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Valley filtering in strain-induced α-T3 quantum dots
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We test the valley-filtering capabilities of a quantum dot inscribed by locally straining an α-T3 lattice.
Specifically, we consider an out-of-plane Gaussian bump in the center of a four-terminal configuration and
calculate the generated pseudomagnetic field having an opposite direction for electrons originating from different
valleys, the resulting valley-polarized currents, and the conductance between the injector and collector situated
opposite one another. Depending on the quantum dot’s width and width-to-height ratio, we detect different
transport regimes with and without valley filtering for both the α-T3 and dice lattice structures. In addition, we
analyze the essence of the conductance resonances with a high valley polarization in terms of related (pseudo-)
Landau levels, the spatial distribution of the local density of states, and the local current densities. The observed
local charge and current density patterns reflect the local inversion symmetry breaking by the strain, besides the
global inversion symmetry breaking due to the scaling parameter α. By this way we can also filter out different
sublattices.
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I. INTRODUCTION

In the emerging field of “valleytronics,” the valley degree
of freedom is used to distinguish and designate quantum
states of matter. For this, the band structure of the system
must have at least two inequivalent valleys that take over
the role of charge or spin in more traditional electronics
and spintronics. Two-dimensional condensed-matter materi-
als, such as graphene or semiconducting transition metal
dichalcogenides, host an easily accessible electronic valley
degree of freedom to encode information [1–3]. In this respect
graphene-based valleytronics seems to be particularly promis-
ing. This is mostly because of graphene’s striking electronic
properties [4], including Dirac-cone functionality which can
be tuned by applying external electric fields, even in restricted
areas, e.g., by top gates [5]. Another advantage is that diverse
graphene nanostructures such as ribbons, rings, quantum dots,
or junctions can be manufactured without major problems,
whereby transport through these “devices” strongly depends
on the geometry of the sample and its edge shape [6].

Graphene-based structures also sustain a large amount of
strain without breaking because of their strong (planar) co-
valent sp2 bonds [7]. In graphene, the coupling between the
mechanical deformation and electronic structure has remark-
able consequences: It introduces an effective gauge field in the
low-energy Dirac spectrum. The associated pseudomagnetic
field (PMF) has been demonstrated in scanning tunneling mi-
croscopy (STM) experiments [8], which reveal Landau level
(LL) quantization. Most notably, strain-induced PMFs con-
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serve time-reversal symmetry, unlike real magnetic fields, and
therefore point in opposite directions in graphene’s inequiva-
lent valleys K and K′ related by time-reversal symmetry [9].
This sign difference together with a spatially varying PMF
forms the basis for theoretical proposals to manipulate the
valley degree of freedom in graphene-based structures by
nanoscale strain engineering [10–14]. In experiments, such
local deformation fields can be produced and controlled by
STM tips [15]. Breaking the valley degeneracy and spatially
separating the electrons from different valleys is clearly a pre-
requisite for every form of valleytronics. In this context, it has
been shown that Gaussian bumps lead to different real-space
trajectories for K and K′ electrons, and therefore can act as
valley filters and beam splitters [10,13,16,17].

The combination of strain, Dirac-cone physics, and flat-
band physics in a modified α-T3 lattice structure is an
interesting case to study, not only because the flat band then
crosses the nodal Dirac points with peculiar consequences
for the Berry phase [18], Klein tunneling [19], Weiss oscil-
lations [20], or LL quantization [21], but also regarding the
interplay between the local inversion symmetry breaking by
strain and the global one by α. In the α-T3 structure one of
the inequivalent sites of the honeycomb lattice is connected
to a site located in the center of the hexagons with strength
α, i.e., in a certain sense this system interpolates between
graphene (α = 0) and dice (α = 1) lattices [22]. The dice
lattice can be fabricated by growing trilayers of cubic lattices,
e.g., SrTiO3/SrIrO3/SrTiO3, in the (111) direction [23]. An
α-T3 lattice with an intermediate scaling parameter α = 1/

√
3

has been reported for Hg1−xCdxTe at a critical doping [18,24].
Optical lattice realizations of the α-T3 structure that would
allow tuning of α have been also suggested [18,24]. Based on
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this background, it is not surprising that there have been recent
activities to exploit valley filtering in the α-T3 and dice models
to realize, for example, a geometric valley-Hall effect [25] or
magnetic Fabry-Pérot interferometry [26]. Nevertheless, the
role of nonuniform strain in confined (open) α-T3 nanostruc-
tures is still widely unexplored, especially with regard to the
above-mentioned combination of local and global inversion
symmetry breaking.

In this paper, we address this issue by investigating the
transmission of particles through a quantum dot created by an
out-of-plane centrosymmetric deformation of an α-T3 lattice
in the center of a four-terminal configuration with zigzag
terminations. In Sec. II we introduce our model and discuss
the basic impact of the strain-induced PMF with trigonal
symmetry in a continuum approach, allowing for an analytical
treatment. In particular, taking into account the first-order
corrections to the transfer integrals only, we can determine
the (pseudo-) Landau levels (LLs) and specify their valley
dependence with regard to filtering effects. To also investigate
highly strained samples of any geometry and with specific
boundaries, we numerically solve the full (tight-binding)
lattice-model problem in Sec. III. For this, we employ the
Landauer-Büttiker scattering matrix [27] and kernel polyno-
mial [28] approaches. Using the KWANT toolbox [29], we
analyze the conductance, the valley polarization, and the local
charge and current densities. The results will be discussed
with a perspective of potential device applications. Our con-
clusions are found in Sec. IV.

II. THEORETICAL APPROACH

We start from a tight-binding description of the α-T3 lattice
by the Hamiltonian

Hα = −
∑
〈i j〉

ti ja
†
i b j − α

∑
〈i j〉

ti jb
†
i c j, (1)

where a(†), b(†), and c(†) annihilate (create) an electron in a
Wannier state centered at site A, B, and C, respectively. The
hopping scaling parameter α interpolates between the honey-
comb graphene lattice (α = 0) and the dice lattice (α = 1)
[see Fig. 1(a)]. In the pristine case, the transfer amplitude
of particles between nearest-neighbor sites becomes ti j = t .
Rescaling the energy by cos ϕ, where tan ϕ = α, the Fourier
transformed Hamiltonian (1) takes the form

Hα =
∑

k

ψ
†
k

⎛
⎝ 0 cos ϕ fk 0

cos ϕ f ∗
k 0 sin ϕ fk

0 sin ϕ f ∗
k 0

⎞
⎠ψk (2)

in k space with ψk = (ak, bk, ck ) and

fk = −
3∑

j=1

t je
−ik·δ′

A, j . (3)

We now consider a lattice distortion by a strain field
u(x, y) = [ux, uy, uz ≡ h(x, y)]. Then the displaced lattice co-
ordinates r′ = r + u and the bond lengths vary according to
di j = |r′

i − r′
j |, yielding bond-dependent transfer integrals:

ti j = t exp{−β(di j/a − 1)}. (4)

FIG. 1. (a) Pristine α-T3 lattice with basis {A, B,C} and Bravais
lattice vectors a1 and a2. Neighboring sites are connected by vectors
δA, j ( j = 1, 2, 3); the transfer amplitudes on A-B and B-C bonds are
t and αt , respectively. (b) Four-terminal configuration with a quan-
tum dot generated by the Gaussian deformation (16), where H =
17.9 nm, σ = 20 nm, and W = 50 nm. (c) Strain-induced pseudo-
magnetic field calculated for electrons residing in the K valley. These
electrons can pass the quantum dot from L to R whereas electrons
stemming from the K′ valley will be reflected.

In Eq. (4), β = −∂ log t/∂ log a is the Grüneisen parameter
with a being the lattice constant of the unstrained lattice.
These equations will be the basis for the exact numerical study
carried out in Sec. III.

At first, however, let us perform some theoretical consider-
ations for an easier interpretation of the results below. If the
strain is weak, we only need to take into account first-order
corrections to the hopping parameter:

t j � t

(
1 − β

a2
� j

)
. (5)

Here, � j = δA, jε δA, j , where the strain tensor ε is given as

(ε)i j = ∂iu j + ∂ jui + (∂ih)(∂ jh), i, j = x, y, (6)

in the framework of continuum theory. Neglecting other in-
fluences of the strain, in the vicinity of the Dirac points
K(′) = (τ 4π

3
√

3a
, 0) with τ = 1 (τ = −1), we have

fK(′)+q � 3at

2
(τqx − iqy) +

3∑
j=1

βt

a2
� j (1 + iq · δA, j )e

iK(′)·δA, j .

(7)
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Inserting this expansion into Eq. (2), we find

Hϕ
τ = h̄vFSϕ

τ ·
(

q + e

h̄
As

)
, (8)

with vF = 3at/2h̄ (Fermi velocity) and q = −i∇ (momentum
operator in two spatial dimensions). The components of the
pseudospin vector Sϕ

τ = (τSϕ
x , Sϕ

y ) in the three-dimensional
spin space,

Sϕ
x =

⎛
⎝ 0 cos ϕ 0

cos ϕ 0 sin ϕ

0 sin ϕ 0

⎞
⎠, (9)

Sϕ
y =

⎛
⎝ 0 −i cos ϕ 0

i cos ϕ 0 −i sin ϕ

0 i sin ϕ 0

⎞
⎠, (10)

represent the sublattice degrees of freedom. Note that the
strain-induced vector potential

As = −τ
h̄β

2a

(
εxx − εyy

−2εxy

)
(11)

depends not only on the two-dimensional strain tensor, but
also on the valley index τ in an explicit way. Effectively, it
acts as an artificial gauge field that gives rise to a PMF,

Bs = (∇ × As)z = ∂xAy − ∂yAx, (12)

perpendicular to the α-T3 lattice plane.
In the presence of a magnetic field, the valley dependence

of the (pseudo-) Landau levels (LLs) is of special interest,
particularly with regard to valley-filtering effects when chang-
ing the α-T3 lattice scaling parameter α or the direction of
the PMF γ = ±1. For this purpose we analyze initially the
influence of a constant perpendicular PMF obtained from
As = −τγ Bsyex (Bs > 0). Such a PMF can be created by
triaxial strain of the lattice [30]. Introducing ladder operators
l̂ (†)
γ with [l̂γ , l̂†

γ ] = 1, we find for γ = +1,

l̂ (†)
+ =

√
h̄

2eBs
(qx ± iτqy + τeBsy/h̄). (13)

For γ = −1, l̂+ corresponds to l̂†
−. Accordingly, Eq. (8) be-

comes

Hϕ
τ,+ = τ h̄ωc

⎛
⎝ 0 cos ϕ l̂+ 0

cos ϕ l̂†
+ 0 sin ϕ l̂+

0 sin ϕ l̂†
+ 0

⎞
⎠ (14)

with ωc = h̄vF
√

2eBs/h̄, which, together with the correspond-
ing expression for γ = −1, yields the LL spectrum

Eτ,γ = ±h̄ωc

√
n + 1

2 [1 + γ cos(2ϕ)]. (15)

If we compare this result with the LL spectrum induced by
a real magnetic field in the α-T3 lattice [see, e.g., Eq. (4) in
Ref. [18]], we find that −τ corresponds to γ in Eq. (15). This
means that the pseudo-LLs are degenerate in valley space. Of
course, there exists an additional zero-energy flat band for 0 <

α � 1.
Finally, we note that the higher-order contributions (due to

larger strain) should give similar corrections as in the case of
graphene because fk is the same; for a recent review on strain
in graphene, see Ref. [31].

III. NUMERICAL MODEL AND RESULTS

In the following calculations we will use “graphene-
like” model parameters a = 0.142 nm, t = 2.8 eV, and β =
3 [10], where t sets the energy scale. Furthermore, we con-
sider the four-terminal configuration depicted in Fig. 1(b) to
study the transport properties of an α-T3 quantum dot im-
printed by straining the lattice with an out-of-plane Gaussian
bump:

h(ρ) = H exp (−ρ2/σ 2). (16)

Here, ρ gives the in-plane radial distance from the quantum
dot’s center. H and σ denote the magnitude and the character-
istic width of the deformation, respectively.

The resulting PMF follows from Eq. (12) together with
Eqs. (11) and (6):

Bs = τ
4h̄β

ae

H2

σ 3

(ρ

σ

)3
e−2(ρ/σ )2

sin 3φ (17)

(φ denotes the polar angle). Bs is visualized in Fig. 1(c)
in the vicinity of the Dirac point K. The PMF near K′ is
simply obtained by reversing the signs. As a result, electrons
injected from K and K′ valleys feel PMFs of opposite sign
and thus will move in opposite directions. This observation
gave rise to the proposal of strain-based valley filtering in
graphene [13,17].

To determine the conductance G between the left (L) and
right (R) leads in the limit of vanishing bias voltage, we use
the Landauer-Büttiker formula [27],

G = G0

∑
m∈L,n∈R

|Sn,m|2, (18)

where the scattering matrix between all open (i.e., active)
lead channels Sn,m can be easily calculated with the help
of the PYTHON-based toolbox KWANT [29]. In Eq. (18), G0

is the maximum conductance per channel. We should also
mention the use of zigzag boundaries for the injector (L)
and collector (R) leads. In this case the valleys are well
separated in momentum space [1]. The perpendicular leads,
which had been added to reduce the leakage of non-valley-
polarized currents into the collector [17], will have armchair
boundaries. This allows us to single out a valley conductance,
G[K(′ )] = G0

∑
m∈L,n∈R |S[K(′ )]

n,m |2, which is related to the proba-
bility that an injected electron will be transferred in any mode
belonging to the K (K′) valley of the collector. Then, with
G = G[K] + G[K′], the K(′) valley polarization of the output
current can be defined as

τ [K(′)] = G[K(′)]G−1. (19)

For validation of our numerical scheme we first reexam-
ined the graphene lattice case (α = 0) in Fig. 2, and confirmed
the previously found qualitative behavior [17] also for larger
values of the Fermi energy. The Fermi energy EF = 0.219 eV
has been chosen such that it exceeds the barrier produced
by the Gaussian bump for a wide range of strain parameters
H and σ . Raising EF will increase the cyclotron radius and
thereby reduce the valley polarization by effectively shrinking
the width of the bump. A maximum valley filtering τ [K] is
observed in regime III for σ > 15 nm and 1.1 � σ/H � 3.9
at W = 50 nm. In regime II we have quantum dots with large
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FIG. 2. Valley polarization by a strain-induced graphene-based
quantum dot. The contour plot shows τ [K], depending on H and σ ,
for the four-terminal configuration in Fig. 1(b). The Fermi energy of
the injected particles is EF � 0.22 eV.

H and rather small σ which generate very high PMFs and
therefore tend to repel the electron. This notably weakens the
filtering effect. In the blue “subregime” for σ > 10 nm, the
collector appears to be completely blocked for electrons from
the K valley [17]. The boundary between regimes II and III is
almost perfectly linear. The boundary between regimes III and
I is more diffuse. The low PMFs in regime I (due to the small
H and large σ ) are clearly inefficient with regard to valley
filtering.

Figure 3 demonstrates that the valley-polarization effect is
also observed for α-T3-lattice-based configurations. In the top
panel, we have chosen α = 1/

√
3 in view of Refs. [18,24],

whereas α = 1 in the bottom panel refers to the dice lattice.
Differences compared to the graphene-based system appear,
primarily, for small H and σ . In particular, we find no weak
valley-filtering effects in regimes I and II, which in the case
of zigzag graphene nanoribbons result from the zero-energy
edge state at the K point, whereas for α-T3 and dice zigzag
nanoribbons the number of zero-energy states at K is even
due to the additional flat-band state.

Comparing the valley polarization in the α = 1/
√

3 and
α = 1 lattices, the boundary between regime II and III is
smeared out in the former case for small to medium H . In the
dice lattice the most interesting region III now is more clearly
separated from the others, which might be advantageous in
terms of possible applications. Note that the ripple structures
found in the valley polarization will weaken with increasing
size of our configuration (cf. Ref. [17]).

Figures 4(a) and 4(b) give the conductance G and valley
polarization τ [K], respectively, as functions of the Fermi en-
ergy EF for a strain-induced α-T3 quantum dot. Additional
information is provided by the spatial distribution of the local
density of states (LDOS),

LDOS(E )i =
∑

l

|〈i|l〉|2δ(E − El ), (20)
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FIG. 3. Valley polarization by a strain-induced α-T3 quantum
dot. The contour plots give τ [K] as a function of H and σ for the four-
terminal configurations with α = 1/

√
3 (top) and α = 1 (bottom),

where EF � 0.22 eV. We included the linear regime boundaries of
Fig. 2 for comparison.

and the local current density,

J (m)
i j = i

h̄

[〈 j|(Hα
i j

)†|i〉(m) − 〈i|Hα
i j | j〉(m)

]
, (21)

where |i〉 and | j〉 are the single-particle wave functions pro-
jected on the respective sites. Equation (21) holds for the mth
mode injected by the lead at energy EF; the total (incident)
current density is Ji j = ∑

m J (m)
i j . Utilizing again KWANT [29]

and the kernel polynomial method [28], these quantities can
be computed very efficiently. The LDOS and J are shown in
Figs. 4(c)–4(f) and 4(g)–4(j), respectively, for the resonances
(1), (2), (1′), and (2′) marked in Figs. 4(a) and 4(b).

We begin the discussion of how the strained α-T3 quantum
dot affects the transport properties of the configuration by
examining the conductance (upper panels of Fig. 4, left ordi-
nate) and the valley polarization (right ordinate). Of course,
a notable current will only flow through the device if the
Fermi energy EF exceeds the barrier produced by the strained
quantum dot. Otherwise the bump, having a high PMF in-
side, will basically block the flow of electrons towards the
collector. We note that our finite quantum system can have
a finite, albeit extremely low, transmission probability for
(K- or K′-valley-polarized) electrons with smaller EF. That
notwithstanding, a high valley polarization may occur in this

165114-4



VALLEY FILTERING IN STRAIN-INDUCED … PHYSICAL REVIEW B 103, 165114 (2021)

(1)

(c)

0 0.25 0.5
LDOS

(2)

(d)

0 0.25 0.5
LDOS

(1 )

(e)

0 0.0125 0.025
LDOS

(2 )

(f)

0 0.25 0.5
LDOS

(1)

(g)

0 0.075 0.15
J

(2)

(h)

0 0.075 0.15
J

(1 )

(i)

0 0.075 0.15
J

(2 )

(j)

0 0.15 0.3
J

0.0 0.1 0.2 0.3 0.4 0.5

EF [eV]

α = 1 (2 )

(b)

(1)

(2)

0.0 0.1 0.2 0.3 0.4 0.5

EF [eV]

0

1

2

G
[G

0
]

α = 1√
3

(a)

τ [K]

G
0.00

0.25

0.50

0.75

1.00

τ
[K

]

(1 )

FIG. 4. (a), (b) Conductance G/G0 and valley polarization τ [K] as a function of EF for a strain-induced α-T3 quantum dot with H = 17.9 nm
and σ = 20 nm. For the marked resonances (1) at EF = 0.219 eV and (2) at EF = 0.387 eV (lattice with α = 1/

√
3) we have τ [K] = 0.86 and

τ [K] = 0.76, respectively. For resonances (1′) at EF = 0.219 eV and (2′) at EF = 0.344 eV (dice lattice, α = 1) we find τ [K] = 0.98 and
τ [K] = 0.86, respectively. (c)–(f) Zoomed-in LDOS at resonances (1(′)) and (2(′)). (g)–(j) Corresponding intensity-coded current densities |Ji j |
(here, the lines and arrows are a guide to the eye.)

regime just as in the graphene case, where τ [K] reaches unity
for small energies because of valley-polarized zigzag edge
states.

For α = 1/
√

3 above the threshold (�0.2 eV), two regions
(bands) in the vicinity of resonance (1) and (2) with a high
transmission probability are observed (in the displayed en-
ergy interval 0.2–0.5 eV). Here, the conductance shows an
oscillating behavior that can be attributed to LL quantization
(cf. the discussion of Fig. 5 below). In the dice-lattice case,
the conductance features only a single band of resonances
between (1′) and (2′) with particularly high valley polarization
and can be similarly attributed to LL quantization. Increasing
(decreasing) the PMF by varying H or σ will shift this region
to higher (lower) Fermi energies as the LL are proportional to√

Bs [see Eq. (15)].
To further characterize the different transport channels we

now examine the spatial variation of the LDOS in the quantum
dot region. For a graphene-based (α = 0) quantum dot con-
figuration, the LDOS will show a “flower“-like pattern with
sixfold symmetry, where consecutive “petals” belong to the A
or B sublattice [10,16].

In the α-T3 lattice with α = 1/
√

3 the inversion
symmetry is broken in two ways: Besides the local inversion
symmetry breaking by the strain, α itself breaks the inversion
symmetry between sublattices A and C on a global scale. As a
result, the “petals” of graphene’s “flower”-like LDOS pattern
will have alternating large and small amplitudes [see Figs. 4(c)
and 4(d)]. The resulting ∇- and �-shaped LDOS patterns with
highly occupied sites belong to A-B and B-C sublattices and
correspond to the typical resonances (1) and (2) in regions
with high conductance, respectively. Moreover, the ∇ (�)
LDOS pattern is related to a negative (positive) sign of the
PMF. It is worth noting, however, that both configurations,
albeit separated by a large energy gap, possess an almost
equally high valley polarization.

In the α = 1 dice lattice, we rediscover the sixfold symme-
try of the LDOS pattern in view of the threefold symmetries of
the positive, respectively negative, strain-induced PMFs [cf.
Fig. 1(c)]. This is illustrated by Figs. 4(e) and 4(f) for the
resonances (1′) and (2′), respectively, but holds for the whole
series of conductance peaks of Fig. 4(b). Clearly the spatial
size and magnitude of the LDOS “petals” depend on the value
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FIG. 5. Transport properties of a strained α-T3 quantum dot with
A = 17.9 nm, σ = 20 nm. (a) Contour plot of the conductance G in
the α-EF plane. Dashed lines mark the lowest pseudo-LLs, according
to Eq. (15) with n = 0, for five equidistant Bs fields ranging from
100 to 200 T and γ = 1 (yellow), −1 (magenta). (b) Zoom-in of the
contour plot. (c) LDOS at E = 0.335 eV and α = 0.95 [marked in
(b) by the red circle].

of Fermi energy. In this regard, Figs. 4(e) and 4(f) represent
rather extreme situations.

Figures 4(g)–4(j) display the course of the local current
density, where its magnitude is coded by the blue-intensity
map and the arrows visualize the direction of the electron
flow. First, it becomes apparent that the electron flow from
L to R is significantly blocked by the bump and the additional
(perpendicular) contacts collect the nonpolarized current very
effectively. Moreover, parts of the electrons are “confined” in
the quantum dot region in long-living resonant states, just as
observed for circular graphene quantum dots [32–36]. This
becomes particularly obvious if one looks at Fig. 4(i), where
the current is encircling the PMF. Nevertheless, in all cases,
substantial amounts of electrons are able to penetrate through
the quantum dot (preferably along the zero-PMF lines) and
finally reach the collector R. Recalling the valley polarization
according to Figs. 4(a) and 4(b), we can conclude that this
particle stream is made up of electrons belonging to the K
valley. Apparently the current intensities in Figs. 4(g) and 4(h)
nicely feature the ∇ and � α-T3-lattice LDOS patterns in
Figs. 4(c) and 4(d), respectively, and what is more, the current
is valley polarized although it seems that the electrons do not
feel the full PMF of Fig. 1(c).

Figure 5(a) provides a contour plot of the conductance
dependence on the scaling parameter α and the Fermi energy
EF. In order to assign the onset of the conductance and some
of resonances we included the pseudo-LLs (15) for n = 0 and

γ = ±1 at different PMFs Bs in the range 100–200 T, where
the magenta (yellow) curves belong to γ = −1 (+1). Then, at
α = 1/

√
3 � 0.577, the resonances (1) and (2) from Fig. 4(a)

fall within the range of the LLs with n = 0, γ = −1 and
n = 0, γ = 1, respectively, exhibiting the ∇ and � pattern.
Bearing in mind that γ in the PMF takes the role of −τ for
a real magnetic field, the change in the sublattice polarization
of the LDOS is understandable. This means that exchanging
the valleys accounts for the change in the sublattices A → C.

In Fig. 5(b) the region close to the dice-lattice case is
enlarged, where the crossing of the γ = ±1 resonances takes
place in Fig. 5(a). Here, the LDOS exhibits overlapping ∇
and � patterns. This is exemplarily demonstrated in Fig. 5(c).
Note that the LDOS shows a similar behavior at the other
(pseudo-LL) “crossing points” in Figs. 5(a) and 5(b).

IV. SUMMARY

To conclude, we have demonstrated how nanoscale strain
engineering of pseudomagnetic fields can be used to cause and
control valley-polarized transport through an α-T3 quantum
dot embedded in a four-terminal configuration with zigzag
edges. The strain (pseudomagnetic field) locally breaks the
inversion symmetry of the system. By utilizing the KWANT

software package, we presented numerically exact results for
quantities that characterize the electronic properties and func-
tionality of the considered device. Specifically, we discussed
the conductance, the valley-filter efficiency, and the spatial
charge and current density distributions. We noticed that the
conductance resonances with high valley polarization could
be related to the (pseudo-) Landau levels of the continuum
quantum dot model. Thereby the local current densities reveal
that transmission of electrons with given, let us say, K-valley
polarization is possible and takes place predominantly along
the lines of vanishing pseudomagnetic field; at the same time,
electrons coming from the K′ valley will be blocked by the
quantum dot, and vice versa. For the dice model, at the set
of resonances appearing in the first “conductance band,” the
maxima in the local density of states show a sixfold symmetry
in real space, just as for the graphene case. Any finite α < 1,
however, gives rise to a (global) sublattice asymmetry and
therefore creates an energy gap between states belonging to a
local density pattern with threefold ∇ respectively � symme-
try. Compared to a graphene-based configuration, for the dice
and α-T3 lattices, the specific (limited) region in the quantum
dot’s width-and-height parameter space where the maximum
valley-filtering effect appears, is much more clearly separated
from that with valley-unpolarized transport. This might be
advantageous for potential applications. Furthermore, since
α �= 0, 1 globally breaks the inversion symmetry of the lattice,
the use of the proposed configuration as an A-C-sublattice fil-
ter is feasible. Finally, we note that our results are generic to a
class of lattices, which means they are applicable to graphene-
like materials but also transition metal dichalcogenides and
related materials. This also applies to kagome crystals where
elastic strain induces the same pseudomagnetic field near the
Dirac points as in the α-T3 lattice [37]. Equally important, the
discussed valley filter effects should stay intact even for weak
interactions or spin-orbit coupling as they primarily induce an
energy gap.
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