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Topological phases in N-layer ABC graphene/boron nitride moiré superlattices
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Rhombohedral N = 3 trilayer graphene on hexagonal boron nitride hosts gate-tunable, valley-contrasting,
nearly flat topological bands that can trigger spontaneous quantum Hall phases under appropriate conditions of
the valley and spin polarization. Recent experiments have shown signatures of C = 2 valley Chern bands at
1/4 hole filling, in contrast to the predicted value of C = 3. We discuss the low-energy model for rhombohedral
N-layer graphene (N = 1, 2, 3) aligned with hexagonal boron nitride subject to off-diagonal moiré vector potential
terms that can alter the valley Chern numbers. Our analysis suggests that topological phase transitions of the
flatbands can be triggered by pseudomagnetic vector field potentials associated to moiré strain patterns, and that
a nematic order with broken rotational symmetry can lead to valley Chern numbers that are in agreement with
recent Hall conductivity observations.
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I. INTRODUCTION

In recent years, magic-angle twisted bilayer graphene
[1–3] (tBG) has emerged as a platform for exploring corre-
lated insulating phases and unconventional superconductivity
in compositionally simple systems, owing to the possibility of
achieving extremely narrow bandwidths where Coulomb re-
pulsion energies can dominate the kinetic energy of electrons
[1–32]. The pool of moiré materials exhibiting such behaviors
has rapidly expanded beyond twisted bilayer graphene to in-
clude trilayer graphene on hexagonal boron nitride (TLG/BN)
[33–49] or double bilayer graphene (tDBG) [50–57] as rep-
resentative systems where the perpendicular electric field can
control the flatness of the low-energy moiré bands and achieve
the narrow bandwidths over a wider range of the twist angles,
without requiring high-precision rotation as in tBG. Studies
have evaluated the feasibility of engineering moiré flatbands
in gapped Dirac materials [58,59], suggesting transition metal
dichalcogenide (TMDC) bilayers [60–64] as platforms for
identifying nearly flatbands where one can benefit from the
aforementioned looser constraints on twist angle precision
[58,65–76].

The finite valley Chern numbers of the moiré bands
underlie the anomalous Hall effects observed in transport
experiments when the degeneracies of the bands are lifted
via Coulomb interactions [33,57]. Charge Hall conductivity
signals were observed in twisted bilayer graphene nearly
aligned with hexagonal boron nitride (tBG/BN) at 3/4 filling
densities [7,9], and closely related traces of quantum anoma-
lous Hall effects were observed in TLG/BN [34]. Contrary
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to the expectations of a charge Hall conductivity of σxy =
3e2/h, which is consistent with the predicted K valley Chern
number C = 3 of hole bands for TLG/BN [33], the exper-
iments showed a quantized anomalous Hall conductivity of
σxy = 2e2/h, which is consistent with C = 2 [34], In this
paper we explore the valley Chern number phase diagram
of G/BN, BG/BN, and ABC stacked TLG/BN structures,
which can be described using the low-energy N-chiral Dirac
model subject to moiré patterns, in an attempt to identify the
system parameter conditions that can alter the valley Chern
numbers. The manuscript is structured as follows. In Sec. II
we introduce the model Hamiltonian, in Sec. III we present
the electronic structure results comprising the valley Chern
number phase diagrams, and lastly in Sec. IV we present the
summary and discussions.

II. MODEL HAMILTONIAN

The low-energy model Hamiltonian of rhombohedral
N-layer graphene on hexagonal boron nitride at the K valley
subject to substrate moiré patterns HM

ξ is given by [33]

H ν,ξ
N = υN

0

(−t1)N−1

[
0 (π†)N

πN 0

]
+ �σz + HR

N + HM
ξ , (1)

where ξ = ±1 distinguishes the two possible (0◦ and 60◦)
alignments between the layers of graphene and BN. The first
term in Eq. (1) describes the low-energy N-layer graphene
2 × 2 Hamiltonian containing the momentum operator π =
νpx + ipy, where ν = 1 is used for the principal valley K of
graphene, unless stated otherwise. The second term of Eq. (1)
introduces the interlayer potential difference proportional to
the mass term through �. The third term, HR

N , describes the
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remote hopping term corrections for the N layers. We model
the remote hopping term corrections for TLG with N = 3
[77], as shown below:

HR
3,ν =

[(
2υ0υ3π

2

t1
+ t2

)
σx

]

+
[

2υ0υ4π
2

t1
− �′ + �′′

(
1 − 3υ2

0π2

t2
1

)]
1. (2)

The effective hopping parameters for rhombohedral trilayer
graphene that fits the local density approximation (LDA)
bands are t0 = −2.62 eV, t1 = 0.358 eV, t2 = −0.0083 eV,
t3 = 0.293 eV, and t4 = −0.144 eV, where associated veloci-
ties are defined as υm = √

3a |tm|/2h̄, using a = 2.46 Å as the
lattice constant of graphene, and the constants in the diagonal
terms are �′ = 0.0122 eV and �′′ = 0.0095 eV.

In the case of N = 2, the parameters t2 and �′′ drop out,
and �′ = 0.015 eV is used for bands obtained within the LDA
[78] and the remote hopping terms are captured as

HR
2,ν = −υ3

(
0 π

π† 0

)
+ υ3

4
√

3

(
0 π†2

π2 0

)

+ υ0

t1

[
�′υ0

t1
+ 2υ4

](
π†π 0

0 ππ†

)
.

In the case of N = 1, all the remote hopping terms drop out
and HR

1,ν = 0.
The last term of Eq. (1),

HM
ξ = HV

ξ + HA
ξ , (3)

is the effective moiré potential term induced by the hBN
layer that consists of the diagonal HV

ξ and off-diagonal HA
ξ

terms. We use the local commensurate stacking vector �d =
(dx, dy) between the substrate and the contacting graphene
layer, where the stacking vector �d and the real-space position
�r are related through

�d (�r) � ε�r + θ ẑ × �r (4)

in the small-angle approximation [79]. Here, θ is the relative
twist and ε = (a − aBN )/aBN is the lattice constant mismatch
between the graphene and hBN layers, where a and aBN are
the lattice constants of graphene and hBN layers, respectively.

The diagonal term of the Hamiltonian in real space is
given by

HV
ξ (�r) = V M

AA/BB(�r)

[
1 + ξσz

2

]
, (5)

where the moiré potential function is given by

V M
AA/BB(�r) = 2CAA/BBRe[eiφAA/BB f ξ (�r)], (6)

which in turn depends on the auxiliary function

f ξ (�r) =
6∑

m=1

eiξ G̃m·�r [1 + (−1)m]

2
, (7)

expressed using six moiré reciprocal lattices G̃m=1..6 =
R̂2π (m−1)/3G̃1 successively rotated by 60◦. The moiré re-
ciprocal lattice vector G̃1 ≈ ε �G1 − θ�z × �G1 is related to
the following reciprocal lattice vector of graphene �G1 =

[0, 4π/(
√

3a)]. For the diagonal terms of the moiré potentials
we use the parametrization of a G/BN interface [79] projected
onto only one of the sublattices [33]. The moiré potential in
Eq. (6) can be broken down in terms of inversion-symmetric
and asymmetric patterns; see Refs. [48,80] and Appendix for
more details.

The intersublattice off-diagonal term HA
ξ (�r) introduces co-

herence between the low-energy sublattices in the system and
could arise in multilayer graphene with BN interfaced systems
due to higher-order perturbation corrections that couple the
diagonal moiré pattern terms with interlayer tunneling. This
term can be modeled as

HA
ξ (�r) = �Aξ (�r) · σ ξ

xy, (8)

where σ ξ
xy = (σx, ξσy) is the Pauli matrix vector and the pseu-

domagnetic vector potential that we model through

�Aξ (�r) = V M
AB

�∇�r Re[eiφAB f ξ (�r)], (9)

where the prefactor

V M
AB = 2CAB

[
cos(θ̃ )ẑ × 1

|G̃| − sin(θ̃ )
1

|G̃|
]

(10)

depends on twist angle and lattice constant mismatch,

cos(θ̃ ) = α cos(θ ) − 1

β
; sin(θ̃ ) = α sin(θ )

β
;

β =
√

α2 − 2α cos(θ ) + 1; α = 1 + ε.

We will show that this off-diagonal vector potential �Aξ (�r) in
Eq. (8) can alter the Chern number phase diagram by breaking
the rotational symmetry and modify the valley Chern numbers
depending on system parameter values.

In a previous report [33] on the electronic structure of
TLG/BN, the moiré potentials were modeled to act at the
low-energy sublattice of the contacting graphene layer, and
the zero direct interlayer coherence between the low-energy
sites of the top and bottom layers was assumed by using a
CAB = 0 zero off-diagonal term. There the C = N proportion-
ality to layer number was verified to up to three layers for
either valence or conduction bands, depending on the sign
of the electric field and hBN substrate alignment orientation.
As a matter of convention, in this work we assume that the
C-valley Chern number is associated to the K valley of the
multilayer graphene layer, while a time-reversal symmetric
counterpart is assumed for the K ′ counterpart. The zero or
finite integer value of the valley Chern number in each band
is attributed to the sum of the primary and secondary Chern
weights, typically concentrated near the gap opening points
in the mBZ, leading to the total valley Chern number, such
that Ce/h = w

e/h
P + w

e/h
S . While the primary Chern weight

near charge neutrality is set by the interlayer potential differ-
ence, the secondary Chern weights near the mBZ boundaries
depend on the moiré potential parameters that generate the
avoided secondary gaps at the mBZ corners. We will show
in our analysis that the secondary Chern weights are eas-
ily altered based on the choice of the off-diagonal moiré
potential terms.
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III. RESULTS AND DISCUSSION

Here we present the electronic structure of ABC multi-
layer graphene on hBN under the effect of an off-diagonal
moiré pattern term in Eq. (8) by allowing variations of the
parameters between CAB = 0 ∼ 0.025 eV and φAB = 0 ∼ π

for N = 1, 2, 3 systems. We have verified that changing the
diagonal moiré parameters alone in a similar range of magni-
tude and phase did not modify the valley Chern numbers of
the low-energy bands which are 0 or N . In the following we
assess the impact of this term in particular in the valley Chern
number of the low-energy bands for fixed diagonal moiré
patterns and discuss the real-space anisotropies introduced in
the local density of states.

A. Topological phase transitions in the low-energy bands

The main finding in this work is that the introduction of an
off-diagonal interlayer coherence moiré pattern term through
a finite CAB 
= 0 can switch the valley Chern number of the
low-energy bands in the system as we illustrate in Fig. 1,
where the vector moiré potential term HA

ξ ( �d ) defines a pseu-
dospin field on the graphene layer contacting hBN.

The inclusion of off-diagonal terms causes significant
changes in the electronic structure and triggers topological
phase transitions as shown in Fig. 1(a). The band structures
for N = 3 (TLG/BN) were obtained with ξ = 1 with a con-
stant value of interlayer potential difference � = 0.01 eV.
The continuous variation of the CAB term with φAB = 0 leads
to a gap closure between the low-energy valence band and
the higher-energy bands between K̃ and K̃ ′ for a value of
CAB = 0.007 eV, and the gap reopens for larger values of CAB

as shown in Fig. 1(a). Under the electric field, the gap at
the primary Dirac point and the avoided gaps at the moiré
mini-Brillouin-zone (mBZ) boundaries isolate the low-energy
bands near charge neutrality.

Introduction of a finite CAB parameter also breaks the trian-
gular rotational symmetry of the moiré Brillouin zone that can
be visualized in the Berry curvature distribution in Fig. 1(b).
The Berry curvatures of the nth low-energy bands are calcu-
lated through [81]

�n(�k) = −2
∑
n′ 
=n

Im

[
〈un|∂H

∂kx
|un′ 〉〈un′ |∂H

∂ky
|un〉/(En′ − En)2

]
,

(11)

where, for every k-point, we obtain sums through all the
neighboring n′ bands, |un〉 are the moiré superlattice Bloch
states, and En are the eigenvalues. Based on the Berry cur-
vature, the valley Chern number of the nth band is obtained
from C = ∫

d2�k �n(�k)/(2π ) integrated in the moiré Brillouin
zone. The Berry curvatures for the valence band for three
values of CAB (before, after, and at the transition) are com-
pared in Fig. 1(b). Band closure between the low-energy and
higher-energy bands is observed between moiré Brillouin-
zone corners K̃ ′

1 = 2π (− 2
3 , 1√

3
) and K̃1 = 2π ( 1

3 , 1√
3

), and

is absent between another set of K̃ ′
2 = 2π ( 2

3 , 0) and K̃2 =
2π ( 1

3 , 1√
3

) in the mBZ. This asymmetry between the initially

equivalent K̃1 and K̃2 or K̃ ′
1 and K̃ ′

2 minivalleys indicates the
rotational symmetry breaking introduced by the CAB term.

FIG. 1. Band structures, valley Chern numbers, Berry curvatures,
and the Fermi surfaces at the vHS of the low-energy bands in
TLG/BN when a finite off-diagonal term as in Eq. (8) is added to
the Hamiltonian. (a) Band structures for ξ = 1, N = 3 with � =
0.01 eV for different values of the off-diagonal pseudomagnetic field
patterns proportional to CAB = 0 (black), CAB = 0.007 eV (red), and
CAB = 0.01 eV (green). For all three cases we use the φAB = 0 phase
term. The respective K valley Chern numbers for the valence bands
are for CAB = 0, C = 3 (black), for CAB = 0.007 eV, C = 0 (red),
and for CAB = 0.01 eV, C = 2 (green). The valley Chern number of
the conduction bands are in all cases C = 0. (b) Topological phase
transitions as a function CAB, keeping φAB = 0 for the phase term
when N = 3 and N = 2 for ξ = 1 and � = 0.01 eV. We note that
for N = 3 there is a C = 3 → 2 transition for the valence bands and
from C = 0 → −2 for the conduction bands. For N = 2 there is a
C = 2 → 1 transition in the valence bands and from C = 0 → −1
for the conduction bands. (c) The Berry curvatures for the three
valence bands giving the different Chern numbers. The closure of
the band gap associated with the topological phase transitions can be
identified to take place between K̃ ′ and K̃ . (d) Fermi surface contours
at the vHS for the low-energy valence and conduction bands where
we can observe breaking of triangular rotational symmetry when
CAB 
= 0.

The band closure as a function of CAB indicates a possible
topological transition of the bands. Indeed, the valley Chern
number C = 3 with CAB = 0 has changed to C = 2 after the
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FIG. 2. The local density of states [LDOS, D(�r, E )] along with
the total density of states [DOS, D(E )] projected vertically to account
for the LDOS with respect to the inclusion of an off-diagonal term in
the moiré Hamiltonian in TLG/BN. For ξ = 1 with � = 0.01 eV,
the LDOS and DOS are obtained for different off-diagonal terms
(CAB = 0, 0.007, 0.01 eV), which are discussed in Fig. 1. The real-
space representation of the normalized LDOS [D̃(�r, E )] is presented
for each van Hove singularity (vHS) at the valence and conduction
bands CAB = 0, and for the cases when CAB 
= 0 we calculate their
differences δD̃(�r, E ) = D̃CAB 
=0(�r, E ) − D̃CAB=0(�r, E ). The normal-
ized LDOS is defined as D̃(�r, E ) = D(�r, E )/max[D(�r, E )], and we
have plotted them at the vHS energies E = EvHS .

band closure and reopening. We present the low-energy-band
valley Chern numbers in Fig. 1(c), where the valley Chern
number very near the band closure point (CAB = 0.007 eV) is
C = 0. The conduction band valley Chern number undergoes
a transition from C = 0 to a nonzero valley Chern number
C = −2, as shown in Fig. 1(c).

For ξ = 1 hBN alignment and N = 2 bilayer graphene
(BG/BN) where we allow CAB to change while keeping
φAB = 0 we see that the valence band exhibits a topological
phase transition from C = 2 to C = 1, as shown in Fig. 1(d).
However, for N = 1 monolayer graphene aligned with hBN
(G/BN) the valence band retains the same valley Chern num-
ber of C = 1, even with increasing values of CAB.

B. Broken rotational symmetry nematic local density of states

We had shown in Fig. 1 for a particular case of TLG/BN
with ξ = 1 and � = 0.01 eV that the addition of an
off-diagonal term in the moiré Hamiltonian can trigger a topo-
logical phase transition. Here we report calculations of local
density of states (LDOS) in order to distinguish how the added
off-diagonal terms can modify the LDOS profile D(�r, E ). In
Fig. 2 we show the LDOS and density of states (DOS) for the
low-energy valence and conduction bands for three values of
CAB, namely, 0, 0.007, and 0.01 eV. The van Hove singularities
in the DOS near the charge neutrality indicate the presence
of flatbands. The conduction band has a localization at BA
stacking, whereas the valence band has localization at AA
stacking. With a finite of-diagonal term CAB 
= 0 the van Hove
singularity (vHS) peak is broadened slightly but the localiza-
tion remains at the same stacking, as illustrated in the LDOS
plots. We use the normalized LDOS defined as D̃(�r, E ) =

FIG. 3. The valley Chern number phase diagrams for the low-energy conduction and valence bands of N-layer graphene boron nitride
moiré superlattices in the parameter space that defines the strength and shape of off-diagonal terms through the parameters [CAB (0 ∼ 0.025) eV
and φAB (0◦ ∼ 180◦)] in the moiré Hamiltonian. The valley Chern number phase diagrams are obtained for ξ = 1 (top panels) and ξ = −1
(bottom panels) with N = 3 (left), N = 2 (middle), and N = 1 (right).
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D(�r, E )/max[D(�r, E )] in our plots and find the influence
of off-diagonal moiré CAB term on the LDOS map through
the difference δD̃(�r, E ) = D̃CAB 
=0(�r, E ) − D̃CAB=0(�r, E ). This
quantity shows how the inclusion of a finite off-diagonal term
leads to anisotropic LDOS profiles and breaks the triangular
rotational symmetry of the solutions.

C. Pattern-shape-dependent Chern number phase diagrams

The moiré pattern shapes that mix inversion-symmetric
and asymmetric components can be calibrated through the
phase parameter φ that in turn controls the shapes of the
triangular moiré patterns in the first harmonic expansion;
see the Appendix for more details. In Fig. 1 we had noted
the change in the valley Chern numbers with CAB 
= 0 and
φAB = 0 combinations. However, there could be additional
valley Chern number phases when φAB is allowed to take a
finite value. Indeed, we find this is the case, and we have
presented in Fig. 3 the valley Chern number phase diagram in
the parameter space of CAB = 0 ∼ 0.025 eV and φAB = 0 ∼ π

for TLG/BN, BG/BN, and G/BN as concrete examples of
N-chiral systems up to three layers.

The results markedly depend on the orientation of the BN
layer, and for ξ = 1 we generally obtain a nonzero valley
Chern number equal to C = N , while the conduction band is
trivial with C = 0 for N = 1, 2, 3. When we change the ori-
entation of the substrate moiré pattern by setting ξ = −1, the
conduction band becomes nontrivial, acquiring an opposite-
sign valley Chern number C = −N , while the valence band
acquires C = 0. It is noted that the valley Chern number of
the valence/conduction bands are sensitive to both the off-
diagonal parameters CAB 
= 0 and φAB 
= 0, provided that the
former is sufficiently large and allows for additional valley
Chern number transitions for both initially trivial and nontriv-
ial bands.

In the case of TLG/BN, N = 3 with ξ = 1, the valley
Chern number of the valence (conduction) band is C = 3 (0)
for CAB = 0. The valley Chern number of the valence (con-
duction) band changed to C = 2 (−2) for sufficiently large
CAB with φAB = 0. For ξ = −1, the valley Chern number of
valence (conduction) band is C = 0 (−3) for CAB = 0, and
changed to C = 1 (−2) with increasing value of CAB.

Similarly, for BG/BN, N = 2 with ξ = 1 the valence (con-
duction) band has a phase transition from C = 2 (0) to C =
1 (−1). However, with ξ = −1, the valence/conduction band
shows a transition from C = 0 (−2) to C = −1 (−1).

For G/BN, N = 1 with ξ = 1, the valence/conduction
band has a valley Chern number C = 1 (0). Even though the
valley Chern number of the valence band did not change
with increasing CAB, the conduction band valley Chern num-
ber changed to C = 1. For the case of ξ = −1, the valence
band valley Chern number remains unchanged, while it does
change for the conduction band when we modify CAB.

IV. SUMMARY AND DISCUSSION

We have explored the phase diagram map for the valley
Chern numbers of the low-energy valence and conduc-
tion bands of rhombohedral N = 1, 2, 3 layer graphene
boron-nitride superlattices for different moiré patterns. The

intrasublattice diagonal moiré patterns produces low-energy
bands whose valley Chern number magnitudes are zero or
proportional to layer number N . The absolute value of the
maximum valley Chern number followed the number of
graphene layers N = 1, 2, 3 for all possible moiré patterns
within the first harmonic approximation. For zero off-diagonal
patterns we find that the valence band has a valley Chern
number equal to the number of layers C = N when ξ = 1,
while the conduction band is C = −N when ξ = −1.

However, introduction of off-diagonal interlayer coher-
ence moiré pattern terms captured through the magnitude
CAB and phase φAB parameters allows topological phase
transitions to be triggered, giving rise to valley Chern num-
bers that are smaller than the number of layers, a behavior
that can be traced mainly to the variations in the electron-

FIG. 4. Intralayer Hamiltonian elements as a function of sliding
vector �d for different phase angles ϕii and ϕi j . The black hexagon
represents the real-space presentation of a moiré supercell. In the
real space the inversion-symmetric potential for the diagonal term Hii

is associated with ϕii = nπ , but the inversion asymmetric potential
for the off-diagonal term Hi j is associated with ϕi j = (2n + 1)π/2,
where N is an integer.
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FIG. 5. Dependence of the scalar moiré potential term M(�r) =
2C Re[ f (�r)eiφ] on the local stacking vector �d and the phase angle
φ. The local stacking coordinate vector and real-space position is
related through �d (�r) = ε�r + θ ẑ × �r in the small-angle approxima-
tion. The moiré pattern in Eq. (A1) will be symmetric for φii = nπ

and asymmetric when φii = (2n + 1)π/2 for integer n values, and a
combination of both for intermediate phase angles.

hole secondary Chern weights near the moiré Brillouin-zone
boundaries. Thus experimentally observed quantum anoma-
lous Hall effects in TLG/BN [34] compatible with C = 2
rather than the expected C = 3 from layer number could re-
sult from rotational symmetry-breaking interlayer coherence
terms introduced by the Coulomb interactions. Our model
off-diagonal contributions could also result from higher-order
corrections of the moiré potentials mediated by interlayer
tunneling. Broken rotational symmetry in the mBZ upon in-
clusion of off-diagonal terms in the Hamiltonian is evidenced
from the Berry curvature distribution in momentum space and
the LDOS maps.

In summary, we have presented valley Chern number phase
diagrams in the parameter space that defines the off-diagonal
moiré pattern of the model Hamiltonian of rhombohedral
N-chiral multilayer graphene subject to moiré scalar and vec-
tor potentials. The vector potential moiré patterns which are

often ignored in the low-energy Hamiltonian models of N-
chiral multilayer graphene BN superlattices turned out to play
a more prominent role than the scalar potentials for triggering
topological transitions to phases with valley Chern numbers
that are different from those dictated by layer number. Our
results points to the possibility of triggering topological phase
transitions by breaking the triangular rotational symmetry
through pseudomagnetic field vector potentials generated by
moiré strain patterns. These can result, for example, from real
strain fields whose bond distortions give rise to unequal elec-
tron hopping probabilities to the neighboring atoms, or from
virtual effective strains due to high-order interlayer electron
hopping processes or Coulomb interactions.
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APPENDIX: INVERSION-SYMMETRIC AND
ASYMMETRIC MOIRé PATTERNS

Here we discuss in more detail the breakdown of the moiré
patterns into inversion-symmetric and asymmetric terms [48]
for the diagonal scalar moiré pattern in Eq. (5) and off-
diagonal vector potential-like term in Eq. (8). Illustrations
of the diagonal and off-diagonal moiré patterns for different
phase angles are in Fig. 4.

The diagonal element of the moiré potential in Eq. (5)
involving a scalar function V M

AA/BB(�r) is defined in terms of

FIG. 6. Dependence of the vector moiré potential �A(�r) on phase angle φAB that decides the relative presence of inversion-symmetric and
asymmetric pattern components as in Fig. 5 for the diagonal terms. The real and imaginary parts of the intersublattice tunneling sets the
direction of the pseudomagnetic vector potential (arrows), which strongly depends on the phase angle φAB.
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CAA/BB = Cii, φAA/BB = φii, and for ξ = 1 we have

Mii(�r) = 2Cii Re[ f (�r)eiφii ]

= Cii[ f1(�r) cos φii + f2(�r) sin φii], (A1)

with f1(�r) = ∑6
m=1 eiG̃m�r (symmetric function) and f2(�r) =

i
∑6

m=1(−1)m−1eiG̃m�r (antisymmetric function), where we use
six moiré reciprocal lattices G̃m=1...6 = R̂2π (m−1)/3G̃1 succes-
sively rotated by 60◦ as introduced in the main text. Hence,
the moiré pattern in Eq. (A1) will be symmetric for φii = nπ

and asymmetric when φii = (2n + 1)π/2 for integer N values,

and a combination of both for intermediate phase angles. In
Fig. 5 we illustrate the M(�r) patterns in real space for different
values of the angle φii.

The off-diagonal Hi j (�r) term with i 
= j given in Eq. (8)
has a vector potential term �A(�r) defined in Eq. (A2) that can
be represented by its magnitude and orientation as in Fig. 6,

Aξ (�r) = V M
AB

�∇�rRe[eiφAB f (�r)]

= V M
AB

�∇�rRe

[
6∑

m=1

eiξ G̃m·�r+φAB

(
1 + (1 + (−1)m)

2

)]
.

(A2)
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