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Dispersionless bands, flat bands, provide an excellent test bed for novel physical phases due to the fine-
tuned character of flat band tight-binding Hamiltonians. The accompanying macroscopic degeneracy makes any
perturbation relevant, no matter how small. For short-range hoppings flat-bands support compact localized states,
which allowed us to develop systematic flat-band generators in d = 1 dimension in Phys. Rev. B 95, 115135
(2017) and Phys. Rev. B 99, 125129 (2019). Here we extend this generator approach to d = 2 dimensions. The
shape of a compact localized state turns into an important additional flat-band classifier. This allows us to obtain
analytical solutions for classes of d = 2 flat-band networks and to reclassify and reobtain known ones, such as
the checkerboard, kagome, Lieb, and Tasaki lattices. Our generator can be straightforwardly generalized to three
lattice dimensions as well.
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I. INTRODUCTION

Physical systems with macroscopic degeneracies have
attracted a lot of attention during recent decades. Such degen-
eracies are highly sensitive to even the slightest perturbations,
which makes them perfect test beds for identifying and study-
ing various exotic or unconventional correlated phases of
matter. Flat bands are dispersionless energy bands of trans-
lationally invariant tight-binding networks [1,2]. The absence
of dispersion implies a macroscopic degeneracy of the flat-
band eigenstates. A flat-band (FB) results from destructive
interference of the hoppings, which requires their fine tuning.
All the known FB examples with short-range hopping support
compact localized states (CLS) [3] as eigenstates with strictly
compact support. FB networks were extensively studied theo-
retically in d = 1 [4–6], d = 2 [7–9], and d = 3 [7,10–15]
lattice dimensions. Models featuring FBs have been exper-
imentally realized in a variety of settings, including optical
wave guide networks [16–20], exciton-polariton condensates
[21–24], and ultracold atomic condensates [18,19,21,25–30].

Due to their fine-tuned character, flat-band systems are
fragile to perturbations that can easily destroy the macro-
scopic degeneracy. As a consequence, exotic phases of matter
with unusual properties emerge under the effect of various
perturbations: disorder [31–35], external fields [36–38], non-
linearities [39–41]. Interactions in FB lead to a plethora of
interesting phenomena: delocalization and conserved quan-
tities [42–45], disorder-free many-body localization [44,46–
48], ground-state ferromagnetism [7,8,12,49–52], pair forma-
tion for hard core bosons [53], superfluidity [54–56], and
superconductivity [57].

However, the very defining feature of the flat bands—their
fine-tuned degeneracy—makes it difficult to identify them
in the relevant Hamiltonian parameter space. A number of

methods have been proposed to construct FB lattices: line
graph approach [7], extended cell construction method [8],
origami rules [58], repetitions of miniarrays [59], local sym-
metry partitioning [60], chiral symmetry [15], fine tuning
relying on specific CLS and network symmetries [10,61],
using specific properties of FB [62], etc. All these methods
apply to either specific geometries of the underlying networks
or to networks with particular symmetries.

All the above discussed FB networks support CLS. It fol-
lows that the properties of the CLS together with a number
of generic network properties form a set of classifiers, which
will fix a particular FB network class. That approach leads to
systematic FB generators based on these classifiers. The CLS
classifiers are its size U (of occupied unit cells) and shape (in
dimensions d � 2), while the generic network classifiers are
its dimension d , the Bravais lattice type, the hopping range,
and the number of bands ν (i.e., the number of sites per
unit cell). The simplest generator case U = 1 with arbitrary
remaining network classifiers was obtained in Ref. [63]. The
more sophisticated case U = 2 with d = 1, nearest neighbor
unit cell hopping, and two bands ν = 2 was solved in closed
form in Ref. [64], with its extension to larger band number ν

and CLS size U published in Ref. [65].
In this work, we extend the d = 1 FB generator [64,65]

to two dimensions d = 2 and indicate the road to generators
in dimension d = 3. We introduce a systematic classification
of d = 2 FB networks using their CLS classifiers, size U and
shape. We demonstrate how to find analytic solutions for some
FB classes. We regenerate and classify some of the already
known d = 2 FB lattices such as the checkerboard, kagome,
Lieb, and Tasaki lattices, along with a multitude of completely
new d = 2 FB lattices.

The paper is organized as follows. In Sec. II, we introduce
the main definitions and conventions that we use throughout
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FIG. 1. Example of nearest neighbor unit cells for two-
dimensional (2D) lattices, where �a1, �a2 are primitive translation
vectors and �a3 = �a1 + �a2. In our conventions: (a) a square lat-
tice has only 2 nearest neighbor hopping directions: �a1, �a2, (b) a
triangular/hexagonal lattice has 3 nearest neighbor hopping direc-
tions: �ai=1,2,3.

the text. These conventions are direct generalization to d = 2
of the conventions used for the d = 1 FB generator [64,65].
Section II B introduces CLS of d = 2 FB Hamiltonians, and
the classification of FB Hamiltonians by their CLS. It also
presents an inverse eigenvalue problem for finding Hamilto-
nians from a given CLS class. An algorithm to solve these
inverse eigenvalue problems is turned into an efficient FB
generator in Sec. III B. In Sec. IV, we apply the FB generator
to some classes of CLS, illustrate how the inverse eigenvalue
problem is resolved and show the results. We conclude by
summarizing our results and discussing open problems.

II. MAIN DEFINITIONS

A. Models

We consider a d = 2 translational invariant tight-binding
lattice with ν sites per unit cell. We use the same notation
as in our previous works, Refs. [64,65]: we label wave func-
tions by the unit cell index n, so that the full wave function
reads � = ( �ψ1, . . . , �ψn, . . . ), where the ν-component vector
�ψn is the wave function of the nth unit cell. For simplicity

we restrict to nonzero hopping between nearest neighbor unit
cells only, and note that the generalization to longer-range
hoppings is cumbersome but straightforward. Nearest neigh-
bor unit cells are defined along (combinations of) primitive
lattice translation vectors. A set of matrices Hχ describes the
hopping between different pairs of unit cells. The index χ

encodes the direction of the hopping, x, y, etc. The result is
illustrated in Fig. 1 for a square lattice and a triangular lattice,
the only possible cases for the nearest neighbor directions in
d = 2. A unit cell on the square lattice has four neighbors
and two different directions of nearest neighbor hopping, both
along the primitive lattice translations vectors �a1 and �a2. A
site on a triangular lattice has six neighbors and three possible
directions of nearest neighbor hopping: �ai=1,2,3 only two of
which correspond to the primitive lattice translation vectors.
With these conventions the Hamiltonian eigenvalue problem
reads

H0 �ψn +
∑
χ

(H†
χ

�ψn′
χ

+ Hχ �ψnχ
) = E �ψn, n ∈ Z. (1)

Here H0 describes the intracell hopping and Hχ is the nearest
neighbor hopping matrix for the χ th direction, with nχ and
n′

χ being the respective indices of the two nearest neighboring
unit cells along the χ th direction. Because of the transla-
tion invariance the Floquet-Bloch theorem applies and the
eigenstates of Eq. (1) can be expressed as �ψn = �u(k)e−ik· �Rn ,
where the Bloch polarization vector �u(k) has ν components
uμ(k), μ = 1, . . . , ν. Finally k = (kx, ky) is the wave vector,
and �Rn is the position of the nth unit cell. Then the eigenvalue
problem (1) in momentum space reads

Hk�u(k) = E (k)�u(k). (2)

The eigenvalues E (k) provide the band structure of the Hamil-
tonian Hk.

B. Classification of compact localized states

In our previous work [65] we have shown that the size
U of a CLS is the only CLS-related flat-band classifier in
dimension d = 1 dimension. For d = 2 dimensions, size and
shape of the CLS plaquette turn into relevant flat-band classi-
fiers. The size of a CLS is given by two integers U1 and U2,
which define its plaquette size along the two primitive lattice
translation vectors �a1, �a2. The shape of a CLS plaquette is
encoded by a U1 × U2 matrix T with integer entries 0 or 1.
The zero elements of the matrix T prescribe the locations
of unit cells with zero wave-function amplitudes in the CLS
plaquette. The number of all possible nontrivial matrices T is
finite and can be sorted and counted using an integer s � 0.
Therefore we arrive at the extended CLS flat-band classifier
vector U = (U1,U2, s).

For U1 = 1 or U2 = 1 there is only one possible shape and
we can shorten the classifier U to (1,U2) or (U1, 1). The other
cases considered below correspond to U1 = U2 = 2, and we
choose the integer s to count the number of zeros in the above
matrix T :

s = 0 : T =
(

1 1
1 1

)
, (3)

s = 1 : T =
(

1 0
1 1

)
, (4)

s = 2 : T =
(

0 1
1 0

)
. (5)

The case U = 1 discussed in the introduction corresponds
to U = (1, 1). The simplest nontrivial case in d = 2 is U =
(2, 1) and will be discussed below. The next and less triv-
ial set of cases in d = 2 is U = (2, 2, 0), U = (2, 2, 1), and
U = (2, 2, 2). Figure 2 shows some of the known cases of 2D
flat-band networks with their CLS plaquettes: Fig. 2(a) Lieb:
U = (2, 2, 1); Fig. 2(b) checkerboard: U = (2, 2, 1); Fig. 2(c)
kagome: U = (2, 2, 1); and Fig. 2(d) dice: U = (2, 2, 0).

We will show that these known flat-band networks are
members of vast families of flat-band networks, each with
a number of continuously tunable control parameters. For
U1,U2 � 2 the wave functions �ψn in Eq. (1) are nonzero for a
maximum of four unit cells. We label these CLS components
as �ψi=1,...,4 as shown in Fig. 3(e). We will use the vector �ψi

and the bra-ket |ψi〉 notations interchangeably throughout the
text.
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FIG. 2. The U classification of four specific and known 2D lat-
tices with a flat band. Open circles denote the lattice sites, black
lines nonzero hopping elements of equal value. Shaded areas indicate
the U1 × U2 CLS plaquette, and the darker shaded regions show the
occupied unit cells (black circles show the nonzero wave function
amplitudes of the flat-band CLS). Red boxes denote the unit cell, and
�a1, �a2 are primitive translation vectors, and �a3 = �a1 ± �a2. Lattices
and respective (extended) classifier vectors of the respective CLS:
(a) Lieb: U = (2, 2, 1), (b) checkerboard: U = (2, 2, 1), (c) kagome:
U = (2, 2, 1), and (d) dice: U = (2, 2, 0).

FIG. 3. Classification of compact localized states for cases with
two hopping matrices. Each square represents a unit cell. Directions
of the hopping and respective destructive interference conditions are
indicated by arrows. Where two hopping terms (arrows) meet, both
will contribute to the destructive interference cancellation. (a) U =
(1, 1) single unit cell (U = 1) CLS. (b) U = (2, 1) case. (c) U =
(2, 2, 2) case. (d) U = (2, 2, 1) case. (e) U = (2, 2, 0) case.

III. FLAT-BAND GENERATOR

A. Eigenvalue problem

Just as in the d = 1 case [65] we construct FB Hamiltoni-
ans from their CLS, considering the latter as input parameters
and reformulating the problem of finding a FB Hamiltonian
into an inverse eigenvalue problem for the hopping matrices
Hχ . To achieve this we rewrite the eigenvalue problem (1) for
the nonzero amplitudes �ψi and supplement it with destructive
interference conditions, which ensure the strict compactness
of the eigenstate. Overall the way we solve this system in
d = 2 is very similar in spirit to but is in general more com-
plex and involved than the d = 1 case.

1. U = 1

The U = 1 case assumes a CLS, which occupies only one
unit cell with wave function �ψ1 and leads to a simple set of
equations:

H0 �ψ1 = EFB �ψ1,

Hi �ψ1 = H†
i

�ψ1 = 0, i = 1, 2, 3. (6)

2. U1 = 2

Two hopping matrices. The simplest case of two hopping
matrices H1, H2 can be always related to a square lattice
geometry. One example is the Lieb lattice shown in Fig. 2(a).
The possible CLS shapes and the hoppings for this case are
shown in Fig. 3. The eigenvalue problem and destructive
interference conditions read:

H1 �ψ2 + H2 �ψ3δU2,2 = (EFB − H0) �ψ1,

H†
1

�ψ1 + H2 �ψ4δU2,2δs,0 = (EFB − H0) �ψ2,

(H1 �ψ4δs,0 + H†
2

�ψ1)δU2,2 = (EFB − H0) �ψ3δU2,2,

(H†
1

�ψ3δs,0 + H†
2

�ψ2δs,0)δU2,2 = (EFB − H0) �ψ4δU2,2δs,0,

H1 �ψ1 = H†
1

�ψ2 = 0,

H2 �ψ1 = H2 �ψ2 = 0,

H1 �ψ3δU2,2 = H†
2

�ψ3δU2,2 = 0,

H1 �ψ3δU2,2δs,1 + H†
2

�ψ2 = 0,

H†
1

�ψ4δU2,2δs,0 = H†
2

�ψ4δU2,2δs,0 = 0. (7)

For specific values of U1, U2 and s the above system gives the
eigenvalue problem and destructive interference conditions
for a CLS with the extended classifier vector U = (U1,U2, s).

Three hopping matrices. Several known flat-band lattice
models have three hopping matrices, which connect differ-
ent unit cells, for example checkerboard, kagome, and dice
lattices [see Figs. 2(b)–2(d)]. The three respective hopping
matrices H1, H2, H3 are shown in Fig. 4. It is instructive to
note that the freedom in choosing different unit cells has
consequences in our classification scheme. As an example, the
dice lattice with its unit cell choice in Fig. 2(d) falls into the
category U = (2, 2, 0) with three nontrivial hopping matrices.
The unit cell choice used in Fig. 1 in Ref. [37] leads to a much
larger CLS plaquette with classifier U = (3, 3) (and three
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FIG. 4. Classification of compact localised states for cases with
three hopping matrices. Each square represents a unit cell. Directions
of the hopping and respective destructive interference conditions are
indicated by arrows. Where two or more hopping terms (arrows)
meet, all will contribute to the destructive interference cancellation.
(a) U = (1, 1) single unit cell (U = 1) CLS. (b) U = (2, 1) case.
(c) U = (2, 2, 2) case. (d) U = (2, 2, 1) case. (e) U = (2, 2, 0) case.

empty unit cells in the CLS), but also to a reduced number
of only two nontrivial hopping matrices.

For three hopping matrices the eigenvalue problem and the
corresponding destructive interference conditions read:

H1 �ψ2 + H2 �ψ3δU2,2 = (EFB − H0) �ψ1,

H†
1

�ψ1 + H2 �ψ4δU2,2δs,0 + H†
3

�ψ3δU2,2 = (EFB − H0) �ψ2,

(H1 �ψ4δs,0 + H†
2

�ψ1 + H3 �ψ2)δU2,2 = (EFB − H0) �ψ3δU2,2,

(H†
1

�ψ3+H†
2

�ψ2)δU2,2δs,0 = (EFB−H0) �ψ4δU2,2δs,0,

H1 �ψ1 = H2 �ψ1 = 0,

H†
1

�ψ4δU2,2δs,0 = H2 �ψ4δU2,2δs,0 = 0,

H†
3

�ψ2 = H3 �ψ3δU2,2 = 0,

H2 �ψ2 + H†
3

�ψ1 = 0,

H1 �ψ3δU2,2 + H3 �ψ1δU2,2 = 0,

H†
2

�ψ3δU2,2 + H3 �ψ4δU2,2δs,0 = 0,

H†
1

�ψ2 + H3 �ψ4δU2,2δs,0 = 0. (8)

For specific values of U1, U2, s we obtain the eigenvalue
problem and destructive interference conditions for a CLS
with the extended classifier vector U = (U1,U2, s). In order
to apply the generator defined below, we define the transverse
projectors Qi, Qi j, Qi jk on { �ψi}, { �ψi, �ψ j} and { �ψi, �ψ j, �ψk},
respectively.

B. Generator

The sets of equations (7), (8) are the starting point of
our flat-band generator. Our goal is to generate all possible
matrices Hχ , which allow for the existence of a flat band,

given a particular choice of the CLS shape, EFB and H0. We
arrive at the following protocol:

(i) Choose the number of bands ν.
(ii) Choose a hopping range.
(iii) Choose a plaquette shape of the CLS.
(iv) Choose an arbitrary Hermitian H0.
(v) Choose a flat-band energy EFB.
(vi) Exclude H1, H2, and H3 from the equations (7), (8)

to get nonlinear constraints on the CLS components �ψi, and
solve these constraints to find all CLS components �ψi.

(vii) With the chosen H0, EFB and the CLS �ψi obtained at
the previous step, solve equations (7), (8) for Hχ .

The above protocol admits variations, which can simplify
the task. In some cases the nonlinear constraints allow us
to skip item (v) and keep the flat-band energy EFB a free
parameter to be fixed when executing item (vi), as we will
show below. Step (vi) requires solving nonlinear equations,
which may have either no CLS solutions, or a manifold of
CLS solutions with freely tunable parameters, or even several
such manifolds. Using a CLS solution from step (vi), and
executing step (vii), will in general yield a solution manifold
of hopping matrices with freely tunable parameters as well,
which correspond to the freedom of fixing only the flat-band
states and not constraining the rest of the spectrum, bands, and
eigenvectors.

IV. SOLUTIONS

We consider CLS sizes restricted to U1,U2 � 2, unless
stated otherwise.

A. U = 1

Without loss of generality we assume that H0 is diagonal
with first diagonal entry EFB. From the first line in Eq. (6)
we conclude �ψ1 = (1, 0, 0, . . . , 0). The following destructive
interference conditions yield (Hi )1,μ = (Hi )μ,1 = 0, i.e., the
hopping matrices have zeros on their first row and column, and
freely chooseable entries elsewhere. The entries parametrize
the remaining dispersive degrees of freedom. These entries
as well as an overall multiplicative scaling factor and energy
gauge are the free parameters of the corresponding manifold
of U = 1 flat-band Hamiltonians. These solutions correspond
to the detangled basis of U = 1 flat-band networks [63]. Ad-
ditional manifold parameters are obtained from entangling the
CLS with the dispersive network through commuting local
unitary operations [63].

For two bands ν = 2 and H3 = 0 it follows that the only
solutions are either U = 1 flat bands, or decoupled 1D net-
works with H2 = 0 and U = 2 (see details of the derivation in
Appendix A).

B. U = (2, 1)

A schematic of the CLS and the destructive interference
conditions for this case are shown in Fig. 3(b) and Fig. 4(b)
for the two and three hopping matrices cases, respectively. The
eigenvalue problem (7), respectively (8), involves only one
hopping matrix H1, while the matrices H2,3 enter additional
destructive interference conditions only. Therefore the eigen-
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FIG. 5. Example of a U = (2, 1) CLS FB network and ν = 3.
(a) Tight binding lattice with two hopping matrices. Lines indicate
nonzero hoppings, filled circles show the position of a CLS. an, bn, cn

indicate the sites in one unit cell. See Appendix B1 for details.
(b) Band structure corresponding to (a).

value problem reduces to the 1D case solved in Ref. [65]. It
follows (see Appendix B1 and Ref. [65] for details)

H1 = (EFB − H0)|ψ1〉〈ψ2|(EFB − H0)

〈ψ1|EFB − H0|ψ1〉 . (9)

The CLS components �ψ1, �ψ2 are subject to nonlinear con-
straints

〈ψ2|EFB − H0|ψ1〉 = 0,

〈ψ1|EFB − H0|ψ1〉 = 〈ψ2|EFB − H0|ψ2〉, (10)

that are resolved similarly to the 1D case [65]. For two hop-
ping matrices the additional destructive interference yields

H2 = Q12M2Q12, (11)

where M2 is an arbitrary ν × ν matrix. Figure 5 provides
an example network for the two hopping matrices case. For
three hopping matrices the derivation of H2 and H3 is given in
Appendix C1.

C. U = (2, 2, 2)

The case U = (2, 2, 2) is shown in Figs. 3(c) and 4(c),
where the two CLS-occupied unit cells just touch one another.
Equations (7)–(8) reduce to simple eigenproblems for the
amplitudes in each individual unit cell:

H0|ψi=1,2〉 = EFB|ψi=1,2〉. (12)

We choose some H0 and thereby fix EFB and �ψ1,2. If EFB

is nondegenerate, then �ψ2 ∝ �ψ1 and the problem reduces to
a U = 1 CLS. If EFB is degenerate we need at least ν = 3
bands. The amplitudes �ψ1,2 can then be picked as distinct
linear combinations of the eigenvectors corresponding to EFB.
The intracell hopping matrices H1, H2, H3 are reconstructed
from the destructive interference conditions, Eqs. (7)–(8):

H1|ψ1〉 = H2|ψ1〉 = 0 〈ψ2|H1 = 〈ψ2|H2 = 0

H†
1 |ψ1〉 + H2|ψ2〉 = 0 H†

2 |ψ1〉 + H1|ψ2〉 = 0

H3|ψ1〉 = H†
3 |ψ1〉 = H3|ψ2〉 = H†

3 |ψ2〉 = 0.

The last line implies that H3 = Q12MQ12 where M is an arbi-
trary ν × ν matrix. The first two lines of the above equation
constitute a coupled inverse problem of finding H1, H2 from

their known action on �ψ1, �ψ2. This problem can be decoupled
into inverse problems for H1 and H2 by defining:

H1|ψ1〉 = Q1|z〉 H1|ψ2〉 = Q2|w〉. (13)

The inverse problems for H1, H2 have been solved in Ref. [65].

D. U = (2, 2, 1)

A schematic of the CLS and destructive interference con-
ditions for this case is shown in Fig. 3(d) and Fig. 4(d) for the
two and three hopping matrices, respectively.

1. Two hopping matrices

The case of two hopping matrices and an arbitrary number
of bands can be resolved following a similar derivation as for
U = (2, 1), however, the solution is cumbersome. Therefore
for simplicity we focus on the specific case of ν = 3 bands.
We can consider two cases: (a) the CLS amplitudes are lin-
early independent, or (b) the CLS amplitudes are dependent.
The latter case includes the known cases of the Lieb [11] and
Tasaki [8,49] lattices.

Case (a) has one of the destructive interference conditions
reading 〈ψ3|H1 + 〈ψ2|H2 = 0. For ν = 3 the number of com-
ponents of each of the vectors �1,2,3 is also equal to three.
Therefore it is straightforward to show that the destructive
interference condition splits into two:

〈ψ3|H1 =〈ψ2|H2 = 0. (14)

Then the eigenvalue problem Eq. (7) reads

H1 �ψ2 + H2 �ψ3 = (EFB − H0) �ψ1,

H†
1

�ψ2 = (EFB − H0) �ψ2,

H†
2

�ψ2 = (EFB − H0) �ψ3,

H1 �ψ2 = H†
1

�ψ2 = H1 �ψ3 = H†
1

�ψ3 = 0,

H2 �ψ2 = H†
2

�ψ3 = H2 �ψ2 = H†
2

�ψ2 = 0. (15)

We eliminate H1, H2 from the eigenproblem and obtain the
nonlinear constraints on the CLS amplitudes:

〈ψ2|H0|ψ1〉 = EFB〈ψ2||ψ1〉,
〈ψ3|H0|ψ1〉 = EFB〈ψ3||ψ1〉,
〈ψ3|H0|ψ2〉 = EFB〈ψ3||ψ2〉,

× 〈ψ2|EFB − H0|ψ2〉
+ 〈ψ3|EFB − H0|ψ3〉

= 〈ψ1|EFB − H0|ψ1〉. (16)

Finally we obtain the hopping matrices:

H1 = (EFB − H0)|ψ1〉〈ψ2|(EFB − H0)

〈ψ1|EFB − H0|ψ1〉 ,

H2 = (EFB − H0)|ψ1〉〈ψ3|(EFB − H0)

〈ψ1|EFB − H0|ψ1〉 . (17)

Case (b) assumes �ψi=1,2,3 to be linearly dependent

|ψ1〉 = α|ψ2〉 + β|ψ3〉. (18)

165116-5



MAIMAITI, ANDREANOV, AND FLACH PHYSICAL REVIEW B 103, 165116 (2021)

FIG. 6. Examples of U = (2, 2, 1) CLS FB networks. (a) Tight
binding lattice with two hopping matrices and ν = 3. Lines indicate
nonzero hoppings, filled circles show the position of a CLS. an, bn, cn

indicate the sites in one unit cell. See Appendix B2 for details.
(b) Band structure corresponding to (a). (c) Same as (a) but for three
hopping matrices and ν = 2. an, bn indicate the sites in one unit cell.
See Appendix C2 for details. (d) Band structure corresponding to (c).

This yields the following solution (see details in Appendix
B2):

H1 = Q2|a〉〈ψ2|(EFB − H0)

〈ψ3|Q2|a〉 ,

H2 = Q3|b〉〈ψ3|(EFB − H0)

〈ψ2|Q3|b〉 , (19)

where |a〉, |b〉 are arbitrary vectors, and EFB, H0, �ψ2, �ψ3 are
chosen respecting the constraints

〈ψ2|EFB − H0|ψ2〉 = 0,

〈ψ3|EFB − H0|ψ3〉 = 0,

〈ψ3|EFB − H0|ψ2〉 = 0,

(EFB − H0)(α|ψ2〉 + β|ψ3〉) = 0. (20)

Equations (18)–(20) provide a complete solution to this
special U = (2, 2, 1) case with ν = 3 bands. The known
examples such as Lieb lattice and Tasaki’s lattice can be con-
structed from our generator as demonstrated in Appendix B2.
Figure 6(a), 6(b) shows one generated example (see details in
Appendix B2).

2. Three hopping matrices

The configuration of this case is shown in Fig. 4(d). The
eigenvalue problem and the destructive interference condi-
tions read

H1|ψ2〉 + H2|ψ3〉 = (EFB − H0)|ψ1〉,
H†

1 |ψ1〉 + H†
3 |ψ3〉 = (EFB − H0)|ψ2〉,

H†
2 |ψ1〉 + H3|ψ2〉 = (EFB − H0)|ψ3〉,

H1|ψ1〉 = H2|ψ1〉 = H3|ψ3〉 = 0,

FIG. 7. Example of a U = (2, 2, 0) CLS FB network, two hop-
ping matrices, and ν = 3. (a) Tight-binding lattice. Lines indicate
nonzero hoppings, filled circles show the position of a CLS. an, bn, cn

indicate the sites in one unit cell. See Appendix B3 for details.
(b) Band structure corresponding to (a).

〈ψ2|H1 = 〈ψ3|H2 = 〈ψ2|H3 = 0,

H1|ψ3〉 + H3|ψ1〉 = 0,

H2|ψ2〉 + H†
3 |ψ1〉 = 0,

〈ψ3|H1 + 〈ψ2|H2 = 0. (21)

The family of flat-band solutions for two bands ν = 2 is
derived in Appendix C2, with a particular member choice of
the family shown in Figs. 6(c), 6(d). Notably the checkerboard
lattice [7,12,66,67] is also part of the family, as outlined in Ap-
pendix C2. For ν = 3 a more cumbersome derivation yields
the family of flat-band solutions that contains the kagome
lattice [13,68,69] (not shown here).

E. U = (2, 2, 0)

The CLS and destructive interference conditions for the
case of two hopping matrices and the square shaped CLS are
shown in Fig. 3(e). For simplicity we restrict ourselves to three
bands and use a direct parametrization of the CLS amplitudes
�ψi to solve Eq. (7). The full analytical solution is reported in

Appendix B3. There are three free parameters in this solution,
and Fig. 7 shows an example FB Hamiltonian for this case.

To conclude we note that the increased complexity of the
equations (7)–(8) for fully 2D shapes as compared to the
1D case is an expected and generic feature. However, while
it does not seem to be possible to work out full solutions
in general—the nonlinear constraints on the amplitudes and
complex destructive interference conditions typically being
the main obstacle—we believe that such solutions can be
found in individual cases.

V. CONCLUSIONS

In this work, we extended the systematic 1D flat-band
generator [65] to two dimensions. Two important additional
classifiers have been identified and added to make the 2D
generator complete. First, we need to specify the underlying
Bravais lattice class. Second and most importantly we need
to specify the shape of the compact localized states at other-
wise fixed CLS plaquette size. We derived analytical solutions
for a number of different FB classes, and reproduced some
of the well-known FB lattices: Lieb, Tasaki, kagome, and
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checkerboard, along with a number of new 2D FB lattice
examples. Our generator results in the possibility of counting
free continuously variable parameters after fixing one partic-
ular 2D FB class. These existing parameters demonstrate that
FB Hamiltonians, while being fine-tuned models, emerge as
members of finite-dimensional Hamiltonian manifolds with
an additional rich structure. Our results can be straightfor-
wardly extended to larger compact localized states in 2D,
and also to 3D cases, no matter how cumbersome the deriva-
tions could turn. Therefore our FB generator provides a direct
way to search for flat bands for fixed lattice geometries in
any lattice dimension. In particular our generator might shed
light on the origin and some properties of nearly flat-bands
observed in twisted bilayer graphene [70]: several studies
[71,72] suggest a proximity to a chiral lattice system with
perfect flat bands at E = 0, whose properties require careful
investigation. Another interesting direction is experimental
realizations of flat-band lattices: while several well-known
lattices with flat bands were observed experimentally—Lieb
[19,20,24,25,73], kagome [16,21,74], honeycomb [22], super-
honeycomb [75]—our generator with minimal modifications
allows us to construct new flat-band lattices in experimentally
relevant geometries.
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APPENDIX A: ν = 2 AND H3 = 0

We consider two bands and H3 = 0 and demonstrate that
any possible flat bands always either reduce to class U = 1 or
decouple into 1D networks. First we consider the U = (2, 1)
case in Fig. 3(b). The eigenvalue problem and the destructive
interference conditions (7) read

H0 �ψ1 + H1 �ψ2 = EFB �ψ1,

H0 �ψ2 + H†
1

�ψ1 = EFB �ψ2,

H1 �ψ1 = H†
1

�ψ2 = 0,

H2 �ψs = H†
2

�ψs = 0, s = 1, 2. (A1)

The last line enforces that either (i) H2 = 0 or (ii) �ψ2 ∝ �ψ1.
Case (i) reduces the system to a set of disconnected 1D net-
works, which were completely studied in Ref. [64]. Case (ii)
yields that �ψ1,2 are an eigenvector to H0 (up to a normalization
factor) and form a complete U = 1 CLS, and the considered
U = (2, 1) case reduces to a linear combination of two U = 1
CLS states.

For the U = (2, 2, 0) case in Fig. 3(e) the destructive inter-
ference conditions in Eq. (7) read

H1 �ψ1 = H1 �ψ3 = 0,

H†
1

�ψ2 = H†
1

�ψ4 = 0,

H2 �ψ1 = H2 �ψ2 = 0,

H†
2

�ψ3 = H†
2

�ψ4 = 0. (A2)

The first line enforces that either (i) H1 = 0 or (ii) �ψ3 ∝ �ψ1.
Case (i) reduces the system to disconnected 1D networks. The
third line results in (iia) H2 = 0 or (iib) �ψ2 ∝ �ψ1. Case (iia)
reduces the system to disconnected 1D networks. Case (iib)
implies �ψ4 ∝ �ψ1 and reduces the problem to U = 1.

The case U = (2, 2, 1) shown in Fig. 3(d) yields the fol-
lowing destructive interference conditions:

H1 �ψ1 = H1 �ψ3 = 0,

H†
1

�ψ2 = 0,

H2 �ψ1 = H2 �ψ2 = 0,

H†
2

�ψ3 = 0,

H†
1

�ψ3 + H†
2

�ψ2 = 0. (A3)

The first line enforces that either (i) H1 = 0 or (ii) �ψ3 ∝ �ψ1.
Case (i) reduces the system to disconnected 1D networks. The
third line results in (iia) H2 = 0 or (iib) �ψ2 ∝ �ψ1. Case (iia)
reduces the system to disconnected 1D networks. Case (iib)
reduces the problem to U = 1.

The case U = (2, 2, 2) shown in Fig. 3(c) is slightly more
involved. The eigenproblem in this case reads:

H0 �ψ1,2 = EFB �ψ1,2.

There are two possible solutions: (i) ψ2 ∝ ψ1 or (ii) H0 =
EFBI and �ψ2 ⊥ �ψ1. Case (i) reduces the system to U = 1. In
case (ii) we consider the destructive interference conditions

H1 �ψ1 = H2 �ψ1 = 0

H†
1

�ψ2 = H†
2

�ψ2 = 0

H1 �ψ2 + H†
2

�ψ1 = 0

H2 �ψ2 + H†
1

�ψ1 = 0.

From the first two lines and orthogonality of �ψ1,2 we conclude
that H1,2 ∝ |ψ1〉〈ψ2|. However, this is incompatible with the
remaining two destructive interference conditions as verified
by direct substitution and taking into account the mutual or-
thogonality of �ψ1,2.

APPENDIX B: FB GENERATION FOR TWO HOPPING
MATRICES AND ν � 3

1. U = (2, 1)

From Eq. (7), we get the eigenvalue problem and destruc-
tive interference conditions

H1|ψ2〉 = (EFB − H0)|ψ1〉,
〈ψ1|H1 = 〈ψ1|(EFB − H0),

H1|ψ1〉 = H2|ψ1〉 = H2|ψ2〉 = 0,

〈ψ2|H1 = 〈ψ1|H2 = 〈ψ2|H2 = 0. (B1)

Since H2 only appears in the destructive interference condi-
tions, we can express it as H2 = Q12M2Q12 where M2 is an
arbitrary ν × ν matrix. The remaining problem is identical to
the 1D problem discussed in our previous work [65] so that
we only sketch the solution. Using the destructing interference
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conditions, we eliminate H1 from the eigenvalue problem and
find the following nonlinear constraints on the CLS

〈ψ2|EFB − H0|ψ1〉 = 0,

〈ψ1|EFB − H0|ψ1〉 = 〈ψ2|EFB − H0|ψ2〉. (B2)

The destructive interference conditions suggest the follow-
ing ansatz H1 = Q2|u〉〈v|Q1, where |u〉, |v〉 are vectors to be
fixed. Plugging this ansatz into Eq. (B1) we find the vectors
�u, �v and the final expression for H1

H1 = (EFB − H0)|ψ1〉〈ψ2|(EFB − H0)

〈ψ1|EFB − H0|ψ1〉 . (B3)

a. ν = 3 example

We choose H0 and we parameterize the CLS amplitudes
and H2 as follows:

H0 =
⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠, �ψ1 =

⎛
⎝a

b
c

⎞
⎠, �ψ2 =

⎛
⎝d

e
f

⎞
⎠,

H2 = Q12|u〉〈v|Q12,

�u = (u1, u2, u3), �v = (v1, v2, v3).

The nonlinear constraints (B2) yield b = −√
2 f , d = f , c =

e = 0. Then it follows that

H1 =

⎛
⎜⎜⎝

− 1√
2

− a
2 f − 1√

2

2 f
a − a

2 f

4− a2

f 2

2
√

2
2 f
a − a

2 f
1√
2

a
2 f

1√
2

⎞
⎟⎟⎠,

H2 =

⎛
⎜⎝

√
2A f 2 aA f −√

2A f 2

aA f a2A√
2

−aA f

−√
2A f 2 −aA f

√
2A f 2

⎞
⎟⎠,

where

A =
(√

2au2 + 2 f (u1 − u3)
)
[av2 + 2 f (v1 − v3)]

(a2 + 4 f 2)2 .

The FB energy EFB is then obtained from the first nonlinear
constraint (B2).

The specific lattice structure of the Hamiltonian in Fig. 5(a)
corresponds to the following choices of free parameter:

x3 = x1, y3 = y1, x2 = 1, y2 = 5, u3 = u1,

v3 = v1, u2 = 1, v2 = −5, f = −1, a = 1.

The hopping matrices and CLS amplitudes read

H1 =

⎛
⎜⎝

− 1√
2

1
2 − 1√

2
− 3

2
3

2
√

2
− 3

2
1√
2

− 1
2

1√
2

⎞
⎟⎠,

H2 =

⎛
⎜⎝− 2

5

√
2

5
2
5√

2
5 − 1

5 −
√

2
5

2
5 −

√
2

5 − 2
5

⎞
⎟⎠,

�ψ1 =
⎛
⎝ 1√

2
0

⎞
⎠, �ψ2 =

⎛
⎝−1

0
−1

⎞
⎠.

2. U = (2, 2, 1) case and ν = 3

The eigenvalue problem and destructive interference con-
ditions in Eq. (7) become

H1 �ψ2 + H2 �ψ3 = (EFB − H0) �ψ2,

H†
1

�ψ1 = (EFB − H0) �ψ2,

H†
2

�ψ1 = (EFB − H0) �ψ3,

H1 �ψ1 = H†
1

�ψ2 = H1 �ψ3 = 0,

H2 �ψ1 = H2 �ψ2 = H†
2

�ψ3 = 0,

H†
1

�ψ3 + H†
2

�ψ2 = 0. (B4)

Using the destructive interference conditions, we eliminate
H1, H2 from the eigenproblem and obtain the nonlinear con-
straints on the CLS amplitudes:

〈ψ2|H0|ψ1〉 = EFB〈ψ2||ψ1〉,
〈ψ3|H0|ψ1〉 = EFB〈ψ3||ψ1〉,
〈ψ3|H0|ψ2〉 = EFB〈ψ3||ψ2〉,

× 〈ψ2|EFB − H0|ψ2〉
+ 〈ψ3|EFB − H0|ψ3〉

= 〈ψ1|EFB − H0|ψ1〉. (B5)

a. Linearly independent CLS components

In this case, as explained in the main text, the destructive
interference condition involving both H1 and H2 decouples
into two separate conditions. Then the eigenvalue problem
Eq. (B4) reads

H1 �ψ2 + H2 �ψ3 = (EFB − H0) �ψ1,

H†
1

�ψ2 = (EFB − H0) �ψ2,

H†
2

�ψ2 = (EFB − H0) �ψ3,

H1 �ψ2 = H†
1

�ψ2 = H1 �ψ3 = H†
1

�ψ3 = 0,

H2 �ψ2 = H†
2

�ψ3 = H2 �ψ2 = H†
2

�ψ2 = 0. (B6)

The nonlinear constraints on the amplitudes of the CLS are
given by the same Eq. (B5). Assuming that the nonlinear
constraints are resolved, we provide below the solution to
Eq. (B6). We use the following single projector choices H1 =
Q23|x〉〈y|Q13 and H2 = Q23|v〉〈w|Q12, where the transverse
projectors are enforced by the desctructive interference con-
ditions. Plugging in these expression into the eigenproblem
(B6) and using the nonlinear constraints we find the hopping
matrices:

H1 = (EFB − H0)|ψ1〉〈ψ2|(EFB − H0)

〈ψ1|EFB − H0|ψ1〉 ,

H2 = (EFB − H0)|ψ1〉〈ψ3|(EFB − H0)

〈ψ1|EFB − H0|ψ1〉 . (B7)

b. Linearly dependent CLS components

The linear dependence of the CLS amplitudes �ψ1, �ψ2, �ψ3

reads

|ψ1〉 = α|ψ2〉 + β|ψ3〉. (B8)
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This CLS is not necessarily reducible to the U = 1 class as
long as the amplitudes are not all mutually proportional: For
example, the Lieb lattice falls under the U = (2, 2, 1) case
and has �ψ1 = �ψ2 + �ψ3. The constraints on the CLS (B5) in
this case become

〈ψ2|EFB − H0|ψ2〉 = 0,

〈ψ3|EFB − H0|ψ3〉 = 0,

〈ψ3|EFB − H0|ψ2〉 = 0,

(EFB − H0)(α|ψ2〉 + β|ψ3〉) = 0. (B9)

For the given EFB, H0 and CLS amplitudes, satisfying the
above constraints, the eigenvalue problem and destructive in-
terference conditions (B4) become

β〈ψ3|H1 = 〈ψ2|(EFB − H0),

α〈ψ2|H2 = 〈ψ3|(EFB − H0),

H1|ψ2〉 = H1|ψ3〉 = 0,

H2|ψ2〉 = H2|ψ3〉 = 0,

〈ψ2|H1 = 0,

〈ψ3|H2 = 0. (B10)

These are two decoupled inverse eigenvalue problems for H1

and H2 that we resolve in the same way as before [65]. The

hopping matrices read

H1 = Q2|u〉〈ψ2|(EFB − H0)

〈ψ3|Q2|u〉 ,

H2 = Q3|v〉〈ψ3|(EFB − H0)

〈ψ2|Q3|v〉 , (B11)

where EFB, H0, �u = (u1, u2, u3), �v = (v1, v2, v3) are free pa-
rameters; �ψ1, �ψ2 are constrained by Eq. (B9) while �u should
not to be proportional to �ψ2, and �v should not be proportional
to �ψ3.

c. Three band examples for the linearly dependent case

We choose H0 and parameterize the CLS amplitudes as
follows:

H0 =
⎛
⎝0 0 0

0 1 0
0 0 ε

⎞
⎠, ψ2 =

⎛
⎝a

b
c

⎞
⎠, ψ3 =

⎛
⎝e

f
g

⎞
⎠. (B12)

a. Tasaki and Lieb lattice families. Here we demonstrate
how the Lieb lattice with a flat band at EFB = 0 enforced by
the chiral symmetry, and the related Tasaki lattice are derived
from our solution. The nonlinear constraints (B9) give

ψ2 =
⎛
⎝ a

c
√

ε(±i)
c

⎞
⎠, ψ3 =

⎛
⎝ e

g
√

ε(±i)
g

⎞
⎠.

To reproduce the Lieb lattice Hamiltonian the following uni-
tary transformation is used:

H ′
0 = UH0U

†, ψ ′
2 = Uψ2, ψ ′

3 = Uψ3,

where

U =
⎛
⎝cos(θ ) cos(ϕ) cos(θ ) sin(ϕ) sin(φ) − sin(θ ) cos(φ) cos(θ ) sin(ϕ) cos(φ) + sin(θ ) sin(φ)

sin(θ ) cos(ϕ) sin(θ ) sin(ϕ) sin(φ) + cos(θ ) cos(φ) sin(θ ) sin(ϕ) cos(φ) − cos(θ ) sin(φ)
− sin(ϕ) cos(ϕ) sin(φ) cos(ϕ) cos(φ)

⎞
⎠.

The Lieb lattice is recovered for the following choices of
parameters:

b = i
a
√

ε√
2

, f = − iaα
√

ε

β
√

2
, g = − aα

β
√

2
,

c = a√
2
, e = a θ = −π

2
, φ = 3π

4
,

ϕ = −π

4
, ε = −1, c = a√

2
, β = α.

Then the CLS amplitudes are given by

ψ ′
2 =

⎛
⎝ 0

−√
2a

0

⎞
⎠, ψ ′

3 =
⎛
⎝ 0

0√
2a

⎞
⎠, ψ ′

1 = α

⎛
⎝ 0

−√
2a√

2a

⎞
⎠.

With the choice θ = −π
2 , φ = 3π

4 , ε = −1 it follows

H ′
0 =

⎛
⎝ 0 sin(ϕ) cos(ϕ)

sin(ϕ) 0 0
cos(ϕ) 0 0

⎞
⎠.

The hopping matrices H ′
1, H ′

2 are given by Eq. (B11):

H ′
1 =

⎛
⎝− u1 sin(ϕ)

u3α
0 0

0 0 0
− sin(ϕ)

α
0 0

⎞
⎠, H ′

2 =
⎛
⎝ v1 cos(ϕ)

v2α
0 0

cos(ϕ)
α

0 0
0 0 0

⎞
⎠.

The above hopping matrices correspond to the family of
Tasaki lattices [8]. For u1 = v1 = 0, we retrieve the hopping
matrices of the Lieb lattice family.

b. Obtaining the example in Fig. 6(a), 6(b). We choose
EFB = ε, ε 
= 0, 1 and find

a = −b
√

− f 2(ε − 1)

f
√

ε
, e = −

√
f 2 − f 2ε√

ε
, β = −αb

f
.

Then Eq. (B11) yields the following solution:

ψ2 =
⎛
⎝− bD

f
√

ε

b
c

⎞
⎠, ψ3 =

⎛
⎝− D√

ε

f
g

⎞
⎠, ψ1 = αψ2 + βψ3,
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H1 =

⎛
⎜⎜⎝

bBDε
A f − bB(ε−1)

√
ε

A 0
bCD

√
ε

A f
bC(1−ε)

A 0
b2D

√
ε

αc f 2−αb f g
b2−b2ε

αc f −αbg 0

⎞
⎟⎟⎠,

H2 =

⎛
⎜⎝ −D f Gε

F
f 2G(ε−1)

√
ε

F 0

−D f H
√

ε

F − f 2H (1−ε)
F 0

− D f
√

ε

αc f −αbg
f 2(ε−1)

α(c f −bg) 0

⎞
⎟⎠,

where

D =
√

− f 2(ε − 1),

A = α(c f − bg)(b f u3 + cDu1
√

ε − c f u2ε),

B = b2(Du2 + f u1
√

ε) + bcDu3 + c2 f u1
√

ε,

C = b2(Du1
√

ε + f u2(1 − ε)) − bc f u3ε + c2 f u2ε,

F = α(c f − bg)(Dgv1
√

ε + f 2v3 − f gv2ε),

G = D f v2 + g(Dv3 + gv1
√

ε) + f 2v1
√

ε,

H = D f v1
√

ε + f 2(v2 − v2ε) − f gv3ε + g2v2ε.

We use the following parameter values:

u1 = 0, u2 = 0, u3 = 2, α = 1, β = 1, v1 = 0, v2 = 0,

v3 = 1, a = 0, b = −1, g = 0, ε = 1
2 , c = 2, f = −1,

finding the CLS and hopping matrices

ψ2 =
⎛
⎝−1

−1
2

⎞
⎠, ψ3 =

⎛
⎝−1

−1
0

⎞
⎠, ψ1 =

⎛
⎝−2

−2
2

⎞
⎠,

H0 =
⎛
⎝0 0 0

0 1 0
0 0 1

2

⎞
⎠, H1 =

⎛
⎝ 1

4 − 1
4 0

1
4 − 1

4 0
1
4 − 1

4 0

⎞
⎠,

H2 =
⎛
⎝ 0 0 0

0 0 0
− 1

4
1
4 0

⎞
⎠.

The lattice structure and band structure corresponding to the
above hopping matrices is shown in Figs. 6(a), 6(b).

3. U = (2, 2, 0) case with three bands

Putting the values U2 = 2, s = 0 to Eq. (7), we find the
following eigenvalue problem:

H1ψ2,1 + H2ψ1,2 = (EFB − H0)ψ1,1

H†
1 ψ1,1 + H2ψ2,2 = (EFB − H0)ψ2,1,

H1ψ2,2 + H†
2 ψ1,1 = (EFB − H0)ψ1,2,

H†
1 ψ1,2 + H†

2 ψ2,1 = (EFB − H0)ψ2,2, (B13)

and destructive interference conditions

H1ψ1,1 = H1ψ1,2 = H2ψ1,1 = H2ψ2,1 = 0,

H†
1 ψ2,1 = H†

1 ψ2,2 = H†
2 ψ1,2 = H†

2 ψ2,2 = 0. (B14)

We assume that H1, H2 have two zero modes and parametrize
the hopping matrices H1, H2 in the following way:

H1 = |x〉〈y| =
⎛
⎝ad ae a f

bd be b f
cd ce c f

⎞
⎠, (B15)

H2 = |u〉〈v| =
⎛
⎝gr gs gt

hr hs ht
lr ls lt

⎞
⎠, (B16)

where

|x〉 =
⎛
⎝a

b
c

⎞
⎠, |y〉 =

⎛
⎝d

e
f

⎞
⎠, |u〉 =

⎛
⎝g

h
l

⎞
⎠, |v〉 =

⎛
⎝r

s
t

⎞
⎠.

The zero more of H1, H2 are given by (the top two lines
correspond to H1, the bottom two to H2; in every raw the first
two elements are the right eigenvectors, while the last two are
the left ones) ⎛

⎝− f
0
d

⎞
⎠,

⎛
⎝−e

d
0

⎞
⎠,

⎛
⎝−c

0
a

⎞
⎠,

⎛
⎝−b

a
0

⎞
⎠,

⎛
⎝−t

0
r

⎞
⎠,

⎛
⎝−s

r
0

⎞
⎠,

⎛
⎝−l

0
g

⎞
⎠,

⎛
⎝−h

g
0

⎞
⎠.

Next we enforce the constraints on H1, H2 and the CLS ampli-
tudes by the destructive interference conditions (B14). Since
ψ1,1 is the right zero eigenmode of both H1 and H2, it has to
be perpendicular to both �y and �v, or equivalently it is parallel
to the cross product of �y and �v and also parallel to one of the
right zero eigenvectors of H1, H2:

�ψ1,1 = α(y × v) ‖
⎛
⎝− f

0
d

⎞
⎠ ‖

⎛
⎝−t

0
r

⎞
⎠,

where we have introduced the proportionality factor α, that we
set to 1 for convenience. Treating the other CLS amplitudes
in the same way (and setting the proportionality factors to 1
as well) we arrive at the following set of constraints on the
elements of the CLS amplitudes:

t = f , b = s, e = h, c = l,

d = r = a = g. (B17)

Then the expressions for all ψ reduce to the following equa-
tions:

ψ1 =
⎛
⎝(−b f + e f )α

0
(ab − ae)α}

⎞
⎠ = α′

⎛
⎝− f

0
a

⎞
⎠,

ψ2 =
⎛
⎝(−bc + b f )β

(ac − a f )β
0

⎞
⎠ = β ′

⎛
⎝−b

a
0

⎞
⎠,

ψ3 =
⎛
⎝ (ce − e f )γ

(−ac + a f )γ
0

⎞
⎠ = γ ′

⎛
⎝−e

a
0

⎞
⎠,

ψ4 =
⎛
⎝ (bc − ce)η

0
(−ab + ae)η

⎞
⎠ = η′

⎛
⎝−c

0
a

⎞
⎠, (B18)
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where α′, β ′, γ ′, η′ are given by

α′ = (b − e)α, β ′ = (c − f )β,

γ ′ = −cγ + f γ , η′ = −bη + eη. (B19)

We can set one of the prefactors to 1: we choose η = 1.
Then Eq. (B18) becomes

ψ1 =
⎛
⎝−(b − e) f α

0
a(b − e)α

⎞
⎠, ψ2 =

⎛
⎝−b(c − f )β

a(c − f )β
0

⎞
⎠,

ψ3 =
⎛
⎝−e(−cγ + f γ )

a(−cγ + f γ )
0

⎞
⎠, ψ4 =

⎛
⎝−c(−b + e)

0
a(−b + e)

⎞
⎠.

We choose H0 as

H0 =
⎛
⎝0 0 0

0 1 0
0 0 ε

⎞
⎠.

Putting Eqs. (B17) and (B19) into Eq. (B16), we get the
hopping matrices

H1 =
⎛
⎝a2 ae a f

ab be b f
ac ce c f

⎞
⎠, H2 =

⎛
⎝a2 ab a f

ae be e f
ac bc c f

⎞
⎠. (B20)

The eigenvalue problem (B13) becomes⎛
⎝ (b − e)(−a2(c − f )(β + γ ) + f αEFB)

−a(b − e)(c − f )(bβ + eγ )
a(b − e)(−c(c − f )(β + γ ) + α(ε − EFB))

⎞
⎠ = 0,

⎛
⎝ (c − f )(a2(b − e)(1 + α) + bβEFB)

a(c − f )((b − e)e(1 + α) + β − βEFB)
a(b − e)(c − f )(c + f α)

⎞
⎠ = 0,

⎛
⎝ (c − f )(a2(b − e)(1 + α) − eγ EFB)

a(c − f )(b(b − e)(1 + α) + γ (−1 + EFB))
a(b − e)(c − f )(c + f α)

⎞
⎠ = 0,

⎛
⎝ (b − e)(−a2(c − f )(β + γ ) − cEFB)

−a(b − e)(c − f )(bβ + eγ )
a(b − e)(−(c − f ) f (β + γ ) − ε + EFB)

⎞
⎠ = 0.

Assuming that a 
= 0, c 
= f , b 
= e we solve the above
equations (according to Eqs. (B18)–(B19) a = 0 makes the
ψi=1,...,4 proportional, i.e., we find U = 1 CLS; while c 
=
f , b 
= e enforces ψi=1,...,4 = 0). Setting a = 1 for conve-
nience the solution is

b = sgn(EFB)
√

2(EFB − 1)|1 + α|√
−

√
−α(1 − EFB)2E4

FB

(
4(1 + α)2 − αE2

FB

) + (EFB − 1)EFB
(
αE2

FB − 2(1 + α)2
) ,

c =
√

α(EFB − ε√
EFB

, f = −
√

EFB − ε√
αEFB

,

e = −|1 + α|−1

EFB

√
2

√
−

√
−α(EFB − 1)2E4

FB

(
4(1 + α)2 − αE2

FB

) + (EFB − 1)EFB
(
αE2

FB − 2(1 + α)2
)
,

β =
−α(EFB − 1)E3

FB +
√

−α(1 − EFB)2E4
FB

(
4(1 + α)2 − αE2

FB

)
2(1 + α)(EFB − 1)E2

FB

,

γ = −α(EFB − 1)E3
FB + sqrt−α(EFB − 1)2E4

FB

(
4(1 + α)2 − αE2

FB

)
2(1 + α)(EFB − 1)E2

FB

.

Plugging these solutions into Eq. (B20) we get the following hopping matrices:

H1 =

⎛
⎜⎜⎝

1 − B√
2

−
√

EFB−ε√
α
√

EFB√
2(EFB−1)

BEFB

1
EFB

− 1 −
√

2(EFB−1)
√

EFB−ε√
αBE3/2

FB√
α
√

EFB−ε√
EFB

−
√

αB
√

EFB−ε√
2
√

EFB

ε
EFB

− 1

⎞
⎟⎟⎠, H2 =

⎛
⎜⎜⎝

1
√

2(EFB−1)
BEFB

−
√

EFB−ε√
α
√

EFB

− B√
2

1
EFB

− 1 B
√

EFB−ε√
2
√

α
√

EFB√
α
√

EFB−ε√
EFB

√
2
√

α(EFB−1)
√

EFB−ε

BE3/2
FB

ε
EFB

− 1

⎞
⎟⎟⎠,

where

A =
√

−α(EFB − 1)2E4
FB

(
4(α + 1)2 − αE2

FB

)
,

B =
√

(EFB − 1)EFB
(
αE2

FB − 2(α + 1)2
) − A

(α + 1)2E2
FB

.

This solution has three free parameters ε, EFB, α. We
choose the following values ε = −1, EFB = −4, α = 1 to
generate the example shown in Fig. 7: A = 0, B = √

5/2,

H0 =
⎛
⎝0 0 0

0 1 0
0 0 −1

⎞
⎠,
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H1 =

⎛
⎜⎝ 1 −

√
5

2 −
√

3
2√

5
2 − 5

4 −
√

15
4√

3
2 −

√
15
4 − 3

4

⎞
⎟⎠,

H2 =

⎛
⎜⎝ 1

√
5

2 −
√

3
2

−
√

5
2 − 5

4

√
15
4√

3
2

√
15
4 − 3

4

⎞
⎟⎠.

APPENDIX C: FB GENERATION FOR THREE
HOPPING MATRICES

1. U = (2, 1)

This case is shown in Fig. 4(b). The eigenvalue problem
and destructive interference conditions for H1 Eq. (8) are
identical to the case of two hopping matrices and are solved
in Appendix B1. The only difference are the destructive inter-
ference conditions for H2,3:

H2|ψ1〉 = H3|ψ1〉 = 0

〈ψ2|H2 = 〈ψ2|H3 = 0,

H2|ψ2〉 + H†
3 |ψ1〉 = 0,

〈ψ1|H2 + 〈ψ2|H†
3 = 0. (C1)

We define:

H2 = Q2M2Q3, H3 = Q2M3Q1,

|x〉 = Q2|ψ1〉, |y〉 = Q1|ψ2〉.
Then the last two equations (C1) become:

Q1M†
3 Q2|x〉 = −Q2M2Q1|y〉 = −Q12|a〉,

〈y|Q2M†
3 Q1 = −〈x|Q2M2Q1 = −Q12〈b|,

where we have introduced two arbitrary vectors �a and �b.
For two bands ν = 2 the above equations imply that the last
two conditions in (C1) decouple, and therefore the problem
reduces to U = 1 as in the case of two hopping matrices. For
the number of bands ν > 2 the problem of finding H2 and H3

reduces to two independent inverse eigenvalues problems: one
for M2 (H2)

Q2M2Q1|y〉 = Q12|a〉,
〈x|Q2M2Q1 = Q12〈b|,

and a similar problem for the matrix M3 (H3). This is a linear
problem: we search for a particular solution as

Q2M2Q1 = |u〉〈y| + |x〉〈v|,
where we choose the overlined vectors so that: 〈x| ∝ 〈x|,
〈x||x〉 = 1, and 〈y| ∝ 〈y|, 〈y||y〉 = 1. We also assume that
�u ⊥ �x and �v ⊥ �y. We find upon substitution of the ansatz into
the inverse problem:

Q2|u〉 = Q12|a〉, 〈v|Q1 = 〈b|Q12.

These �u and �v have the assumed previously orthogonality
properties. It then follows that the full solution of (C1) for
H2 is given by:

H2 = Q12|a〉〈y|Q1 + Q2|x〉〈b|Q12 + Q12K2Q12.

The inverse problem for H3 is resolved the same way with
minimal modifications.

2. U = (2, 2, 1) and ν = 2

We choose the following H0 and parameterise the CLS
amplitudes as follows:

H0 =
(

0 1
1 0

)
, �ψ1 =

(
p
r

)
, �ψ2 =

(
s
t

)
, �ψ3 =

(
u
v

)
.

We parametrize the hopping matrices and solve the eigenvalue
problem and destructive interference conditions in Eq. (21):

H1 =
(

a ac
b

b c

)
, H2 =

(
d e
df
e f

)
, H3 =

(
g gl

h
h l

)
.

Then one of the possible solutions of the eigenvalue problem
(21) reads

a = r(bp − s)

s2
, c = −bp

r
,

d = i
√

b2(p2 + s2)(r2 − s2) − 2bpr2s + r2s2

s2
, f = 0,

g = − i(bp − s)
√

b2(p2 + s2)(r2 − s2) − 2bpr2s + r2s2

bs3
,

l = u = 0,

h = − i
√

b2(p2 + s2)(r2 − s2) − 2bpr2s + r2s2

rs
,

v = − i
√

b2(p2 + s2)(r2 − s2) − 2bpr2s + r2s2

bs
,

e = − ip
√

b2(p2 + s2)(r2 − s2) − 2bpr2s + r2s2

rs2
,

t = r

(
1

b
− p

s

)
, EFB = b(p2 + s2)

rs
.

The corresponding hopping matrices become

H1 =
( r(bp−s)

s2 − p(bp−s)
s2

b − bp
r

)
,

H2 =
(

iA
s2 − ipA

rs2

0 0

)
, H3 =

(− i(bp−s)A
bs3 0

− iA
rs 0

)
,

�ψ1 =
(

p
r

)
, �ψ2 =

(
s

r
(

1
b − p

s

)), �ψ3 =
(

0
− iA

bs

)
,

where

A =
√

b2(p2 + s2)(r2 − s2) − 2bpr2s + r2s2.

The network shown in Figs. 6(c), 6(d) corresponds to the
values p = 1, r = 1, b = 2, s = 1 and

H1 =
(

1 −1
2 −2

)
, H1 =

(−√
3

√
3

0 0

)
,

H3 =
( √

3
2 0√
3 0

)
,

ψ1 =
(

1
1

)
, ψ2 =

(
1

− 1
2

)
, ψ3 =

(
0√

3
2

)
.
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It is straightforward to check that the well-known tight-
binding checkerboard lattice is included in the above solution.
We choose H0 and the CLS amplitudes of the checkerboard
model as input

H0 =
(

0 b
b 0

)
, ψ1 =

(
a

−a

)
, ψ2 =

(
a
0

)
, ψ3 =

(
0

−a

)
.

The solution yields the checkerboard hopping matrices

H1 =
(

0 0
b b

)
, H2 =

(
b b
0 0

)
, H3 =

(
0 b
0 0

)
.
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