On increasing U further,
the Mott bulk gap increases monotonically. A coexistence
region exists between U = 1.6 and U = 2.0 in which both the
fragile phase and the Mott phase are present, indicating that
this is a first-order phase transition. The critical interaction
strength Uc lies in this coexistence region. Since we did not
add any additional trivial degrees of freedom, or break any
symmetries of the FTI while also maintaining the bulk gap
for U < Uc, we expect that the fragile topological nature of
our model is stable against interactions till Uc. We verify this
in the next section by studying the evolution of the boundary
states with interactions under TBCs.

To study the edge states and evolution of the twisted bound-
ary states with interactions, we translate our model onto a
finite hexagonal flake with 1350 lattice sites. Figure 3 shows
the local Green’s functions at the bulk and the edges, and
Fig. 4(a) shows the schematic diagram of the hexagonal flake
used in the calculations. First, we discuss the noninteracting
local Green’s function for the bulk (at the center) and edge
sites with open boundaries. While the bulk DOS [Fig. 3(g)]
looks similar to the DOS of the homogeneous infinite lattice,
the DOS at the edges shows a smaller gap due to the presence
of many in-gap edge states [Figs. 3(a) and 3(d)]. The reason
for the occurrence of these in-gap states on the edges can be
attributed to the “filling anomaly” of fragile topology [11,48].
The filling anomaly is the emergence of partially filled states
at the edges or corner of a topological crystalline insulator
due to a difference in the number of electrons present in an
energy band and the number of electrons required for charge
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FIG. 3. Edge and bulk local density of states at different interaction strengths. (a)–(c) Local DOS for the corner lattice site marked yellow
in Fig. 4(a). (d)–(f) Local DOS for the edge lattice site marked green in Fig. 4(a). (g)–(i) Local DOS for the bulk lattice site marked purple in
Fig. 4(a).

neutrality. Since an FTI does not display a flow of edge states
traversing the bulk gap, these in-gap states are localized on the
edges.

We now perform real-space DMFT/NRG calculations on
our FTI model translated on a finite lattice with open boundary
conditions [49–54]. In real-space DMFT, all the geometrically
inequivalent sites are mapped to their corresponding quantum
impurity models, which we then solve self-consistently using
NRG. We calculate the local DOS using Eq. (4) at each lattice
site. Since the self-energy is now site-dependent, the edge
sites experience the effects of interactions more strongly than
the bulk (sites around the center of the lattice) [24,55,56]. The
reason for the stronger correlation effects at the boundaries is
the reduced coordination number at the edges compared to the
bulk. The strength of correlation effects depends on the ratio
between the interaction strength, U , and the kinetic energy
given by the electron hoppings. While U is local and does
not change at the boundary, possible hopping processes are
reduced at the boundaries compared to the bulk. The effect
of this becomes especially prominent as we approach the
Mott transition point. There, the interactions are large, and the
gap in the edge states becomes unobservable due to stronger
renormalization while the gap in the bulk remains until the
critical interaction value, Uc, is reached [Figs. 3(b), 3(e), and
3(h)]. Nevertheless, this does not change the fragile topolog-
ical nature of this system, and, under cylindrical boundary
conditions, we do not find any band gap crossings due to edge
states present at the hexagonal edges. As we go beyond Uc,
both the edge and bulk states show a simultaneous phase tran-
sition to a topologically trivial Mott insulating phase which
is homogeneous over the whole lattice [Figs. 3(c), 3(f), and
3(i)].

IV. TWISTED BOUNDARY CONDITIONS

Now, we use TBCs for this hexagonal lattice. For a system
defined on a torus under TBCs, when a particle crosses the
twisted boundary, it gains a phase of reiθ with 0 � r � 1
[11,57]. We implement the TBCs by first dividing the hexag-
onal lattice flake into six equal sections, equivalent to each
other under C6. Then, the hoppings between a site from one
section to a site in another section are modified by a factor
λ (=eiθ ) while the hoppings that take place within the same
section are unaltered (the system still has the usual open
boundaries at the hexagonal edges). Thus, under TBCs, we
obtain a θ -resolved spectrum similar to a momentum-resolved
spectrum in the case of cylindrical geometry. Physically, the
TBCs are gauge-equivalent to a flux threading the torus, with
θ being the phase due to flux threading [57]. Reference [11]
gives the full details of all TBCs in 2D for all wallpaper
groups. Here we only give the C6-symmetric TBCs we use
in our model. We modify the original Hamiltonian Ĥ (1) in
section x to a twisted Hamiltonian Ĥ (λ) in section y as

〈x, i|Ĥ (λ)|y, j〉 =
〈x, i|Ĥ (1)|y, j〉, y = x,

λ〈x, i|Ĥ (1)|y, j〉, y = x + 1,

λ∗〈x, i|Ĥ (1)|y, j〉, y = x − 1,

λ2〈x, i|Ĥ (1)|y, j〉, y = x + 2,

λ∗2〈x, i|Ĥ (1)|y, j〉, y = x − 2,

Re(λ3)〈x, i|Ĥ (1)|y, j〉, y = x + 3,
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FIG. 4. (a) A schematic diagram of the hexagonal lattice used
in real-space calculations. Blue dots are lattice sites, and red lines
divide the lattice into six C6 equivalent sections. Hoppings that cross
a red line from one section to another are multiplied by a phase factor
according to the TBCs described in the text. (b) Spectral flow under
TBCs in the noninteracting case. Unchanging states with θ are the
localized in-gap edge states. (c)–(f) Spectral flow under TBCs for
U = 0, 0.6, 1.7, 2.0 after removing the contribution of edge states
for clarity.

where, |x, i〉 is the ith orbital in the xth section [x, y = I, II,
III, IV, V, VI; see Fig. 4(a)]. Thus, the original and twisted
Hamiltonians are equivalent up to a gauge transformation.
Now, as we slowly change λ, the system will go through a
gauge transformation. This transformation does not commute
with C6 and will, in general, change the energy eigenvalues.
Only at the specific values of θ = 2π/6, C6 is conserved.
For these θ values, the energy eigenvalues of Ĥ (λ) are equal
to those of Ĥ (1) but the C6 eigenvalues, along with the real
space invariants (RSIs), are different. This will result in a
spectral flow with the states at the C6 center closing the gap.
RSIs are thereby local good quantum numbers defined in the
real space and protected by point group symmetries. RSIs can
be calculated by symmetry eigenvalues of the band structure
(for more details, please refer to [11] and the supplementary
material therein).

Figure 4(b) shows the spectral flow of the twisted boundary
states in the noninteracting case as θ (λ = eiθ ) is varied from 0
to π/2 (the bulk gap lies at −0.06 � E � 0.07). While there
is no sign of symmetry-protected edge states in our model
under the usual cylindrical geometry (periodic boundaries in

one direction and open boundaries in the other), the twisted
boundary states traversing the bulk gap under TBCs exhibit
a direct consequence of the nontrivial fragile topology. In
addition to the twisted boundary states, we also see numerous
localized in-gap states which are not affected by the TBCs.
These states are the same in-gap states localized at the edges
of our hexagonal flake and are a result of the filling anomaly.
Finally, as mentioned earlier, we find that these twisted bound-
ary states emanate from the center of the lattice and are
protected by the C6 symmetry.

To analyze the evolution of the twisted boundary
states with interactions, we plot the DOS A(ω, θ ) =
−Tr[ImG(w, θ )]/π as a function of θ and ω [Figs. 4(c)–4(f)].
The θ dependence of the DOS comes from the transformation
of the Hamiltonian through TBCs. We use the local on-site
self-energies obtained from the real-space DMFT/NRG cal-
culations in evaluating the Green’s function G(ω, θ ). Since
the edge states experience stronger renormalization than the
bulk, as we discussed earlier, the self-energies of the bulk
and edge sites generally differ. But as the twisted boundary
states originate from the bulk of the system, only the bulk self-
energies can effectively alter the spectral flow. As the bulk gap
reduces with increasing U (due to stronger renormalization),
the gap crossing under TBCs persists. Even close to the criti-
cal interaction strength Uc when the bulk gap is very small,
we can still see the signatures of twisted boundary states
[Fig. 4(e)]. Finally, the bulk gap changes to a Mott gap and
the twisted boundary states disappear with it. After that, the
bulk gap increases with increasing U , but no twisted boundary
states reemerge, and a homogeneous Mott insulating phase is
found [Fig. 4(f)]. Similar behavior but in the case of stable
topology and its edge states has been observed in previous
studies [24,26,58]. We also find that this spectral flow, and
thus the fragile topological phase, is stable with doping as well
until the Mott transition (not shown here).

We note that twisted boundary conditions can be real-
ized in experiments. In metamaterials, for example, TBCs
are controlled by tuning some mechanical parameters, as
shown in a recent work by Peri et al. [12]. We expect our
results from DMFT/NRG calculations and spectral flow un-
der TBCs to be quite general among FTIs in the presence of
interactions.

V. TRANSITION TO STABLE TOPOLOGY UNDER
MAGNETIC FIELD

In the last sections, we saw that fragile topology and
twisted boundary states are robust under interactions until a
critical point. Besides the Mott transition, magnetic ordering
is a commonly observed phenomenon in strongly correlated
materials. However, before studying a ferromagnetic state
in this model of a fragile topological insulator, we want to
analyze the effect of a constant homogeneous magnetic field
applied perpendicularly to our FTI under interactions. In the
case of STIs, the presence of a magnetic field can result
in exotic topological phenomena [6,25,59–61]. For exam-
ple, a topological magnetoelectric effect can be realized in a
topological insulator in the event that a gap is created by a
magnetic field [6]. Here, we study the Hamiltonian Ĥ of our
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FIG. 5. Left column: Phase A, middle column: phase B, right column: phase C. (a)–(c) Band structures for the phases A, B, and C.
(d)–(f) Phase A, B, and C under TBCs. (g)–(i) Phase A, B, and C diagonalized in a zigzag strip geometry. C gives the Chern number
of a particular band. The insets show some of the edge states connecting bulk bands in the three gaps. All three phases have gap closing
between B1–B2 and B3–B4. Phase B (h) also has edge states closing the gap between B2 and B3, which are lost in phase C (i). All results
are at U = 0.3.

FTI in the presence of an external magnetic field of strength
b, i.e., Ĥ − bσ0σz/2. Figures 5(a)–5(c) show the interacting
band structure at different field strengths, b, for U = 0.3. We
identify the bands as B1–B4 from bottom to top. In the nonin-
teracting and nonmagnetic case (Fig. 1), the valence bands (B1
and B2) are connected at �, M, and K while the conduction
bands (B3 and B4) are connected at � and M. For very small
magnetic fields b < b0, the band structure gaps for both sets
of bands at � and K but stays connected at M. Increasing b
further opens up a gap at M as well. Thus, for b0 < b < b1, all
the bands are disconnected at every k point, and we call this re-
gion phase A. Here b1 is the critical field strength at which the
band gap between B2 and B3 closes again at K . On increasing
b further, the band gap opens up again at all k points and then
closes for b = b2 at �. We call the phase between b1 < b < b2

phase B. For b > b2, there is no more gap closing between
any of the four bands, and the band gap between B2 and B3
increases with b. We call this region phase C. Figures 5(a)–
5(c) show the phases A, B, and C, respectively. The gaps at
M between B1–B2 as well as B3–B4 exist for all b > b0. But
due to the imaginary part of the self-energy, it is smeared out

in the interacting band structure and somewhat difficult to see
in Figs. 5(a)–5(c). For U = 0.3 the values of b0, b1, and b2

are 0.1, 0.36, and 0.44, respectively. These values of magnetic
field strength for topological phase transitions decrease with
increasing U .

Figures 5(d)–5(f) show the three phases defined above
under TBCs at U = 0.3. In phase A [Fig. 5(d)], two of
the four twisted boundary states traversing the bulk gap in
the noninteracting model gap out. There is still a spectral
flow, but to find out whether the fragile topological nature
of our model has survived, we use Wilson loops in the latter
part of this section. In phase B [Fig. 5(e)], a new set of
twisted boundary states emerges after closing and reopen-
ing of the band gap. These twisted boundary states appear
because of the emergence of stable topology between B2
and B3, as we will see later. Finally, in phase C [Fig. 5(f)],
the gap between B2 and B3 does not host any spectral
flow as it has now been trivialized. Also, the fractional
charges due to the filling anomaly have been neutralized,
resulting in the disappearance of the in-gap localized edge
states.
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To characterize the topology in phases A, B, and C, we
calculate the Chern number, Ci, for band i using [62]

Ci = i

2π

∫
dk

·
∑
j 	=i

〈i(k)|∇kH ′(k)| j(k)〉 × 〈 j(k)|∇kH ′(k)|i(k)〉
[Ej (k) − Ei(k)]2

,

(6)

where |i(k)〉 is the eigenstate of the ith band and Ei is the
ith eigenvalue. We use the effective topological Hamiltonian
H ′(k) in Eq. (6), which is given by [63]

H ′(k) = H0(k) + �(ω = 0), (7)

and �(ω) is the momentum-independent self-energy of the
interacting Hamiltonian. This method only works when a
smooth connection to the zero-frequency limit exists, which
is the case for our model away from gap closing [63]. Also,
Eq. (6) is gauge independent as the differentiation is on the
Hamiltonian and not on the wave function and does not ex-
plicitly depend on the phase of |i〉.

We diagonalize our model in a zigzag strip geometry with
periodic boundary conditions in the y direction (along the mo-
mentum ky) and open boundary conditions in the x direction
[Figs. 5(g)–5(i)] at U = 0.3. In phase A [Fig. 5(g)], gaps open
up between the valence bands (B1–B2) and conduction bands
(B3–B4). Each of these pairs of bands is now stably topo-
logical with Chern numbers 2,−2,−2, 2 for B1, B2, B3, B4,
respectively. This also results in the emergence of multiple
edge states crossing the bulk gap in each pair, associated with
the emergence of stable topology in the bulk [inset of Fig. 5(g)
shows the edge states between B3 and B4 near ky = π ]. The
number of edge states between each pair of bands is equal to
the difference in their corresponding Chern numbers. There is
no stable topology between the bands B2 and B3 as they have
the same Chern number. Though it may seem that there are
edge states connecting these bands, these states do not form
connections between both bands. In phase B [Fig. 5(h)], there
are edge states crossing the bulk gap between all bands, sig-
nifying the presence of stable topology with Chern numbers
2,−4, 0, 2 corresponding to B1, B2, B3, B4, respectively. The
inset of Fig. 5(h) shows the crossings between B2 and B3 near
k = π/4. Finally, in phase C, the middle gap is topologically
trivial, but the other two gaps are nontrivial, with the same
Chern numbers as in phase A [Fig. 5(i)].

Thus, the new set of twisted boundary states in phase B is
due to the stable topology between B2 and B3. Twisted bound-
ary states also emerge in all three phases in the gaps between
B1–B2 and B3–B4 as they now host stable topology. How-
ever, the gap between B2–B3 in phase A does not host stable
topology; the twisted boundary states in this phase indicate
the presence of fragile topology. To confirm whether this is
indeed a fragile topological phase, we diagnose the topology
in these bands by calculating Wilson loops [8,9,14–16],

[Wk0+G←k0 ]i j = 〈i(k0 + G)|
k0+G←k0∏

k

P (k)| j(k0)〉, (8)

where |i(k)〉 is the eigenstate associated with the ith band and
P (k) = ∑

i |i(k)〉〈i(k)| is the projection operator to a certain

set of bands. This set of bands must be energetically separated
from other bands. The path-ordered product of P (k) is
evaluated along the loop k0 + G ← k0 in the Brillouin zone.
Windings of the Wilson loops can tell us about the topology
of the selected set of bands: if it does not wind then the
set of bands is trivial. In the nonmagnetic case of our FTI
model, the Wilson loop of conduction bands winds but that
of the valence bands does not wind [8]. This implies that
the conduction bands are non-Wannierizable, but the valence
bands are Wannierizable. When we switch on the magnetic
field, however, the Wilson loop windings are immediately lost
in the conduction bands as well. Thus, the fragile topology in
this model disappears in the presence of a magnetic field.

We calculate the Wilson loops in two ways: first, by
projecting P (k) on a set of two bands (valence bands or
conduction bands), which we call the two-band Wilson loops;
second, by projecting P (k) on a single band (for all four
bands), which we call the one-band Wilson loop. As calcu-
lating the Wilson loops by Eq. (8) requires the set of bands
to be isolated, one-band Wilson loop calculations are correct
only when all four bands are separated. This is indeed the
case in our model for phase A, B, and C. Figure 6 shows
the two-band and one-band Wilson loops for all three phases
evaluated along kx at constant ky, where kx and ky are the

FIG. 6. The figure shows the Wilson loops for the phases A, B,
and C in the first, second, and third row, respectively. The left column
shows the two-band Wilson loops, and the right column shows one-
band Wilson loops. Both Wilson loops are calculated on a loop along
kx at every ky. θi is the argument of ith eigenvalue of the Wilson loop
matrix W . CB and VB denote conduction bands and valence bands,
respectively, and B1, B2, B3, B4 are bands numbered from lowest to
highest.
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reciprocal lattice vectors of the BZ. This way, the whole BZ is
traversed by kx and ky in computing W . We plot the argument
of the ith eigenvalue of W , θi, with respect to the momentum
ky. In phase A, the winding in Wilson loops [Fig. 6(a)] is lost
in the presence of a magnetic field. This implies the absence of
any nontrivial topology in the gap between the bands B2 and
B3. The spectral flow under TBCs in phase A [Fig. 5(d)] can
be explained by the presence of nonzero RSIs which change
on tuning the parameter θ , indicating an obstructed atomic
phase [11]. As expected, phase B shows a nontrivial winding
in the two-band Wilson loop [Fig. 6(c)] as the gap between
the conduction and valence bands is stably topological. Phase
C shows no winding [Fig. 6(e)] of Wilson loops since there
is no nontrivial topology in this case between the two sets of
bands. Finally, we calculate the one-band Wilson loops in all
three phases by projecting P (k) on only one band at a time
[Figs. 6(b), 6(d), and 6(f)]. In all three phases we have indi-
vidual bands well separated from each other away from the
transition points. The windings in the one-band Wilson loop
are due to the presence of nontrivial stable topology in the
individual bands. The number of windings in the Wilson loops
are equal to the Chern numbers of the respective bands. The
sign of the Chern number can be deduced from the direction
in which the Wilson loop winds. Thus, we corroborate the
presence of nontrivial stable topology in all three phases and
a loss of fragile topology in phase A using Wilson loops.

VI. FERROMAGNETIC PHASE AT HIGH U

A natural question now is whether our interacting FTI
model can realize a stable magnetic phase in the absence
of a magnetic field. If it can, it would be interesting to see
whether the magnetic phase is topologically trivial or nontriv-
ial. Thus, in this section, we study the magnetic solutions of
our DMFT/NRG calculations. We first generate a small mag-
netic instability in our model and then study the possibility of
a stable magnetic phase at zero temperature in the absence of
any magnetic field. In Sec. III, the self-energies of both lattice
sites in the unit cell and both spin directions were the same.
Thus, we performed the DMFT/NRG calculations for only
one impurity model per unit cell. Now, however, we solve two
impurity models per unit cell corresponding to the two sites.
Solving the DMFT equations for a homogeneous infinite lat-
tice, we find that for any interaction strength less than a critical
value (U < Umc), the self-energy oscillates with every itera-
tion; a self-consistent solution cannot be found. This indicates
the possibility of a spin density wave (SDW) solution. For
U > Umc however, we find a stable ferromagnetic (FM) phase
[Fig. 7(a)] which is strongly polarized, as is evident from
the occupation numbers of spin-up (n↑ ≈ 1) and spin-down
(n↓ ≈ 0) electrons at each site [we start our calculations at the
half-filling condition, μ = U/2 ⇒ n↑ = n↓ = 0.5)]. In this
strongly polarized FM phase, we do not find a spectral flow
under TBCs. Also, the two-band Wilson loop does not wind
[Fig. 7(b)] while the one-band Wilson loops show the same
windings as that of phase C obtained in Sec. V [Fig. 6(f)]. This
signifies the absence of any topological character between
the conduction and valence bands but the existence of stable
topology between B1–B2 and B3–B4. The stable FM phase is

FIG. 7. (a) Density of states of the FM phase at U = 2. A and B
denote the two sites of the hexagonal lattice; ↑ and ↓ correspond to
spin-up and spin-down, respectively. (b) Two-band Wilson loops for
the same phase.

then made up of two sets of Chern insulators separated by a
trivial band gap.

In the rest of this section, we discuss our solutions for
U < Umc. Since there are indications of an SDW phase, a
two-site Hamiltonian is not enough to analyze the long-range
ordered phase. Thus, we again use our hexagonal lattice flake
and perform real-space DMFT/NRG calculations [52,53]. To
get a converged self-consistent solution for this potential SDW
phase, we start by destabilizing only a few sites in the bulk
of the lattice. We also average over self-energies of two suc-
cessive iterations to prevent sudden spin flips, which may
lead to an oscillating solution. We find that for U < Umc1,
where Umc1 ≈ 1.3, a homogeneous paramagnetic phase exists
at the bulk as well as at the edge sites. This paramagnetic
phase retains the fragile topological nature of the original
model as neither any symmetry is broken nor the bulk gap
is closed. At U = Umc1, while most of the lattice sites remain
in the paramagnetic phase, the edge sites show random spin
polarizations. This spin polarization can be attributed to the
localized states emerging at the edges of the flake. A self-
consistent solution cannot be found because these localized
states make the system very sensitive to numerical errors. This
“flipping” of spins in one or the other direction begins at the
edges and makes its way toward the center of the lattice as U
is increased further. However, at U � Umc2, where Umc2 ≈ 2,
most of the lattice sites are aligned in one direction, yielding
an FM phase obtained earlier in the calculations for the ho-
mogeneous infinite lattice. Thus, we conclude that there is no
magnetic solution for weak interactions, but a topologically
nontrivial FM phase exists for U > Umc which is composed
of two Chern insulators separated by a trivial gap at Fermi
energy.

VII. SUMMARY

In this work, we have explicitly studied the effects of elec-
tron correlations and external magnetic fields on the recently
discovered fragile topology and the twisted boundary states
associated with it using DMFT/NRG. We have found that
interactions do not destroy fragile topology until a critical
interaction strength that triggers the Mott transition is reached.
Twisted boundary states also show the same behavior and are
not present in the Mott insulating phase. We have shown that
the edges experience the effects of correlations more strongly
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than the bulk due to a lower coordination number. This results
in a qualitatively different DOS at the edges and the bulk.
But this effect has no bearing on the fragile nature of the
model, and the Mott transition is also homogeneous over
the whole lattice. We then switched on a constant external
magnetic field which instantly destroys the fragile topology.
We have shown that topological phase transitions can take
place as a function of the magnetic field strength, converting
a fragile topological phase to a stable Chern insulating phase.
Diagnosis of topology is done using Wilson loops and Chern
numbers. Finally, we have shown that a topologically non-
trivial FM phase, composed of two sets of Chern insulating
bands, is stable above a critical interaction strength in the
absence of a magnetic field. While the noninteracting model is
a fragile topological insulator, correlations, particularly mag-
netism, can change it to a stable topological insulator, which

is an exciting prospect in future studies of correlated fragile
insulators.

Note added. We recently came across Ref. [64]. They have
also found a link between the magnetic fragile phase and the
Chern insulator phase. We thank the authors for bringing their
work to our attention.
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