
PHYSICAL REVIEW B 103, 165113 (2021)

Spectral characterization of magic angles in twisted bilayer graphene
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Twisted bilayer graphene (TBG) has been experimentally observed to exhibit almost flat bands when the
twisting occurs at certain magic angles. In this Letter we show that in the approximation of vanishing
AA coupling, the magic angles (at which there exist entirely flat bands) are given as the eigenvalues of a non-
Hermitian operator, and that all bands start squeezing exponentially fast as the angle θ tends to 0. In particular, as
the interaction potential changes, the dynamics of magic angles involves the nonphysical complex eigenvalues.
Using our new spectral characterization, we show that the equidistant scaling of inverse magic angles is special
for the choice of tunneling potentials in the continuum model, and is not protected by symmetries. While we also
show that the protection of zero-energy states holds in the continuum model as long as particle-hole symmetry
is preserved, we observe that the existence of flat bands and the exponential squeezing are special properties of
the chiral model.
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I. INTRODUCTION

The electronic structure in a stack of two graphene sheets
depends crucially on the relative twist angle θ of the lay-
ers [1–8]. Tunneling interactions coming from long-period
moiré patterns (emerging from the twisting) cause the Dirac
dispersion relation of the noninteracting sheets to change dra-
matically: the Floquet bands become nearly flat at a certain
discrete set of magic angles, as observed in Refs. [9–11]. This
flattening of bands led to the discovery of Mott insulation [12]
and of unconventional superconductivity in TBG [13–16].
The number and distribution of higher-order magic angles is
still not fully understood [17,18].

We give a new spectral characterization of magic angles
for the reduced model without AA coupling (chiral model
of Ref. [19]) as eigenvalues of a compact non-Hermitian
Birman-Schwinger operator. Since its spectrum has also com-
plex eigenvalues, we establish that flat bands also exist for
complex parameters in the continuum model. The spectral
characterization also allows an efficient numerical calculation
of a large set of magic angles, as demonstrated in Ref. [20, §5].
Consequently, we are able to study a larger number of magic
angles and find that the equidistant spacing of reciprocal an-
gles observed in Ref. [19] is unique to the particular tunneling
potential and not protected by symmetries—see Figs. 1 and 2.
In addition, we show that in the chiral model the lowest bands
become exponentially small as the inverse twisting angle θ−1
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tends to infinity; see also Ref. [21] for an experimental study
of small twist angles.

We then analyze the particle-hole symmetric continuum
model with additional AA coupling. Based on a numerical
analysis of this model and a rigorous argument for the ex-
tremal model with only AA coupling (antichiral model of
Ref. [19]), we find that, unlike in the chiral model, there are no
entirely flat bands at zero energy, and bands are also no longer
squeezed with an exponential rate. However, we show that the
zero energy level of the model with particle-hole symmetry,
is still protected in the spectrum, which has been previously
observed in Ref. [19] for the chiral model.

II. CONTINUUM MODEL

The Hamiltonian of the continuum model for twisted bi-
layer graphene is defined for variables

z = x1 + ix2, Dz̄ = 1
2i (∂x1 + i∂x2 ), ω = e2π i/3,

coupling parameters w = (w0,w1) and twisting angles ϕ of
the moiré Dirac cones, which we allow to vary independently
from the mechanical twisting angle θ , which depends on tun-
neling parameters w0, w1, by

H (w, ϕ) :=
(

C(w0) D(w1, ϕ)∗

D(w1, ϕ) C(w0)

)
, (1)

where

D(w1, ϕ) :=
(

2eiϕ/2Dz̄ w1U (z)
w1U (−z) 2e−iϕ/2Dz̄

)
,

C(w0) :=
(

0 w0V (z)
w0V (−z) 0

)
. (2)
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FIG. 1. For a tunneling potential Uμ in (9) we find nonequidistant
spacing of the inverse magic angles: • denote w1 for μ = −1.5; the
paths trace the w1 dynamics for −1.5 � μ � 0; ◦ denote the w1

for μ = 0.

Here, the tunneling potentials [9,19] are given by

U (z) :=
2∑

k=0

ωke
1
2 (zω̄k−z̄ωk ), and V (z) := 2∂zU (z). (3)

The parameter w0 controls the AA-coupling and w1 controls
AB and BA coupling. The Hamiltonian with only AB and BA
coupling, w0, is called the chiral continuum model and w−1

0 is
proportional to θ . The opposite choice of only AA coupling,
w1, is called the antichiral continuum model and w−1

1 is
proportional to θ . For both the chiral and antichiral model,
a simple conjugation removes the dependence on ϕ and we
may just assume ϕ = 0. The choice ϕ = 0 is the particle-hole
symmetric continuum model. The potential U satisfies three
key symmetry properties:

U
(
z + 4

3π iω�
) = ω̄U (z) for � = 1, 2, (4a)

U (ωz) = ωU (z), U (z̄) = U (z), (4b)

and most of the results here apply to more general potentials
satisfying (4), for instance, (9). Such potentials are discussed
in the Supplemental Material, see Ref. [22, (24)].

It is immediate from (4) that the Hamiltonian is periodic
with respect to the lattice � := 4π (iωZ ⊕ iω2Z), and by Flo-
quet theory magic angles are defined as angles θ = w−1

1 such
that the energy 0 is in the spectrum (on �-periodic functions)
of all Hamiltonians Hk(w, ϕ), where

Hk(w, ϕ) :=
(

C(w0) D(w1, ϕ)∗ − k
D(w1, ϕ) − k C(w0)

)
, (5)

where k ∈ C denotes the quasimomentum.
The Mott insulation, experimentally observed in TBG [12],

is due to strongly correlated electron interactions [23]; the
exponential squeezing of bands described here provides a
qualitative explanation for said effect, as kinetic energy in
squeezed bands and electronic interactions dominate [24]. In
addition, it has been observed [14,15] that the correlated insu-
lating and superconducting regimes are not limited to magic
angles but persist also at angles close to the magic ones, as
long as bands remain narrow. This suggests that the physi-
cally relevant phenomenon is the squeezing and flattening of

-11.35 -9.83 -8.31 -6.79 -5.28 -3.75 -2.22 -0.59 0.59 2.22 3.75 5.28 6.79 8.31 9.83 11.35
-6

-4

-2

0

2

4

6

Re w1

Im
w

1

FIG. 2. Reciprocals of magic angles for potential (3) from
Ref. [19] in the complex plane: resonant w1 (◦) come from the full
spectrum of the operator (6) defining magic angles, and the (real-
valued) magic w1 (+) are the reciprocals of the physically relevant
positive angles.

bands, rather than the existence of an entirely flat band (which
is seemingly unstable under perturbations). To understand
this better, we recall the Bardeen-Cooper-Schrieffer (BCS)
theory which postulates that the critical temperature for the
phase transition into the superconducting regime satisfies Tc ∝
exp(− 1

Un0(EF ) ) where n0(EF ) is the density of states at the
Fermi energy. The exponential squeezing of bands therefore
leads to a macroscopically increased density of states which
raises the critical temperature.

Spectral characterization of magic angles. To obtain a
spectral characterization of magic angles for the chiral Hamil-
tonian, we define the Birman-Schwinger operator for k /∈ �∗
(the dual lattice) by

Tk := (2Dz̄ − k)−1

(
0 U (z)

U (−z) 0

)
. (6)

For zero AA coupling, there is a discrete set of values w1 ∈
A := 1/Spec(Tk ), where Spec denotes the spectrum (always
on �-periodic functions), that is, quite remarkably, indepen-
dent of k /∈ �∗ [20, Theorem 2]. In addition, the set A
satisfies symmetries A = −A = A [20, Proposition 3.2]; see
Figs. 1 and 2.

The flat bands at zero of the chiral Hamiltonian then occur
precisely at w1 ∈ A. The set of magic angles is then just given
by angles θ for which θ−1 ∈ A ∩ R, see Ref. [20, Theorem 2]
for details.

The spectral characterization allows efficient calculation of
the set A, see below. The following trace for the potential (3)

trT 4
k =

∑
α∈A

α−4 = 72π√
3

(7)

can be calculated explicitly [20, §3.3] and that shows that the
set A is nontrivial in that case.

In addition, we can characterize the magic angles for
the chiral model by analyzing the spectrum of the non-
Hermitian operator D(w1) = D(w1, 0) in (2). In fact, θ =
w−1

1 is a magic angle if and only if Spec(D(w1)) = C. For all
other θ , Spec(D(w1)) = �∗, the dual lattice [20, Theorem 2].
Figure 3 illustrates this remarkable discontinuity in the spec-
trum of D(w1).

Asymptotic distribution of magic angles. It has been ob-
served in Ref. [19] that the differences of reciprocal magic an-
gles, with 0 < θk < θk−1, for the chiral model behave asymp-
totically like θ−1

k − θ−1
k−1 	 3/2. Our new characterization
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FIG. 3. (left panel) The spectrum of D(w1) (in the k plane)
as w1 varies (vertical axis). Flat surfaces indicate that 1/w1 is a
magic angle. (right panel) Level surface of ‖(D(w1) − k)−1‖ = 10

9
4

as a function of k and w1: the norm blows up at magic angles
for all k (w1 near 0.586, 2.221, and 3.751). The thickening of the
“trunks” reflects the exponential squeezing of the smallest eigenvalue
of Hk((0,w1), 0) as w1 grows, relating to pseudospectral effects
[25,26]—see (10) and the discussion that follows.

of magic angles as real eigenvalues of the operator Tk can give
magic angles to high precision: we have high confidence of
all the digits shown in Table I. This gives a refined asymptotic
behavior (see Ref. [20, §5])

θ−1
k − θ−1

k−1 	 1.515, k � 13. (8)

This calls to question a recently suggested WKB approach
[27]: the explanation proposed there gives the asymptotic
spacing of magic angles as θ−1

k − θ−1
k−1 	 1.47. In addition,

the approach proposed in Ref. [27] would seemingly apply
to all tunneling potentials satisfying (4) in the chiral model.
However, the equidistant asymptotic distribution of magic
angles is not stable under such perturbations, as we discuss
in our next paragraph.

TABLE I. Reciprocals of the magic angles θk , and the gaps be-
tween those reciprocals.

k θ−1
k θ−1

k − θ−1
k−1

1 0.58566355838955
2 2.2211821738201 1.6355
3 3.7514055099052 1.5302
4 5.276497782985 1.5251
5 6.79478505720 1.5183
6 8.3129991933 1.5182
7 9.829066969 1.5161
8 11.34534068 1.5163
9 12.8606086 1.5153
10 14.376072 1.5155
11 15.89096 1.5149
12 17.4060 1.5150
13 18.920 1.5147

Lattice relaxations. It has been proposed in Ref. [28] that
to take lattice relaxation effects into account more general
tunneling potentials should be considered in the continuum
model. We therefore consider the simplest generalization of
the tunneling potential U (3) which still satisfies (4):

Uμ(z) := U (z) + μ

2∑
k=0

ωkez̄ωk−zω̄k
, μ ∈ R. (9)

In this case, flat bands are still given as the eigenvalues
of the respective Birman-Schwinger operator (6), with U
replaced by Uμ. However, the equidistant spacing of magic
angles is no longer visible. See Fig. 1, which also indicates
that, to understand the dynamics of θ as μ varies, complex
values must be considered. If we abandon the reality require-
ment that U (z̄) = U (z) in (4), a generic U will not have any
real magic angles.

Point-localized states and exponential squeezing of bands
From (8) we see that magic angles in the chiral model
accumulate close to the zero twisting angle. However,
aside from an accumulation of magic angles as θ ↓ 0,
we also discover an exponential squeezing of eigenval-
ues of the chiral Floquet Hamiltonian Hk((0,w1), ϕ), ϕ �
C/w1, to zero. In the chiral model, the low-lying bands for
small angles become asymptotically flat: if {Ej (k,w1)}∞j=0 =
Spec(Hk((0,w1), ϕ)) ∩ [0,∞), Ej+1 � Ej , then there are
constants c0, c1, c2 > 0 such that

|Ej (k,w1)| � c0e−c1w1 , j � c2w1, (10)

see Fig. 4. In fact, numerical results here suggest that c1 = 1
and c2 can be taken arbitrarily large.

To understand the squeezing of low-lying eigenvalues
theoretically, we use a semiclassical reformulation of the
Hamiltonian of the chiral model. To study the nullspace of
Hk((0,w1), 0), it suffices to study effective two-by-two oper-
ators D(w1, 0) in (2). The principal Weyl symbol of D(w1, 0),
cf. [29, p. 213], is given in terms of phase-space variables
z = x1 + ix2 and 2ζ = ξ1 − iξ2 by

σ (D(w1, 0))(z, z̄, ζ̄ ) =
(

2ζ̄ w1U (z)
w1U (−z) 2ζ̄

)
. (11)

Let q be the determinant of this symbol. Then at points
(z0, ζ 0) in phase space at which q(z0, ζ 0) = 0 and ζ 0 = 0,
we then find that the Poisson bracket {q, q̄}(z0, ζ 0) = 0 is
nonvanishing.

An adaptation of Hörmander’s bracket condition to the
analytic case [25, Theorem 1.2] implies that, for z0 away
from the set shown in Fig. 5, there exist smooth functions vh

such that |D(w1, h)vh(z)| � e− c
h (h � C/w1), which are lo-

calized to z0, i.e., vh(z0) = 1 and |vh(z)| � e− c
h |z−z0|2 , see Ref.

[20, Theorem 3].
However, the above argument does not apply to the Hamil-

tonian of the full continuum model (1) while in the antichiral
model (w1 = 0) there are no localized modes at z0 with
U (z0)U (−z0) = 0—see Theorem 2 in the Supplemental Ma-
terial [22]. This is confirmed by numerics: Fig. 6 shows that
there is no exponential squeezing of bands.

Symmetries and protected states at zero. Magic angles in the
chiral continuum model are the reciprocals of coupling con-
stants w1 for which 0 is in the spectrum of all Hk((0,w1), 0).
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FIG. 4. (top) The smallest non-negative eigenvalues of
Hk((0, w1), 0), w1 = 5, k = kω/

√
3, − 1

2 � k � 1
2 . Selected j

values are given in the right margin. (middle) The same, but with
w1 = 5.28 nearer the fourth magic w1 value, showing the marked
decrease of the nine lowest bands. (bottom) Ej (k, w1) (log scale) for
k = 1

4 + 1
4 i and 0 � j � 8. We see (10) with c1 = 1.

We show that the symmetries of the continuum model
with particle-hole symmetry imply that the zero energy level
is protected in the spectrum of the Hamiltonian for all
w = (w0,w1).

We start by stating the most straightforward symmetries:
translational symmetry

La := U La, U := diag (ω, 1, ω, 1), a = 4
3π iω�, (12)

and rotational C3 symmetry

C u(z) = diag(IC2 , ω̄IC2 )u(ωz).

FIG. 5. Plots showing where the bracket i{q, q̄} is zero, where
q is the determinant of the symbol (11) with U given by (3) (left)
and by (9) with μ = −2 (right). The bracket is nonzero, except on a
one-dimensional graph and on a set of points.

FIG. 6. (top) For w0 = w1 � 1, ϕ = 0, no exponential rate of
squeezing (1 � j � 10). The bands show a squeezing effect near
w0 = w1 	 0.586. (bottom) No squeezing for w1 = 0 and w0 � 1,
consistent with the absence of localized modes and perfectly
flat bands.

From C La = Lω̄aC , we can construct an action, for �3 =
(�/3)/�, of the Heisenberg group over Z3:

G := �3 � Z3, (a, k) · (a′, �) = (a + ω̄a′, k+�), (a, �) · u

:= LaC
�u. (13)

Since there are eleven irreducible representations, see
Ref. [20, §2.2], we can decompose the space of square-
integrable functions L2(C/�;C4) into eleven orthogonal
subspaces. For (k, p) ∈ Z2

3 we have that nine of these spaces,
L2

k,p, are characterized by the action La|L2
k,p

= ωk(a1+a2 ) and
C |L2

k,p
= ω̄p. It is then a simple observation that for w =

(w0,w1) = 0 we have that H (w, 0)ei = 0 for i = 1, . . . , 4
and e1 ∈ L2

1,0, e2 ∈ L2
0,0, e3 ∈ L2

1,1, e4 ∈ L2
0,1 are all in different

subspaces. To see that these elements are protected we require
mirror, PT , and particle-hole symmetry, see Refs. [30,31]
which we discuss in detail in the Supplemental Material:
Mirror symmetry M : L2

k,p → L2
−k+1,−p+1 [22, Lemma 2],

M u(z) :=
(

0 σ1

σ1 0

)
u(z̄),

and PT symmetry PT : L2
k,p → L2

k,−p+1 [22, Lemma 3],

PT u(z) =
(

0 IC2

IC2 0

)
u(−z).

All of the above symmetries commute with H (w, ϕ), also for
ϕ = 0. Only when setting ϕ = 0, the Hamiltonian exhibits,
in addition, particle-hole symmetry S : L2

k,p → L2
−k+1,p, such

that S H (w, 0) = −H (w, 0)S , where

S u(z) =
(

σ2 0
0 σ2

)
u(−z).

From the application of the last three symmetries, we

find L2
k,p

S−→ L2
−k+1,p

M−→ L2
k,−p+1

PT−−→ L2
k,p, see Lemma 4 of
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Ref. [22], which shows that SpecL2
k,p

(H ) = −SpecL2
k,p.

(H ).
Recalling the kernel for w = (0, 0), we conclude that
kerL2

k,p
H (w, 0) = {0}, k, p ∈ {0, 1}, w ∈ R2.

Absence of flat bands. Unlike for the chiral model, which
exhibits infinitely many flat bands, perfectly flat bands at zero
are absent once AA coupling is switched on. To understand
this in the extremal antichiral case, we follow an idea of
Thomas [32–35] for Schrödinger operators. First, observe
that 0 ∈ Spec(Hk ) is equivalent to ker Qk ⊕ ker Q∗

k = {0} (see
Ref. [22, Theorem 1] for details), where

Qk(w0) :=
(

w0eiϕ/2V (z, z̄) (2Dz + k̄)

(2Dz̄ + k) w0eiϕ/2V (z, z̄)

)
.

By squaring the operators, we find the identity

Qk(Qk + V11) = [Dx + (k1, k2)]2IC2 + V12,

Q∗
k(Q∗

k + V21) = [Dx + (k1, k2)]2IC2 + V22, (14)

for the momentum operator Dx = 1
i (∂x1 , ∂x2 ) and auxiliary

potentials Vi j = Vi j (β ). If we then complexify the quasi-

momentum k1, self-adjointness of the momentum operator
implies {[Dx + (k1, k2)]2}−1 = OL2→L2 (|Imk1|−2) such that,
by (14), ker Qk ⊕ ker Q∗

k = {0} for |Imk1| � 1. Thus, if there
was a flat band such that 0 ∈ Spec(Hk ), (k1, k2) ∈ R2 this
would imply that 0 ∈ Spec(Hk ), k = (k1, k2) ∈ C × R and
thus ker Qk ⊕ ker Q∗

k = {0} (k1, k2) ∈ C × R, which is im-
possible. Details are provided in Ref. [22, Theorem 1].
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