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Massive photon propagator in the presence of axionic fluctuations
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The theory of massive photons in the presence of axions is studied as the effective theory describing the
electromagnetic response of semimetals when a particular quartic fermionic pairing perturbation triggers the
formation of charged chiral condensates, giving rise to an axionic superconductor. We investigate corrections
to the Yukawa-like potential mediated by massive photons due to axion excitations up to one-loop order and
compute the modifications of the London penetration length.

DOI: 10.1103/PhysRevB.103.165120

I. INTRODUCTION

The origin of axion physics can be traced to the existence
of the quark chiral condensate in QCD. Chiral spontaneous
symmetry breaking leads to the naive prediction of certain
quasi-Goldstone bosons associated with the U (1) chiral sym-
metry that does not materialize in observations [1]. ’t Hooft
[2–4] was able to explain away these spurious particles ob-
serving that the chiral anomaly could lead to an explicit
symmetry breaking (as opposed to spontaneous) due to instan-
ton contributions, thus solving the U (1) problem. But, once
instantons are considered, one has to deal with the ensuing vi-
olation of parity P and time-reversal T symmetries associated
with the θ term ≈ θ F̃F . The lack of observational proof of
these symmetry violations in QCD experiments is historically
known as the strong CP problem since charge conjugation
C is preserved. In order to make sense of this, one has to
fine tune the offending θ parameter to be sufficiently small.
A solution to this undesirable fine tuning was proposed by
Peccei and Quinn in [5,6] (see [7] for a review) that promoted
the parameter θ to a dynamical field introducing an associated
Abelian global symmetry, dubbed U (1)PQ by Weinberg [8],
and a new particle, a pseudoscalar named an axion by Wilczek
[9]. Since then there have been many investigations, both
theoretically and experimentally [10,11], of this hypotheti-
cal particle. Even though the original axion construction of
Peccei-Quinn-Weinberg-Wilczek is ruled out by experiments
there have been other constructions demanding different extra
fields such as the “invisible axion” models that are still alive
as viable options [12–14]. Axion physics has been revisited
time and again over the years upon the expectation that it can
serve as a good description of a variety of phenomena. Most
notably it has been associated with a promising candidate
for dark matter components having relevant contributions to
cosmology (see [15] for a review).
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Theories constructed with axionlike particles have some
“universal” properties due to their unique coupling with the
gauge fields. For example, P and T symmetry breaking and
the sensibility to the topological structure of gauge fields,
exemplified by instantons in the QCD context, make it clear
that this kind of coupling is bound to show up in effective
field theories that share these properties. Another aspect of
this is the fact that an axionlike particle will couple to any
gauge field with respect to which the anomalous fermions
have charge, since this is a consequence of the chiral trans-
formation of the integration measure (Fujikawa method).
In QCD, for instance, axions couple with the gluon fields
and also with the electromagnetic field, since quarks are
electrically charged. This gave rise to the study of axion
electrodynamics phenomenology [16] leading to some in-
teresting insights about deformations in the electromagnetic
wave propagation as a source for detection of astrophysics
signature of axions. Recently, a whole new avenue for in-
vestigations was opened stemming from the discovery of
topological materials [17–20]. Most of these materials dis-
play a nontrivial response under P and T transformation.
Also, effective emergent chiral symmetries appear in their
mathematical modeling, which has been shown to lead to
the unavoidable introduction of effective axionlike excita-
tions. The curious behavior of axion electrodynamics [16]
has encountered numerous applications in condensed matter
phenomenology of topological materials, playing an impor-
tant role in the effective description of the electromagnetic
response in those systems, where axionic couplings have ap-
peared in many guises.

The preceding discussion led us to believe that it is nec-
essary to investigate further the interplay between axionlike
excitations and gauge field dynamics. To this end, we will
focus on the phenomenology of topological superconductors
by constructing an effective theory in a Dirac semimetal with
quartic interaction. The result is an Abelian Proca field theory
with axionlike interaction. We will study the resulting modifi-
cations in the propagation of the massive vector particle when
subject to axionlike fluctuations by computing the one-loop
corrections to the two-point function of the Proca field.
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This paper is organized as follows: In Sec. II we moti-
vate the model by relating it to an effective description of a
superconductor obtained by perturbing a Dirac semimetal
with a four fermion interaction. In Sec. III we define our
notation and the action of the model with all its coefficients
and renormalization factors. This will set the stage for the
discussion of the (massive) photon self-energy in Sec. IV.
In Sec. V we present our main results concerning the modi-
fied Yukawa potential between static charges induced by the
axion dynamics. The analysis of the results is discussed in
Sec. VI; the limit of large relative masses, and the connection
with the phenomenology of London’s length, are examined as
well. Finally, in Sec. VII we present our conclusions, and the
Appendices provide some details of the computation.

II. A SUPERCONDUCTING MODEL FROM SEMIMETALS

The introduction of axionlike interaction for the effective
electromagnetic description of topological materials was de-
veloped in [21] for the case of topological insulators. The
nontrivial phenomenology originates from a spacetime depen-
dent axionlike field, as can be seen from the modified Maxwell
equations

∇ · E = ρ − e2

4π2
∇θ · B, (1a)

∇ × B = j + ∂E
∂t

+ e2

4π2

(
∇θ × E + ∂θ

∂t
B

)
, (1b)

∇ · B = 0, (1c)

∇ × E = −∂B
∂t

. (1d)

Here, a normal insulator is characterized by θ = 0 (mod 2π )
while a topological time-reversal invariant insulator is de-
scribed by having θ = π (mod 2π ). The interface between
these two phases must be a smooth transition between the two
defining values of θ , so one expects a spacetime varying axion
field interpolating between zero and π where the dynamics are
described by axion-Maxwell electromagnetism (1). This set-
ting describes various phenomena, e.g., a constant magnetic
field leads to a charge density proportional to the applied field.
Also, there is the possibility of currents with components per-
pendicular to an applied external electric field (quantum Hall
effect [22]) and parallel to an external magnetic one (chiral
magnetic effect [23]), both with a quantized proportionality
coefficient.

Axionlike terms are also relevant for the description of
Weyl semimetals [24,25], i.e., systems the band structure of
which intercepts at two or more points in momenta space
around which a linear dispersion approximation is valid.
This description leads to fermionic excitations with a definite
helicity, that is, projection of the spin along the momentum di-
rection, thus defining Weyl fermions. Helicity coincides with
chirality for massless fermions and the chirality of these exci-
tations is measurable by the flux of the Berry curvature in the
Brillouin zone. Furthermore, for topological reasons, the total
flux must be zero inside a Brillouin zone (Nielsen-Ninomyia
theorem [26,27]), which explains why Weyl fermions always
appear in pairs of opposite chirality. When two Weyl fermions
are at the same point in momentum space, they build up

a Dirac fermion, which arises, for example, in the descrip-
tion of the electronic structure of graphene (a type of Dirac
semimetal). Experimental investigations of Weyl metals have
been undertaken. It was shown, for instance, in [28] that Weyl
fermions appear in Bix−1Sbx near the critical point of the
topological phase transition when magnetic fields are applied.

An interesting setting occurs when two Weyl points are
separated in momentum and energy but are close to the Fermi
surface. The theoretical description of this situation can be
conveniently expressed by a Dirac action where the right and

left Weyl modes are arranged on a Dirac spinor ψ = (ψL
ψR

) with

ψ̄ = ψ†γ 0 = (ψ†
R ψ

†
L ),

S =
∫

d4xψ̄ (x)[i/∂ + /bγ 5 + ie/A(x)]ψ (x), (2)

and an interaction with an external electromagnetic gauge
potential Aμ was also included. The four-vector bμ is constant
and represents the separation in the energy-momentum space
of the Weyl points. Chirality of the Weyl components means

that γ 5(ψL
ψR

) = (−ψL
ψR

) and thus one can clearly note in (2) that

left-handed and right-handed fermions are shifted in opposing
directions along bμ in energy-momentum space. As described
in detail in [29], one can eliminate bμ by performing a (local)
chiral transformation

ψ (x) → ei 1
2 θ0(x)γ 5

ψ (x) (3)

with θ0(x) = 2bμxμ. This is, of course, not a symmetry of the
action, but just a change in the fermionic variables. In the
quantum path-integral formulation, this transformation gives
rise to a nontrivial contribution from the Jacobian of the
fermionic integration measure, well known from the chiral
anomaly. Thus the effective action for the electromagnetic
response becomes

S → e2

32π2

∫
d4xθ0(x)εμνρσ FμνFρσ − i ln det [i/∂ + ie/A(x)],

(4)

where Fμν = ∂μAν − ∂νAμ. So, in essence, the Weyl
semimetal system naturally displays an axionlike term that
encodes the energy-momentum separation of the Weyl nodes.
This term is responsible for the phenomenology described by
Eqs. (1). In this particular setting, the axionlike field has linear
spacetime dependency that leads to a constant external four-
vector that was thoroughly studied in the context of Lorentz
violating field theories [30].

One can go further and consider the case where the axion-
like field is dynamical. As pointed out in [31–33], this seems
to be a fruitful endeavor since chiral symmetry can be dynam-
ically broken due to the formation of a chiral condensation
induced by the four fermion pairing interaction

λ2[ψ̄ (x)PLψ (x)][ψ̄ (x)PRψ (x)] (5)

where PL = 1
2 (1 − γ 5) and PR = 1

2 (1 + γ 5) are chiral projec-
tors and the coupling λ has mass dimension −1. Note that
this pairing connects left- and right-handed fields. In fact,
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ψ̄ (x)PLψ (x) = ψ†(x)PRγ 0PLψ (x) = ψ
†
R(x)ψL(x).1 One can

formulate the description of the system by including this four
fermion interaction in (2), written with the help of a Hubbard-
Stratonovich auxiliary complex field �(x):

S =
∫

d4xψ̄ (x)

[(
i/∂+/bγ 5+ie/A(x)−λ�(x)

1

2
σ 0 ⊗ (τ1+iτ2)

+ λ�†(x)
1

2
σ 0 ⊗ (τ1 − iτ2)

)
ψ (x) + |�(x)|2

]
, (6)

where we introduced the matrix structure σ ⊗ τ , such that σ

and τ are Pauli matrices (σ 0 is the identity) acting on spin
degrees of freedom and helicity, respectively. The auxiliary
field is determined by its extrema in the action and results in

�(x) = λψ̄ (x)PLψ (x) = λψ
†
R(x)ψL(x). (7)

It is argued in [31,32] that the strong-coupling dynamics of the
theory favors the formation of a condensate 〈�〉 �= 0, resulting
in the dynamical break of the chiral symmetry following the
Peccei-Quinn mechanism. In this context, small fluctuations
around the condensate 〈ψ†

R(x)ψL(x)〉 = v3 can be approxi-
mated by

�(x) = λv3ei θ (x)
f (8)

where f is a mass scale and v3 has mass dimension 3. Af-

ter redefining the fermion field, ψ (x) → e−i 1
2 (θ0(x)+ θ (x)

f )γ 5

ψ (x),
where (again) θ0(x) was included to cancel the b term. Finally,
taking into account the Jacobian of the transformation, the
effective action becomes

S → e2

32π2

∫
d4x

(
θ0(x) + θ (x)

f

)
εμνρσ FμνFρσ

− i ln det

(
i/∂ + iγ 5 /∂θ (x)

f
+ ie/A(x) + λ2v3

)
. (9)

This effective electromagnetic theory displays a dynamical
axionlike field θ (x); its bilinear kinetic term originates from
the derivative expansion of the fermionic determinant and is
set to the canonical form by imposing f ∼ λ2v3. Furthermore,
the condensate provides a mass for the axion of order λv3

f ∼ 1
λ

,
which is analogous to the charge density waves:

〈ψ̄ψ〉 = 〈ψ̄ (x)PLψ (x)〉 + 〈ψ̄ (x)PRψ (x)〉

= 1

λ
[〈�(x)〉 + 〈�∗(x)〉] ∼ 2v3 cos

(
θ0(x) + θ (x)

f

)
.

(10)

The resulting effective theory is the same proposed as a de-
scription of a topological magnetic insulator in [34]. This
signals a possible transition from Weyl semimetals to topo-
logical magnetic insulators induced by the vacuum instability
resulting from the four fermion interaction.

1Throughout this paper we use the van der Waerden notation of
dotted and undotted spinor indices: ψLα and ψα̇

R are the left and
right spinors. Spinor index contractions are defined as ψ†

R(x)ψL (x) =
ψ†α

R (x)ψLα (x) = ψ†
Rα (x)εαβψLβ (x), and similarly for other bilinears

we shall encounter, for instance, ψR(x)ψR(x) = ψRα̇ψ
α̇
R = ψα̇

R εα̇β̇ψ
β̇

R

and ψL (x)ψL (x) = ψα
L (x)ψLα (x) = ψLα (x)εαβψLβ (x).

The pairing just discussed establishes an internode connec-
tion that breaks chiral symmetry resulting in an electromag-
netic theory with axionic fluctuations. Following this idea,
in order to construct a superconducting state with axionic
fluctuations, it is necessary to seek a pairing that breaks charge
symmetry and chiral symmetry. The important question about
the leading mechanism for the superconducting instability and
the different pairings that can lead to it in a Weyl semimetal
system has been a subject of intense investigation during
the last few years. Pairings such as intranode FFLO (Fulde-
Ferrell-Larkin-Ovchinnikov) pairing [35–37], which involves
a nontrivial center-of-mass momenta dependence [38], and
internode BCS pairing [37,39,40], which connects fermionic
excitations in the opposite Fermi surfaces, and therefore with
opposite chiralities, have attracted attention. More general
BCS-like pairings, like the triplet [35,39], p-wave, [39] and
pairing in different superconducting scenarios, leading to un-
conventional superconducting states, are also of interest [41].
Since the desired effective theory is essentially fixed by the
general requirements of chiral symmetry breaking and charge
symmetry breaking, we will construct a specific pairing (in-
tranode s-wave) that, once condensed, results in an effective
theory of a superconductor with dynamical axion interaction.
One can expect that the phenomenological features of this
model, such as the penetration length to be discussed later,
are shared with any model that displays the same symmetries
and symmetry-breaking patterns.

Considering the formation of condensates that breaks
charge symmetry as well as chiral symmetry, one expects the
system to be characterized by four active degrees of freedom
(two charges and two chiralities). A simple choice is to encode
those degrees of freedom in two complex fields that represent
two possible condensates:

�R(x) = λR(ψ̄cPRψ ) = λRψR(x)ψR(x), (11)

�L(x) = λL(ψ̄cPLψ ) = λLψL(x)ψL(x), (12)

where λR and λL are couplings of mass dimension −1 and

ψc =
(

σ2ψ
†
R

−σ2ψ
†
L

)
is the charge conjugate spinor field. Note

that �R(x) and �L(x) carry the same charges (2e if e is the
fermion charge) but have opposite chirality.

The condensation of these operators is supposed to be
implied by the four fermion interactions

λ2
R(ψ̄cPRψ )(ψ̄PLψc) + λ2

L(ψ̄cPLψ )(ψ̄PRψc)

= λ2
RψRψRψ

†
Rψ

†
R + λ2

LψLψLψ
†
Lψ

†
L . (13)

It is a dynamical question whether these couplings are able to
give rise to the condensates. If this happens the system will
develop a superconducting phase once �R(x) and �L(x) are
charged. The fermionic action can be written as

S =
∫

d4x
1

2
�̄(x){[i/∂ + /bγ 5 + ie/A(x)ρ3]

+ (λR�∗
LPR + λL�∗

RPL )(ρ1 − iρ2)

+ (λR�LPR + λL�RPL )(ρ1 + iρ2)}�(x), (14)
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where we define the enlarged spinor � = (ψ
ψc

) and �̄ =
(ψ̄ ψ̄c) and also added another layer of matrix structure,
the Pauli matrices ρ, acting on “charge space.” Thus, the total
matrix structure schematically is

� = σ ⊗ τ ⊗ ρ (15)

with σ , τ , and ρ acting on the spin, handiness, and charge,
respectively. In this notation, the relevant matrices are given
by

γ 0 → σ0 ⊗ τ1 ⊗ ρ0, (16a)

γ i → iσi ⊗ τ2 ⊗ ρ0, (16b)

γ 5 → −σ0 ⊗ τ3 ⊗ ρ0. (16c)

In matrix notation in ρ space the action is

S =
∫

d4x
1

2
�̄(x)

(
i/∂ + /bγ 5 + ie/A(x) λR�LPR + λL�RPL

λR�∗
LPR + λL�∗

RPL i/∂ + /bγ 5 − ie/A(x)

)
×�(x). (17)

The system may be characterized by the following trans-
formations: (1) U (1) gauge symmetry

�(x) → e−iα(x)ρ3�(x), (18a)

Aμ → Aμ − i

e
∂μα(x), (18b)

�R/L(x) → e−i2α(x)�R/L(x); (18c)

(2) U (1) (global) chiral symmetry (anomalous)

�(x) → e−iβγ 5
�(x), (19a)

�L(x) → e−i2β�L(x), (19b)

�R(x) → ei2β�R(x); (19c)

(3) charge conjugation (C)

�(x) → ρ1�(x), (20a)

Aμ → −Aμ, (20b)

�R/L(x) → �∗
L/R(x); (20c)

(4) parity (P), Px = (t,−x,−y,−z),

�(x) → iτ1�(Px), (21a)

Aμ(x) → (A0(Px),−Ai(Px)), (21b)

�R/L(x) → �L/R(Px); (21c)

and (5) time reversal (T ), T x = (−t, x, y, z),

�(x) → −σ2�(T x), (22a)

Aμ(x) → (A0(T x),−Ai(T x)), (22b)

�R/L(x) → −�R/L (T x). (22c)

The term �̄/bγ 5�, where bμ is a background vector, ex-
plicitly breaks P (T ) if bμ is timelike (spacelike). In the main
part of this paper we will consider only the case bμ = 0, but
in this section we keep it for completeness.

Upon condensation we have

〈�R(x)〉 = λRv3
ReiδR , (23)

〈�L(x)〉 = λLv3
LeiδL . (24)

Any choice of parameters breaks T once the system undergoes
condensation. If λRv3

R = λLv3
L then we have the following

choices.
(1) δR = δL, P is preserved, and C is broken.
(2) δR = −δL, C is preserved, and P is broken.
(3) δR = δL = 0, and C and P are preserved.
The chiral symmetry is anomalous, which means that it is

not a true symmetry of the theory, and the gauge redundancy
undergoes a Higgs mechanism. The effective action can be
constructed by considering fluctuations of the phases around
the vacuum values δR and δL:

�R(x) = λRv3
Rei φR (x)

fR , (25)

�L(x) = λLv3
Lei φL (x)

fL , (26)

where φR(x) and φL(x) are the fluctuations. We also perform
the redefinition

�(x) → ei 1
4 ( φR (x)

fR
− φL (x)

fL
)γ 5

�(x). (27)

Taking into account the nontrivial Jacobian of the fermionic
measure and considering for simplicity λR = λL = λ and
vR = vL = v we obtain

S = e2

16π2

∫
d4x

1

4

(
φR(x)

fR
− φL(x)

fL

)
εμνρσ FμνFρσ

+
∫

d4x
1

2
�̄(x)

[
i/∂ + /bγ 5 − 1

4
/∂

(
φR(x)

fR
− φL(x)

fL

)
γ 5

+ ie/A(x)ρ3

]
�(x)

+
∫

d4x
λ2v3

2
�̄(x)[e−i 1

2 ( φR (x)
fR

+ φL (x)
fL

)(ρ1 − iρ2)

+ ei 1
2 ( φR (x)

fR
+ φL (x)

fL
)(ρ1 + iρ2)]�(x). (28)

Performing now yet another redefinition

�(x) → ei 1
4 ( φR (x)

fR
+ φL (x)

fL
)ρ3�(x), (29)

the action becomes

S = e2

16π2

∫
d4x

1

4

(
φR(x)

fR
− φL(x)

fL

)
εμνρσ FμνFρσ

+
∫

d4x
1

2
�̄(x)

{
i/∂ + /bγ 5 − 1

4
/∂

(
φR(x)

fR
− φL(x)

fL

)
γ 5

+ ieγ μ

[
Aμ(x) + i

1

4e
∂μ

(
φR(x)

fR
+ φL(x)

fL

)]
ρ3

+ 2λ2v3ρ1

}
�(x) (30)

or

S = e2

32π2

∫
d4x

(
θ (x)

f
+ θ0(x)

)
εμνρσ FμνFρσ

+
∫

d4x
1

2
�̄(x)

[
i/∂ − 1

2 f
/∂θ (x)γ 5

+ ieγ μ

(
Aμ(x) + i

1

2e f ′ ∂μθ ′
)

ρ3 + 2λ2v3ρ1

]
�(x) (31)
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where we defined θ (x)
f + θ0(x) = 1

2 ( φR (x)
fR

− φL (x)
fL

) and θ ′(x)
f ′ =

1
2 ( φR (x)

fR
+ φL (x)

fL
), with θ0(x) = 2bμxμ. Note that θ ′(x) is the

would-be Goldstone boson that is combined with the gauge
field in the Higgs mechanism to furnish the gauge invariant
piece Aμ(x) + i 1

2e f ′ ∂μθ ′ representing a longitudinal term for
the vector field, thus leading to a consistent mass term for the
photon, characterizing the Meissner effect. We also note that a
mass term for the field θ (x) will be induced nonperturbatively
due to the fermionic condensate, explicitly

〈�̄(x)ρ1�(x)〉 = 4v3 cos2

(
θ

f
+ θ0

)
. (32)

In the previous derivation, since we have ignored the com-
pactness of the fields θ (x) and θ ′(x), we are not considering
the contribution of singular states such as vortices that can be
described by multivalued fields [42]. These nonperturbative
effects are indispensable if one is interested in a comprehen-
sive characterization of the system. In the present case, the
vortices associated with θ ′(x) are the usual ones from a su-
perconductor and carry quantized magnetic flux. The vortices
of θ (x) are more interesting and were called chiral vortices in
[43]. They do not carry magnetic flux but are responsible for a
nonconservation of the naive supercurrent of the superconduc-
tor [44] (see also [45]). Both kinds of vortices must be taken
into account if one is interested in the topological features of
the superconducting state and, in fact, one can construct the
corresponding effective topological field theories by reason-
ing about the dilution and condensation of such configurations
[44]. However, since our goal is the perturbative analysis of
the resulting effective theory, such nonperturbative effects are
not relevant.

Computing the fermionic field integration (where the
fermionic determinant may be evaluated as a derivative ex-
pansion of gauge-invariant terms) and taking into account the
nonperturbative mass term leads us to the general form for the
electromagnetic response of the system:

SMP =
∫

d4x

[
− 1

4
FμνFμν + 1

2
M2AμAμ + 1

2
∂μθ∂μθ

− 1

2
m2θ2 + 1

4
g

(
θ + θ0

g

)
F̃μνFμν

]
(33)

where g ∼ 1
f ∼ 1

λ2v3 and M ∼ λ2v3, m ∼ λv3

f ∼ 1
λ

. These rela-
tions make contact with the microscopic theory we have been
developing in this section. They set the scaling behavior of the
parameters of the effective theory as a function of the ones of
the microscopic theory. In what follows we will not adhere
to these relations and instead consider, for the sake of com-
putations, M, m, and g as independent quantities. However,
later in this paper we will comment on the relations with the
microscopic theory.

The effective action (33) describes the electromagnetic re-
sponse of a microscopic system characterized by chiral and
charge condensates, the fluctuations of which give rise to the
dynamic of the axion field and to the photon mass, through the
Higgs mechanism. The same effective theory can be obtained
by dimension reduction from a 5D theory [43] and also from
general reasoning about condensation of charges and defects
guided by symmetry considerations [44]. But it is important to

point out that we arrived at this action considering an interac-
tion that makes contact with usual superconducting couplings
in doped Weyl metals [35]. This goes back to our initial con-
siderations regarding the possible pairings. From the point of
view of the resulting effective theory (that can originate from
different pairings, i.e., instability in a Weyl semimetal system)
the main point is that if one is interested in the identification
of the relevant low-energy degrees of freedom, including pos-
sible defects, and the ensuing nontrivial topological features
of the superconducting states, the answer seems to involve
topological BF theories, as discussed in [46] for the usual
superconductor, in [47] for a p-type superconductor, and in
[44] for the axionic superconductor. The different possible
pairings, in this case, will enter the analysis because they are
responsible for defining the low-energy degrees of freedom
that are relevant for the topological description of the system.
But, if one is interested in the general features of the electro-
magnetic response, as we are in the present paper, the answer
has less freedom and is essentially fixed by symmetry with the
microscopic theory furnishing the parameters of the effective
theory, as discussed above.

Our task now in the next sections is to compute the mod-
ifications on the Yukawa potential and, via the analysis of
quantum corrections to London’s length, the Meissner effect
induced by axionic fluctuations. For the present paper, we will
set θ0 = 0, which will simplify, considerably, the computa-
tions, meaning that we will be analyzing the physics of a Dirac
semimetal (bμ = 0).

III. AXION-PROCA ELECTRODYNAMICS

The model is defined by the following action [in natural
units and diag(gμν ) = (1,−1,−1,−1)]:

S̃g =
∫

d4x

(
− 1

4
fμν f μν + 1

2
M

2
aμaμ + 1

2
∂μθ∂μθ

− 1

2
m2θ

2 + 1

4
gθ f̃μν f μν

)
. (34)

This effective action describes the dynamics of a massive vec-
tor field (Proca) aμ(x) and a massive pseudoscalar field θ (x),
displaying an axionlike interaction. Envisaging the renormal-
ization analysis to follow, the field strength tensor is written
in terms of “bare” quantities, so fμν = ∂μaν − ∂νaμ, with the
dual tensor f̃μν = 1

2εμνσρ f σρ . The coupling constant g has
a mass of dimension −1, so power counting indicates that
this theory is nonrenormalizable. This Lagrangian must be
understood as describing the physics at energies much lower
than the cutoff �UV ∼ 1/g.

Since we will focus on the computation of the vector field
propagator up to one-loop order, some particular simplifi-
cations can be modeled using symmetry characteristics. For
example, the lack of gauge invariance allows for terms like
M2

1 (a2)2 to be included at order g2, but an odd number of
aμ will not contribute because this would break the discrete
symmetry aμ(x) → −aμ(x). The same does not apply to the
case for the scalar field because the coupling does have an
odd number of θ’s. One contemplated possibility is (a2)3, but
such a term will give a six-photon vertex that is only relevant
to the propagator if taken at two loops. One algorithm that
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μ ν

p1 l

l − p

p2

μ ν

p1

l

p2

μ ν

p1

l

p2

FIG. 1. Sum of Feynman’s graphs that contribute to the photon self-energy in axion-Proca electrodynamics. In order from left to right:
axion loop K (1)

μν , photon-axion loop K (2)
μν , and photon-photon loop K (3)

μν .

describes a similar process, for Proca electrodynamics, can
be found in [48]. Lastly, the most general contribution must
include terms composed with the dual field strength f̃μν but,
since we are only interested in the contribution to the massive
photon two-point function, they will be zero after we impose
momentum conservation at the vertex.

All workable terms of order g2 can be organized in three
new Lagrangian pieces:

Lθg2 = −1

2
θ

2
m2

1 + 1

2
Cθ (∂θ )2 + 1

2m2
s

(∂μθ )�(∂μθ ) (35)

Lag2 = 1

2
M

2
1a2 − 1

4
C f f 2 + 1

2m2
gh

(∂ f )2

+ 1

4!

1

2
a4C4 − 1

4!

1

4

a2

M
2
2

f 2 (36)

Laθg2 = −1

2
Caθ θ

2
a2 + 1

4

θ
2

m2
θ f

f 2. (37)

These modifications can be divided further into two groups
by noticing that some terms can be absorbed in parameter
redefinitions in the process of normalization since they are of
order g2. The other terms with higher derivatives, i.e., (∂2 f )
and (∂μθ )�(∂μθ ), will generate ghost contributions to the free
field propagator. Nevertheless, in this model, it is possible
to eliminate this kind of nonphysical contribution performing
field redefinitions so that the free propagator will remain well
behaved and unitary. Most of the discussion is based on [49]
and [50,51], and the mathematical details for our case that

deviate from those works are described in Appendix A. The
Lagrangian with redefined parameters reads

LR = −1

4
Z3F 2 + 1

2
M2ZMZ3A2 + 1

2
Zθ (∂θ )2 − 1

2
ZmZθm2θ2

+ Zg

4
gθ F̃μνFμν + δs

2m2
s

(∂μθ )�(∂μθ )

+ δgh

2m2
gh

(∂F )2 + L4γ + L2γ ,2θ (38)

with the new interaction terms

L4γ = 1

4!

1

2
Z4C4A4 − 1

4!

Z5

4

A2

M2
2

F 2,

L2γ ,2θ = −1

2
ZaθCaθ θ

2A2 + 1

4
Zθ f

θ2

m2
θ f

F 2 (39)

of order g2 (since C4,Caθ , M−2
2 , and m−2

θ f ∈ O(g2)). All these
interactions will furnish one-loop contributions to the massive
vector self-energy.

IV. PHOTON SELF-ENERGY

We want to compute quantum corrections to the mas-
sive vector self-energy introduced by axion fluctuations.
The dressed massive vector propagator will include one-
loop contributions that originate from the axion cou-
pling (O(g2)) and from L4γ and L2γ ,2θ (O(g2)). The
exact Green’s function for the photon Gμν (p) is given
by the geometric sum of 1PI (one-particle-irreducible)
graphs:

iGμν(p) = + + + + · · · (40)

= iG μν
0 (p) + iG μσ

0 (p)[i�σρ (p)]iG ρν
0 (p) + O(g4) (41)

where Gμν
0 (p) is the free massive vector propagator, defined as Gμν

0 (p) = −iPμν (p)/(p2 − M2) with Pμν (p) = gμν − pμ pν/M2,
and i�σρ (p) is the one-loop contributions (consult Fig. 1 for exact Feynman’s diagram anatomy) with the additional factors
given by counterterms:

i�σρ (p) =
3∑
i

K (i)
σρ (p2) − i(Z3 − 1)(p2gσρ − pσ pρ ) + i(ZM − 1)(Z3 − 1)M2gσρ + i

δgh

m2
gh

p2(p2gσρ − pσ pρ ). (42)
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A. Loop integral

The axion coupling introduces a momentum dependent
vertex that can be written schematically as Vμν (p1, p2) =
(igZg)εμναβ pα

1 pβ

2 where the vector line carries ingoing mo-
mentum p1 and outgoing momentum p2. The vertex construc-
tion results in

K (1)
μν =

∫
d4l

(2π )4
Vμσ (−p1, l )Gσρ

0 (l )�0(l − p)Vρν (l,−p2)

(43)

where �0(p) = i/(p2 − m2) is the free massive pseudoscalar
propagator in momentum space. Since Zg = 1 + O(g2) [so
that (igZg)2 ∼ −g2 we can write the contribution from the
axion loop graph as

K (1)
μν (p2) = −g2

∫
d4l

(2π )4

Yμν (p, l )

l2 − M2

1

(l − p)2 − m2
(44)

with Y μν (p, l ) = gμν (l2 p2 − (l · p)2) +
lμ(pν (l · p) − p2lν ) + pμ(lν (l · p) − l2 pν ). Using the
standard Feynman parametrization, the expression becomes

K (1)
μν (p2) = −g2

2
(gμν p2 − pμ pν )

∫
d4q

(2π )4

×
∫ 1

0
ds

q2

[q2 − �(s, p2)]2
(45)

with �(s, p2) = m2s − M2(s − 1) − p2s(1 − s). Even though
gauge invariance is explicitly broken by the mass term, the
longitudinal component is effectively decoupled and the result
can still be written using the usual transverse operator:

K (1)
μν (p2) = (gμν p2 − pμ pν )k(1)(p2). (46)

This can be formally established by a Ward identity [52]
showing that only the transverse part will contribute to the
final result. Now we must extend k(1)(p2) to D dimensions
and redefine the dimensional coupling as g → gμ

4−D
2 (μ is an

arbitrary parameter of mass dimension 1 so that the coupling
g is now dimensionless). Also, this rescaling must be followed
by a redefinition of the Wilson parameters bi → biμ

D−4
2 so that

bi is also dimensionless. Integrating over q and expanding for
D = 4 − ε with ε → 0 we obtain

k(1)(p2) = − ig2

16π2

[
2

ε

(
m2

2
+ M2

2
− p2

6

)
−

∫ 1

0
ds� log

�

μ̃2

]

(47)

with the usual definition μ̃2 = e−γ 4πμ2 (γ is the Euler-
Mascheroni constant). In this computation, any part that is
not divergent or that does not have any kind of discontinuity
can be ignored since it will simply be absorbed by a finite
redefinition of the original action.

The same process is used to compute K (2,3)
μν , resulting in

k(2)(p2) + k(3)(p2) = i

16π2

{
m2

[
2

ε
− log

(
m2

μ̃2

)](
Caθ + p2

m2
θ f

)
− M2

[
2

ε
− log

(
M2

μ̃2

)](
3C4 + p2 + M2

2M2
2

)}
. (48)

B. Renormalization

Using Eqs. (47) and (48) in (42) results in

i�μν (p) = i�(p2)gμν + (pμ pν terms) (49)

�(p2) = 1

16π2

[
�(0) + p2�(2)(p2) + p4�(4) − p2δ3 + (δM + δ3)M2 + p4 δgh

m2
gh

]
. (50)

The exact Green’s function at one loop, in this context, is given by

iGμν (p2) = −i
gμν

p2(1 + �(2) ) − (M2 − �(0) ) + p4�(4)(p2)
+ (pμ pν terms) (51)

with

�(0) =
[

2

ε
− log

(
m2

μ̃2

)]
m2Caθ − M2

[
2

ε
− log

(
M2

μ̃2

)](
3C4 + M2

2M2
2

)
+ M2δM (52)

�(2) = g2

[
2

ε

(
m2

2
+ M

2

)
+

∫ 1

0
ds� log

�

μ̃2

]
+

[
2

ε
− log

(
m2

μ̃2

)]
m2

m2
θ f

−
[

2

ε
− log

(
M2

μ̃2

)]
M2

2M2
2

+ δ3

p2
(M2 − p2) (53)

�(4) = g2 2

ε

1

6
+ δgh

m2
gh

(54)

This expression is correct up to O(g4) (with the exception of δgh

m2
gh

) and any finite term.2

Before proceeding with the renormalization process, it should be clear that this expression results in the one found in [49]
once we set M2 = 0. As a consequence of the restored gauge invariance, no term ≈ �(0) can be found [note that Caθ would not
be included in Laθg2 in (37) from the beginning].

2All δ were redefined to include the 16π 2 factor.
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We would like to draw attention to a characteristic of our model regarding the subtraction scheme choice, but first it is
interesting to comment on the potential felt by a test charge in the massless photon limit. Axion fluctuations are responsible for
a correction of the Coulomb electrostatic potential, felt by a test charge e, that can be written as

ṼM=0(p2) = e2

p2

[
1 + 1

p2

(
�(2)

(
p2

0

) − �(2)(p2) + (
p2

0 − p2
)
�(4)

)] + O[e2g4] (55)

in momentum space evaluated at p concerning its value at the scale p0. Note that �(4) is constant at this order and can be set to
zero by imposing the MS scheme. It is then physically sensible to make contact with the measured electric charge by defining
the potential to have the Coulomb form at spatial infinity, or equivalently at p0 = 0, where the axion effect should be negligible.
That is, to fix p0 it is sufficient to impose that the potential is of the usual Coulomb type at p0 = 0 resulting in e being the
observable electric charge. This works as a renormalization condition fixing the ambiguity in �(2).

The electrostatic potential felt by a test charge in this massive photon setting can be written as

Ṽ (p2) = e2
R

p2 − M2

[
1 + 1

p2 − M2

(
p2

0�
(2)

(
p2

0

) + p4
0�

(4)

p2
0 − M2

− p2�(2)(p2) + p4�(4)

p2 − M2

)]
+ O

(
e2

Rg4
)
. (56)

Note that here the scale p0 is defined as the scale where the potential is of the Yukawa type. But now one cannot use the
asymptotic charge to define a physically motivated renormalization condition as done above in the massless case. The potential
of a massive photon is null asymptotically as a result of the screening due to the superconductivity. Physically, due to the massive
nature of the photon, test charges will feel no force at spatial infinity. This is a setback for the use of the MS scheme because
there is no simple way to fix the remaining ambiguity. This problem can be avoided if we impose the so-called on-shell (OS)
conditions.

It is clear from Eq. (51) that three conditions will be necessary to fix the singular ε−1 contributions that are proportional to
p0, p2, and p4. They will be

�(M2) = 0 (57)

∂�(p2)

∂ p2

∣∣∣∣
p2=M2

= 0 (58)

∂2�(p2)

(∂ p2)2

∣∣∣∣
p2=M2

= 0 (59)

but before we apply these conditions we must make a O(g4) modification:

p4 δgh

m2
gh

→ 1

2
(p2 − M2)2 δgh

m2
gh

. (60)

The first two conditions fix the mass pole location and the residue (so that the physical photon mass is M2 with residue i). The
third cancels any contribution from �(2) by fixing the ghost counterterm. Now we can impose these restrictions, resulting in a
physically consistent potential clear from any infinities and free parameters. The counterterms obtained are

δM = −g2
∫ 1

0
ds[m2s + M2(s − 1)2] log

(
m2s + M2(s − 1)2

μ2

)
− log

(
μ2

m2

)(
Caθ

m2

M2
+ m2

m2
θ f

)

+ 1

ε

(
−2m2Caθ

M2
+ 6C4 − 1

3
g2(3m2 + 4M2) − 2m2

m2
θ f

+ 2M2

M2
2

)
+ log

(
μ2

M2

)(
3C4 + M2

M2
2

)
(61)

δ3 = −g2
∫ 1

0
ds[m2s + M2(s − 1)(2s − 1)] log

(
m2s + M2(s − 1)2

μ2

)

+ 1

ε

(
−1

3
g2(3m2 + 5M2) − 2m2

m2
θ f

+ M2

M2
2

)
− m2

m2
θ f

log

(
μ2

m2

)
+ 1

6

[
g2M2 + 3M2

M2
2

log

(
μ2

M2

)]
(62)

δgh = −2

3

g2m2
gh

ε
+ 1

3
g2m2

gh − g2m2
gh

∫ 1

0
ds

[
M2(s − 1)2s2s

M2(s − 1)2 + m2s
+ 2s(s − 1) log

(
M2(s − 1)2 + m2s

μ2

)]
(63)

so that the result is

�(p2) = − 1

32π2
g2(M2 − p2)

∫ 1

0
ds

(s − 1)s[−2m2 p2s + M4(s − 1)s + M2 p2(−3s2 + 5s − 2)]

m2s + M2(s − 1)2

+ 1

16π2
g2 p2

∫ 1

0
ds�(s, p2) log

(
�(s, p2)

m2s + M2(s − 1)2

)
(64)
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with the previous definition �(s, p2) = m2s − M2(s − 1) −
p2s(1 − s). This is our result for the quantum correction using
the OS renormalization scheme.

Note that the log integrand gives rise to an imaginary part
when p2 > (M + m)2,

Im(�(p2)) = 1

96π2

g2

p2
{[p2 − (M − m)2][p2 − (M + m)2]} 3

2 ,

(65)

marking the threshold for multiparticle production, with the
corresponding spectral function proportional to Im(�(p2)).

V. POTENTIAL

The quantum correction computed in (64) allows us to
investigate the corresponding correction for electrostatic in-
teraction potential. The full photon propagator is

〈Aμ(x)Aν (y)〉 =
∫

d4 p

(2π )4
eip·(x−y)iGμν (p) (66)

where Gμν (p) is the exact propagator, i.e., the propagator for
the massive vector field with all its quantum corrections. Up
to one loop, we can write

Gμν (p) = −i
gμν

p2 − M2

(
1 − �(p2)

p2 − M2

)
+ O(g4)

+ (pμ pν terms) (67)

These corrections generate a dressed four potential Aμ(x)
given by3

Aμ(x) = −i
∫

d4 p

(2π )4
e−iq·xGμν (p) j̃ν (p). (68)

Using (67) results in

Aμ(x) = −
∫

d4 p

(2π )4
e−ip·x j̃μ(p)

p2 − M2

(
1 − �(p2)

p2 − M2

)
. (69)

Now to compute Yukawa’s corrected law we need to use a
stationary current jμ(x),

jμ(x) = eδ3(�x)δμ0 → j̃μ(p) = 2πeδ(p0)δμ0, (70)

where e is the electric charge, so that4

A0(�x) = e
∫

d3 p

(2π )3
ei�p·�x 1

|�p|2 + M2

(
1 + �(−|�p|2)

|�p|2 + M2

)
. (71)

This gives the Fourier transform of the corrected Yukawa
potential [54] felt by a negative charge −e:

Ṽ (�p) = −eÃ0(�p) = −e2

|�p|2 + M2

(
1 + �(−|�p|2)

|�p|2 + M2

)
(72)

3This is the same relation used in [49]. The factor −i follows from
the definition of the free propagator (that influences the i’s in the
exact propagator). Another convention is presented in [53].

4Remember that p · x = p0x0 −�p ·�x.

so that the potential between two identical charges of opposite
signs reads

V (�x) = −e2
∫

d3 p

(2π )3
ei�p·�x 1

|�p|2 + M2

(
1 + �(−|�p|2)

|�p|2 + M2

)
. (73)

With this in mind, we can separate this into two contributions:

VY (�x) = −e2
∫

d3 p

(2π )3
ei�p·�x 1

|�p|2 + M2
,

δVY (�x) = −e2
∫

d3 p

(2π )3
ei�p·�x �(−|�p|2)

(|�p|2 + M2)2
. (74)

The computation of the Yukawa potential is well known and
results in

VY (r) = − e2

4π

e−Mr

r
(75)

with r ≡ |�x|. To compute δVY , we consider the analytic con-
tinuation |�p| → iq ∈ Z, the structure of which is displayed
in Fig. 2(a) [the integrand has a pole at q = ±M and a cut
that starts at q = (M + m)]. The complex path, represented in
Fig. 2(b), is a “half disk” that avoids the branch cut. Here, the
integral along γ1 is δVY (r), that after a variable exchange and
the identification q = −i|�p| is

δVY (r) = e2

4π2ri

∫ ∞

−∞
dqe−rq q�(q2)

(q2 − M2)2
, (76)

and a jump of the cut that can be represented by

�(q2 + iε) − �(q2 − iε) = �(q2 + iε) − �(q2 + iε)∗

= 2iIm(�(q2 + iε)). (77)

Therefore

δVY (r) = (Res δVY )(iM )

− e2

2π2r

∫ ∞

−∞
dq

q Im(�(q2 + iε))

(q2 − M2)2
e−qr . (78)

The residue computed over the path � = ∑
γ is zero. Utiliz-

ing this result along with the imaginary part (65) the previous
expression takes the form

δVY (r) = − e2g2

192π3r

∫ ∞

m+M
dq

e−qr

q(q2 − M2)2

× {[(m − M )2 − q2][(m + M )2 − q2]}3/2. (79)

Finally, the corrected potential is (q = t (M + m))

V (r) = − e2

4π

(
e−Mr

r
+ g2(m + M )2

3 × 24π2

1

r

×
∫ ∞

1
dtF (m/M, t )(t2 − 1)3/2 e−(m+M )rt

t

)
(80)

with

F (m/M, t ) =
[

t2 −
(M − m

M + m

)2]3/2[
t2 −

( M

M + m

)2]−2

.

(81)
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Im

Re
M

−M M + m

(a) Im

Re
γ1

γ2

γ6

γ5

γ4
γ3

M

(b)

FIG. 2. Complex plane with Re(q) × Im(q). (a) Complex plot of the poles q = ±M and the cut q > m + M. (b) Closed contour known as
“half Pacman.”

It is not clear how to compute the t integral in full analytic
form, but some doable simplifications can extract analytical
information in some limiting cases.

VI. ANALYSIS OF THE RESULTS

Equation (80) can be rewritten as

V (r) = − e2

4π

e−Mr

r
δP(Mr, gM, m/M ) (82)

δP(Mr, gM, m/M ) = 1 + (gM )2
(
1 + m

M

)2

48π2

×
∫ ∞

1
dtF (m/M, t )(t2 − 1)3/2

× e−Mr[t (1+m/M )−1]

t
(83)

where δP(Mr, gM, m/M ), which corresponds to deviations
from the Yukawa potential introduced by quantum fluctu-
ations of the axion field, is organized in terms of three
dimensionless parameters (Mr, gM, m/M ). We remark that all

FIG. 3. Graph of the exact expression of δP − 1 [Eq. (83)] for
varying values of m/M. The used values are gM = 0.4 and Mr ∈
(0.02, 1).

the computations so far do not rely on any specific relationship
between these three parameters but, since this is an emer-
gent description of the system, these are effective parameters
that are related to each other and fixed by the microscopic
physics as previously discussed in Sec. II. Yet, for the sake
of simplicity, we will continue to treat these parameters as
independent for now. The graphical representation (for a set of
self-consistent parameters described in Sec. B) of the quantum
deviation (namely, δP − 1) is given in Fig. 3. To develop a
physical picture, it is useful to analyze the result (83) imposing
large mass hierarchies (large axion mass m � M and large
Proca mass M � m).

Each approximation will provide an estimated result that,
for additional verification, will be compared against the nu-
merical integration.

A. Asymptotic approximations

1. Small axion mass

Applying a small axion mass approximation (M � m) at
zeroth order in the mass ratio m

M , the expression Eq. (83)
simplifies to

δP(Mr, gM ) = 1 + g2M2

48π2

∫ ∞

1
dt (t2 − 1)

e−Mr(t−1)

t
+ O(

m

M
).

(84)

Evaluating the integral we obtain

δP(Mr, gM ) ≈ 1+g2M2

48π2

[(
1

M2r2
+ 1

Mr

)
−eMr�(0, Mr)

]
(85)

where �(0, Mr) is the upper incomplete gamma
function.5 The asymptotic approximation results

5Defined as �(a, x) ≡ ∫ ∞
x t a−1e−t dt . The asymptotic expression of

�(0, Mr) for Mr � 1 is ∝ e−Mr

Mr ; this cancels the possible problem of
the positive exponent eMr in (85).
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FIG. 4. Plot of δP(r) − 1 (the deviation from the standard value) as a function of Mr with gM = 0.4. The red line is the numerical
integration plot of (83). Respectively, Figs. 4(a) and 4(b) represent the approximated function (86) with Mr � 1 and with Mr � 1. Moreover,
Figs. 4(c) and 4(d) represent (88) with mr � 1 and with mr � 1 (the relation m

M = 10 is also used to express all functions in terms of
Mr). The estimate of the region of validity of the approximations is read directly from the graph. (a) Approximation valid up to Mr ∼ 0.2.
(b) Approximation valid starting at Mr ∼ 8. (c) Approximation valid up to Mr ∼ 0.002 → mr ∼ 0.2. (d) Approximation valid starting at
Mr ∼ 0.06 → mr ∼ 6.

in

δP(Mr, gM ) ≈
{

1 + g2M2

24π2
1

(Mr)2 ; for Mr � 1

1 + g2M2

48π2

(
1

(Mr)2 + 1
Mr + log(eγ Mr)

)
; for Mr � 1.

(86)

Figures 4(a) and 4(b) compare the results with the numerical integration without approximations.

2. Small Proca mass

In the case of a small Proca mass, in comparison with the axion mass (M � m), Eq. (83) gives

δP(Mr, gM, m/M ) = 1+ g2m2

48π2

∫ ∞

1
dt

(
(t2 − 1)3

t5
+2

M

m

(t2 − 1)2(t2 + 2)

t5
+ M2

m2

(t2 − 1)(2 + 3t2 + t6)

t7

)
e−mrt−Mr(t−1) + O(

M

m

3

).

(87)

This integral, that can be computed analytically, but does not bring any valuable insight, is expressed in Appendix B 2. Employing
the asymptotic expansion in these expressions results in6

δP(Mr, gM, m/M ) ≈

⎧⎪⎪⎨
⎪⎪⎩

1 + g2m2

π2

(
1

(m+M )4r2 + M
m

1
(m+M )3r

+ M2

m2
1

4(m+M )2

)
e−mr

r2 ; for mr � 1

1 + g2m2

48π2

(
1

(mr)2 + 3
4 + M

m

(
1

mr − 3
) + 3 log (eγ (m + M )r)

+M2

m2

[
11
12 + log (eγ (m + M )r)

])
; for mr � 1.

(88)

6Note that every term in this expression can be expressed in terms of (Mr, gM, m/M ).
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FIG. 5. Graph of the exact expression of δP − 1 (83) as a func-
tion of M/m for varying values of the distance scale with fixed
Mg = 0.4. The inserted graph is the zoom of the curve Mr = 1. The
red vertical red line M/m = 1 separates the region with M/m < 1
and M/m > 1.

Figures 4(c) and 4(d) represent the comparison between the
full numerical integration and the approximations. Note that
this result is consistent with the massless photon limit that
was examined in [49].

B. Mass relations and London penetration length

Considering the results depicted in Fig. 5 (the variation
of the quantum correction as the mass ratio changes) we
see that as m becomes larger than M quantum corrections
becomes less and less important. One can also note that for
large distances the corrections are very feeble for any values of
the masses. This means that we expect noticeable deviations
from the usual London results, due to axion effects, at small
penetration distances and large photon mass (M/m > 1). In
fact, we can explore in more details the variation in the Lon-
don screening generated by quantum fluctuations of the axion
background. To do so, it is useful to redefine (82) with an
effective mass by

V (r) = − e2

4π

e−rMeff (Mr,Mg,m/M )

r
(89)

so that

Meff(Mr, Mg, m/M ) = M − log δP

r
= M − δP − 1

r
+ O(g4)

(90)

where δP = δP(Mr, Mg, m/M ) is given by (83) and the ex-
pansion log (1 + ax) ≈ ax was used. The Yukawa tree level
interaction, i.e., VY (r) = − e2

4π
e−Mr

r , defines the London length
λL as the damping coefficient of the exponential via e−MλL =
e−1, or equivalently λL = 1

M . We can expect that this term
receives quantum corrections that can be written in the form

reffMeff(reff ) = 1 + O(g2) (91)

that is a transcendental equation, but it is possible to solve by
considering that

reff = λL + δr + O(g4) (92)

where δr ∈ Og2 and MλL = 1 resulting in7

Mδr = (gM )2
(
1 + m

M

)2

48π2
e1

∫ ∞

1
dtF (m/M, t )(t2 − 1)3/2

× e−t(1+ m
M )

t
+ O(g4). (93)

This is the term O(g2) (leading contribution) expected in (91)
and is independent of the scale Mr. We can see in Fig. 6 the
shift δr (in units of M) in the London penetration length as
a function of the mass ratio M

m . As stated before, te axionic
effects are more relevant for large photon mass.

VII. CONCLUSIONS

In this paper, we investigated the axion-electromagnetic
theory obtained from the electromagnetic response of a Dirac
semimetal with a quartic pairing instability. The pairing ef-
fectively induces the dynamical formation of a charged chiral
condensate the phase fluctuations of which give rise to an
effective axionic excitation along with a longitudinal mode
for the photon excitations through the Higgs mechanism. As
mentioned, the axion mass is related to charge density waves
of the fermionic condensate, and the resulting fully gapped
system describes an axionic superconductor.

We also investigated the two-point function of the massive
photon excitation considering one-loop axionic corrections
and found that these corrections naturally induce a modifica-
tion of typical electromagnetic interaction at short distances.
Consequently, in the asymptotic limit, the effective theory is
Yukawa type (Proca) representing a usual superconductor.

To be more precise, based on the discussion of Sec. VI B,
these modifications should play a role for average lengths
below r ∼ 1.25 nm in systems with characteristic electromag-
netic interaction length of M ∼ (50 nm)−1 [55]. We remark,
however, that this is an educated guess based on average
experimental values to illustrate the range of parameters that
would give a physically significant effect.

The maximum possible value for the correction occurs
when the axion mass is less than or equal to the photon mass.
Oppositely, as the axion mass becomes larger, i.e., the field
becomes harder to excite, the quantum fluctuations become
closer to the nonperturbed value (Meff ∼ M). This reasoning
is based, partially, on the fact that axion emission, by a decay
process of γ → γ θ , is not possible.

As stated before, in the course of our calculations we
regarded the effective parameters m, M, and g as unrelated
quantities. However, if we take into account the microscopic
origin, as discussed in Sec. II, we must consider the connec-
tion between them and the microscopic parameters λ and v.
The scaling relations are g ∼ 1

λ2v3 , M ∼ λ2v3, and m ∼ 1
λ

, that

can be reduced to g ∼ 1
M and m ∼

√
v3

M . These relations are
compatible with the range of values considered in our analysis

7This expression was obtained by expanding e−Mreff[t (1+m/M )−1]

[with the use of Eq. (92)] and keeping terms of O(g0 ) since the
whole integral is of Og2. Note that this follows the same spirit of
the renormalization of the charge in QED.
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FIG. 6. Plot of the expression Mδr (83) as a function of M/m
with different values of Mg. The red vertical red line M/m = 1
separates the region with M/m < 1 and M/m > 1.

since the perturbative computations are valid for gM < 1. Our
results also indicate that axionic effects are more prominent
when M > m.

In conclusion, since the order of magnitude of distance
adopted in Sec. VI B is appropriate to thin-film physics,
the electromagnetic screening properties (by the corrected
London length) of thin films constituted by superconducting
Dirac materials could be sensitive to the described effects in
preceding sections. This is a possible probe to the quantum
effects due to axionic coupling. However, it is important
to stress that, at this stage, the explicit connection between
our findings and the aforementioned discussion as well
as the practical applicability or even feasibility to real
condensed matter systems are lacking, being a topic for
further investigation.
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APPENDIX A

1. Renormalization

The “bare” field and parameters must be replaced by the
renormalized ones, that is, we must replace the following
quantities in Eqs. (34)–(37):

aμ → Aμ fμν → Fμν θ → θ

M → M m → m g → g

m1 → m1 Cθ → Cθ ms → ms

M2 → M2 C f → Cf mgh → mgh

C4 → C4 M2 → M2 Caθ → Caθ m2
θ f → m2

θ f . (A1)

The renormalized action becomes

SR =
∫

d4x(LProca + Laxion + Linteraction + Lθg2 + Lag2

+ Laθg2 ) (A2)

with the Proca and axion Lagrangians being

LProca = − 1
4 Z3FμνFμν + 1

2 ZMM2AμAμ (A3a)

Laxion = 1
2 Zθ ∂μθ∂μθ − 1

2 Zmm2θ2, (A3b)

the interaction term (O(g1))

Linteraction = 1
4 Zggθ F̃μνFμν, (A4)

and the next-to-leading term (O(g2))

Lθg2 = −1

2
Zm2θ

2m2
1 + 1

2
Zθ2Cθ (∂θ )2 + Zs

2m2
s

(∂μθ )�(∂μθ )

(A5)

Lag2 = 1

2
ZM2M2

1 A2 − 1

4
Z f Cf F 2 + Zgh

2m2
gh

(∂F )2

+ 1

4!
Z4C4A4 − 1

4!
Z5

A2

M2
2

F 2 (A6)

Laθg2 = −1

4
ZaθCaθ θ

2A2 + 1

4
Zθ f

θ2

m2
θ f

F 2. (A7)

Some terms in the last equation can be incorporated in the free
section plus a modification O(g4) and can be ignored since
this is outside the scope of our one-loop computation. The
redefinition is

Z3 → (1 − Cf )Z3, M2ZM → (
M2 − M2

1

)
ZM

Zθ → (1 − Cθ )Zθ , m2Zm → (
m2 − m2

1

)
Zm. (A8)

This changes the g2 part to

Lθg2 = Zs

2m2
s

(∂μθ )�(∂μθ ) (A9a)

Lag2 = Zgh

2m2
gh

(∂F )2 + 1

4!
Z4C4A4 − 1

4!
Z5

A2

M2
2

F 2 (A9b)

Laθg2 = −1

4
ZaθCaθ θ

2A2 + 1

4
Zθ f

θ2

m2
θ f

F 2. (A9c)

2. Parameters relation

Now we can derive the connection between the bare
parameters and the renormalized ones. Using the kinetic
prescription, Aμ = Z−1/2

3 aμ and θ = Z−1/2
θ θ , results in the

following relations:

M = M
(ZM

Z3

)1/2

, m = m

(
Zm

Zθ

)1/2

, mgh = mgh

(
Z3

Zgh

)1/2

,

ms = ms

(Zθ

Zs

)1/2

, C4 = C4
Z3

Z1/2
a4

, M2 = M2
Z3

Z1/2
5

,

mθ f = mθ f

(
Z3Zθ

Zθ f

)1/2

, Caθ = Caθ

(
Zaθ

Z3Zθ

)1/2

,

g = g
Zg

Z1/2
3 Z1/2

θ

. (A10)
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3. Ghost elimination process

The action composed of (A3) and (A9) still exhibits the
problem of higher derivative contributions to the free sec-
tor. These contributions cannot be an oversight because they
will modify the free propagator by introducing a new “mass
pole” for the pseudoscalar and massive vector field causing
the introduction of nonphysical states. These terms cannot be
absorbed in a parameter shift because they carry a �2 (or in
momentum space, p4) dependency. It is possible to eliminate
these terms using a field redefinition

θ → θ − �
2m2

s

θ Aμ → Aμ − �
2m2

gh

Aμ, (A11)

and any extra term will be of order g4 and can be ignored as
it is outside the wanted perturbative accuracy. This process
is described in the Appendix of [49] (and reference within
it). The final product is the original Lagrangian minus the
ghost generating terms but with the reward of retaining their
counterterm. This is crucial to the renormalization process in
Sec. IV B. The resulting action is

LR = LProca + Laxion + Linteraction + δs

2m2
s

(∂μθ )�(∂μθ )

+ δgh

2m2
gh

(∂F )2 + L4γ + L2γ ,2θ (A12)

with

L4γ = 1

4!
Z4C4A4 − 1

4!
Z5

A2

M2
2

F 2 (A13a)

L2γ ,2θ = −1

4
ZaθCaθ θ

2A2 + 1

4
Zθ f

θ2

m2
θ f

F 2 (A13b)

along with Eqs. (A3) and (A4).

APPENDIX B: MATHEMATICAL DETAILS

1. Graph numerical integration

In order to analyze how the effective theory changes as the
parameters are modified it is convenient to introduce a set

of dimensionless combinations. The dimensional parameters
(m, M, g, r) can be arranged in three dimensionless terms:
Mr (distance scale), m

M (mass ratio scale), and gM (coupling
scale). Notice that in this parametrization a larger (smaller)
axion mass than Proca mass translates to m/M > 1 (0 <

m/M < 1).
This results in the polarization (83) taking the form

δP(Mr, gM, m/M ) = 1 + f (Mr, gM, m/M ) with

f (Mr, gM, m/M ) := (gM )2
(
1 + m

M

)2

48π2

∫ ∞

1
dtF (m/M, t )

× (t2 − 1)3/2 e−Mr[t (1+m/M )−1]

t
. (B1)

Any specification of (Mr, gM, m/M ) must be consistent
with the perturbation theory and physical experimental
ranges. To be compatible with perturbation theory they must
obey

f (Mr, gM, m/M ) < 1. (B2)

This inequality can be studied graphically using numerical
inputs of phenomenological characteristic scales.

The outline of the analysis is as follows: It is possible
to define a f (M0r0, (gM )crit, m0/M0) with some Mgcrit. In
order to keep the perturbative analysis consistent in a given
range Mr ∈ [(Mr)min, (Mr)max] and m/M ∈ [0, (m/M ) max ],
it is sufficient to choose a value Mg < (Mg)crit that can be
determined either numerically or graphically using the values
of (Mr, m/M ) = ((Mr)min, 0).

Consider a separation in the order of nanometers and
take the London length usually found in superconductors
(that ranges from λL ∼ 50 to ∼500 nm [55]) as a represen-
tative scale for the photon’s mass. Theoretically, this setup
is experimental feasible since it consists of a thin film of
a superconductor. Now consider length scales running from
r ∼ 1 to ∼50 nm. This choice of M ∼ 1/50 nm−1 leads to

FIG. 7. Numerical analysis of the inequality (B2). The black line at 1 represents the upper bound and the vertical dashed line is the critical
value Mg = 0.43. (a) The numerical plot of left- and right-hand sides of (B2), for Mr = 0.02. Note that the critical value of gM that keeps the
perturbative analysis valid increases with m

M . (b) The numerical plot of left- and right-hand sides of (B2), for m = 0. Note that the critical value
of gM also increases considerably as one makes slight modifications on Mr.
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Mr ∈ [0.02, 1]. In order to get a consistent value of Mg for
any Mr greater than the lower bound it is sufficient to solve
(B1) for (Mr, m/M ) = (0.02, 0). Graphically it can be read
from Fig. 7(a) that this is true for Mg|crit ≈ 0.43. This sets
the typical length scale above which the perturbative analysis
breaks and our model is not reliable anymore.

2. Full expression

The full integral of (87) is

δP(r) = 1 + g2

π2
[e−mrFun1 + eMrFun2] + O(

M

m

1

) (B3)

with

Fun1 = r3(m + M )3(15m2 − 60mM + 17M2)

17 280
− r2(m + M )2(5m2 − 20mM + 7M2)

5760

− r(m + M )(85m2 − 160mM + 81M2)

2880
+ 1

576
(15m2 − 24mM + 11M2)

+ M2r5(m + M )5

17280
− M2r4(m + M )4

17280
+ m + M

48r
+ 1

48r2
(B4)

Fun2 = r4(m + M )4(m2 − 4mM + M2)Ei(−(m + M )r)

1152
− 1

32
r2(m2 − M2)2Ei(−(m + M )r)

+ 1

48
(3m2 + M2)Ei[−(m + M )r] + M2r6(m + M )6Ei[−(m + M )r]

17 280
. (B5)
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