
PHYSICAL REVIEW B 103, 165129 (2021)
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Exotic physics often emerges around quantum criticality in metallic systems. Here we explore the nature of
topological phase transitions between 3D double-Weyl semimetals and insulators (through annihilating double-
Weyl nodes with opposite chiralities) in the presence of Coulomb interactions. From renormalization-group (RG)
analysis, we find a non-Fermi-liquid quantum critical point (QCP) between the double-Weyl semimetals and
insulators when artificially neglecting short-range interactions. However, it is shown that this non-Fermi-liquid
QCP is actually unstable against nematic ordering when short-range interactions are correctly included in the
RG analysis. In other words, the putative QCP between the semimetals and insulators is preempted by the
emergence of nematic phases when Coulomb interactions are present and thus double-Weyl fermions cannot
directly annihilate with each other. We further discuss the possible experimental relevance of the nematicity-
preempted QCP to double-Weyl candidate materials HgCr2Se4 and SrSi2.
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I. INTRODUCTION

Quantum critical phenomena are long-standing topics in
condensed-matter physics as universal properties and exotic
physics often emerge near quantum critical points (QCPs)
[1–6]. Nonetheless, under certain circumstances, a QCP could
be preempted by another symmetry-breaking phase, e.g., su-
perconductivity as shown in Fig. 1(a), such that the universal
non-Fermi-liquid (NFL) properties controlled by the putative
QCP can only been measured in the critical regime outside
the preempting phase. Experimental evidence of such QCPs
preempted by superconductivity has been reported in various
systems including high-temperature superconductors (for a re-
view, see, e.g., Refs. [7,8]). Interesting aspects of the interplay
between strong fluctuations of QCPs and emergent preempt-
ing phases in metallic systems with large Fermi surfaces have
been extensively studied theoretically (see, e.g., Refs. [9–22]).
However, novel features of preempted QCPs in topological
semimetals remain largely unexplored.

Topological semimetals feature band-crossing points in
momentum space, which are protected by their topolog-
ical characters and/or crystalline symmetries [23–37]. It
has been known that correlation effects in ideal topologi-
cal semimetals with only discrete points at the Fermi level
should be qualitatively different from the usual systems with
large Fermi surfaces [38] because of the vanishing density
of states in ideal topological semimetals. Systems hosting
discrete Fermi points with either short-range interactions
[39–47] or long-range Coulomb interactions [48–50] have
been extensively studied in the past decade, showing various
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behaviors such as NFL states [51–54], topological Mott insu-
lators [55–58], anisotropic screening of Coulomb interactions
[59–65], fermion-induced QCPs [66–71], and even emergent
space-time supersymmetry [72–78].

The family of topological semimetals includes multi-Weyl
semimetals hosting double-Weyl (triple-Weyl) fermions with
±2 (±3) monopole charge of Berry curvature in momen-
tum space, which are generalizations of Weyl fermions with
monopole charge ±1 [79–84]. Topological phase transitions
between the topological semimetals and insulators are gen-
erally believed to be a result of the annihilation of Weyl or
multi-Weyl nodes. In this paper, we show how the simple
picture of annihilation between Weyl fermions in condensed
matter systems is qualitatively modified by the correlation
behaviors around such topological QCPs.

Here we investigate the nature of putative topological
phase transitions between double-Weyl semimetals (DWSs)
and (trivial or Chern) insulators in the presence of Coulomb
interactions. We focus on intriguing aspects such as pos-
sible mechanism to preempt such putative QCPs and the
consequence of avoided annihilation between double-Weyl
fermions. In the presence of long-range Coulomb interactions,
our renormalization-group (RG) analysis shows that the QCP
is stable, exhibiting NFL behaviors when short-range inter-
actions that allowed by symmetry are artificially neglected.
However, we find that this putative NFL QCP is unstable
when short-range interactions are correctly included in the
RG analysis. Specifically, the putative QCP is preempted by
emergent nematic phases [85] that are induced collaboratively
by long-range and short-range interactions. Around the pu-
tative QCP, the long-range part of the Coulomb interaction
induces strong nematic susceptibility and nematicity emerges
when short-range interactions are correctly taken into account,
preempting the putative QCP as shown in Fig. 1(b).
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FIG. 1. Schematic phase diagrams of QCPs preempted by super-
conductivity (a) and by nematicity (b). In (b), the QCP is preempted
by nematicity in the presence of Coulomb interactions. x and m
represent tuning parameters such as doping level and magnetic field,
and T refers to temperature. NFL denotes non-Fermi liquid, SC
superconductivity, and DWS double-Weyl semimetals.

II. THE MODEL

We consider a two-band model of noninteracting fermions
on a cubic lattice exhibiting topological phase transitions be-
tween double-Weyl semimetals and insulators:

H0 =
∑

k

c†
k[2t1(cos ky − cos kx )σx + 2t2 sin kx sin kyσy

+ t3(6 − 2 cos kx − 2 cos ky − 2 cos kz + m)σz]ck, (1)

where σi are Pauli matrices representing orbital degrees
of freedom, c†

kα create spin-polarized electrons in α = 1, 2
orbitals, and t j with j = 1, 2, 3 denote various hopping ampli-
tudes. We have set the lattice constant to one for simplicity and
we assume t1 = t2 hereafter as their difference is not essential
to our discussions below. The parameter m can be tuned by ex-
perimental knobs such as pressure or magnetic field to access
different phases, including DWSs, three-dimensional (3D)
Chern insulators (CIs), and trivial band insulators (BIs). The
quantum phase diagram of this noninteracting Hamiltonian as
a function of m is shown as Fig. 2. The Hamiltonian in Eq. (1)
respects C4h symmetries apart from translational symmetries.
In the DWS phase, it is the C4 rotational symmetry around
the z axis that protects the double-Weyl fermions; the mirror
symmetry (z → −z) requires the two double-Weyl nodes to
have the same energy.

As shown in Fig. 2, m = 0,−4 represent the noninteracting
QCPs between DWSs and insulators (BI or CI). The QCPs
realize quadratic band touching (QBT). Note that the QBT at
the QCP is still anisotropic between kx/ky and kz directions
due to the lack of cubic symmetry. We call QBT fermions at
such QCPs as critical quadratic fermions (CQFs). They are
critical states achieved by fine-tuning some parameter, say m
in the present case. Therefore, CQF is qualitatively different
from stable 3D QBT systems, such as pyrochlore iridates
and α-Tin, which are protected by Oh point-group symmetry

FIG. 2. The quantum phase diagram with varying m for the
model in Eq. (1).

and described by the Luttinger Hamiltonian with isotropic
dispersions [86]. We shall focus on the QCP at m = 0 below,
and the same physics applies to the critical point between the
DWS and CI.

The QCP of noninteracting fermions in Eq. (1) is stable
against weak short-range interactions because of the vanishing
density of states at Fermi level (see Appendix for details).
However, since the density of states at the Fermi level van-
ishes, the Thomas-Fermi mechanism may fail to sufficiently
screen Coulomb interactions. We need to carefully investigate
whether Coulomb interactions are effectively screened or not
in such systems, especially at the putative QCP between the
DWS and the insulator. As pointed out in previous works
[62,63], deep in the DWS phase, the strength of the long-range
tail of Coulomb interactions is marginally irrelevant, render-
ing the DWS a marginal Fermi liquid. However, CQFs have
larger densities of states in low energy, which is expected to be
more susceptible to interactions than double-Weyl fermions.
Therefore, it is desired to study the fate of a CQF in the
presence of Coulomb interactions by performing RG analysis.

III. RG ANALYSIS OF PREEMPTED QCP

It is worth noting that as long as there is finite long-range
Coulomb interaction, short-range interactions can be gener-
ated at low energy even when their bare values are zero.
This is because the short-range four-fermion interaction can
be generated at the one-loop level from long-range Coulomb
interaction (see Appendix for details). Therefore, one needs to
consider both long-range interactions as well as short-range
interactions simultaneously at the beginning, and see how
the interplay between long-range and short-range interactions
affects the QCP in question.

We are ready to write down the effective field theory in the
continuum including both long-range and short-range parts of
the Coulomb interaction. The long-range part of the Coulomb
interaction can be represented by introducing a boson field φ.
The (Euclidean) action at the putative QCP is then given by

S =
∫

d3kdω

(2π )4

[
ψ

†
k (iω+H0k )ψk+ 1

2
φk

(
k2

x + k2
y + ηk2

z

)
φ−k

]

+
∫

d4x[ieφψ†ψ + g(ψ†ψ )2], (2)

where H0k = t1(k2
x − k2

y )σx + 2t2kxkyσy + t3k2
z σz represents

the low-energy effective Hamiltonian of the noninteracting
lattice model at the QCP (m = 0 or 4), and e and g stand
for the strength of long-range Coulomb interaction and short-
range interactions (there is only one independent on-site
four-fermion interaction term), respectively. Note that the
parameter η > 0 is introduced in the kinetic term of boson
fields to reflect the generic anisotropy of Coulomb potentials
between the x/y and z directions. The hopping parameters t1
and t2 are, in general, different as the lattice system respects
only the discrete C4 rotational symmetry. When t1 = t2, a U(1)
rotational symmetry in the xy plane emerges in the low-energy
effective action in Eq. (2).

We then perform RG analysis of the effective theory in
Eq. (2) to derive critical behaviors of the putative QCP in
the presence of Coulomb interaction. We set the scaling
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dimensions [ω] = 1, [kx,y] = z1 and [kz] = z3 to keep the non-
interacting part invariant under RG. The tree-level values are
z1 = z3 = 1/2 due to the quadratic dispersion. In general, z1

and z3 are different due to the anisotropy between x/y and z di-
rections. We obtain z1, z3 by requiring t1 and t3 fixed (namely,
the flow equations for ti equal zero) in RG. In addition, we
carry out the RG analysis in different dimensions to control
the approximation—namely, we implement the calculation in
spatial dimension d = 4 − ε, where d = 4 is the upper critical
dimension and ε = 1 corresponds to the realistic systems. The
remaining RG equations for various parameters in the action
are given by

de

dl
=

(
− z3

2
+ 1

2
− ηφ

2
− 1 − ε

2
z1

)
e, (3)

dη

dl
= (2z1 − 2z3 − ηφ )η + Fη, (4)

dg

dl
= (1 − (3 − ε)z1 − z3)g + F1g2 + F2ge2 + F3e4, (5)

where ηφ/2 is the anomalous dimension of the boson field φ

and Fi are some numerical functions derived from Feynman
diagram amplitude (see the details in Appendix).

When the long-range part of Coulomb interaction is not
present (e = 0), it is clear that the short-range interaction g is
irrelevant at the Gaussian QCP between the semimetals and
insulators (the tree-level scaling for g is [g] = −1/2). When
e > 0, the system may fail to screen the long-range Coulomb
interaction effectively due to the vanishing density of the
states at the putative QCP. As a consequence, the long-range
Coulomb interaction can render nontrivial correlation effects
at the putative Gaussian QCP as we analyze below.

When e > 0, it turns out that short-range interaction g can-
not be neglected in the RG analysis even when its bare value
is zero (g0 = 0). This is because the long-range part of the
interaction can generate short-range interaction g under RG
flow, as clearly shown in Eq. (5). However, if one artificially
restricts RG flows within the parameter space of g = 0, one
obtains an exotic QCP which corresponds to a NFL fixed
point characterized by anisotropic Coulomb interaction given
by e �= 0 and η ≈ 2/3 (see Appendix for details). This NFL
QCP, obtained by requiring g0 = 0 and artificially neglecting
the flow of g, is marked as the red point in the g = 0 plane,
as shown in Fig. 3. Note that e is relevant in this case, and
we need to investigate the system carefully by lowering the
dimension from the marginal dimension d = 4 for Coulomb
interactions, the detailed justifications based on dimension can
be found in the Appendix.

However, the putative NFL fixed point in the g = 0 plane
is actually unstable once the short-range interaction g is cor-
rectly allowed to flow under RG, as shown by the runaway
trajectory in Fig. 3. Since the short-range interaction is al-
lowed by symmetry, its bare value g0 is in general nonzero.
Even when its bare value is fine tuned to zero, it is inevitably
generated by the long-range part e of the Coulomb interac-
tion and even infinitesimal long-range Coulomb interactions
are able to drive the flow of the short-range interaction to
strong-coupling limit. Such a runaway flow of g can also
be further convinced by a fixed point collision picture (see
details in the Appendix). The runaway RG flow of short-range

FIG. 3. The RG flow diagram of the critical quadratic fermions
with both short-range and long-range interactions. The red point
stands for the NFL fixed point when we artificially discard short-
range interactions in RG analysis. It is clear all flows lead to strong
coupling of short-range interaction g as long as e > 0, which pre-
empts the presumed QCP with the NFL fixed point.

interactions implies that a certain type of symmetry breaking
should occur around the putative QCP although the RG flow
itself cannot tell which type of ordering actually is induced.
After knowing the relevant interactions under the RG flow,
one can employ the self-consistent mean-field calculations to
obtain the pattern of symmetry breaking. We find that the
putative Gaussian QCP between the semimetals and insulators
is destroyed and intermediate nematic phases emerge between
the semimetals and insulators. In other words, the presumed
QCP is preempted by nematicity and the direct annihilation
between double-Weyl fermions is forbidden.

IV. THE QUANTUM PHASE DIAGRAM

Since the QCP is shown to be preempted by nematic or-
dering, a natural question is how low-energy physics near
the QCP gets modified. For double-Weyl fermions near the
presumed QCP, the separation of two double-Weyl nodes
at ±k∗ = (0, 0,±√|m|) is small. Before the annihilation of
double-Weyl nodes, the low-energy physics of the system is
captured by the interplay between long-range Coulomb and
short-range interaction of the double-Weyl fermions.

The Hamiltonian of the double-Weyl fermion around
k∗

± in continuum can be deduced from Eq. (1). We
first consider the double-Weyl fermion around +k∗. For
|k̃z| � 2

√|m| with k̃z = kz − k∗
z , one can obtain the follow-

ing low-energy effective Hamiltonian for the double-Weyl
fermion around +k∗: HDWF,k = t (k2

x − k2
y )σx + 2tkxkyσy +

2
√|m|k̃zσz, where higher order terms in k̃z are neglected.

The cutoff of the continuous Hamiltonian for double-Weyl
fermions is 
 ∼ √|m|. The action of the double-Weyl
fermions with both long-range and short-range interactions is
similar to the one in Eq. (2), except that the Hamiltonian H0k
of the CQF is replaced by HDWF, namely, H0k → HDWF,k
in Eq. (2). In the DWS phase, it is known that long-range
Coulomb interactions are marginally irrelevant at the stable
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FIG. 4. Quantum phase diagram describing annihilation of
double-Weyl fermions in the presence of Coulomb interaction.
The putative QCP between (double-Weyl) semimetals and (trivial
or Chern) insulators is preempted by nematic phases as long as
Coulomb interaction is finite. NI and NW denote nematic insulator
and nematic Weyl semimetal, respectively.

fixed point with e=0, η=0. Consequently, weak Coulomb
interaction is unable to drive short-range interactions to strong
coupling to destabilize the DWF phase. However, when e ex-
ceeds a critical value e∗, it can generate a relevant short-range
four-fermion term that drives the system to the strong coupling
and then induces a phase transition to the nematic phase. Since
the only scale in the system is set by 
, one expects the critical
value for Coulomb interaction to scale as e∗2 ∼ 
 ∼ √|m|
(see Appendix for details). Note that this scaling analysis is
consistent with the preempted QCP: e∗ = 0 for m = 0. The
obtained schematic quantum phase diagram is shown in Fig. 4.

V. DISCUSSIONS AND CONCLUDING REMARKS

From RG analysis, we obtained a nontrivial picture de-
scribing the topological phase transition from 3D DWSs
to insulators (including 3D CIs). The conventional picture
for this topological phase transition is simple, namely, two
double-Weyl nodes with opposite chiralities approach each
other and annihilate at a high-symmetry point in the Brillouin
zone, rendering a fully gapped insulator after the annihilation.
This picture is valid in the absence of long-range Coulomb
interaction. However, when the long-range part of Coulomb
interaction (even infinitesimal) is taken into account, each
double-Weyl node will split into two Weyl points with the
same chirality, breaking the lattice C4 rotational symmetry
before annihilation. Then, these split Weyl points with oppo-
site chiralities in the nematic phase can annihilate with one
another, resulting in a fully gapped insulator with nematic
ordering. Previously, it was widely believed that double-Weyl
fermions with opposite chiralities can annihilate directly in
solids. This belief is convincingly challenged and negated.
The physics of QCPs preempted by nematicity may be un-
derstood in the following heuristic way. If two double-Weyl
fermions meet, forming CQFs, the density of states at low
energy increases, which is in general unfavored when relevant
interactions are present and when there are other available
phases with a lower density of states. Indeed, by splitting
each double-Weyl node into two Weyl nodes, the density of
states is lowered such that the splitting is more favored than
annihilating directly.

The preempted QCP scenario applies similarly to the
presumed topological phase transition between triple-Weyl
semimetals with monopole charge ±3 protected by the
C6 symmetry and insulators. For this case, the long-range
Coulomb interaction is relevant and drives the noninteracting
critical triple-Weyl fermions to a NFL fixed point, which in
return renders short-range interactions relevant. The runaway
flow of short-range interactions leads to nematic ordering
where each triple-Weyl node is split into three Weyl points
breaking the C6 symmetry down to C3. Consequently, Weyl
fermions with higher monopole charges are forbidden to di-
rectly annihilate in realistic systems.

The picture of QCPs preempted by nematicity illus-
trated above could be closely related to realistic materials
hosting ideal multi-Weyl fermions. There are already pro-
posals of candidate materials hosting double-Weyl fermions
based on first-principles calculations including HgCr2Se4 [27]
and SrSi2 [32]. We believe that materials realizing ideal
double-Weyl or triple-Weyl semimetals is ideal platform to
demonstrate the preempted QCP proposed in the present
paper. For instance, applying strain, pressure, or magnetic
field to such semimetal materials should be able to tune
the parameter m and drive them toward insulators. One can
measure quantities such as angle-dependent specific heat and
angle-dependent resistivity to observe the predicted nematic-
ity before entering symmetry-preserving insulators.

It is worth mentioning some analogies between QCPs pre-
empted by nematicity proposed in the present paper and QCPs
preempted by superconductivity observed in superconducting
materials. In the latter, when approaching the preempted QCP,
the instability toward superconductivity is enhanced by the
strong fluctuations around the underlying NFL fixed point, the
putative NFL nature of QCP is preempted due to the formation
of superconductivity. For the former case studied here, the
topological QCP disappears and is replaced by an intermedi-
ate nematic phase induced by the enhancement of fluctuations
around QCPs. This may shed light to deeper understanding of
the interplay between quantum phase transitions and strong
correlations in topological states of matter [23,24,87].
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APPENDIX

1. The mean-field analysis for short-range interactions

We study the lattice model in the main text with only short-
range interactions. In general, on-site short-range interactions
in the two-band model can be described as four-fermion in-
teractions with no momentum dependence: (ψ†Mψ )(ψ†Nψ )
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where M, N are two by two Hermitian matrix and ψ =
(c1k, c2k ). In our specific systems, by requiring C4 rotation
symmetry protecting double-Weyl nodes and particle-hole
symmetry which fix Fermi energy on the Weyl nodes, we
are finally left with only four interactions (ψσiψ )2, where
σi is identity matrix for i = 0 and Pauli matrix for i = 1
to 3, namely, only those interactions with M = N keep all
necessary symmetry in our model. We further utilize the Fierz
identity for the two by two matrix as

(ψ†Mψ )(ψ†Nψ ) = − 1
4 (TrMσiNσ j )(ψ

†σiψ )(ψ†σ jψ ).
(A1)

We can get four equations for interactions where we set M =
N = σi and find the unique solution which satisfies Fierz iden-
tity and symmetry requirements. The relation is (ψ†σ0ψ )2 =
−(ψ†σiψ )2 for i = 1 to 3 and we finally reduce ten terms of
four-fermion interactions to one independent term. This term
is just Hubbard interaction as 2gn1n2, where ni = ψ

†
i ψi is

the density for ith orbital. We always assume g > 0, namely,
repulsive Hubbard interaction, and that can be justified by RG
analysis, where the only stable runaway flow for a (critical)
double-Weyl fermion system is toward g → +∞.

In the RG sense, the strength of such four-fermion in-
teraction g has scaling dimension −1 in tree level in the
double-Weyl fermion case and scaling dimension −1/2 in
tree level in the critical quadratic Weyl fermion case and
hence irrelevant at the Gaussian fixed point representing free
(critical) double-Weyl fermions, namely, infinitesimal short-
range interactions cannot drive the system to other phases, and
only short-range interactions with finite interaction strength
exceeding some critical value gc can induce phase transitions
in this system.

Therefore, we apply the mean-field approach to inves-
tigate ordered phases induced by short-ranged interactions.
In principle, for a two-band model, there are four indepen-
dent terms for possible orders as 〈ψ†σiψ〉 in particle-hole
channel (particle-particle channel instabilities are not favored
since there is always a repulsive interaction). Among them,
〈ψ†σ0ψ〉 is just the shift of chemical potential and can be
dropped. Similarly, 〈ψ†σ3ψ〉 coupled to ψ†σ3ψ corresponds
to the shift of m in the model. However, since we assume
m is a controllable external parameter, the renormalization
is also omitted. In sum, there are only two remaining order
parameters which are responsible for nematic orders breaking
C4 rotation symmetry down to C2.

We decouple the Hamiltonian with Hubbard interactions as

Hmf =
∑

k

[(cos ky − cos kx + 2g1�1)σx

+ (sin kx sin ky + 2g2�2)σy

+ (6 − 2 cos kx − 2 cos ky − 2 cos kz + m)σz]

− g1�
2
1 − g2�

2
2, (A2)

where �i = 〈ψ†σiψ〉 as two order parameters and g1, g2 are
interaction strengths which obey the constraint g1 + g2 = −g
from Fierz identity. Our task is to minimize the free energy
numerically for each m and g and find corresponding orders
�1,2. For simplicity, we assume hopping parameters t1 = t2 =
t3 = 1 in most of the calculations below.

FIG. 5. Mean-field phase diagram with repulsive on-site inter-
actions g: BI: Trivial band insulator or 3D Chern insulator. DWSs:
Double-Weyl semimetals hosting two double-Weyl nodes. NW: Ne-
matic Weyl fermion phase. NI: Nematic insulator phase. Black lines
represent second-order phase transitions from disorder to nematic
order phase. Purple line represents topological phase transition from
double-Weyl semimetals to trivial insulators whose low-energy ef-
fective theory is critical quadratic fermions (CQFs). Dashed line lies
at where nematic Weyl fermions annihilate as AWF.

In our model, when there is nematic order, it always tends
to develop a �2 �= 0 phase while �1 = 0, and this feature is
model dependent. It is worth noting that there are different
phases corresponding to nematic orders �2 �= 0. When 0 <

g2�2 < lc, the double-Weyl node split into two Weyl fermions
in the xy diagonal directions, forming a nematic Weyl fermion
phase; when g2�2 = lc, the four Weyl fermions meet with
each other on a kz = 0 plane, forming so-called anisotropic
Weyl fermions (AWFs); and when g2�2 > lc, there is full gap
in the system as a nematic insulator.

Similar with CQF, which is formed when two double-Weyl
fermions overlap, we have AWFs when g = g′

c. An AWF
is formed when two single-Weyl fermions overlap and have
linear dispersion in two directions and quadratic dispersion
in the third momentum direction. An AWF here serves as a
critical state separating Weyl semimetal and nematic insulator
phases which can also be named as critical Weyl fermions.

The mean-field phase diagram considering short-range in-
teractions is shown in Fig. 5. Apparently, the original scenario
for topological phase transitions accomplished by annihilating
double-Weyl fermions remains unchanged when short-range
interactions are small.

2. RG analysis on CQF with Coulomb interactions

Although short-range interactions are inevitably generated
from coarse graining as we show in the next section, we here
perform RG considering only Coulomb interactions to see the
presumed QCP and related NFL behaviors, which is helpful
to understand the physics when short-range interaction are
considered: how NFL properties get destroyed and how the
QCP is preempted.

Therefore, we carry out RG calculation on CQF systems
(m = 0) with Coulomb interactions alone; though short-range
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FIG. 6. Feynman diagrams relevant to Coulomb interactions:
Solid lines stand for fermions and wavy lines stand for Coulomb
potential.

interactions inevitably grow with the energy scale, we omit
them in this section. The action is captured by

S = Sψ + Sφ + Se, (A3)

Sψ = 1

(2π )4

∫
d3kdω ψ

†
k (−iω + Hl (m = 0))ψk, (A4)

Sφ = 1

(2π )4

∫
d3kdω

1

2
φk

(
k2

x + k2
y + ηk2

z

)
φ−k, (A5)

Se =
∫

d4x ieφψ†ψ, (A6)

where Hl (m = 0) is the Hamiltonian in momentum space for
the CQF as shown in the main text, i.e.,

Hl (m = 0) = t1
(
k2

x − k2
y

)
σx + 2t1kxkyσy + t3k2

z σz. (A7)

The Green’s function of bosons and fermions can be easily
derived by finding inversion of the free Hamiltonian matrix,
which is written as Gb, G f . In the following RG calculation,
we fix the parameters in Eq. (A7) as t1 = t3 = 1 without loss
of generality.

In the Wilsonian RG, integrating out the high-energy
modes, will generate an effective action with a lower energy
cutoff and new parameters, and then we try to recover the
same energy cutoff by a scale transformation of all opera-
tors and time-space coordinates. We derive the RG equation
from iteratively integrating momentum shells whose fermions
are within momentum Q⊥ ∈ (Qe−l , Q) in a infinite cylinder
geometry, where l = ln 
/
0 > 0 is the RG running param-
eter. The cylinder form of the momentum shell is suitable to
evaluate the Feynman amplitudes of symmetries in our model
and the results are qualitatively the same with an equal-energy
shell integral. Such geometry is utilized in various previous
works on the correlation effects of Weyl systems [47]. Since
the vertex corrections are zero due to Ward identity, there
are only two Feynman diagrams related to corrections on
self-energy, see Fig. 6. We calculate those two diagrams and

compare the coefficients before each term with original field
theory as

S =
∫

ψ†
(
iωσ0 + (

k2
x − k2

y

)
δt1σx + 2kxkyδt1σy + k2

z δt3σz
)
ψ

+ 1

2
φ
(
ηφ

(
k2

x + k2
y

) + Fηk2
z

)
φ, (A8)

where integral measure is omitted and the momentum cutoff
in the kxky plane is assumed to be unity in the calculation
(i.e., the flowing parameters are taken as dimensionless ones
implicitly). δt1, δt3, ηφ , Fη are four terms derived from the two
Feynman amplitudes in Fig. 6. For example, the amplitude for
(a) is Fa(k) = −e2

∫
shell dq Tr(G f (q + k/2)G f (q − k/2)) (the

frequency part in this formula is absorbed into the four-vector
of momentum q). And the corresponding term ηφ is defined
as ηφ = d2Fa(k)/dk2

x , other terms are similar to derive in
Eq. (A8), and it is straightforward to check that no other terms
apart from the four in Eq. (A8) can be generated by RG with
the same order.

The key part in RG is the scaling dimension analysis. As
we mentioned in the main text, though CQFs disperse quadrat-
ically in three directions, there is still anisotropy in the three
spatial directions. Therefore, we set the scaling dimension for
time-space as [ω] = 1, [kx,y] = z1, and [kz] = z3. The tree-
level values of them are z1 = 1

2 and z3 = 1
2 . To make our field

theory controllable, we introduce the dimensional regulariza-
tions like scheme; specifically, we treat the spatial dimension
in kxky plane as 3 − ε dimensions, where ε = 1 corresponds
to the realistic case here. Overall, the RG is in dimension
4 − ε + 1 where 4 − ε is the spatial dimension and 1 is the
time dimension. Such a scheme is the result of the momentum
shell geometry, namely, one can only add fictitious dimen-
sions into the sphere integral part in the momentum-shell RG.
That is to say, we only begin to consider the dimension after
we integrate out the frequency and kz freedoms. Under this
conjecture of the dimensions, we can further derive the scaling
dimension for field operators and get their tree-level values.

The scaling dimensions are thus [η] = 2z1 − 2z3 − ηφ ,
[e] = −z3/2 + 1/2 − ηφ/2 − (1 − ε)z1/2, [t1] = 1 − 2z1,
[t3] = 1 − 2z3. (At tree level in 3D, we have [η] = 0, [e] =
1/4, [t1] = 0, [t3] = 0.) We obtain z1, z3 by requiring
t1 = t3 = 1 fixed (flow equation for ti equal zero). Such
requirements leave us two equations:

z1 = (1 + δt1)/2, z3 = (1 + δt3)/2. (A9)

The remaining RG equations are

de

dl
= (−z3/2 + 1/2 − ηφ/2 − (1 − ε)z1/2)e,

dη

dl
= (2z1 − 2z3 − ηφ )η + Fη. (A10)

The terms occuring in Eqs. (A10) as mentioned before can be derived from the two simple Feynman amplitudes. The analytical
form of them are (we have already taken the momentum cutoff as unity for simplicity)

δt1(η, ε, e) = e2π−2− ε
2

64η4
(

3−ε
2

)
(

3π3/2η9/2(5 + 2η2 + η4)

(1 + η2)5/2 + 4η

(
−5

4

)


(
7

4

)
3F2

(
3

2
,

7

4
, 2;

1

2
,

9

4
; − 1

η2

)

− 12

(
−7

4

)


(
9

4

)
3F2

(
2,

9

4
,

5

2
;

3

2
,

11

4
; − 1

η2

))
,
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δt3(η, ε, e) = e2π−2− ε
2

16η3
(

3−ε
2

)
(

−10π3/2η11/2

(1 + η2)5/2 + 2π3/2η15/2

(1 + η2)5/2 − 12η2

(
3

4

)2

3F2

(
3

4
,

3

2
, 2;

1

2
,

5

4
; − 1

η2

)

− η

(
−3

4

)


(
5

4

)
3F2

(
5

4
,

3

2
, 2;

1

2
,

7

4
; − 1

η2

))

+ e2π−2− ε
2

16η3
(

3−ε
2

)
(

48η

(
5

4

)2

3F2

(
5

4
, 2,

5

2
;

3

2
,

7

4
; − 1

η2

)
+ 3

(
−5

4

)


(
7

4

)
3F2

(
7

4
, 2,

5

2
;

3

2
,

9

4
; − 1

η2

))
,

ηφ (ε, e) = 0.0274e2π
1−ε

2


(

3−ε
2

) ,

Fη(ε, e) = 0.01073e2π
1−ε

2


(

3−ε
2

) , (A11)

where η is the anisotropy character of Coulomb interaction,
ε is the small parameter from dimension expansion, e is the
Coulomb coupling strength,  is the conventional Gamma
function, and 3F2 is the generalized hypergeometric func-
tion. Note the numerical value is already evaluated if there
is no complicated function and parameters dependence on η.
Practically, the dimensional parameter ε is only taken for the
integral of polar angles part since the set of gamma matrices
and hence the exact dispersion relations are not well defined
on arbitrary dimensions. The same approach for dimension
consideration is also explored in various works on correlation
effects of Fermi-point systems [55,56].

By numerically iterating the above flow equations, we find
the unique stable fixed point (η, e) ≈ (0.66, 4.1) with finite
interaction strength (e �= 0) and anisotropy for Coulomb po-
tentials η �= 1 when ε = 1, namely, in 3D space. In this stable
fixed point, z1 ≈ 0.639, z3 ≈ 0.546, which is not far from the
free value, indicating that such a fixed point is under control
in the RG sense. To clarify the stableness of such a fixed
point and the control scheme by dimensional trick, we further
analyze the fixed point from the marginal dimension and lower
the dimension from ε = 0 to ε = 1.

FIG. 7. The beta function plot of Coulomb coupling when
ε = 0.01, the rightmost zero node is clearly a stable one with non-
vanishing e correspoding to NFL states while the middle one is an
unstable Gaussion fixed point.

When ε = 0, Coulomb interaction is marginally irrelevant,
there is a stable noninteracting fixed point (e = 0, η ≈ 0.66)
in such settings and the pure Gaussian one with isotropic
screening η = 1 is unstable toward the stable one when
Coulomb interactions turns on at the beginning, though e
finally flows to zero due to the marginal irrelevance. By low-
ering the dimensions with increasing ε, the stable Coulomb
interacting NFL fixed point naturally moves away from the
noninteracting one. For ε = 0.01, the plot of beta function for
Coulomb coupling e is shown as Fig. 7 (η = 0.66). It can be
shown that the stable fixed point with Coulomb interaction
is moving with increasing e when lowering the dimensions.
The stable fixed point when ε = 0.01 is very close to the
Gaussian one, and the scaling dimension on this fixed point is
z1 = 0.5011, z3 = 0.5004; it is clear the shift of these values
from their non-interacting values is controlled by the small
parameter ε and thus justify the existence of the stable fixed
point in 3D.

As a side note, there is another term as ts(k2
x + k2

y )σz which
is also symmetry allowed in the effective Hamiltonian for

FIG. 8. Generic finite-temperature phase diagram for quantum
phase transitions in 3D systems with double-Weyl fermions: The
critical quadratic Weyl fermions (CQFs) emerge at the QCP with
m = 0. The finite-temperature crossover is described by the dashed
lines and controlled by CQF at the QCP. The three regimes show
characteristic behaviors in physical quantities. For instance, the spe-
cific heat shows C ∼ e−|m|/T in the insulator phase, C ∼ T 2 along
with exotic logarithmic corrections in the double-Weyl SM phase,
and C ∼ T 1.82 in the quantum critical regime which shows non-Fermi
liquid behavior.
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(a) (b) (d)(c)

(e) (f) (g)

FIG. 9. Feynman diagrams contribute to four-fermion interac-
tions: Solid lines stand for fermions, wavy lines stand for Coulomb
potential, and dashed lines stand for short-range interaction.

low-energy fermions. We omit this term when we transform
the lattice model to the effective theory for CQF. We here jus-
tify the omission of this term. The β function for this term is
dts/dl = (1 − 2z1)ts + δts ≈ −0.3ts + 0.01, where we have
replaced those parameter by values on the stable fixed point;
namely, although ts can be generated though its bare value
vanishes, we can still treat it as zero safely. Because ts is irrel-
evant with a negative scaling dimension and also the stable ts
is very small, we believe it has no qualitative modifications on
the RG picture above.

We also mention some physical consequences here for this
stable fixed point. We investigate the effect of finite η �= 1 by
RPA analysis. The particle-hole polarization with a propagator
for CQFs gives numerical results as

�(q⊥) ∝ q2
⊥, �(qz ) ∝ q2

z (A12)

when the momentum transfer is small. The power-law be-
haviors are the same in different directions in the CQF case
while there are different power laws in different directions
in double-Weyl fermions. The only anisotropy in particle-
hole polarization appears in the coefficients before momenta,
namely, we have the full polarization as

−�(q) ≈ aq2
⊥ + bq2

z , (A13)

here a �= b represents the anisotropy in CTWF which is a
weaker type of anisotropy compared to triple-Weyl fermions.
Moreover, the renormalized Coulomb potential in this case
behaves as V (q) = 1

q2
⊥+q2

z −�(q)
∝ 1

cq2
⊥+q2

z
, where c �= 1 shows

the anisotropy in Coulomb interactions. By Fourier transfor-
mations into real space, Coulomb potential behaves as

V (r) ∝ 1√
r2
⊥ + cr2

z

. (A14)

The long-range behaviors of renormalized Coulomb potential
together with the finite g at the NFL fixed point show that
Coulomb interactions receive no effective screening and ac-
tually drive the system to a NFL critical phase with finite
interactions and the remaining anisotropy for Coulomb po-
tential shows the difference between CQF here and 3D QBT
systems given by Luttinger Hamiltonian.

In NFL states, various physical observables scale with
exotic power laws. As for specific heat, consider the free
CQF without Coulomb interactions—its specific heat can be

(a) (b)

(c) (d)

FIG. 10. The beta functions of short-range interaction g in d = 4, 3.5, 3.45, 3.3 dimensions with η = 0.66 and e corresponding to
individual fixed values, respectively. In cases (a) and (b), the left zero nodes correspond to stable (IR) fixed points while the right ones
correspond to the unstable one (UV). In case (c), the two fixed points merge, and there is only one stable fixed point. This happens when
d = dc. In case (d), d < dc, there is no fixed point, and the short-range interaction flows to positive infinity as expected.
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deduced by densities of states near Weyl nodes ρ(ε) ∼ ε1/2,
which behaves as C ∼ T 3/2. When Coulomb interactions are
taken into consideration, NFL behaviors emerge where scal-
ing dimensions z1, z3 get modifications from tree-level value
and specific heat in the interacting case scales as an exotic
power law:

C ∼ T 2z1+z3 ∼ T 1.82. (A15)

In sum, the topological QCP picture is slightly modified
by Coulomb interactions when short-range interactions are
negligible (less than the critical value gc mentioned in the last
section), as illustrated in Fig. 8.

3. RG analysis on CQF with both Coulomb
and short-range interactions

In this Appendix section, we include both long-range inter-
action e as well as short-range interaction g into the full action
Eq. (A3) and perform equal-footing renormalization analysis
to see how the interplay between long-range and short-range
interactions affects the physics picture we originally assumed.
Again, we use the dimensional technique in these analysis
to regulate the field theory and make the results more con-
vincing. The scaling dimension of short-range coupling [g] =
−2z1 − z3 − (1 − ε)z1 + 1, in tree level, [g] = −1/2 in 3D.

The calculation is similar with the case above except the
short-range interactions in this part. So we only focus on the
renormalization for short-range interactions in this section.

There are very limit diagrams with nonvanishing amplitudes
for four-fermion interactions and they are listed as Fig. 9. One
can check that other diagrams give zero amplitudes due to
symmetry reasons. Remember that we choose only one inde-
pendent interaction g(ψ†ψ )2, and once we meet other forms
of interactions, we should transform them back to g using
Fierz identity in each RG step. The only difference compared
to the last section is the inclusion of the beta function for g,

dg

dl
= (1 − 2z1 − z3 − (1 − ε)z1)g + F1g2 + F2ge2 + F3e4,

(A16)

here Fi are calculated from Feynman amplitudes as Fig. 9.
[Figures 9(a) and 9(b) contribute to F1, Figs. 9(c) and 9(d)
contribute to F3, and Figs. 9(e)–9(g) contribute to F2]. The
existence of Figs. 9(c) and 9(d) tells us Coulomb interactions
can drive out short-range interactions even when its bare value
is zero. That is the key of the breakdown of the conventional
picture referring to this type of topological phase transition.
The flow diagram in this case is shown in the main text.

To compute these F terms, we let the momentum of all
outer lines of the diagrams be zero. For example, M1 =
−2

∫
shell dqG f (q)G f (−q) − 2

∫
shell dqG f (q)G f (q), again, we

absorb the frequency part into q. Note the result M1 is a ma-
trix; we need to transform it back as an identity matrix using
Fiertz identity, then the constant before the identity matrix is
the value of F1 we want, i.e., M1 = F1I . The specific form of
the three F terms from Feynman amplitudes is shown below:

F1(ε) = 0.1665π− ε
2


(

3−ε
2

) ,

F2(η, ε) = π−2− ε
2

4η2
√

1 + η2
(

3−ε
2

)
(

π3/2η5/2 + η
√

1 + η2

(
3

4

)2

2F1

(
3

4
, 1;

1

4
; − 1

η2

)
− 4

√
1 + η2

(
5

4

)2

2F1

(
1,

5

4
;

3

4
; − 1

η2

))

+ π−2− ε
2

4η2
√

1 + η2
(

3−ε
2

)
(

− 4η
√

1 + η2

(
3

4

)


(
7

4

)
2F1

(
1,

7

4
;

5

4
; − 1

η2

)

−
√

1 + η2

(
−3

4

)


(
9

4

)
2F1

(
1,

9

4
;

7

4
; − 1

η2

))
,

F3(η, ε) = π−2− ε
2

32
(

3−ε
2

)
⎛
⎝2

√
π

⎛
⎝−

3π
(
1 − 1

η2

)
2
(

1
η

+ η
)5/2 −

2
(− 1

4

)


(
7
4

)
2F1

(
7
4 , 2; 5

4 ; − 1
η2

)
√

πη3
+

4
(

5
4

)2
3F2

(
1, 5

4 , 3
2 ; 1

2 , 3
4 ; − 1

η2

)
√

πη2

⎞
⎠

⎞
⎠

+ π−2− ε
2

32
(

3−ε
2

)
⎛
⎝

π3/2η11/2(7+η2 )
(1+η2 )5/2 − 4

(− 5
4

)


(
11
4

)
2F1

(
2, 11

4 ; 9
4 ; − 1

η2

) + 2η
(− 3

4

)


(
9
4

)
3F2

(
1, 1.5, 9

4 ; 1
2 , 7

4 ; − 1
η2

)
η3

⎞
⎠,

(A17)

where iFj is a generalized hypergeometric function.
After obtaining all terms in the flow equation, we can

numerically iterate the flow equations and obtain the RG flow
diagram as in the main text, which clearly shows the relevance
of short-ranged interactions.

Observe the flow for different dimensions ε, we can further
see how the fixed point is shifted in a controlled way by the

dimensions. When ε = 0, the scaling dimension for the short-
range interaction on the interacting fixed point of Coulomb
interaction is [g] = −1 and is thus still irrelevant in the upper
critical dimension d = 4. Therefore, the proposed scenario
occurs below some critical dimension dc = 4 − εc. The shift
of g from irrelevance to relevance is still well captured by
the dimension-lowering process and is thus controllable as
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shown below. The similar picture and RG arguments through
dimensional technique also occurs in 3D QBT systems with
cubic symmetry [55], where no anisotropic screening effect
sets in.

We investigate how the fixed point shifts when spatial
dimension is lowering. To show this, we draw several beta
function plots with e, η values at a stable fixed point from
the last section while varying g, since g cannot change the
behavior of the long-range interaction part as the value doesn’t
enter the flow equation for e and η at least in one loop level.
So, it is sufficient to study the flow along the line across the
interacting so-called NFL fixed point of Coulomb interaction
with a varying short-range interaction. We can see the detail
of the shift in Fig. 10. As we can see, when ε = 0, the g = 0
fixed point is stable. When ε > 0, this stable fixed point shifts
to g > 0 and the system has a fixed point with both finite g
and e. After d = dc, which is estimated as d ≈ 0.45, the stable
fixed point is merged with the UV fixed point, leaving a flow
to infinity of g below the critical dimension. It is worth noting
the critical dimension obtained here, dc ≈ 3.45, is larger than
the case in Ref. [55], implying that our system is of higher
possibility, showing strong short-ranged interactions in real
dimension d = 3.

There is still a slight possibility that εc > 1 when con-
tributions from higher loops are seriously considered, but
this task is beyond the reach of the current paper. However,
even if dc < 3, it is still in the middle phase in Fig. 10(b)
in 3D. In such a case, the finite g on the stable fixed point
is still enough (g > gc) to drive the nematic phase transition
with high probability—namely, the short-range interaction is
not necessarily leading to infinite, a stable fixed point with
finite g strength g > gc is enough to induce the nematic order.
Based on the discussions and arguments using dimensional
technique, we are confident the physical scenario in three spa-
tial dimensions is that the putative critical point of Coulomb
interaction is preempted by a nematic phase induced by strong
short-range interactions.

4. RG near the QCP: Double-Weyl fermions
with both interactions

As explained in the main text, we use an effective theory
for double-Weyl fermions to investigate behaviors around but
not exactly at the QCP, and we use the implicitly assumed
cutoff in the action as the control parameter which tunes the
separation of two double-Weyl nodes in crystal momentum
space: 
 ∼ √

m. All the above RG procedures still apply to
the double-Weyl fermion case, in principle, as long as we
replace the propagator for CQF with double-Weyl fermions.
And note this time we cannot simply set cutoff 
 to be unity.
Instead, we need to vary 
 to study the scaling behavior for
phase boundaries around the QCP.

The first observation is the existence of critical e∗.
Coulomb interactions are marginally irrelevant in the double-
Weyl fermion case, which means infinitesimal Coulomb
interactions cannot drive short-range interactions leaving the
system in the double-Weyl fermion phase. However, Coulomb

FIG. 11. Flow diagrams for double-Weyl fermions with both
types of interactions: The red dotted line stand for the phase bound-
ary between double-Weyl fermions and nematic phases determined
by RG.

interaction exceeding e∗ can still lead to runaway flow of
on-site interactions. This picture can be directly shown from
the flow diagram Fig. 11.

There is other information in the flow diagram. Even if e <

e∗, Coulomb interaction is also helpful to enhance the short-
range interaction g, namely, the critical value gc is still finite
when 0 < e < e∗, while it is less than the mean-field critical
value now. According to the red line, we come to the con-
clusion 0 = gc(e� e∗) < gc(0 < e < e∗) < gc(e = 0) = gc in a
wide parameter range.

Furthermore, we explore the scaling relations between
those phase boundaries and cutoff representing the separa-
tion of double-Weyl nodes. First, we can show e∗2(|m|) ∼√|m|—namely, as two double-Weyl nodes leave each other,
the critical e to drive out on-site interactions becomes larger.
This is consistent with the CQF limit (m = 0), where we can
treat it as e∗ = 0 (infinitesimal Coulomb interaction is enough
to drive short-range interactions). Now consider cases with
finite fixed e, due to the relation e∗2 = √|m|/C′ (C′ is just a
constant), we have the critical |m|c = C′e4. And the system is
at the nematic phase even if there is no bare on-site interaction
when 0 < |m| < |m|c. When |m| > |m|c, e is now less than
e∗(|m|), however, based on the above observation, gc(m) is
still less than its mean-field value. Numerical results show
the scaling behavior here is gc ∼ √|m| − √|m|c when m is
slightly larger than mc.

Based on all the above results, we obtain the illustrative
phase diagram for the model in the main text. It is worth not-
ing that the RG calculations and approaches in this Appendix
section are not so strict in the field theory sense since both
types of interactions are irrelevant at tree level. This section
thus serves as a further exploration beyond the results we
obtained exactly on the critical point and might provide useful
insights on the behavior in double-Weyl fermion phases.
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