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Low-energy effective field theories of fermion liquids and the mixed U (1) × Rd anomaly
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In this paper, we study gapless fermionic and bosonic systems in d-dimensional continuum space with U (1)
particle-number-conservation and Rd translation symmetry. We present low-energy effective field theories for
several gapless phases with the U (1) × Rd symmetry. The U (1) × Rd symmetry has a property that a U (1)
symmetry twist will induce a nonzero momentum proportional to the U (1) charge density ρ̄, which will be
referred to as a mixed anomaly. The different effective field theories for different phases of the same system
must have the same mixed anomaly. As a result, all the low-energy effective field theories must have fields with
nonzero momenta of the order of ρ̄1/d . In particular, we present a low-energy effective field theory with infinite
number of fields for Fermi liquid. We also present the Fermi-liquid effective field theory in the presence of a real
space magnetic field and k-space “magnetic” field, as well as in the presence of interaction described by Landau
parameters. Our effective field theory correctly captures the mixed anomaly, which constrains the low-energy
dynamics, such as determines the volume of the Fermi surface in terms of the mixed anomaly [i.e., in terms of
the U (1) charge density]. This is another formulation of the Luttinger-Ward-Oshikawa theorem.

DOI: 10.1103/PhysRevB.103.165126

I. INTRODUCTION

A. Integrated Boltzmann equation as a theory
for Fermi liquid and beyond

Fermi liquid is one of the most important states of matter
since it describes most metals. Usually, a Fermi-liquid theory
is based on the noninteracting fermionic quasiparticles. How-
ever, there is also a bosonized version of Fermi-liquid theory
[1–4]. For example, a Fermi liquid for spinless fermions in
d-dimensional (dD) space is described by the following in-
tegrated Boltzmann equation (if we ignore the collision term
that is irrelevant under the renormalization group scaling) [5]:

u̇(x, kF , t ) + ∂x · [vF (kF )u(x, kF , t )]

+ ∂kF · [ f (x)u(x, kF , t )] = 0, (1)

where u(x, kF , t ) is the dynamic field describing the Fermi
surface fluctuations. Here, kF parametrizes the Fermi surface,
vF is the Fermi velocity, u(x, kF , t ) describes the Fermi sur-
face displacement at Fermi momentum kF and spatial location
x, and f is the force acting on a fermion. The Fermi surface
displacement u(x, kF ) describes the fluctuations of the inte-
grated fermion occupation g(k) along a line normal to the
Fermi surface. This is why we call the above equation the
integrated Boltzmann equation.

We can view the integrated Boltzmann equation as the
equation of motion for the bosonized Fermi liquid [1–5].
Together with the total energy (assuming f = 0)

E =
∫

dd x
dd−1kF

(2π )d

|vF (kF )|
2

u2(x, kF ), (2)

we obtain a phase-space low-energy effective Lagrangian for
the Fermi liquid [see Eq. (39)]. Such a low-energy effec-
tive field theory contains an infinite number of fields labeled
by kF . Or, alternatively, the low-energy effective field the-

ory can be viewed as having a single scaler field in (d +
d − 1)D space, but the interaction in the d − 1 dimensions
(parametrized by kF ) is allowed to be nonlocal.

The bosonized description of the Fermi liquid is more
general than Fermi-liquid theory. It may be used to describe a
gapless state without a well defined quasiparticle (but with a
well defined Fermi surface), as demonstrated in (1+1)D and
in Refs. [5,6] for higher dimensions.

However, such a bosonized low-energy effective theory
fails to capture one of the most important properties of a Fermi
liquid: the volume enclosed by the Fermi surface is (2π )d ρ̄,
where ρ̄ is the density of the fermion in the ground state [7,8].
In fact, the fermion density ρ̄ does not even appear in the
above bosonized formulation.

In recent years, it was realized that the Lieb-Schultz-Mattis
(LSM) theorem [9] and its higher-dimensional generalizations
by Oshikawa [8] and Hastings [10] can be understood in
term of a mixed anomaly between translation symmetry and
an internal symmetry [11–17]. For a 1D system with U (1)
symmetry and translation symmetry, there is a similar theorem
when the U (1) charge per site is not an integer [18]. This
suggests that such a 1D system also has a mixed anomaly
when the U (1) charge per site is not an integer. Similarly, for
continuum systems with U (1) and translation Rd symmetries,
there should also be a mixed anomaly, whenever the U (1)
charge density is nonzero. The low-energy effective field the-
ory for systems with U (1) × Rd symmetry should capture this
mixed U (1) × Rd anomaly.

B. Emergent symmetry and mixed anomaly

To explain what a mixed anomaly is, we need to first ex-
plain emergent symmetry. Let us consider a 1D noninteracting
spinless fermion c(x) in continuum space with two Fermi
points, one at k = kL

F and the other at k = kR
F . The 1D system
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has a U (1) fermion-number-conservation symmetry and R
translation symmetry.

The low-energy effective field theory of the above model is
described by the Lagrangian

L = ψ
†
L i (∂t − ∂x )ψL + ψ

†
R i (∂t + ∂x )ψR, (3)

for right-moving and left-moving fermions near the two Fermi
points. The original exact symmetry of the model, U (1) × R,
is enlarged to a bigger symmetry U (1) × R × Rtrn of the ef-
fective field theory:

U (1) : ψL → e i θψL, ψR → e i θψR;

R : ψL → e i δxkL
F ψL, ψR → e i δxkR

F ψR;

Rtrn : ψL(x) → ψL(x + �x), ψR(x) → ψR(x + �x).
(4)

Rtrn is the translation symmetry in the effective field theory.
U (1) × R is regarded as the internal symmetry of the effective
field theory, despite the fact that R comes from the translation
symmetry of the original model.

We note that the “charges” of both R and Rtrn symmetry
are momenta. The charge of the Rtrn symmetry is momenta
of the order of 1/L, while the charge of the R symmetry is
momenta of the order of ρ̄. In the limit where L → ∞ and
ρ̄ → constant �= 0, the range of momenta is well separated,
and they are conserved separately. This is why we have a
larger emergent symmetry.

The emergent internal symmetry U (1) × R has a property
that the U (1) symmetry twist around the 1D ring of the space
induces a nonzero R charge (i.e., a nonzero momentum).
Similarly, the R symmetry twist around the 1D ring induces
a nonzero U (1) charge (i.e., a nonzero fermion number).

This is similar to the ’t Hooft anomaly [19]. Usually, the
presence of the ’t Hooft anomaly means that if we gauge
the symmetry U (1) × R, the resulting gauge theory is not
gauge invariant. Such a gauge noninvariance (i.e., mixed
anomaly) for the U (1) × R symmetry is related to the above
phenomenon that a U (1) symmetry twist can induce the R
charge (i.e., the momentum).

Indeed, the U (1) symmetry twist around the 1D ring of size
L is given by a change of boundary condition of the fermion
operator,

c(x + L) = e i θc(x). (5)

Such a symmetry twist shifts the momentum of each fermion
by δk = θ/L. Thus the total momentum (i.e., the R charge) is
changed by �k = Lρ̄δk = θρ̄, where ρ̄ is the fermion density.

The R symmetry twist around the 1D ring of size L is given
by changing the ring size by δx. Such a symmetry twist shifts
the total fermion number by δxρ̄.

We see that the so-called mixed anomaly of U (1) × R is a
just a fancy way to say that our fermion system has a nonzero
density ρ̄. However, here we stress two aspects that are hid-
den or unclear when we just say the system has a nonzero
density: (1) the density is associated to a conserved quantity
[i.e., a U (1) symmetry] and (2) the uniform density implies a
translation symmetry.

After realizing the presence of the mixed anomaly, we con-
clude that all the different low-energy effective field theories

for various phases of the system must have the same mixed
anomaly. This constrains the possible low-energy dynamics of
the system, which will be discussed in more detail in the paper.
In particular, a low-energy effective theory must have fields
with nonzero R charges, i.e., with momenta of the order of ρ̄.

In higher dimensions, the exact U (1) × Rd symmetry of
the original model may give rise to emergent U (1) × Rd ×
Rd

trn symmetry in low-energy effective field theory. The emer-
gent internal symmetry U (1) × Rd has a mixed anomaly when
the U (1) charge density is nonzero. This is the so-called mixed
anomaly discussed in this paper and in Refs. [11–17].

C. A summary of results

In this paper, we will carefully present the low-energy
effective field theories for some gapless phases of bosons and
fermions. The low-energy effective field theories contain a
proper topological term that captures the mixed U (1) × Rd

anomaly. Such a mixed U (1) × Rd anomaly ensures that the
system must be gapless.

In particular, the low-energy effective field theory (44) for
a Fermi liquid is obtained that contains the proper mixed
U (1) × Rd anomaly. Such a mixed U (1) × Rd anomaly de-
termines the volume enclosed by the Fermi surface in terms
of U (1) charge density, within the low-energy effective field
theory. We also present the low-energy effective field theory
(89) for a Fermi liquid with a real space magnetic field and
k-space “magnetic” field [20–22], as well as with interaction
described by Fermi-liquid parameters. Those are the main
results of this paper.

The equation of motion of our low-energy effective theory
for a Fermi liquid is just the (integrated) quantum Boltzmann
equation for transport after including the collision term. We
present such quantum Boltzmann equation in the presence
of both a real space magnetic field and a k-space magnetic
field, as well as in the presence of interaction described by
Fermi-liquid parameters [see Eq. (97)]. Our quantum Boltz-
mann equation can be used to study the transport properties in
such general situations.

We will also discuss the universal low-energy properties
of the gapless phases for systems with U (1) × Rd symmetry.
Some of the features in the universal low-energy properties are
determined by the mixed U (1) × Rd anomaly, and we identify
those features.

The results in this paper also apply to some lattice systems
with U (1) × Zd

trn symmetry. If the U (1) charge per unit cell is
not a rational number, the low-energy emergent symmetry will
be U (1) × Rd × Zd

trn. The results in this paper are still valid, if
we replace the U (1) density ρ̄ by ρ̄ + lρcell, where ρcell is the
density of the unit cells of the lattice and l is an integer. If the
U (1) charge per unit cell is a rational number, then the low-
energy emergent symmetry may not be U (1) × Rd × Zd

trn. The
results in this paper may not apply.

In Sec. II, we will first discuss the low-energy effective
field theory of 1D weakly interacting bosons. Then, in Sec. III,
we will consider 1D weakly interacting fermions. In Sec. IV,
we will obtain a low-energy effective field theory for a Fermi
liquid in a general dimension. Section V discusses another
gapless phase of fermions—a fermion-pair liquid—and its
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low-energy effective field theory. All those effective field the-
ories capture the mixed U (1) × Rd anomaly.

In this paper, we will use the natural unit where h̄ = e =
c = 1.

D. Some remarks

We like to remark that a Fermi liquid at low energies
also has many emergent symmetries. In particular, the U (1)
fermion-number-conservation symmetry is enlarged to U ∞(1)
emergent symmetry [1–4]. Recently, it was pointed out that
such an emergent U ∞(1) symmetry also has an anomaly in
the presence of U (1) flux [23]. Using such an U ∞(1) anomaly,
one can also derive the relation between the volume enclosed
by the Fermi surface and the density of the fermion.

We also like to remark that the mixed U (1) × Rd anomaly
discussed above is not the usual ’t Hooft anomaly [19]. Usu-
ally, an anomaly corresponds to a symmetry protected trivial
(SPT) order or a topological order in one higher dimension
[24,25]. This kind of anomaly is labeled by a discrete index.
However, for continuous symmetries, Ref. [24] pointed out
that there can be a special kind of anomaly labeled by a contin-
uous index, which will be referred to as continuous anomaly.
Reference [24] gave an example of a continuous anomaly: a
(2+1)D system with a U (1) symmetry and an unquantized
Hall conductance. (This example may be closely related to a
recent work on the anomaly of emergent loop U (1) symmetry
[23]). The mixed U (1) × Rd anomaly discussed in this paper
is another example of a continuous anomaly that is labeled by
the continuous particle density ρ̄.

Continuous anomalies also correspond to gapped states in
one higher dimension with topological terms. But now the
topological terms have continuous coefficients [24]. For ex-
ample, the (2+1)D continuous U (1) anomaly of unquantized
Hall conductance is characterized by a (3+1)D gapped state
with a topological term θ

∫
F∧F
8π2 . Had the coefficient been

discrete, the bulk gapped state with the topological term would
correspond to a SPT order or a topological order, and the
anomaly would correspond to a SPT order or a topologi-
cal order in one higher dimension. However, for continuous
anomalies [such as the (2+1)D U (1) continuous anomaly],
the coefficient of the topological term is continuous and can
be smoothly tuned to zero. So the bulk gapped state with this
kind of topological term does not correspond to a nontrivial
phase, and continuous anomalies do not correspond to a SPT
phase in one higher dimension, but rather correspond to a bulk
gapped state with an unquantized topological term, which can
be viewed as a pseudo SPT state. We stress that a continuous
anomaly for a symmetry is not robust against all symmetry
preserving deformations of the Hamiltonian. For example, the
mixed U (1) × Rd anomaly is robust only against all symmetry
preserving deformations that keep the particle density of the
ground state unchanged [i.e., keep the U (1) representation of
the ground state unchanged]. This may be a general feature of
continuous anomaly.

II. 1D BOSON LIQUID WITH U (1) × R SYMMETRY

A. Gapless phase of weakly interacting bosons

In this section, we are going to consider 1D gapless
systems in continuum space with U (1) particle-number-

conservation symmetry and R translation symmetry. The
systems are formed by bosons with weak interaction, which
gives rise to a gapless state: a “superfluid” state for bosons. We
assume the system to have a size L with a periodic boundary
condition. We will compute the distribution of the total mo-
mentum for many-body low-energy excitations, and how such
a distribution depends on the U (1) symmetry twist described
by a constant U (1) background vector potential a. We will see
that such a dependence directly measures a mixed anomaly
in U (1) × R symmetry if we view U (1) × R as an internal
symmetry in the effective field theory [or, more precisely, if
we view U (1) × R as the internal symmetry in the emergent
symmetry U (1) × R × Rtrn of the low-energy effective field
theory].

Using the results from a careful calculation in the Ap-
pendix, we find the following low-energy effective field theory
for the gapless phase of bosons:

Lph =
∫

dx

[
ρ̄φ̇(x, t ) + δρ(x, t )φ̇(x, t )

− ρ̄

2Mb
|∂φ|2 − g

2
δρ2 + · · ·

]
,

Lco =
∫

dx

[
ρ̄φ̇(x, t ) − ρ̄

2Mb
|∂φ|2 + 1

2g
(φ̇)2 + · · ·

]
,

(6)

where δρ is the boson density fluctuation, ρ̄ = N̄/L the boson
density in the ground state, and φ an angular field φ(x, t ) ∼
φ(x, t ) + 2π . Lph is the phase-space Lagrangian and Lco is the
coordinate-space Lagrangian. They both describe the system
at low energies. People usually drop the total derivative term
(also called topological term) ρ̄φ̇(x, t ), since it does not affect
the classical equation of motion of the fields. We will see
that the topological term affects the dynamics in quantized
theory and should not be dropped. In fact, the topological term
captures the mixed anomaly in U (1) × R.

From the low-energy effective field theory, we find that the
low-energy excitations are labeled by (N ∈ N, m ∈ Z, nk ∈
N). The total energy and total momentum of those excitations
are given by [in the presence of a constant U (1) connection a
describing the U (1) symmetry twist]

E = N

2Mb

(
2πm

L
+ a

)2

+ g

2
(N − N̄ )2+

∑
k �=0

(
nk + 1

2

)
v|k|,

ktot =
∫

dx ρ(∂x + a)φ = N

(
2πm

L
+ a

)
+

∑
k �=0

nkk, (7)

where N = N̄ + δN is the total number of bosons in the
excited state. For N = N̄ and a = 0, the possible values of
(E , ktot ) are plotted in Fig. 1(a).

After quantization, we have the following operator algebra:

[φ(x), δρ(y)] = iδ(x − y), (8)

where δρ(x) is the boson density operator. Since

[δρ(y), e i φ(x)] = δ(x − y)e i φ(x), (9)

e i φ(x) is the boson creation operator.
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FIG. 1. (a) The distribution of the total energies and total mo-
menta for low-energy states of 1D weakly interacting boson liquid.
(b) The distribution of the total momenta ktot for low-energy many-
body states, and its dependence on the U (1) symmetry twist θ . The
red lines mark the total momenta ktot’s for many-body states near the
ground state energy.

Let ϕ(x) = 2π
∫ x dx′δρ(x′). We find that

[ϕ(x), φ(y)] = −2π i�(x − y),

�(x) =
{

1 for x > 0

0 for x < 0,
(10)

or

e i αϕ(x) e i βφ(y) = e i βφ(y) e i αϕ(x) eαβ[φ(y),ϕ(x)]

= e i βφ(y) e i αϕ(x) e2π i αβ�(x−y), (11)

which can also be rewritten as

e− i αϕ(x) e− i βφ(y) e i αϕ(x) e i βφ(y) = e2π i αβ�(x−y),

e− i βφ(y) e− i αϕ(x) e i βφ(y) e i αϕ(x) = e−2π i αβ�(x−y). (12)

The above expression tells us that that the operator e i αϕ(x)

causes an e−2π i α phase shift for the operator e i φ(y) for y < x,
and keeps e i φ(y) unchanged for y > x. So the operator e i ϕ(x)

increases m by 1, i.e., increases the total momentum by 2πρ̄.
Similarly, the operator e i βφ(x) causes a e2π i β phase shift for
the operator e i ϕ(y) for y < x, and keeps e i ϕ(y) unchanged for
y > x. So the operator e i φ(x) increases N = 1

2π

∫
dx ∂xϕ =∫

dx δρ by 1.
From the above results, we see that under the U (1) trans-

formation θ ,

φ(x) → φ(x) + θ, ϕ(x) → ϕ(x). (13)

Under the R translation transformation, δx

φ(x) → φ(x + δx), ϕ(x) → ϕ(x + δx) + 2πρ̄δx. (14)

At low energies, we can rewrite the above translation transfor-
mation as two transformations: Rtrn translation transformation

φ(x) → φ(x + δx), ϕ(x) → ϕ(x + δx), (15)

and R transformation

φ(x) → φ(x), ϕ(x) → ϕ(x) + 2πρ̄δx. (16)

We see that the above R symmetry is an emergent internal
symmetry in the low-energy effective field theory (6). We will
see that U (1) × R, as an emergent internal symmetry, has a
mixed anomaly.

We note that e i ϕ(x) is a local operator and
∫

dx ρ =
2π∫ dx ∂xϕ is an integer. Both imply that ϕ is also an angular

variable, ϕ(x, t ) ∼ ϕ(x, t ) + 2π . Using the two angular fields
φ1 := φ and φ2 := ϕ, the low-energy effective theory can be
written as

Lph =
∫

dx

(
ρ̄∂tφ1 + KIJ

4π
∂xφI∂tφJ − VIJ

2
∂xφI∂xφJ

)
, (17)

where I, J = 1, 2 and

K =
(

0 1
1 0

)
. (18)

V is a positive definite symmetric matrix [from the
ρ̄

2Mb
|∂φ|2 + g

2δρ2 terms in Eq. (6)].

B. The universal properties of the gapless phase

From Eq. (7), we see that the total momentum of the
ground state, ktot, depends on the U (1) symmetry twist,

ktot = ρθ where θ =
∫

dx a = aL, ρ = N

L
, (19)

where we have set nk = m = 0 in Eq. (7). In other words, if we
can follow a particular low-energy state as we change the U (1)
symmetry twist, we will see a change of the total momentum
of the state. Such a relation between the U (1) symmetry twist
and total momentum, ktot = ρθ , is a universal property.

However, since the state is gapless, it is hard to follow-
ing a particular low-energy state. So to make our statement
meaningful, we consider the distribution of ktot’s. Such a
distribution is plotted in Fig. 1(b). We consider how the distri-
bution depends on the U (1) symmetry twist θ .

From the distribution pattern in Fig. 1, we see two univer-
sal properties: the period in the distribution and the θ = aL
dependence of the distribution,

k0 = 2πρ̄,
dktot

dθ
= ρ̄, (20)

which do not depend on the small changes in the interactions
and the dispersion of the bosons, unless those changes cause a
phase transition. Thus we say they are universal properties that
characterize the gapless phase. The two universal properties
are closely related, (2π )−1k0 = dktot

dθ
= ρ̄. We call ρ̄ an index

for the gapless phase. Physically, ρ̄ is simply the density of
the U (1) charges in the ground state.

Let us give an argument why dktot
dθ

is universal. Let us
assume the U (1) symmetry twist is described by a boundary
condition on a single-particle wave function at x0: ψ (x0 +
0+) = e i θψ (x0 − 0+). A usual translation x → x + �x will
shift the symmetry twist from x0 to x0 + �x. So the symmetry
twist breaks the translation symmetry. But we can redefine
the translation operator to be the usual translation plus a U (1)
transformation ψ (x) → e i θψ (x) for x ∈ [x0, x0 + �x]. The
new translation operator generates the translation symmetry
in the presence of the U (1) symmetry twist. Due to the U (1)
transformation ψ (x) → e i θψ (x) for x ∈ [x0, x0 + �x], the
eigenvalue of the new translation operator has a θ dependence
given by (e i θ )ρ̄�x, where ρ̄�x is the total U (1) charges in the
interval [x0, x0 + �x]. In other words, the total momentum
has a θ dependence given by θρ̄. This is the reason why
dktot
dθ

= ρ̄. Since θ = 0 and θ = 2π are equivalent, dktot
dθ

= ρ̄

implies the periodicity in Fig. 1, with the period k0 = 2πρ̄.
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The above discussion does not depend on interactions and
boson dispersion. So the results (20) are universal properties.

C. Mixed anomaly for U (1) × R symmetry

From the above argument, we also see that the shift of
the low-energy momentum distribution by the U (1) symme-
try twist, dktot

dθ
= ρ̄, is an invariant not only against small

perturbations that preserve the U (1) × R symmetry, but also
against large symmetry preserving perturbations that can drive
through a phase transition. The invariant for large perturba-
tions is actually an anomaly [19]. This is because, under a
different point of view [24,25], an anomaly corresponds to a
symmetry protected trivial (SPT) order or a topological order
in one higher dimension [24,25]. An anomalous theory can
be viewed as a boundary theory of the corresponding SPT or
topological order in one higher dimension. Any large pertur-
bations and phase transitions on the boundary cannot change
the SPT or topological order in one higher dimension, and
thus cannot change the anomaly.

In our case, we can view dktot
dθ

= ρ̄ as an anomaly in the
low-energy effective field theories (6) and (17). We see that
the topological term ρ̄(x, t )φ̇(x, t ) in the low-energy effective
field theory determines the anomaly. In fact, such an anomaly
is a mixed anomaly between U (1) symmetry and the transla-
tion R symmetry, which describe how a U (1) symmetry twist
can change the total momentum (i.e., dktot

dθ
�= 0).

The presence of the anomaly implies that the ground state
of the system must be either gapless or have a nontrivial topo-
logical order. Since there is no nontrivial topological order in
1D, the ground state must be gapless. In other words, the field
theories in Eq. (6) and Eq. (17) with ρ̄ �= 0 must be gapless
regardless of the interaction term described by · · · , as long as
the U (1) × R symmetry is preserved. On the other hand, when
ρ̄ = 0, the field theories in Eq. (6) and Eq. (17) allow a gapped
phase with U (1) × R symmetry.

The mixed anomaly between the U (1) symmetry and the R
symmetry can also be detected via the patch symmetry trans-
formations studied in Ref. [26]. The U (1) patch symmetry
transformations are given by

WU (1)(x, y) = e i 2πα
∫ y

x dxρ = e i α[ϕ(y)−ϕ(x)] e i 2παρ̄(y−x), (21)

which perform the U (1) transformation, φ → φ + α, on the
segment [x, y]. The R patch symmetry transformations are
given by

WR(x, y) = e i ρ̄�x[φ(y)−φ(x)], (22)

which perform the R transformation (the translation �x) on
the segment [x, y]. In the low-energy limit, k → 0. So for a
finite �x, the translation is trivial for the phonon modes. The
translation �x has nontrivial actions only on the sector labeled
by different N’s and m’s. For a translation �x that acts on a
segment [x, y], its effect is to transfer U (1) charge ρ̄�x from
x to y. This is why the R patch symmetry transformations are
given by Eq. (22).

In the low-energy effective theories (6) and (17), the U (1)
transformation is given by φ → φ + θ . The term ρ̄φ̇ implies
ρ̄ is the background U (1) charge density. Therefore, the patch
translation transformation has a form given by Eq. (22).

Assume x2 > x1. We have shown that WU (1)(x1, x2) shifts
e i βφ(y) by a phase e− i 2παβ , if x1 < y < x2. Therefore,

WU (1)(x1, x2)WR(y1, y2)

= WR(y1, y2)WU (1)(x1, x2)e i 2παρ̄�x, (23)

for x1 < y1 < x2 < y2. The extra phase factor e i 2παρ̄�x indi-
cates the appearance of the mixed U (1) × R anomaly. Using
the terminology of Ref. [26], we say that the U (1) symmetry
and the R symmetry have a “mutual statistics” between them,
as a consequence of the mixed anomaly. So, according to
Ref. [26], the U (1) symmetry and the R are not independent,
and we may denote the combined symmetry as U (1) ∨ R to
stress the mixed anomaly.

We like to remark that the φ and ϕ fields are canonical
conjugate to each other. We see that the symmetries that shift
φ and ϕ have a mixed anomaly, as captured by the nontrivial
commutation relation between the patch operators for the
symmetry transformations.

III. 1D FERMION LIQUID WITH U (1) × R SYMMETRY

Weakly interacting 1D gapless fermionic systems

The 1D gapless fermionic systems with U (1) × R sym-
metry and weak repulsive interaction are also in a gapless
phase—a Tomonaga-Luttinger liquid for fermions. The low-
energy effective theory also has a form

Lph =
∫

dx

[
ρ̄φ̇(x, t ) + δρ(x, t )φ̇(x, t )

− ρ̄

2M f
|∂φ|2 + 1

2g
(φ̇)2 + · · ·

]
. (24)

Considering noninteracting fermions in a system with a pe-
riodic boundary condition on a ring of size L, we find that
the low-energy excitations are also labeled by (N ∈ N, m ∈
Z, nk ∈ N). However, the total energies and total momenta of
those excitations are given by, for N = odd,

E = N

2M f

(
2π

m

L
+ a

)2

+ g

2
δN2 +

∑
k �=0

(
nk + 1

2

)
v|k|,

ktot = N

(
2π

m

L
+ a

)
+

∑
k �=0

nkk, (25)

and for N = even,

E = N

2M f

(
2π

m + 1
2

L
+ a

)2

+ g

2
δN2 +

∑
k �=0

(
nk + 1

2

)
v|k|,

ktot = N

(
2π

m + 1
2

L
+ a

)
+

∑
k �=0

nkk, (26)

where N (2π m
L + a) or N (2π

m+ 1
2

L + a) are the momentum of
the center of mass.

Again, we consider low-energy states |�N 〉 of N fermions.
Let ktot be the total momenta of |�N 〉. Since there are many
different low-energy states |�N 〉’s, we have a distribution of
ktot’s. Such a distribution is plotted in Fig. 2(a) for the N = odd
case, and in Fig. 2(b) for the N = even case. We see that the
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FIG. 2. The distribution of the total momenta �ktot and its de-
pendence on the U (1) symmetry twist, for a weakly interacting 1D
fermion liquid.

N = odd case and N = even case have different distributions
for ktot’s.

The shift of the distribution of ktot by the U (1) symmetry
twist (see Fig. 2) can be interpreted as the U (1) symmetry
twist producing or pumping momentum. This directly mea-
sures the mixed U (1) × R anomaly.

We also see that a local operator that creates a fermion (i.e.,
change N by 1) must also change m by 1

2 . Those operators

have a form e i (φ± 1
2 ϕ), where ∂xϕ = 2πρ. Since the allowed

operators are generated by e i (φ± 1
2 ϕ), the fields

φ1 = φ + 1
2ϕ, φ2 = φ − 1

2ϕ (27)

are angular fields: φi ∼ φi + 2π . Using

φ = 1
2 (φ1 + φ2), ϕ = φ1 − φ2, (28)

we find the low-energy effective theory to be

L =
∫

dx

[
ρ̄

2
∂t (φ1 + φ2)

+ 1

4π
∂x(φ1 − φ2)∂t (φ1 + φ2) − VIJ

2
∂xφI∂xφJ

]
=

∫
dx

[
ρ̄

2
∂t (φ1 + φ2) + 1

4π
(∂xφ1∂tφ2 − ∂xφ2∂tφ1)

+ KIJ

4π
∂xφI∂tφJ − VIJ

2
∂xφI∂xφJ

]
,

K =
(

1 0
0 −1

)
, V = positive definite. (29)

Here, we have been careful to keep the total derivative terms
ρ̄

2 ∂t (φ1 + φ2) + 1
4π

(∂xφ1∂tφ2 − ∂xφ2∂tφ1). Those are topolog-
ical terms that do not affect the classical equation of motion,
but have effects in quantum theory.

Effective theory similar to the above form has been ob-
tained before for the edge state of fractional quantum Hall
states [27,28]. But here we have to be more careful in keep-
ing the topological term ρ̄∂tφ1, which describes the mixed
anomaly of U (1) × R symmetry for the fermionic system.

We like to mention that the patch symmetry transforma-
tions are determined from the low-energy effective theories

(24) or (29), and are still given by Eq. (21) and Eq. (22). So
the mixed anomaly can still be detected via the commutation
relation of the patch symmetry transformations (23).

In fact, Eq. (29) is the low-energy effective theory for
a fermion system with Fermi momentum kF = πρ̄. 1

2π
∂xφ1

describes the density of right-moving fermions and 1
2π

∂xφ2

describes the density of left-moving fermions. For example,
the low-energy effective theory for right-moving fermions is
given by

L =
∫

dx

(
kF

2π
∂tφ1 + 1

4π
∂xφ1∂tφ1 − V11

2
∂xφ1∂xφ1

)
=

∫
dx

(
ρ̄1∂tφ1 + 1

4π
∂xφ1∂tφ1 − V11

2
∂xφ1∂xφ1

)
. (30)

In the above expression, we stress the direction connection
between the topological term and the Fermi momentum kF , as
well as the direction connection between the topological term
and the density of the right-moving fermions: ρ̄1 = kF

2π
= 1

2 ρ̄.
We see that the mixed anomaly of U (1) × R symmetry is

simply a nonzero Fermi momentum kF . When kF = 0, i.e.,
when the mixed anomaly vanishes, the fermion system can
have a gapped ground state that does not break the U (1) × R
symmetry. But when kF �= 0, i.e., in the presence of a mixed
anomaly, the fermion system cannot have a gapped ground
state that does not break the U (1) × R symmetry. This is a
well known result, but restated in terms of the mixed anomaly
of U (1) × R symmetry.

IV. LOW-ENERGY EFFECTIVE THEORY OF
d-DIMENSIONAL FERMI LIQUID AND

THE MIXED U (1) × Rd ANOMALY

A. Effective theory for the Fermi surface dynamics

In the last section, we discussed the low-energy effective
theory of a 1D Fermi liquid, which contains a proper topo-
logical term that reflects the mixed U (1) × R anomaly. In
this section, we are going to generalize this result to higher
dimensions. The generalization is possible since the higher
dimensional Fermi liquid can be viewed as a collection of 1D
Fermi liquids.

Let us use kF to parametrize the Fermi surface. We intro-
duce u(x, kF ) to describe the shift of the Fermi surface. Thus
the total fermion number is given by

N = N̄ +
∫

dd x
dd−1kF

(2π )d
u(x, kF ). (31)

The total energy is

E = Ē +
∫

dd x
dd−1kF

(2π )d

|vF (kF )|
2

u2(x, kF ), (32)

where

vF := ∂kH (k) (33)

is the Fermi velocity and H (k) is the single fermion energy.
The equation of motion for the field u(x, kF ) is given by

(∂t + vF · ∂x)u(x, kF ) = 0. (34)
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Let us introduce a field φ(x, kF ) via

−nF · ∂xφ(x, kF ) = u(x, kF ), (35)

where

nF := vF

|vF | . (36)

The equation of motion for φ becomes

(∂t + vF · ∂x)[nF · ∂xφ(x, kF )] = 0 (37)

and the total energy becomes

E = Ē +
∫

dd x
dd−1kF

(2π )d

|vF (kF )|
2

[nF · ∂xφ(x, kF )]2. (38)

The phase-space Lagrangian that produces the above equation
of motion and total energy is given by

Lph =
∫

dd x
dd−1kF

(2π )d

{
−1

2
∂tφ(x, kF )nF · ∂xφ(x, kF )

− |vF (kF )|
2

[nF · ∂xφ(x, kF )]2

}
. (39)

Repeating a calculation similar to the 1D chiral Luttinger
liquid [27,28], we find that after quantization, the operator
φ(x, kF ) has the following commutation relation:

[φ(x′, k′
F ), nF · ∂xφ(x, kF )]

= −[φ(x′, k′
F ), u(x, kF )]

= − i (2π )dδd (x − x′)δd−1(kF − k′
F ), (40)

which reproduces the equation of motion,

∂tφ(x, kF , t ) = i [H, φ(x, kF , t )] = −vF · ∂xφ(x, kF , t ),

H =
∫

dd x
dd−1kF

(2π )d

|vF (kF )|
2

[nF · ∂xφ(x, kF )]2. (41)

We also see that

[N, φ(x, kF )] = − i , [N, e i φ(x,kF )] = e i φ(x,kF ). (42)

Thus, e i φ(x,kF ,t ) is the operator that increases N by 1, and the
U (1) symmetry transformation is given by

e i θNφ(x, kF )e− i θN = φ(x, kF ) + θ. (43)

We see that φ(x, kF ) is an angular field φ(x, kF ) ∼
φ(x, kF ) + 2π .

However, in Eq. (39), we only have terms that φ(x, kF )
couples to δN . In a complete Lagrangian, φ(x, kF ) must also
couple to ρ̄—the density of the U (1) charge in the ground
state. This consideration motivates us to propose the complete
phase-space Lagrangian to be

Lph =
∫

dd x
dd−1kF

(2π )d

{
ρ̄

AF
φ̇(x, kF )

− 1

2
φ̇(x,−kF )nF · ∂xφ(x, kF )

− 1

2
φ̇(x, kF )nF · ∂xφ(x, kF )

− |vF (kF )|
2

[nF · ∂xφ(x, kF )]2

}
, (44)

where

AF :=
∫

dd−1kF

(2π )d
, (45)

and we have assumed a central reflection symmetry kF →
−kF , i.e., vF (kF ) = −vF (−kF ) and nF (kF ) = −nF (−kF ).
The two terms, ρ̄

AF
φ̇(x, kF ) and∫

dd−1kF

(2π )d

1

2
φ̇(x,−kF )nF (kF ) · ∂xφ(x, kF ), (46)

are total derivative topological terms.
We know that the volume enclosed by the Fermi surface

is directly related to the fermion density ρ̄ [7,8]. Naively, in
our effective theory (44), the parameter ρ̄ and Fermi surface
kF are not related. In the following, we like to show that in
fact, ρ̄ and the Fermi surface kF are related, from within the
effective field theory (44).

Consider a field configuration

φ(x, kF ) = a · x

or nF · ∂xφ(x, kF ) = a · nF = u(x, kF ). (47)

There are two ways to compute the momentum for such a field
configuration.

In the first way, the total momentum is computed via the
deformation u(x, kF ) of the Fermi surface (assuming the total
momentum of the ground state to be zero),

ktot =
∫

dd x
dd−1kF

(2π )d
kF u(x, kF )

=
∫

dd x
dd−1kF

(2π )d
kF (a · nF ). (48)

Note that nF is the normal direction of the Fermi surface.
Therefore,

ktot =
∫

dd x
dd−1kF

(2π )d
kF (a · nF )

=
∫

dd x
∫

k∈kF +a

dd kF

(2π )d
k −

∫
dd x

∫
k∈kF

dd kF

(2π )d
k,

(49)

where
∫

k∈kF
dd kF means integration over k inside the Fermi

surface, and
∫

k∈kF +a dd kF means integration over k inside the
shifted Fermi surface (shifted by a). Let

VkF :=
∫

k∈kF

dd kF (50)

be the volume enclosed by the Fermi surface; we see that

ktot = V
VkF

(2π )d
a, (51)

where V is the volume of the system.
There is a second way to compute the total momentum

ktot. We consider a time-dependent translation of the above
configuration,

φ(x, kF ) = a · [x + x0(t )]. (52)

The effective phase-space Lagrangian for x0(t ) is given by

Lph = V ρ̄a · ẋ0(t ). (53)
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FIG. 3. The total momentum distributions for low-energy many-
body states for a 2D Fermi liquid, with one-particle excitations
(left, red channel), two-particle one-hole excitations (left, green
channel), one-particle one-hole excitations (right, red channel), and
two-particle two-hole excitations (right, green channel). The hori-
zontal axis is kx and the vertical axis is ky. The shift of the momentum
distributions by the U (1) symmetry twist reflects the mixed anomaly
in U (1) × Rd symmetry.

We see that V ρ̄a is the canonical momentum of the translation
x0. Thus, the total momentum of the configuration is

ktot = V ρ̄a. (54)

Comparing Eq. (51) and Eq. (54), we see that the volume
included by the Fermi surface and the fermion density is
related,

VkF

(2π )d
= ρ̄. (55)

This is the Luttinger theorem.

B. The mixed anomaly in U (1) × Rd symmetry

As we have pointed out, the topological term∫
dd x dd−1kF

(2π )d [ ρ̄

AF
∂tφ(x, kF )] represents a mixed anomaly

of U (1) × Rd symmetry. To see this point, we note that
a in Eq. (47) can be viewed as the U (1) symmetry twist.
The fact that the U (1) symmetry twist can induce the Rd

quantum number (i.e., the momentum) reflects the presence
of the mixed anomaly of U (1) × Rd symmetry. Equation
(55) indicates that the mixed anomaly can constrain the
low-energy dynamics, and in this case determines the volume
enclosed by the Fermi surface.

In the above, we discussed how the U (1) symmetry
twist shifts the total momentum of a particular low-energy
many-body state. However, in practice, we cannot pick
a particular low-energy many-body state and see how its
momentum is shifted by the U (1) symmetry twist. What
can be done is to examine all the low-energy many-body
states and their total momentum distribution. The shift of
the total momentum distribution by the U (1) symmetry
twist measures the mixed U (1) × Rd anomaly. In Fig. 3,
we plot the total momentum distributions for low-energy
many-body states, with one-particle excitations, two-particle
one-hole excitations, one-particle one-hole excitations, and
two-particle two-hole excitations.

The mixed anomaly not only appears in Fermi-liquid
phases of fermions, but also appears in any other phases of

fermions. Thus the mixed anomaly constrains the low-energy
dynamics in any of those phases. In the next section, we
consider a fermion phase where the fermions pair up to form
a boson liquid in d-dimensional space.

C. Effective theory of a Fermi liquid in most general setting

In Sec. IV A, we considered a Fermi liquid in free space.
In this section, we like to include an electromagnetic field in
real space, as well as a magnetic field in k space. We like to
find the low-energy effective theory of a Fermi liquid for this
more general situation.

First we consider the dynamics of a single particle in a
very general setting. The classical state of the particle is
described by a point in phase space parametrized by ξ I .
The single-particle dynamics is described by a single-particle
phase-space Lagrangian,

L(ξ̇ I , ξ I ) =
∫

dt [aI (ξ I )ξ̇ I − H (ξ I )], (56)

which gives rise to the following single-particle equation of
motion:

bIJ ξ̇
J = ∂H

∂ξ I
, bIJ = ∂ξ I aJ − ∂ξ J aI . (57)

Here, H (ξ I ) is the single-particle energy for the state ξ I ,
and aI (ξ I ) is a phase-space vector potential that describes
the phase “magnetic” field bIJ (ξ I ). The phase-space magnetic
field includes both the real space magnetic field and the k-
space magnetic field [20–22].

For a particle in a d-dimensional free space described by
coordinate-momentum pair (x, k) = (xi, ki ), i = 1, . . . , d , the
phase-space magnetic field bIJ (ξ I ) is a constant (i.e., indepen-
dent of ξ I ), since aI (ξ I )ξ̇ I = k · ẋ (i.e., axi = ki, aki = 0). On
the other hand, if there is a nonuniform real space and/or k-
space magnetic fields, the phase-space magnetic field bIJ (ξ I )
will not be uniform.

As an example, let us consider a particle in three-
dimensional space. The phase space is six dimensional and is
parametrized by (ξ I ) = (x, k). The phase-space Lagrangian is
given by

L = [k · ẋ + A(x) · ẋ + ˜A(k) · k̇] − H (k) − V (x). (58)

Here, A(x) is the real space vector potential for the electro-
magnetic field that only depends on x. ˜A(k) is the k-space
vector potential that is assumed to depend only on k. Such a
k-space vector potential can appear for an electron in a crystal
with spin orbital couplings. The corresponding equation of
motion is given by

k̇i = −∂V

∂xi
+ Bi j ẋ

j, ẋi = ∂H

∂ki
− B̃i j k̇ j,

or k̇ = −∂V

∂x
+ ẋ × B, ẋ = ∂H

∂k
− k̇ × B̃, (59)

where

Bi j = ∂xi A j − ∂x j Ai, B̃i j = ∂ki Ã
j − ∂k j Ã

i,

or B = ∂x × A, B̃ = ∂k × Ã. (60)
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Now consider a many-fermion system which is described
by a particle-number distribution g(ξ I ). The meaning of the
distribution g(ξ I ) is given by

dN = g(ξ I )Pf[b(ξ I )]
d2dξ I

(2π )d
, (61)

where dN is the number of fermions in the phase-space
volume d2dξ I , and Pf[b(ξ I )] is the Pfaffian of the 2d × 2d
antisymmetric matrix,

[b(ξ I )]IJ = bIJ (ξ I ). (62)

In fact, g(ξ I ) have a meaning as the occupation number per
orbital since the number of orbitals (i.e., the single-particle
quantum states) in the phase-space volume d2dξ I is given by
Pf[b(ξ I )] d2d ξ I

(2π )d .
The above interpretation is correct since under the time

evolution (57), the scaled phase-space volume Pf[b(ξ I )] d2d ξ I

(2π )d

is time independent, which corresponds to the unitary time
evolution in quantum theory. To show such a result, we first
choose a phase-space coordinate such that bIJ is uniform in
the phase space. In this case, the time evolution ξ̇ I is de-
scribed by a divergentless vector field, ∂H

∂ξ I , in the phase space,

and the phase-space volume d2dξ I is time independent. We
note that the phase-space volume given by the combination
Pf[b(ξ I )] d2d ξ I

(2π )b is invariant under the coordinate transforma-
tion. Such an invariant combination is invariant under the time
evolution (57) for a general coordinate since the equation of
motion is covariant under the coordinate transformation. We
see that the phase space has a symplectic geometry.

For our example (58), the 6 × 6 matrix bIJ is given by

(bIJ ) =
(

Bi j δi j

−δi j B̃i j

)
. (63)

We find that

Pf(b) = Pf

(
Bi j δi j

−δi j B̃i j

)
= Pf(B, B̃) = 1 + Bi jB̃

ji + O(BikB̃k j )2. (64)

The effective theory for the Fermi liquid in such a general
setting is simply a hydrodynamical theory for an incompress-
ible fluid in the phase space. In the following, we will present
such a theory for small fluctuations near the ground state.
First, the ground state of the Fermi liquid is described by the
following distribution (or phase-space density):

ḡ(ξ I ) =
{

1 for H (ξ I ) < 0

0 for H (ξ I ) > 0.
(65)

The generalized Fermi surface is the (2d − 1)-dimensional
submanifold in the phase space where ḡ(ξ I ) has a jump.
A many-body collective excitation is described by another
incompressible distribution g(ξ I ) = 0, 1. For low-energy col-
lective excitations near the ground state, we may describe
such an incompressible distribution via the displacement of
the generalized Fermi surface,

u
(
ξ I

F

) =
√∑

I

(�ξ I )2, (66)

where ξ I
F parametrize the (2d − 1)-dimensional generalized

Fermi surface, and �ξ I describe the shift of the generalized
Fermi surface in the normal direction.

Let us introduce an integration over the generalized Fermi
surface,∫

Pf[b(ξ I )]
d2d−1ξF

(2π )d
:=

∫
Pf[b(ξ I )]

d2dξ

(2π )d
|∂ξ I ḡ|. (67)

The number of fermions in the collective excited state de-
scribed by u(ξ I ) is given by

N =
∫

Pf(b)
d2dξ

(2π )d
g(ξ I )

= N̄ +
∫

Pf(b)
d2d−1ξF

(2π )d
u
(
ξ I

F

)
. (68)

The energy of the collective excited state is given by

E = Ē +
∫

Pf(b)
d2d−1ξF

(2π )d

1

2
|h.|u2

(
ξ I

F

)
, (69)

where

hI := ∂ξ I H, |h.| :=
√∑

I

h2
I . (70)

The equation of motion of u(ξ I
F , t ) can be obtained in two

ways. First, we note that |hI |u is the single-particle energy,
which is invariant under the single-particle time evolution
ξ I

F (t ) that satisfies the single-particle equation of motion (57).
Thus,

d

dt
|h.|u

(
ξ I

F (t ), t
) = 0. (71)

This allows us to obtain the equation of motion for the u(ξ I
F , t )

field using the single-particle equation of motion (57),(
∂t + hI

(
ξ I

F

)
∂ξ I

)|h.|
(
ξ I

F

)
u
(
ξ I

F , t
) = 0, (72)

where

hI = bIJhJ , (73)

and the repeated index J is summed. Here, bIJ is the matrix
inversion of of bIJ :

bIJbJK = δIK . (74)

Second, we note that Pf(b)u is the density of fermions on
the generalized Fermi surface [see Eq. (68)]. The correspond-
ing current density is given by hI Pf(b)u since ξ̇ I = hI [see
Eq. (57)]. The fermion conservation gives us another equation
of motion for u(ξ I

F , t ),

∂t Pf
[
b
(
ξ I

F

)]
u
(
ξ I

F , t
) + ∂ξ I

{
hI

(
ξ I

F

)
Pf

[
b
(
ξ I

F

)]
u
(
ξ I

F , t
)} = 0.

(75)

Since the single-particle dynamics leads to the two equations,
they must be consistent. This requires that

|h.|(∂t + ∂ξ I hI )Pf(b)u = Pf(b)(∂t + hI∂ξ I )|h.|u. (76)

In other words, hI , |h.|, and Pf(b) are related and they satisfy

|h.|
Pf(b)

(∂t + ∂ξ I hI )
Pf(b)

|h.| = ∂t + hI∂ξ I . (77)
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Let us introduce a scalar field φ(ξ I
F , t ) via

−|h.|−1hI∂ξ I
F
φ
(
ξ I

F , t
) = u

(
ξ I

F , t
)
. (78)

The equation of motion for φ is given by

(∂t + hI∂ξ I )hJ∂ξ I
F
φ = 0, (79)

which can be simplified further as

(∂t + hI∂ξ I )φ = 0 (80)

since hI (ξ I
F ) does not depend on time.

The above equation of motion and the expression of
total energy (69) allow us to determine the phase-space
Lagrangian,

Lph = −
∫

d2d−1ξF

(2π )d

Pf(b)

2|h.|
(
φ̇hI∂ξ I

F
φ + [

hI∂ξ I
F
φ
]2)

, (81)

up to total derivative topological terms.
To include topological terms, we assume a symmetry de-

scribed by a map in phase space,

ξ I → ξ̄ I , hI (ξ I ) = −hI (ξ̄ I ), (82)

which generalize the kF → −kF symmetry used before. The
phase-space Lagrangian can now be written as

Lph =
∫

d2d−1ξF

(2π )d

(
N̄

VAF
φ̇(ξ I , t ) − Pf[b(ξ I )]

2|h.(ξ I )|
× {

φ̇(ξ̄ I , t )hI (ξ I )∂ξ I
F
φ(ξ I , t ) + φ̇(ξ I , t )hI (ξ I )

× ∂ξ I
F
φ(ξ I , t ) + [

hI (ξ I )∂ξ I
F
φ(ξ I , t )

]2})
, (83)

where N̄ is the number of fermions in the ground state, and

VAF =
∫

d2d−1ξF

(2π )d
1 (84)

is the total volume of the generalized Fermi surface.

From the first three terms in Eq. (83), we see that φ̇(ξ I , t )
directly couples to the total density of the fermions,

N =
∫

d2d−1ξF

(2π )d

{
N̄

VAF
− Pf[b(ξ I )]

2|h.(ξ I )|
[
hI (ξ I )∂ξ I

F
φ(ξ I , t )

− hI (ξ I )∂ξ̄ I
F
φ(ξ̄ I , t )

]}
. (85)

In particular, the uniform part of φ̇(ξ I , t ) couples to total
number of fermions,

Lph = N φ̇uniform(t ) + · · · . (86)

This indicates that φ ∼ φ + 2π is an angular field, and the
U (1) transformation is given by

φ(ξ I , t ) → φ(ξ I , t ) + θ. (87)

D. Effective theory for a Fermi liquid with real space
and k-space magnetic fields

Now, let us apply the above formalism to develop the
low-energy effective theory of a Fermi liquid, for three-
dimensional fermions with real space magnetic field A(x)
and k-space magnetic field Ã(k). The dynamics of a single
fermion is described by Eq. (58) (with V = 0). We have

(hI ) = (0, vF ), |h.| = |vF |, vF := ∂kH,

(hI ) = (̃vF , f ), Pf(b) = 1 − 2B · B̃ + · · · ,

ṽF = vF − (vF × B) × B̃ + · · · , f := vF × B + · · · .

(88)

Here, f = k̇ has a physical meaning as the force acting on
each fermion. ṽF = ẋ has a physical meaning as the velocity
of each fermion. When Ã �= 0, the velocity of a fermion at the
Fermi surface is not given by vF = ∂kH . ṽF is also called the
anomalous velocity [21].

By substituting the above into Eq. (83), we obtain

Lph =
∫

dd x
dd−1kF

(2π )d

{
ρ̄

AF
φ̇(x, kF ) − Pf(b)φ̇(x,−kF )

2|vF |
(̃
vF · ∂x + f · ∂kF

)
φ(x, kF , t ) − Pf(b)φ̇(x, kF )

2|vF |
(̃
vF · ∂x + f · ∂kF

)

× φ(x, kF , t ) − Pf(b)

2|vF |
[(̃

vF · ∂x + f · ∂kF

)
φ(x, kF , t )

]2

}
−

∫
dd x

dd−1kF

(2π )d

dd−1k′
F

(2π )d

Pf(b)Pf(b′)V (kF , k′
F )

2|vF ||v′
F |

× [(̃
vF · ∂x + f · ∂kF

)
φ(x, kF , t )

][(̃
v′

F · ∂x + f ′ · ∂kF

)
φ(x, k′

F , t )
]
. (89)

Up to first order in B and B̃, the above can be simplified as

Lph =
∫

dd x
dd−1kF

(2π )d

{
ρ̄

AF
φ̇(x, kF ) − φ̇(x,−kF )

2|vF |
(
vF · ∂x + f · ∂kF

)
φ(x, kF , t ) − φ̇(x, kF )

2|vF |
(
vF · ∂x + f · ∂kF

)
φ(x, kF , t )

− 1

2|vF |
[(

vF · ∂x + f · ∂kF

)
φ(x, kF , t )

]2

}
−

∫
dd x

dd−1kF

(2π )d

dd−1k′
F

(2π )d

V (kF , k′
F )

2|vF ||v′
F |

× [(
vF · ∂x + f · ∂kF

)
φ(x, kF , t )

][(
v′

F · ∂x + f ′ · ∂kF

)
φ(x, k′

F , t )
]
. (90)
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Here, we have assumed a central reflection symmetry k →
−k, and the mapping ξ I → ξ̄ I is given by (x, k) → (x,−k).
We also included the interaction term for the Fermi surface
fluctuations, the V (kF , k′

F ) term, where vF , v′
F are the Fermi

velocities at kF , k′
F .

Note that the fermion density at the Fermi surface kF is
given by [see Eq. (78)]

u(x, kF ) = − vF

|vF | · ∂xφ(x, kF , t ) − f
|vF | · ∂kF φ(x, kF , t ),

(91)

and thus the total fermion number density is given by

ρ = ρ̄ −
∫

dd−1kF

(2π )d

(
vF

|vF | · ∂xφ + f
|vF | · ∂kF φ

)
. (92)

This expression helps us to understand why the interaction
term for the Fermi surface fluctuations has a form given in
Eq. (90).

The above expression also allows us to see that φ̇(x, kF )
couples to the total fermion density [see the first three terms
in Eq. (90)]. Thus, φ(x, kF ) ∼ φ(x, kF ) + 2π is an angular
field and the U (1) symmetry transformation is given by

φ(x, kF ) → φ(x, kF ) + θ. (93)

Equation (77) now becomes (to the first order in B and B̃)

∂x · vF + ∂kF · f = |vF |−1
(
vF · ∂x + f · ∂kF

)|vF |. (94)

This will help us to compute the equation of motion for the φ

field. The resulting equation of motion is given by [written in
terms of u(x, kF , t )]

(
∂t + vF · ∂x + f · ∂kF

)|vF |u(x, kF , t ) + (
vF · ∂x + f · ∂kF

) ∫
dd−1k′

F

(2π )d
V (kF , k′

F )u(x, k′
F , t ) = 0. (95)

The above is the Boltzmann equation, which can be used to compute the transport properties after adding the collision terms. In
terms of φ(x, kF , t ), we have(

∂t + vF · ∂x + f · ∂kF

)
φ(x, kF , t ) +

∫
dd−1k′

F

(2π )d

V (kF , k′
F )

|v′
F |

[
v′

F · ∂xφ(x, k′
F , t ) + f ′ · ∂kF φ(x, k′

F , t )
] = 0. (96)

The above equations of motion are valid only to the first order in B and B̃. The exact equations of motion, in several different
forms, are given by(

∂t + ∂x · ṽF + ∂kF · f
)
Pf(b)u(x, kF , t ) + Pf(b)

(
ṽF

|vF | · ∂x + f
|vF | · ∂kF

)∫
dd−1k′

F

(2π )d
Pf(b′)V (kF , k′

F )u(x, k′
F , t ) = 0,

(
∂t + ṽF · ∂x + f · ∂kF

)|vF |u(x, kF , t ) + (̃
vF · ∂x + f · ∂kF

) ∫
dd−1k′

F

(2π )d
Pf(b′)V (kF , k′

F )u(x, k′
F , t ) = 0,

(
∂t + ṽF · ∂x + f · ∂kF

)
φ(x, kF , t ) +

∫
dd−1k′

F

(2π )d

Pf(b′)
|v′

F | V (kF , k′
F )

[
v′

F · ∂xφ(x, k′
F , t ) + f ′ · ∂kF φ(x, k′

F , t )
] = 0. (97)

E. Emergent U∞(1) symmetry

From the effective theory (89), we see that when there is
no real space magnetic field B = 0, we have f = 0 and the
effective theory has a U ∞(1) symmetry generated by

φ(x, kF ) → φ(x, kF ) + θ (kF ), (98)

where θ (kF ) can be any function of kF . This is the so-called
emergent U ∞(1) symmetry, which is a key character of Fermi
liquid [1–4,23]. We also see that the above transformation is
no longer a symmetry in the presence of real space magnetic
field B �= 0. This may be related to the anomaly in the emer-
gent U ∞(1) symmetry discussed in Ref. [23].

V. FERMION-PAIR LIQUID AND THE MIXED
U (1) × Rd ANOMALY

In this section, we are going to consider a fermion system
in d-dimensional continuous space, with U (1) particle-

number-conservation symmetry and Rd translation symmetry.
We assume the space to have a size L1 × L2 × · · · × Ld and a
periodic boundary condition. We will compute the distribution
of the total momentum for many-body low-energy excitations
ktot, and how such a distribution depends on the U (1) symme-
try twist described by a constant vector potential a.

Using the results from the Appendix, we find that the low-
energy effective theory is described by the following phase-
space Lagrangian [see Eq. (A14)]:

L =
∫

dd x
[
ρ̄pφ̇p(x, t ) + δρp(x, t )φ̇p(x, t )

− ρ̄

2Mp
|∂φp|2 − g

2
δρ2

p + · · ·
]
, (99)

where ρ̄p = 1
2 ρ̄ is the fermion-pair density in the ground

state, and φp ∼ φp + 2π is the angular field for the fermion
pair. The total energy and total crystal momentum of those
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excitations are given by

E = N̄p

2Mp

∑
μ

(
mμ

Lμ

+ 2aμ

)2

+
∑
k �=0

(
nk + 1

2

)
v|k|,

ktot = Np

∑
μ

(
mμ

Lμ

+ 2aμ

)
x̂μ +

∑
k �=0

nkk. (100)

We see that the U (1) symmetry twist a induces a change in
the total momentum,

ktot = 2Npa = 2ρ̄paV = ρ̄aV. (101)

Such momentum dependence of the U (1) symmetry twist
a reflects the mixed U (1) × Rd anomaly. Equations (101)
and (54) are identical, implying the identical mixed anomaly,
which is captured by the topological term

∫
dd x [ρ̄pφ̇p(x, t )].

The mixed anomaly can also be measured by the periodic-
ity k0μ in the distribution of ktot, and the periodicity �N = 2
in the distribution of N , for the low-energy excitations. The
period in the μ direction times �N is

�Nk0μ = 2
Np

Lμ

= N

Lμ

. (102)

The periodicities k0μ and �N are universal low-energy prop-
erties of the fermion-pair gapless phase. Their product �Nk0μ

is even more robust since it is invariant even across any phase
transitions, and thus corresponds to an anomaly.

For the gapless state formed by four-fermion bound states,
the periodicities will be

k0μ = 1

4

N

Lμ

, �N = 4. (103)

Their product is still �Nk0μ = N
Lμ

.
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APPENDIX: DYNAMICAL VARIATIONAL APPROACH
AND LOW-ENERGY EFFECTIVE THEORY

1. Coherent state approach

A quantum state is described by a complex vector,

|ψ〉 =
⎛⎝ψ1

ψ2
...

⎞⎠,

in a Hilbert state, with inner product

〈φ|ψ〉 =
∑

n

φ∗
nψn. (A1)

The motion of a quantum state is described by the time de-
pendent vector |ψ (t )〉, which satisfies an equation of motion

(called the Schrödinger equation) with only a first order time
derivative,

i
d

dt
|ψ (t )〉 = Ĥ |ψ (t )〉, (A2)

where the Hermitian operator Ĥ is the Hamiltonian.
The Schrödinger equation (A2) also has a phase-space

Lagrangian description. If we choose the Lagrangian L to be

L

(
d

dt
|ψ〉, |ψ〉

)
= 〈ψ (t )| i d

dt
− Ĥ |ψ (t )〉

= iψ∗
n (t )ψ̇n(t ) − ψ∗

m(t )Hmnψn(t ), (A3)

then the action S = ∫
dt L( d

dt |ψ〉, |ψ〉) will be a functional
for the paths |ψ (t )〉 in the Hilbert space. The stationary paths
|ψsta(t )〉 of the action will correspond to the solutions of the
Schrödinger equation. Since the Schrödinger equation can be
derived from the Lagrangian, we can say that the Lagrangian
L( d

dt |ψ〉, |ψ〉) provides a complete description of a quantum
system.

In the variational approach to the ground state, we consider
a variational state |ψξ i〉 that depends on variational parameters
ξ i. We then found an approximation of the ground state |ψξ̄ i〉
by choosing ξ̄ i that minimize the average energy,

H̄ (ξ i ) = 〈ψξ i |Ĥ |ψξ i〉. (A4)

If we choose the variational parameters ξ i properly, the
low-energy excitations are also described by the fluctuations
of variational parameters. In other words, the dynamics of the
variational parameters ξ i describe the low-energy excitations.
This leads to a dynamical variational approach (or coherent
state approach) that gives us a description of both ground state
and low-energy excitations.

The dynamics of the full quantum system is described
by the phase-space Lagrangian L = 〈ψ | i d

dt − Ĥ |ψ〉. The dy-
namics of the variational parameters is described by the
evolution of the quantum states in a submanifold of the total
Hilbert space, given by the variational states |ψξ i〉. Here we
want to obtain the dynamics of the quantum states, restricted
to the submanifold parametrized by ξ i. Such a dynamics is
described by the same phase-space Lagrangian restricted in
the submanifold,

L(ξ̇ i, ξ i ) = 〈ψξ i (t )| i
d

dt
− Ĥ |ψξ i (t )〉 = ai(ξ

i)ξ̇ i − H̄ (ξ i),

(A5)
where

ai = i 〈ψξ i | ∂

∂ξ i
|ψξ i〉, H̄ (ξ i ) = 〈ψξ i |Ĥ |ψξ i〉. (A6)

The resulting equation of motion is given by

bi j ξ̇
j = ∂H̄

∂ξ i
, bi j = ∂ia j − ∂ jai, (A7)

which describes the classical motion of ξ i.
The above phase-space Lagrangian actually only describes

the classical dynamics of the variables ξ i. To obtain the
low-energy effective theory for the quantum dynamics of the
variables ξ i, we need to quantize the phase-space Lagrangian
(A5) to obtain the low-energy effective Hilbert space Heff

and the low-energy effective Hamiltonian Heff acting with
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Heff. Roughly, the low-energy effective Hilbert space Heff is a
representation of the operator’s algebra,

i [ξ̂ i, ξ̂ j] = bi j (ξ̂ i ), (A8)

where bi j is the inverse of bi j : bi jbjk = δik . The low-energy
effective Hamiltonian is given by

Heff = H̄ (ξ̂ i). (A9)

Let us use the above approach to describe a hardcore boson
on a single site. The total Hilbert space is two dimensional,
spanned by |0〉 (no boson) and |1〉 (one boson). The coherent
state is described by a unit vector n = (nx, ny, nz ) ∈ S2. We
may also use θ, φ to describe n:

nx(θ, φ) = cos φ sin θ,

nx(θ, φ) = sin φ sin θ,

nz(θ, φ) = cos θ. (A10)

We can choose the coherent state to be

|n(θ, φ)〉 =
(

cos θ
2

e− i φ sin θ
2

)
. (A11)

The phase-space Lagrangian to describe the classical dynam-
ics of θ, φ is given by

L = sin2 θ

2
φ̇ − H̄ (θ, φ)

= ρφ̇ − H̄ (ρ, φ), ρ ≡ 1 − nz

2
= sin2 θ

2
. (A12)

We will use (ρ, φ) to parametrize the phase space, where
ρ ∈ [0, 1] has a physical meaning, being the average number
of bosons on the site. Here we stress that (ρ, φ) parametrize
S2. Quantizing the above classical phase-space Lagrangian,
we suppose to obtain a quantum system with Hilbert space
H = span(|0〉, |1〉).

2. Low-energy effective theory of bosonic superfluid phase

Using the above result, we obtain the following low-energy
effective theory for interacting bosons in a d-dimensional
cubic lattice with periodic boundary condition, whose sites
are labeled by i:

L =
∑

i

ρiφ̇i − H̄ (ρi, φi ), (A13)

where φi ∼ φi + 2π is an angular variable. If we assume ρi, φi

to have a smooth dependence on the space coordinate x ∼ i,
the above can be rewritten as a field theory,

L =
∫

dd x
[
ρ̄φ̇(x, t ) + δρ(x, t )φ̇(x, t )

− ρ̄

2m
|∂φ|2 − g

2
δρ2 + · · ·

]
, (A14)

where we have assumed that H̄ (ρ, φ) is minimized as ρ = ρ̄,
which corresponds to the average number of bosons per site.

To quantize the above low-energy effective theory, we ex-
pand to

δρ = ρ0 +
∑
k �=0

ρk
e i k·x

Ld/2
,

(A15)

φ = φ0 + 2π
m · x

L
+

∑
k �=0

φk
e i k·x

Ld/2
,

where L is the size of the cubic lattice. The k �= 0 modes
give rise to a collection of quantum oscillators after quanti-
zation. ρ0, φ0, m describe the k = 0 mode, where the integer
vector m = (m1, . . . , md ) describes the winding numbers of
the phase φ. The effective Lagrangian for the k = 0 modes is
given by

L0 =
[

Ld ρ̄φ̇0 + Ldρ0φ̇0 − ρ̄Ld−2

2m
(2πm)2 − Ld g

2
ρ2

0

]
.

(A16)

After quantization, the k = 0 mode describes a particle on a
ring with Ld ρ̄ flux through the ring. Let L̂z ∼ Ld (ρ̄ + ρ0) be
the angular operator of the quantized particle. After quantiza-
tion, the Hamiltonian is given by

Ĥ0 = ρ̄Ld−2

2m
(2πm)2 + g

2Ld
(L̂z − Ld ρ̄)2. (A17)

The many-body low-energy excitations are labeled by
(m, N, nk �=0), where integer N is the eigenvalues of L̂z (the
total number of bosons) and integer nk �=0 is the number of
excited phonons for the k mode. The total energy and the total
crystal momentum are given by

E = N̄
(2πm)2/L2

2m
+ g

2

(N − N̄ )2

Ld
+

∑
k �=0

(
nk + 1

2

)
v|k|2,

ktot =
∫

dd x (ρ̄ + δρ)∂φ = N
2πm

L
+

∑
k �=0

nkk, (A18)

where the phonon velocity v =
√

gρ̄
m , and N̄ ≡ Ld ρ̄0.

The above results are very standard, except that we
carefully keep the topological term ρ̄(x, t )φ̇(x, t ) in the
Lagrangian. Our quantum system has U (1) particle-number-
conservation symmetry and Zd lattice translation symmetry.
In the continuum field theory (A14), we take the limit of zero
lattice spacing. In this case, both the U (1) and Zd symmetries
are internal symmetries of the field theory. It turns out that the
U (1) × Zd symmetry has a mixed ’t Hooft anomaly when ρ̄

is not an integer, which constrains the low-energy dynamics
of the interacting bosons.
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