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Filling anomaly for general two- and three-dimensional C4 symmetric lattices
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In this paper, we derive symmetry indicator formulas for the filling anomaly on two-dimensional (2D) C4

symmetric square lattices with and without time reversal, inversion symmetry, or their product, in the presence
of spin-orbit coupling. We go beyond previous work by considering lattices with atoms occupying multiple
Wyckoff positions. We also provide an algorithm using the Smith normal form that systematizes the derivation.
The formulas determine the corner charge in 2D atomic or fragile topological insulators, as well as in three-
dimensional (3D) insulators and semimetals by studying their 2D slices in momentum space. We apply our
results to a 3D tight-binding model on a body-centered tetragonal lattice, whose projection into the 2D plane has
two atoms in the unit cell. Our symmetry indicators correctly describe the higher-order hinge states and Fermi
arcs in cases where the existing indicators do not apply.
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I. INTRODUCTION

The discovery of higher-order topological insulators
(HOTIs) has refined the notion of the bulk-boundary cor-
respondence [1–20]. Specifically, an order-d topological
insulator in D dimensions exhibits gapless modes on (D − d )-
dimensional surface, where d = 1 corresponds to the usual
bulk-boundary correspondence [21–23].

In this paper, we consider the case where d = D. An
order-D topological insulator in D dimensions exhibits zero-
dimensional corner-localized mid-gap states [1,5,24–28].
Unlike a Chern insulator [29,30], Z2 topological insulator
[31], or topological crystalline insulator [32,33], an order-D
topological insulator in D dimensions does not require an
obstruction to the existence of symmetric, maximally local-
ized Wannier functions. Instead, the corner charge can result
from an obstructed atomic limit (OAL) phase [32], where
the bulk is a band insulator that permits maximally localized
and symmetric Wannier functions, but such that the Wannier
centers cannot be continuously deformed into the positions of
the atoms without breaking symmetry or closing the bulk (or
surface [34]) band gap. This mismatch between the bulk atoms
and Wannier centers has been dubbed the filling anomaly [25].
In a symmetric finite-sized system at charge neutrality with
no polarization or surface states, a filling anomaly results in a
nonzero corner charge, quantized by crystal symmetry.

It is desirable to compute the filling anomaly and corner
charge from bulk properties. To this end, there have been
two recent approaches. The first, which applies to any lattice,
regardless of symmetry, is to generalize the modern theory
of polarization [35–37] by determining the corner charge
from a bulk multipole moment [38–45]. The second, which
is taken in this paper, is to develop a theory of symmetry
indicators, i.e., formulas derived in terms of the symmetry
representations of the Bloch wave functions at high-symmetry

momenta. Symmetry indicators have been very successful in
classifying topological crystalline insulators [9,32,33,46–53]
starting with the inversion eigenvalue formulas for two- (2D)
and three-dimensional (3D) Z2 topological insulators [54].

Recently, symmetry indicators have been derived for the
filling anomaly and corner charge in OALs in certain 2D
crystals [25,26]. However, the results do not necessarily apply
when there are multiple atoms in the unit cell. Specifically,
Refs. [25,26] limited their consideration to crystals for which
there exists a symmetric finite-size termination that does not
cut through any unit cells. Such a termination does not exist
for a crystal with atoms occupying multiple distinct maximal
Wyckoff positions. For such a crystal, a symmetric termina-
tion will cut through some unit cells (regardless of the choice
of unit cell), as shown in Fig. 1(b).

In this paper, we develop a method to compute symmetry
indicators for the filling anomaly in the general case of a
crystal with atoms occupying any number of Wyckoff posi-
tions. The method has two steps: we first compute the filling
anomaly in terms of the number of Wannier functions centered
at each Wyckoff position (which has also been done recently
in Ref. [45]). Second, we compute the number of Wannier
centers at each Wyckoff position in terms of symmetry indica-
tors using elementary band representations. The second step is
accomplished via an algorithm that automates the calculation
of symmetry indicators, introduced in this work. We apply
our method to the square lattice with and without time rever-
sal, inversion, and their product, corresponding to the layer
groups p4/m1′, p4/m′, p4, p4/m, and p41′; the results are in
Eqs. (23), (26), (32), (37), and (39), respectively. Our results
provide a necessary generalization of formulas in previous
work [25,26], which can give an incorrect result when there
are multiple atoms in the unit cell.

In addition to diagnosing band structures in 2D, the results
of our work can be used to compute 2D invariants for slices
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FIG. 1. Finite-symmetric square lattices with open boundary
conditions shown for (a) the simple square lattice and (b) a lattice
with atoms in multiple Wyckoff positions. Solid blue and hollow
green dots and pink squares correspond to different Wyckoff posi-
tions on the square lattice. Dashed gray lines indicate the primitive
unit cell. The large black square outlines the finite-sized system
(atoms on the boundary are included in the finite-sized system). In
(b), the finite-sized system has boundaries cutting through the unit
cell, as evidenced by the different number of solid and hollow dots,
while the unit cell contains one of each.

of the 3D Brillouin zone, which is crucial to diagnosing the
topology of 3D semimetals [55–57] and some 3D HOTIs [3].
We present an example of this in Sec. III.

The paper is organized as follows. In Sec. II, we review
the concept of the filling anomaly and its connection to corner
charge. We derive relations between the filling anomaly and
the number of Wannier centers at each Wyckoff position.
We then derive symmetry indicator formulas for the filling
anomaly (and therefore corner charge) that apply to the square
lattice. In Sec. III, we build a 3D body-centered tetragonal
(BCT) model. We analyze the HOTI phase and higher-order
semimetal phase in this model by applying our formulas to
each kz slice, which corresponds to a 2D system with two
distinct atoms in the primitive unit cell. We verify our new
formulas by numerically calculating the corner/hinge states.
Our example demonstrates why the previous formulas in
Refs. [25,26] do not hold for a BCT lattice. In Sec. IV, we
summarize our results and discuss future directions.

II. 2D SQUARE LATTICE

We consider gapped 2D spinful systems on the square
lattice with no gapless edge modes and no bulk polarization.
These systems are either (possibly obstructed) atomic limits
or fragile topological phases, where all strong symmetry indi-
cators vanish [33]. In addition to the π/2 rotation symmetry
of the square lattice, which we denote by C4, we consider
the presence of time reversal T (where T 2 = −1), inversion
I, and/or their product, corresponding to the following 2D
symmetry groups, known as layer groups: p4/m1′ (C4, T , I);
p4/m′ (C4, T I); p4/m (C4, I); p41′ (C4, T ); and p4 (C4 only),
where the symmetry operations in parentheses indicate the
generators, excluding translations. The layer groups are listed
in international notation, where 4 indicates the C4 rotation;
1′ indicates T , /m indicates I; and m′ indicates IT [58].
The layer group p41′ does not have a complete symmetry
indicator formula, as pointed out in Ref. [26]; we derive a
partial indicator in Sec. II E 4.

In this section, we describe the method for deriving the
symmetry indicator for the filling anomaly (Secs. II A–II C),
which can be generalized to any crystal symmetry group in
any dimension. In Sec. II D, we apply the method to the sym-
metry group p4/m1′ with spin-orbit coupling (SOC). We first
rederive the formula for the case of only one atom in the unit
cell [26] and then derive a new formula for the situation where
atoms occupy multiple Wyckoff positions. We generalize to
the layer groups p4/m′, p4, p4/m, and p41′ with SOC in
Sec. II E and summarize in Sec. II F.

A. Bulk-corner correspondence

Topologically trivial bands have symmetric and exponen-
tially localized Wannier functions [32,33]. When the Wannier
centers cannot be continuously moved to coincide with the
atom positions while obeying crystal symmetry, the system
is in an OAL phase [32]. Despite having exponentially lo-
calized Wannier centers, OALs are nontrivial in the sense
that they are separated by a gap-closing phase transition from
the trivial phase (where the Wannier centers coincide with
the atomic positions). Canonical examples include the Su-
Schrieffer-Heeger model in one dimension (1D) [59] and the
quadrupole insulator in 2D [5].

Due to the mismatch between the atomic positions and
Wannier centers, OALs can sometimes support mid-gap
corner-localized states. The connection between bulk Wannier
centers and mid-gap corner charge is called the bulk-corner
correspondence. The existence of mid-gap corner states in-
dicates that in a finite-sized system with open boundaries, the
number of filled bulk valence states is different from the filling
required for charge neutrality. Thus, if the Fermi energy lies
in the gap, an OAL with mid-gap corner states can either be
neutral or symmetric, but not both. The filling of the finite
system in the symmetric case subtracted from the filling in
the neutral case defines the filling anomaly [25]. A nontrivial
filling anomaly requires not only that the number of filled
states differs from the charge neutral filling, but also that
the difference cannot be accounted for by adding or remov-
ing electrons to the boundary in a symmetry-preserving way.
Thus, the filling anomaly remains robust even if the mid-gap
states are pushed up (down) in energy into the conduction
(valence) bands by a boundary potential.

In the symmetry groups with time reversal (p4/m1′ and
p41′), the filling anomaly is defined mod 8 because one can
add or remove eight electrons to the boundary of a finite-
sized system without breaking these symmetries (by adding
a Kramers pair of time-reversed partners to the four corners of
a square lattice). In the systems without time reversal (p4/m′,
p4/m, or p4), the filling anomaly is defined mod 4 because
one can add four electrons to the boundary of a finite-sized
system without breaking these symmetries, as electrons need
not come in Kramers pairs.

In this work, we are interested in the filling anomaly that re-
sults from purely corner charge. Therefore, we limit ourselves
to systems without gapless surface states, which excludes
systems with a bulk polarization or a nontrivial topological
invariant.

To compute the corner charge, we note that the symmetri-
cally terminated square lattice with filling anomaly η has net
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FIG. 2. Maximal Wyckoff positions in the layer groups p4/m1′,
p4/m′, p4/m, p41′, and p4. The general position 4d is not shown.

charge ηe. Symmetry requires the charge ηe is symmetrically
sitting at the four corners, resulting in a corner charge Qc on
the square lattice [25],

Qc = η

4
e. (1)

Since, as discussed above, η is defined either mod 8 or mod
4, it follows that Qc is defined mod 2e with time reversal and
mod e without.

B. Defining the filling anomaly

We now derive the filling anomaly in terms of the ion
positions and Wannier centers of the occupied valence bands.
Both the ion positions and Wannier centers are described by
Wyckoff positions; for a review of Wyckoff positions in the
context of band theory, we refer the reader to Refs. [32,49].
We use terminology specific to a finite square lattice of side
length L, but the method is general.

The first step is to count the number of electrons in the
charge neutral configuration. To do this, we need to know
the total number of ions in a finite-sized system with open
boundary conditions. Let w be one of the four Wyckoff po-
sitions on the 2D square lattice, 1a, 1b, 2c, or 4d , shown
in Fig. 2. For a finite-size lattice, we choose the convention
where the 1a position is at the corner. Define Nw(L) to be the
number of ions at the Wyckoff position w that reside inside or
on the boundary of a finite-sized square consisting of L × L
unit cells. For a periodic lattice of size L × L, the number
of ions is L2 multiplied by the multiplicity of the Wyckoff
position. However, for open boundary conditions, this is not
the case. As shown in Fig. 1(b), for an L × L square with open
boundary conditions,

Na(L) = L2,

Nb(L) = (L − 1)2,

Nc(L) = 2L(L − 1),

Nd (L) = 4(L − 1)2. (2)

The total number of electrons in the charge-neutral configura-
tion is then given by a sum over all Wyckoff positions:

Nneutral =
∑
w

Nw(L)aw, (3)

where aw denotes the number of valence electrons from the
ion at Wyckoff position w. (More generally, if there are
multiple ions not related by symmetry at the same Wyckoff

position, which can happen for Wyckoff positions with a
variable coordinate, such as the 4d position, then aw should
be the sum of valence electrons from each symmetry-distinct
ion in the Wyckoff position w.)

We now count the number of electrons required to sym-
metrically fill the Wannier centers of the valence bands in
a finite-size system with open boundary conditions. Each
Wannier center is labeled by a Wyckoff position w, and an ir-
reducible representation (irrep) ρw of the site-symmetry group
of w. (The site-symmetry group of w is the set of symmetry
operations that leave w invariant; therefore, Wannier functions
centered at w must transform as irreps of the site-symmetry
group. The irreps ρw describe the symmetry of the Wannier
functions.) Let nρw

count the number of Wannier functions
centered at w that transform as ρw and are not related by
symmetry; in the language of band representations [32,49],
nρw

counts the number of times the band representation la-
beled by ρw appears in the valence bands. Then the number of
electrons needed to symmetrically fill the Wannier functions
in a finite-size L × L square with open boundary conditions is

Nsymmetric =
∑
w

Nw(L)
∑
ρw

nρw
dim(ρw ), (4)

where dim(ρw ) is the dimension of the irrep ρw.
Equations (3) and (4) define the filling anomaly:

η = Nneutral − Nsymmetric mod 4(or 8)

=
∑
w

Nw(L)

(
aw −

∑
ρw

nρw
dim(ρw )

)
mod 4(or 8), (5)

where, as discussed in Sec. II A, mod 8 applies with time-
reversal symmetry and mod 4 applies without. Although this
formula for η includes an L-dependent term on the right-hand
side, the L dependence disappears due to our assumptions
that the system has no bulk charge polarization and no bulk
net charge, which would contribute terms of order L and L2,
respectively. Thus, η is independent of L. A similar method to
compute η was used in Refs. [25,26,45].

We now specify to the square lattice. The general Wyckoff
position, denoted 4d , has coordinates (x, y), where x, y �=
0, 1

2 . Ions on the 4d position always come in multiples of four,
even on a finite-size lattice, so that Nd (L) must be a multiple of
four as shown in Eq. (2). Therefore, if time-reversal symmetry
is absent, the term in Eq. (5) coming from the 4d Wyckoff po-
sition is a multiple of four and does not contribute to the filling
anomaly. If time-reversal symmetry is present, all electrons
come in Kramers pairs, causing the term in Eq. (5) coming
from the 4d Wyckoff position to be a multiple of eight, which
again does not contribute to the filling anomaly. Therefore,
when computing the filling anomaly, we need only concern
ourselves with the maximal Wyckoff positions 1a, 1b, and 2c,
shown in Fig. 2.

A second simplification for the square lattice is that
dim(ρw ) is independent of ρw and w for each symmetry
group we consider, as we now explain. The maximal Wyckoff
positions and their site-symmetry groups are listed in Table I
for all the layer groups we consider. In p4/m1′, Table I shows
the only possible site-symmetry groups are 4/m1′ or 2/m1′;
all irreps of these groups are two-dimensional, as shown in
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TABLE I. Site-symmetry groups for the maximal Wyckoff posi-
tions w of the layer groups p4/m1′, p4/m′, p4/m, p4, and p41′ in
international notation [58]. The site-symmetry groups for 1a and 1b
are the same groups that leave � = (0, 0) and M = (π, π ) invariant
in momentum space; similarly, the site-symmetry group for 2c leaves
X = (π, 0) invariant.

Layer group w Site-symmetry group

p4/m1′ 1a, 1b 4/m1′

2c 2/m1′

p4/m′ 1a, 1b 4/m′

2c 2/m′

p4/m 1a, 1b 4/m
2c 2/m

p4 1a, 1b 4
2c 2

p41′ 1a, 1b 41′

2c 21′

Table II. The same is true for p4/m′ and p41′. In p4, Table I
shows the only possible site-symmetry groups are 4 or 2;
all irreps of these groups are one dimensional, as shown in
Table III. The same is true for p4/m; its irreps are enumerated
in Table IV.

Thus, in all cases, dim(ρw ) is independent of both ρ and
w and the expression for η in Eq. (5) can be simplified on the
square lattice as

η
square−−−→
lattice

∑
w max

Nw(L)(aw − nwd ) mod 4(or 8), (6)

where the sum is over all maximal Wyckoff positions w; η

is defined mod 4 (mod 8) in the absence (presence) of time-
reversal symmetry, as in Eq. (5);

nw ≡
∑
ρw

nρw
; (7)

TABLE II. Characters of the irreps of the point groups 4/m1′,
2/m1′, 4/m′, and 41′ with SOC. Characters of 2/m′ and 21′ are
not shown because they each have only one (two-dimensional) ir-
rep with spin-orbit coupling. The irreps are labeled in the notation
of Ref. [60]. In all groups, T or T I requires all irreps consist
of two-dimensional pairs with complex-conjugate eigenvalues. The
characters of C2 ≡ C2

4 and mz ≡ C2
4I are always zero and not listed

here.

4/m1′ E C4 I

E 1
2 g 2

√
2 2

E 1
2 u 2

√
2 −2

E 3
2 g 2 −√

2 2

E 3
2 u 2 −√

2 −2

2/m1′ E I

Eg 2 2
Eu 2 −2

4/m′ or 41′ E C4

E 1
2

2
√

2

E 3
2

2 −√
2

TABLE III. Characters of irreps of the point groups 4 and 2 with
SOC; ε = exp(π i/4).

4 E C4 C2

1E 1
2

1 ε i
1E 3

2
1 −ε∗ −i

2E 3
2

1 −ε i
2E 1

2
1 ε∗ −i

2 E C2

1E 1
2

1 i
2E 1

2
1 −i

and

d = dim(ρw ) =
{

2 if p4/m1′, p4/m′, p41′,
1 if p4/m, p4 (8)

is the dimension of each irrep (which is independent of the
choice of Wyckoff position and choice of irrep, as discussed
in the previous paragraph.)

Plugging the formulas for Nw(L) from Eq. (2) into (6)
yields

η
square−−−→
lattice

L2[N − d (na + nb + 2nc)]

− 2L[ab + ac − d (nb + nc)]

+ (ab − dnb) mod4(or8), (9)

where η is defined mod 4 (mod 8) in the absence (presence)
of time-reversal symmetry,

N = aa + ab + 2ac (10)

is the number of occupied bands, and d is defined in Eq. (8).
The bulk charge is determined by the number scaling with

L2 in Eq. (9) and must be zero in a system that is charge
neutral in the bulk:

N − d (na + nb + 2nc) = 0. (11)

TABLE IV. Characters of irreps of 4/m and 2/m with SOC;
ε = exp(π i/4).

4/m E C4 C2 I

1E 1
2 g 1 ε i 1

1E 3
2 g 1 −ε∗ −i 1

2E 3
2 g 1 −ε i 1

2E 1
2 g 1 ε∗ −i 1

1E 1
2 u 1 ε i −1

1E 3
2 u 1 −ε∗ −i −1

2E 3
2 u 1 −ε i −1

2E 1
2 u 1 ε∗ −i −1

2/m E C2 I

1E 1
2 g 1 i 1

2E 1
2 g 1 −i 1

1E 1
2 u 1 i −1

2E 1
2 u 1 −i −1
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The bulk polarization px = py ≡ p is determined by the num-
ber scaling with L in Eq. (9) and must also be zero:

2[ab + ac − d (nb + nc)] = 0 mod 4(or 8). (12)

The filling anomaly η is determined by the L-independent
term in Eq. (9):

η = ab − dnb = aa − dna mod 4(or 8), (13)

where the equality follows from Eqs. (11) and (12). Equations
(11), (12), and (13) were also obtained in Ref. [45].

C. Symmetry indicators for Wannier centers

The formulas in the previous section derive the filling
anomaly in terms of the crystal structure and Wannier centers.
We now derive nw in terms of the irreps of the little groups at
high-symmetry points of the bulk band structure. This is use-
ful because the irreps are easier to compute than the Wannier
centers. As we will see, because the irreps in momentum space
do not completely determine the Wannier centers [32,53,61–
64], nw can only be determined up to some modulus from
symmetry.

To this end, let A be the integer “EBR matrix” of the
symmetry group under consideration: each column of A is
labeled by an elementary band representation (EBR) and each
row a particular irrep of the little group of a particular high-
symmetry point. The entries in the matrix indicate the number
of times each momentum-space irrep appears in the EBR
[53,65,66].

A group of topologically trivial bands can be expressed as
a linear combination of EBRs [32] with integer coefficients
ñi. The irreps that appear at high-symmetry points in the band
structure satisfy

v = Añ, (14)

where v j is the number of times the jth irrep appears in the
band structure. We need to invert this equation to find nw in
terms of v, as we now explain.

Let the Smith normal form of A be given by

A = U −1DV −1, (15)

where D is a diagonal integer matrix with diagonal entries
(d1, . . . , dM , 0, . . . 0), i.e., the first M entries are positive
and the remaining entries are zero, and U,V are integer
matrices invertible over the integers. (Note: the stable topo-
logical crystalline insulator classification of the group is given
by ⊗M

i=1Zdi , where Zdi is the group of integers mod di

[33,50,53,65,66].)
We want to express the number of EBRs corresponding to

each Wyckoff position in terms of symmetry irreps. Since we
are only considering topologically trivial bands, we consider
only the vectors v for which there exists an integer vector ñ
that solves Eq. (14). Then the Smith normal form in Eq. (15)
implies Uv = (v′

1, . . . v
′
M, 0 . . . 0), where di divides v′

i . For
such bands, one solution to Eq. (14) is given by ñ = V DpUv,
where Dp is the pseudoinverse of D, i.e., a diagonal matrix
with diagonal entries (1/d1, 1/d2, . . . , 1/dl , 0, . . . 0). This so-
lution is not generically unique: the most general solution
to Eq. (14) is ñ = V DpUv + V ñ0, where ñ0 is any integer
vector in the null space of D, i.e., the first M entries of ñ0 are

zero, so that Dñ0 = 0. Thus, given a particular v, ñi can only
be determined modulo gcd{Vi j | j>M}, where gcd indicates the
greatest common divisor.

However, we do not need each ñi separately: we seek nw in
Eq. (7), which is a sum of all ñi where the EBR indicated by
i is induced from an irrep of the site-symmetry group of the
Wyckoff position w; we use i ∈ w to denote this set of EBRs.
Then, following the previous paragraph, we can express nw as

nw =
∑
i∈w

[V DpUv]i mod gcd

{(∑
i∈w

Vi j

)
| j>M

}
. (16)

We now use Eq. (16) to compute nw in p4/m1′ in terms of
the symmetry indicators. We do the same for p4/m′, p4/m,
p4, and p41′ in Sec. II E. The Smith normal form of the EBR
matrix for each of these groups is computed in Appendix A.

Symmetry indicators for na,b,c in p4/m1′

In p4/m1′, there are three high-symmetry points in the
Brillouin zone: � = (0, 0), M = (π, π ), and X = (π, 0). The
point (0, π ) is symmetry related to X , so does not add any new
information. The points � and M are invariant under the point
group 4/m1′, while X is invariant under 2/m1′; the irreps of
both groups are listed in Table II.

Define #K 1
2 u (#K 3

2 u) to be the number of times the irrep
E 1

2 u (E 3
2 u) appears in the valence band spectrum at the high-

symmetry point K = �, M and define #Ku = #K 1
2 u + #K 3

2 u.
Similarly, define #Xu to be the number of times the irrep Eu

appears in the valence band spectrum at X . Then, define [Kρ]
to be the difference between the number of times the irrep
indicated by ρ appears at the high-symmetry point K and
at �:

[Kρ] = #Kρ − #�ρ. (17)

Using this notation, we find from Eq. (16) (details in
Appendix A)

na = N

2
− [Xu] − 3

2
[Mu] + 2

[
M 1

2 u

]
mod 4, (18)

nb = [Xu] + 1

2
[Mu] − 2

[
M 1

2 u

]
mod 4, (19)

nc = 1

2
[Mu] mod 2, (20)

where N = 2(na + nb + 2nc) is the total number of filled
bands, which was derived by imposing bulk charge neutrality
in Eq. (11).

D. Symmetry indicators for the filling anomaly

We are now ready to compute the filling anomaly η in
Eq. (6) in terms of the symmetry irreps by plugging in
Eqs. (18), (19), and (20) for the group p4/m1′ (the results for
other groups are in Sec. II E). In previous work [25,26], η was
computed on 2D lattices with only one maximal Wyckoff po-
sition occupied. The main advance of this work is to compute
η for square lattices with any number of atoms in the unit cell.
In Sec. II D 1, we compute η for the simple square lattice
with one atom in the unit cell, reproducing earlier results [26].
In Sec. II D 2, we derive η in the general case with multiple
atoms in the unit cell.
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1. Simple square lattices

We now reproduce the symmetry indicator formula in
Ref. [26] for a square lattice with one atom in the unit cell.
Without loss of generality, we can take that atom to be in
the 1a position. Then the formula for the filling anomaly in
Eq. (13) (with d = 2) simplifies to

η = −2nb mod 8. (21)

Plugging the expression for nb in Eq. (19) into (21), we obtain
the symmetry indicator formula

η = −2[Xu] − [Mu] + 4
[
M 1

2 u

]
mod 8. (22)

Noticing that [Mu] must be an even number in an (obstructed)
atomic limit phase because nc in Eq. (20) must be an integer,
we deduce that η is in fact a Z4 quantity. Eq. (22) was intro-
duced in Eq. (50) in Ref. [26].

2. General case: Atoms in multiple Wyckoff positions

We now consider the general case, shown in Fig. 1(b),
where there can be atoms at any Wyckoff positions. Thus, the
number of electrons from each ion aa,b,c can all be nonzero.
The number of filled bands is N = aa + ab + 2ac. Plugging
Eq. (18) into the expression for the filling anomaly in Eq. (13)
(with d = 2) we find the symmetry indicator formula for the
filling anomaly:

η = aa − N + 2[Xu] + 3[Mu] − 4
[
M 1

2 u

]
mod 8. (23)

Since time-reversal symmetry constrains aa and N to be even
numbers and, as discussed below Eq. (22), [Mu] is also even,
the filling anomaly is again a Z4 quantity. When N = aa,
which implies ab = ac = 0, Eq. (23) is equivalent to Eq. (22).
[To see this, notice that the equations are mod 8, [Mu] is even,
and when ab = ac = 0, Eq. (12) implies nb = nc mod 2,
from which Eqs. (19) and (20) together require that [Xu] is
also even.] When aa �= N , Eq. (23) is distinct from Eq. (22)
and has not appeared in previous literature.

In Sec. III, we build an explicit body-centered tetragonal
model with C4, T , and I symmetry. The Hamiltonian in the
kz = 0 and π planes of the model describes a square lattice
with p4/m1′ symmetry, but with atoms at multiple Wyckoff
positions, corresponding to the projection of the 3D model
onto a 2D plane. Therefore, the 2D bulk-corner correspon-
dence derived in this section applies to 2D planes of that
model, providing a numerical check of the analytical results.

E. Generalization to other layer groups

We now compute the filling anomaly in terms of the
symmetry indicators for the layer groups p4/m′, p4, and
p4/m and explain why p41′ does not have an analogous
formula. The formulas for na,b,c in this section are derived in
Appendix A.

1. p4/m′

For the layer group p4/m′, the high-symmetry points �

and M are invariant under the point group 4/m′, while X is
invariant under 2/m′. The irreps for these groups are listed
in Table II. The number of Wannier centers at each Wyckoff
position, na, nb and nc, are defined by Eq. (7) with irrep

dimension d = 2 in Eq. (8). Using Eq. (16), we find na and
nb can be determined mod 2:

na = N

2
− [

M 1
2

]
mod 2, (24)

nb = [
M 1

2

]
mod 2, (25)

where [M 1
2
] = #M 1

2
− #� 1

2
, where #K 1

2
indicates the number

of times the irrep E 1
2

appears in the valence bands at the high-
symmetry point K = �, M. We find nc = 0 mod 1, i.e., nc is
not constrained by symmetry irreps.

The filling anomaly is determined by Eq. (13) taken mod 4
with d = 2. Substituting in Eq. (24) yields

η1 = aa − N + 2
[
M 1

2

]
mod 4, (26)

where the subscript is to distinguish the filling anomaly in
p4/m′ from that computed in p4/m1′ in Eq. (23). In the case
where atoms only occupy one Wyckoff position (1a), aa = N
and this equation reduces to

η1 = 2
[
M 1

2

]
mod 4. (27)

Equation (27) was introduced in the context of higher-order
Fermi arcs [55] with C4 and Mx,y symmetries: the anticom-
muting reflection symmetries there play the same role as T I
in p4/m′ in generating two-dimensional irreps.

2. p4

For the layer group p4, the high-symmetry points � and
M are invariant under the point group 4, while X is invariant
under 2; the irreps for these groups are listed in Table III. The
number of Wannier centers at each Wyckoff position, na, nb,
and nc, are defined by Eq. (7) with irrep dimension d = 1
in Eq. (8). Using Eq. (16), we find that na and nb can be
determined mod 4, while nc can be determined mod 2:

na = N − [X2] + 3
2 ([M1] + [M3]) + 2[M2] mod 4, (28)

nb = [X2] − 1
2 ([M1] + [M3]) − 2[M2] mod 4, (29)

nc = − 1
2 ([M1] + [M3]) mod 2. (30)

Here we use the notation [Mj] = #Mj − #� j , where j =
1, 2, 3, 4 corresponds to the irrep with C4 eigenvalue
exp[i π

2 ( j − 1
2 )], and [X1] = #X1 − #�1 − #�3, [X2] = #X2 −

#�2 − #�4, where X1,2 corresponds to the irrep with C2 eigen-
values +i, −i. As in previous sections, #Kj indicates the
number of times the irrep j appears in the valence bands at
the high-symmetry point K .

The expression for the filling anomaly is given by Eq. (13)
taken mod 4 with d = 1:

η2 = aa − na mod 4 (31)

= aa − N + [X2] − 3
2 ([M1] + [M3]) − 2[M2] mod 4,

(32)

where Eq. (32) results from plugging Eq. (28) into (31).

3. p4/m

For the layer group p4/m, the high-symmetry points �

and M are invariant under the point group 4/m, while X is
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invariant under 2/m; the irreps for these groups are listed in
Table IV. The number of Wannier centers at each Wyckoff
position, na, nb, and nc, are defined by Eq. (7) with irrep
dimension d = 1 in Eq. (8). From Eq. (16), we find that na

and nb can be determined mod 4 while nc can be determined
mod 2. The formulas are

na = N − [Xu] − 3
2 [Mu] + 2([M1u] + [M2u]) mod 4, (33)

nb = [Xu] + 1
2 [Mu] − 2([M1u] + [M2u]) mod 4, (34)

nc = 1
2 [Mu] mod 2. (35)

Here we use the notation [Mj,ξ ] = #Mj,ξ − #� j,ξ , where the
irrep of 4/m labeled by j, ξ has C4 eigenvalue exp[i π

2 ( j − 1
2 )],

j = 1, 2, 3, 4, and inversion eigenvalue +1,−1 correspond-
ing to ξ = g, u. In addition, [X1,ξ ] = #X1,ξ − #�1,ξ − #�3,ξ

and [X2,ξ ] = #X2,ξ − #�2,ξ − #�4,ξ , where X1,ξ , X2,ξ corre-
spond to the irreps of 2/m with C2 eigenvalues +i, −i and
inversion eigenvalues +1,−1 corresponding to ξ = g, u. We
denote [Kξ ] = ∑

j[Kj,ξ ].
The filling anomaly is determined by Eq. (13) taken mod 4

with d = 1:

η3 = aa − na mod 4 (36)

= aa − N + [Xu] + 3
2 [Mu] − 2([M1u] + [M2u]) mod 4,

(37)

where Eq. (37) results from plugging Eq. (33) into (36).

4. p41′

The group p41′ does not have a symmetry indicator for-
mula, as we now explain. The filling anomaly is given by
Eq. (13) taken mod 8 with d = 2 [from Eq. (8)]:

η4 = aa − 2na mod 8. (38)

However, na is given by Eq. (24) (as explained in Appendix
A 5, the symmetry indicator formula for na is the same in
p41′ as in p4/m′) and is only defined mod 2. It follows from
plugging Eq. (24) into (38) that the symmetry indicator for-
mula for η4 is only defined mod 4, even though η4 should be
determined mod 8. Thus, we say that the symmetry indicator
formula does not exist because the symmetry indicators do
not provide enough information to completely determine the
filling anomaly in this group. The mod 8 filling anomaly η4

can only be partially determined mod 4:

η4 mod 4 = aa − N + 2
[
M 1

2

]
mod 4. (39)

F. Summary of 2D results

Equations (23), (26), (32), and (37) are the symmetry indi-
cator formulas that express the filling anomaly in OALs in
terms of the symmetry invariants. Together, these formulas
encompass all square lattices with time reversal, inversion
symmetry, and/or their product, and any number of atoms in
the unit cell.

All the formulas derived in this section are additive, and
can be applied to an insulating band structure with any number
of filled valence bands, as long as it is charge neutral, polar-
ization free, and all the strong symmetry indicators are trivial.

Because of the additivity, the formulas also apply to fragile
topological phases, as discussed in Ref. [5].

We now discuss some connections to previous work. As we
have mentioned earlier, the formulas for the filling anomaly in
Refs. [25,26] do not accommodate multiple atoms in the unit
cell. In Ref. [45], the filling anomaly η was computed in terms
of nw in the general case of having multiple atoms in the unit
cell, but η was not expressed in terms of the symmetry indica-
tors. Finally, the real-space invariants computed in Ref. [66]
are related to the nw computed here and are computed using
the EBR matrix, but there is not a one-to-one correspondence
between them. Reference [67] also discusses real-space topo-
logical invariants that go beyond symmetry indicators.

In Appendix B, we derive the symmetry indicator formula
for the filling anomaly for a finite-sized square lattice with a
boundary normal to the (1,1) direction. It turns out that the
formulas are the same as we have derived in this section,
where the boundary is normal to the (1,0) direction. The re-
sults in this section can be generalized to a finite-sized square
lattice with a boundary normal to any direction by defining
a square supercell with a side parallel to the boundary. Since
the supercell necessarily contains multiple atoms, the results
in Sec. II D 2 apply; in order to get the correct irreps at
high-symmetry points, the band structure must be computed
relative to the supercell. Nonsquare terminations can also obey
C4 symmetry (for example, an octagon); while the general
logic described in this section applies, the counting in Eq. (2)
will be different.

Interestingly, we have found numerically that the corner
states survive even if the global C4 symmetry is broken. Al-
though rigorously the corner states are not protected if the
lattice symmetry is broken globally, physically this makes
sense because the localized states on one corner should not
depend on how the lattice is terminated at other corners. A
different method to compute the presence of gapless boundary
states in related systems was discussed in Ref. [68].

III. 3D MODEL ON THE BODY-CENTERED
TETRAGONAL LATTICE

We now apply the results derived in the previous section to
classify the topology of a 3D tight-binding Hamiltonian. We
are interested in the HOTI and higher-order Fermi arc (HOFA)
phases. The topology of these phases can be understood by
studying 2D slices of the Brillouin zone with fixed kz. For
example, the HOTI phase can be viewed as Wannier center
pumping between the two time-reversal invariant planes (kz =
0 and π ) [3], while the HOFA phase requires each 2D fixed-kz

slice on the Fermi arc to have a nontrivial filling anomaly [55].
The difference between the previous works and this paper
is that we consider a C4 symmetric body-centered tetragonal
(BCT) model, whose 2D slices in momentum space necessar-
ily contain atoms at different Wyckoff positions, as we will
show in the next section. Therefore, the results obtained in
Secs. II D 2 and II E are necessary to correctly identify the
filling anomaly of 2D slices in momentum space.

A. Tight-binding model

We build an explicit BCT tight-binding model in space
group 87 (I4/m) with a spin- 3

2 degree of freedom on each site.
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FIG. 3. (a) Conventional unit cell of a body-centered tetragonal lattice; there are two sublayers at z = 0, 1
2 (solid and hollow dots). The

eigenstates in the plane (kx, ky, kz = kz0 ) generically have weight on both sublattices. Therefore, the 2D Hamiltonian H (kx, ky, kz0 ) describes
atoms on a square lattice with two sites in the unit cell (b). (c) Spectrum for a rod (finite in the x and y directions, infinite in z) in the
HOTI phase; gapless hinge states cross at kz = π , forming an eightfold degeneracy. (d) Spectrum for a rod in the DSM(i) phase, showing
fourfold-degenerate HOFA states between the surface Dirac point (projected at kz = 0) and bulk Dirac point. The HOFA regions have filling
anomaly η = 2 mod 4, while the crossing at kz = π has filling anomaly η = 4 mod 8. (e) Phase diagram of our model, controlled by one
parameter, m/t .

The space group I4/m is generated by body-centered lattice
translations, a C4 rotation about the z axis, inversion, and
time-reversal symmetry. The matrix forms of these generators
are given below in terms of the spin- 3

2 generators Jx,y,z (whose
matrix forms are defined in Appendix C) and decomposed into
Pauli matrices σ0,x,y,z and τ0,x,y,z:

C4 = e−iπJz/2 = τzσze
−iπσz/4, (40)

I = τ0σ0, (41)

T = e−iπJy K = −iτxσyK, (42)

where K is complex conjugation. It will be convenient to
introduce τ± = 1

2 (τx ± iτy).
We define a Cartesian coordinate system by the unit vec-

tors ex = (1 0 0)a, ey = (0 1 0)a, ez = (0 0 1)c, where a and
c are lattice constants. We align the base of the conventional
tetragonal unit cell diagonally with respect to the x and y axes
[see Fig. 3(a)]. In this basis, the primitive translation vectors of
the BCT lattice are given by e1 = 1

2 (ey + ez ), e2 = 1
2 (ex + ez ),

e3 = 1
2 (ex + ey). The conventional unit cell has two atoms,

indicated by solid and hollow circles in Fig. 3(a), which form
two sublattices. The primitive unit cell has one atom.

We take the lattice constants c > a. Therefore, each atom
has four nearest neighbors on the same sublattice and eight
next-nearest neighbors on the opposite sublattice. Our model
only includes hopping between each site and these 12 nearest
and next-nearest neighbors, illustrated in Fig. 3(a). One of
each of these hopping terms is given below [and drawn in
Fig. 3(a)] and the others are related by symmetry:

V0→e1 = V1 = 1
4 [τz(tσz − γ σy) + βτ+σ0 + β∗τ−σ0],

V0→e3 = V2 = − 1
4 (2tτzσz + γ τyσ0). (43)

The symmetry-related hopping terms in other directions are
written explicitly in Appendix D. There is also an onsite mass
term:

Vonsite = mτzσz. (44)

The parameters m, t , and γ are real, and β is complex; β∗
is the complex conjugate of β. The Hamiltonian is written in
momentum space in both the primitive and conventional bases
in Appendix D.

B. Topological phases

We now classify the topology of this model by consider-
ing the Hamiltonian in 2D slices of the 3D Brillouin zone.
Specifically, for fixed kz0, H (kx, ky, kz0) can be regarded as
the Hamiltonian of a 2D system. Since eigenstates generi-
cally have weight on both sublattices, this 2D Hamiltonian
describes atoms on a square lattice with two sites in the unit
cell, as shown in Fig. 3(b). If the 2D Hamiltonian has no
gapless edge states or polarization, then we can apply our
results from Secs. II D 2 and II E to determine the corner
charge of this 2D model when the 3D system is truncated in
the x and y directions but infinite in the z direction.

We find that our model has several topological phases
depending on the ratio m/t . The parameters β and γ do not
change the topological phase. We list all the different phases
in Fig. 3(e) with respect to m/t : there is one HOTI phase and
two Dirac semimetal (DSM) phases, which we now describe.

1. Z8 HOTI

When 0 < m/t < 2, a Z8 HOTI with the nontrivial sym-
metry indicator � = 4 is realized. This phase was introduced
in Refs. [3,9]. While all the kz slices are either atomic limits
or fragile phases in 2D, the 3D phase is stable topological
because the 2D Wannier centers move as a function of kz,
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TABLE V. Symmetry indicators of occupied bands na,b,c and η

in the kz = 0 and π planes of our BCT model in the HOTI phase.
The filling anomalies η are computed by plugging the values in the
table into Eq. (23), while na,b,c are computed from Eqs. (18), (19),
and (20). The irreps are derived in Appendix D 3, Table VIII. Notice
that [Xu] need not be even because although the (1,1) boundary
shares the same symmetry indicator formula as the (1,0) boundary,
the constraints from zero bulk charge polarization and zero bulk net
charge are different, as derived in Appendix B.

kz aa N [Xu] [Mu] [M 1
2 u] na nb nc η

0 2 4 1 0 0 1 1 0 0
π 2 4 −1 0 0 3 −1 0 4

which leads to helical modes on 1D hinges where the x- and
y-normal surfaces meet.

Here, we derive this 3D phase on the BCT lattice by com-
puting the filling anomaly in the kz = 0 and π planes. Since
these two planes are invariant under time reversal, they are
described by the layer group p4/m1′, for which we derived the
symmetry indicator formula for the filling anomaly in Eq. (23)
of Sec. II D.

The symmetry indicators are shown in Table V, from which
the filling anomaly can be computed with Eq. (23). We find
that η = 4 mod 8 in the kz = π plane and η = 0 in the kz = 0
plane. The nontrivial value in the kz = π plane is responsible
for the eightfold-degenerate mid-gap states we observe in
Fig. 3(c) in the kz = π plane for a finite-size rod geometry,
which is finite in the x and y directions and infinite in the z
direction. Since η = 0 in the kz = 0 plane, to continuously
connect the mid-gap states with the rest of the band structure
requires kz-dependent modes that traverse the bulk band gap;
these are exactly the helical hinge modes required by the 3D
HOTI phase. Interestingly, Table V shows that nb = −1; thus,
this slice is a fragile topological 2D insulator. [This by itself
is not enough to show that the slice is fragile because na,b are
only defined mod 4 (and nc mod 2); some algebra shows that
there is no solution where na,b,c > 0.]

We now reiterate the importance of our analysis in cor-
rectly describing this phase: our formula (23) correctly
captures the filling anomaly in the kz = π plane (and lack of
filling anomaly in the kz = 0 plane), which agrees with both
our numerical results and the helical edge modes predicted
by the 3D formula in Ref. [3]. Earlier formulas for the filling
anomaly give an incorrect result. Specifically, Eq. (22) of
Ref. [26] yields η = 6 in the kz = 0 plane and η = 2 in the
kz = π plane. This discrepancy occurs because Ref. [26] does
not accommodate atoms at multiple Wyckoff positions. While
η = 2 and 6 are consistent with a helical mode, they do not
agree with the state counting in our numerics, where there are
always the same number of occupied and empty bands [and
hence only consistent with η = 0 and 4, as we correctly obtain
from Eq. (23)].

2. HOFA in Dirac semimetals

When −4 < m/t < 0, the model is in one of two DSM
phases and has two Dirac points along � − Z in the bulk. The
band structure for the DSM(i) phase on a rod finite in the x

TABLE VI. In the two DSM phases, the bulk Dirac point is pro-
jected to kz = k0. For the two regions 0 < kz < k0 and k0 < kz < π ,
the filling anomalies η are computed by plugging the values in the
table into Eq. (26), while na,b are computed from Eqs. (24) and
(25) [nc is always zero mod 1, as discussed below Eq. (25)]. The
symmetry indicators are derived from the irreps listed in Table IX of
Appendix D 3.

kz aa N [M 1
2
] na nb nc η

0 < kz < k0 2 4 0 2 0 0 2
k0 < kz < π 2 4 1 1 1 0 0

and y directions and infinite in z is shown in Fig. 3(d). For
both of the phases, there are HOFA hinge states connecting
the projection of the two bulk Dirac points. The HOFA hinge
states pass through kz = 0, where there are also projected gap-
less mirror Chern surface states. The difference between the
two phases is that the phase DSM(i) has filling anomaly η = 4
mod 8 at kz = π while the plane kz = π in phase DSM(ii) is
trivial.

The HOFA hinge states occur in the planes between the
two Dirac points. Since these planes are not time-reversal
invariant, but are invariant under the product of time reversal
and inversion, they are described by the layer group p4/m′,
for which we derived the symmetry indicator formula for
the filling anomaly in Eq. (26) of Sec. II E 1. Applying this
formula, we find η = 2 in the planes between the bulk Dirac
points, as derived in Table VI.

The HOFA are not correctly described by formulas in pre-
vious work derived by assuming atoms at only one maximal
Wyckoff position: for example, Eq. (27) yields η = 0 in these
planes, which would indicate a lack of hinge modes.

In the DSM(i) phase, aside from the HOFA, there are two
groups of corner-localized hinge states that cross at kz = π .
These states can be pushed into the valence or conduction
bands by adding some symmetry-protecting potentials, how-
ever, the filling anomaly at kz = π remains nontrivial. These
states are not present in the DSM(ii) phase which has η = 0
in the kz = π plane.

Further, we note that the gapless surface states at kz = 0 are
unavoidable, even if the protecting mirror symmetry is broken,
because the HOFA states are fourfold degenerate while the
only possible degeneracy of mid-gap states at a time-reversal
symmetric plane is eight (corresponding to a Kramers pair
of time-reversed partners at each corner.) This discrepancy
between the HOFA degeneracy and the required degeneracy
at kz = 0 can only be resolved by having gapless surface or
bulk states projected to the point.

IV. DISCUSSION

In this paper, we introduced a general method to derive
the symmetry indicator formula for the filling anomaly that
applies to crystals with any number of atoms in the unit cell.
We introduced an algorithm using the Smith normal form that
makes the derivation systematic. We applied this method to
derive the filling anomaly on the 2D square lattice with time
reversal, inversion, and/or their product. We further showed
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TABLE VII. EBRs in p4/m1′. The Wyckoff positions w are
listed in the first column. Each EBR is induced from an irrep ρ of the
site-symmetry group of a Wyckoff position: as shown in Table I, the
site-symmetry group of the 1a and 1b positions is 4/m1′, while the
site-symmetry group of the 2c position is 2/m1′. Irreps of 4/m1′ can
be labeled by a pair of C4 eigenvalues, exp(±ipπ/2), where p = 1

2
or 3

2 , and their inversion eigenvalue ξ ; the pairs of (p, ξ ) correspond
to the subscripts 1

2 g, 1
2 u, 3

2 g, 3
2 u in Table II. Irreps of 2/m1′ can be

distinguished by only their inversion eigenvalue ξ corresponding to
the subscript g or u in Table II. The labels p (where applicable) and ξ

are indicated in the second column. The remaining columns indicate
the irreps of the EBR in momentum space: � and M are invariant
under 4/m1′, while X is invariant under 2/m1′.

w ρ � X M

1a (p, ξ ) (p, ξ ) (ξ ) (p, ξ )
1b (p, ξ ) (p, ξ ) (−ξ ) (−p, ξ )
2c ξ (p, ξ ), (−p, ξ ) (ξ ), (−ξ ) (p,−ξ ), (−p,−ξ )

where our results go beyond earlier work that did not apply
to crystals with atoms occupying multiple maximal Wyckoff
positions.

We verified our results by correctly predicting the helical
hinge modes and HOFAs in a 3D BCT tight-binding model,
by analyzing 2D slices of the Brillouin zone. This model
served as a concrete example where previous results break
down, showing the importance of our extension to crystals
with atoms in multiple maximal Wyckoff positions.

Our method can be easily generalized to other Cn (n =
2, 3, 4, 6) symmetric 2D lattices and higher-dimensional lat-
tices. It will also be interesting to apply our results to other
topological semimetals, such as those in [69] which occur
on nonsymmorphic lattices and therefore necessarily have
multiple atoms in the unit cell.

Note added. Recently, Ref. [70] appeared on the arXiv,
which also computes the filling anomaly in terms of symmetry
indicators for general lattices with Cn symmetry. Our results
agree where they overlap.
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APPENDIX A: SYMMETRY INDICATOR FORMULAS
FOR THE NUMBER OF OCCUPIED EBRS AT EACH

WYCKOFF POSITION

In this Appendix, we explain how the formulas for na,b,c in
the main text are derived from the Smith normal form.

1. p4/m1′

We first consider the group p4/m1′. The band representa-
tions induced from the three maximal Wyckoff positions 1a,
1b, and 2c (shown in Fig. 2) are listed in Table VII. Each band

representation is expressed as a vector v in the basis:(
E�

1
2 g, E�

1
2 u, E�

3
2 g, E�

3
2 u, EX

g , EX
u , EM

1
2 g, EM

1
2 u, EM

3
2 g, EM

3
2 u

)
, (A1)

where EK
ρ indicates the number of times the irrep ρ occurs

at the high-symmetry point K in the momentum-space band
representation. Note � and M are invariant under 4/m1′, while
X is invariant under 2/m1′; their irreps are defined in Table II.

Each group of topologically trivial bands, isolated in en-
ergy from all other bands, can be written as an integer linear
combination of EBRs. The coefficients form a vector n in the
following basis:(

E1a
1
2 g, E1a

1
2 u, E1a

3
2 g, E1a

3
2 u, E1b

1
2 g, E1b

1
2 u, E1b

3
2 g, E1b

3
2 u, E2c

g , E2c
u

)
, (A2)

where Ew
ρ indicates the number of times the EBR induced

from the two-dimensional irrep ρ of the site-symmetry group
of the Wyckoff position w appears in the linear combination.
In this basis, we use Table VII, which lists all EBRs and their
momentum-space irreps, to construct the EBR matrix defined
in Sec. II C:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 0 0 0 1 0
0 1 0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 0 1 0
0 0 0 1 0 0 0 1 0 1
1 0 1 0 0 1 0 1 1 1
0 1 0 1 1 0 1 0 1 1
1 0 0 0 0 0 1 0 0 1
0 1 0 0 0 0 0 1 1 0
0 0 1 0 1 0 0 0 0 1
0 0 0 1 0 1 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A3)

Each column of A indicates the momentum-space irreps of a
particular EBR, where the columns are ordered according to
the list of EBRs in (A2) and the rows are ordered according to
the list of momentum-space irreps in (A1). For example, the
first column corresponds to the band representation induced
by E1a

1
2 g

and the first entry, “1”, indicates that the irrep E�
1
2 g

appears one time in this EBR (as listed in Table VII).
Following Sec. II C, we apply the Smith decomposition to

the EBR matrix A:

A = U −1DV −1, (A4)

where U and V , which are invertible over integers, are found
to be

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 −1 0 1 0 −1 0 0
1 1 1 0 0 0 −1 −1 −1 0
0 0 1 −1 0 1 0 −1 −1 0
1 0 −1 2 0 −2 −1 2 1 0

−1 −1 −1 −1 1 1 0 0 0 0
−1 −1 −1 −1 0 0 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A5)
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V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 1 −1 −1
0 1 0 0 0 0 −1 −2 −1 −1
0 0 1 0 0 0 −1 −1 −1 −1
0 0 0 1 0 0 0 0 −1 −1
0 0 0 0 1 0 0 1 1 0
0 0 0 0 0 1 −1 −2 1 0
0 0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 2 0 1
0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A6)

and the diagonal matrix D is

D = diag(1, 1, 1, 1, 1, 1, 1, 4, 0, 0). (A7)

The eighth entry, 4, which is the only nonzero, nonunity entry
of D, indicates the Z4 symmetry indicator classification of
this group [33]. The zero entries impose the constraint that
an insulator must have the same number of occupied bands at
all high-symmetry points.

To see this last point, consider a vector v in the basis of
Eq. (A1), which satisfies v = Añ for some integer vector ñ that
represents a sum of EBRs in the basis of Eq. (A2). According
to the Smith decomposition in Eq. (A4), Uv = DV −1ñ. Since
the ninth and tenth entries on the diagonal of D are zero, it
follows that [Uv]9,10 = 0. Plugging in the entries of U from
Eq. (A5) and using the basis of v in Eq. (A1) yields two
equations:

0 = −E�
1
2 g − E�

1
2 u − E�

3
2 g − E�

3
2 u + EX

g + EX
u ,

0 = −E�
1
2 g − E�

1
2 u − E�

3
2 g − E�

3
2 u + EM

1
2 g + EM

1
2 u + EM

3
2 g + EM

3
2 u.

(A8)

The first line specifies that there must be the same number of
occupied bands at � as at X and the second line specifies that
there must be the same number of occupied bands at � and
at M.

The pseudoinverse of D is

Dp = diag(1, 1, 1, 1, 1, 1, 1, 1/4, 0, 0). (A9)

We can now plug U , V , and Dp into Eq. (16) to find na,b,c in
Eqs. (18)–(20).

Physically, the ambiguity in the modulus of na,b,c comes
from the fact that the Wannier centers are not gauge invariant;
this point is elaborated on in Ref. [66]. For example, one can
check (by using v = Añ) that the irreps at high-symmetry
points for the band representations represented by ñ =
(1111000000), ñ = (0000111100), and ñ = (0000000011)
are identical. This corresponds to the fact that the Wannier
centers for these three band representations can all be con-
tinuously moved to the general Wyckoff position 4d without
breaking symmetries. Therefore, they are physically indistin-
guishable by symmetry indicators.

2. p4/m′

The group p4/m′ contains C4 and T I symmetries, but not
T or I separately. A basis for its irreps and EBRs can be
read from the previous subsection by forgetting about inver-
sion symmetry. Specifically, the basis for the irrep labels in

momentum space is(
E�

1
2
, E�

3
2
, EX

1
2
, EM

1
2
, EM

3
2

)
, (A10)

which is the same as Eq. (A1) without the g, u labels for the
inversion eigenvalue, and the basis for the multiplicity of each
EBR is (

E1a
1
2

, E1a
3
2

, E1b
1
2

, E1b
3
2

, E2c
1
2

)
, (A11)

which is the same as Eq. (A2) without the g, u labels. The
EBR matrix is:

A =

⎛
⎜⎜⎜⎝

1 0 1 0 1
0 1 0 1 1
1 1 1 1 2
1 0 0 1 1
0 1 1 0 1

⎞
⎟⎟⎟⎠. (A12)

The Smith decomposition [Eq. (A4)] yields the matrices

D = diag(1, 1, 1, 0, 0), (A13)

U =

⎛
⎜⎜⎜⎝

0 0 0 1 0
0 1 0 0 0
1 0 0 −1 0

−1 −1 1 0 0
−1 −1 0 1 1

⎞
⎟⎟⎟⎠, (A14)

V =

⎛
⎜⎜⎜⎝

1 0 0 −1 −1
0 1 0 −1 −1
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎠. (A15)

We then apply Eq. (16) to derive Eqs. (24) and (25) for na

and nb. Applying Eq. (16) to nc shows that it is only deter-
mined mod 1, which does not provide any new information.

3. p4

In the case of p4, the site-symmetry groups of the maximal
Wyckoff positions are defined in Table I and their irreps are
defined in Table III. The basis of irreps in momentum space is(

1E�
1
2
, 1E�

3
2
, 2E�

1
2
, 2E�

3
2
, 1EX

1
2
, 2EX

1
2
, 1EM

1
2
, 1EM

3
2
, 2EM

1
2
, 2EM

3
2

)
.

(A16)
The basis of EBRs is(

1E1a
1
2

, 1E1a
3
2

, 2E1a
1
2

, 2E1a
3
2

, 1E1b
1
2

, 1E1b
3
2

, 2E1b
1
2

, 2E1b
3
2

, 1E2c
1
2

, 2E2c
1
2

)
.

(A17)
Then, the EBR matrix is

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 0 0 0 1 0
0 1 0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 0 1 0
0 0 0 1 0 0 0 1 0 1
1 0 1 0 0 1 0 1 1 1
0 1 0 1 1 0 1 0 1 1
1 0 0 0 0 0 1 0 0 1
0 1 0 0 0 0 0 1 1 0
0 0 1 0 1 0 0 0 0 1
0 0 0 1 0 1 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A18)

Notice this EBR matrix in Eq. (A18) is identical to Eq. (A3),
although their bases have different meanings. We again use
Eq. (16) to find the symmetry indicator formulas for na, nb,
and nc in Eqs. (28), (29), and (30).
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4. p4/m

In the case of layer group p4/m, the site-symmetry groups
of the maximal Wyckoff positions are defined in Table I and
their irreps are defined in Table IV. The basis of momentum-
space irreps is(

1E�
1
2 g,

1E�
3
2 g,

2E�
1
2 g,

2E�
3
2 g,

1E�
1
2 u,

1E�
3
2 u,

2E�
1
2 u,

2 E�
3
2 u,

1EX
1
2 g,

2EX
1
2 g,

1EX
1
2 u,

2EX
1
2 u,

1EM
1
2 g,

1EM
3
2 g,

2EM
1
2 g,

2EM
3
2 g

1EM
1
2 u,

1EM
3
2 u,

2EM
1
2 u,

2EM
3
2 u

)
. (A19)

The basis of EBRs is(
1E1a

1
2 g,

1 E1a
3
2 g,

2 E1a
1
2 g,

2 E1a
3
2 g,

1 E1a
1
2 u,

1 E1a
3
2 u,

2 E1a
1
2 u,

2 E1a
3
2 u,

1E1b
1
2 g,

1 E1b
3
2 g,

2 E1b
1
2 g,

2 E1b
3
2 g,

1 E1b
1
2 u,

1 E1b
3
2 u,

2 E1b
1
2 u,

2 E1b
3
2 u,

1E2c
1
2 g,

2 E2c
1
2 g,

1 E2c
1
2 u,

2 E2c
1
2 u

)
. (A20)

Then, the EBR matrix is

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1
1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1
0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0
0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 1 1 0
0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 1 0 0 1
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A21)

After Smith decomposition [Eq. (A4)], the diagonal matrix is

D = diag(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 0, 0, 0, 0) (A22)

and

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 −1 0 −1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 −1 0
0 0 1 0 0 0 0 0 0 0 −1 0 0 0 −1 0 0 −1 0 −1
0 0 0 1 0 0 0 0 0 0 0 −1 0 0 0 −1 −1 0 −1 0
0 0 0 0 1 0 0 0 0 0 0 −1 0 0 0 −2 −1 0 −1 0
0 0 0 0 0 1 0 0 0 0 −1 0 0 0 −2 0 0 −1 0 −1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 −1 0 −1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 −1 0 −1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 −2 1 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 0 1 −2 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A23)

The matrix U is too unwieldy to present here.
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FIG. 4. Square lattice whose boundary is rotated 45◦ relative to
the primitive unit cell, which is indicated by the dashed square.
(a) Atoms occupy one Wyckoff position. (b) Atoms occupy multiple
Wyckoff positions.

We again use Eq. (16) to find the symmetry indicator for-
mulas for na, nb, and nc in Eqs. (33), (34), and (35).

5. p41′

In p41′, the site-symmetry groups of the maximal Wyckoff
positions are listed in Table I. Table II shows that their irreps
are identical to those of p4/m′. Thus, the EBR matrix and its
Smith normal form is the same as for p4/m′ in Appendix A 2
and na and nb are given by Eqs. (24) and (25), respectively,
while nc is determined only modulo one.

APPENDIX B: FILLING ANOMALY WHEN
THE BOUNDARY IS ROTATED BY 45◦ RELATIVE

TO THE UNIT CELL

We derive an expression for the filling anomaly for a fi-
nite square lattice whose boundaries are rotated 45◦ relative
to the primitive unit cell, as shown in Fig. 4. We choose
the convention where the 1a position is at the center of the
finite-size lattice. We consider the general case where there
may be atoms at any number of Wyckoff positions [shown in
Fig. 4(b)]; the case where there is only one Wyckoff position
occupied by atoms [shown in Fig. 4(a)] is a special case.

The Wyckoff positions are defined with respect to the
primitive unit cell. To compute the filling anomaly, we need
only consider the maximal Wyckoff positions, as we argued in
Sec. II B. The donated electrons from each maximal Wyckoff
position are denoted by aa, ab, and ac. The number of filled
bands is N = aa + ab + 2ac.

The number of atoms Nw(L) at each Wyckoff position w in
this terminated square lattice with L atoms along each side is
given by

Na(L) = (L − 1)2 + L2,

Nb(L) = 2L(L − 1),

Nc(L) = 4(L − 1)2. (B1)

[Notice these are different than in Eq. (2), where Nw(L) is
computed with the boundary parallel to the unit cell.] From
Eqs. (6) and (B1), we find the filling anomaly:

η = 2(N − dna − dnb − 2dnc)L2

− 2(aa + ab + 4ac − dna − dnb − 4dnc)L

+ (aa − dna + 4ac − 4dnc) mod 4(or 8). (B2)

The bulk charge is determined by the number scaling with L2

in this expression and must be zero:

2(aa − dna) + 2(ab − dnb) + 4(ac − dnc) = 0, (B3)

where we have used the expression for N in Eq. (10). The bulk
polarization parallel to the boundaries is determined by the
coefficient of L. Since we are interested in polarization-free
systems, the term proportional to L must vanish:

2(aa − dna)+2(ab − dnb)+8(ac − dnc)=0 mod 4(or 8).
(B4)

The last term in Eq. (B4) vanishes mod 4 or mod 8. In addi-
tion, the last term in Eq. (B3) clearly vanishes mod 4, but also
vanishes when taken mod 8, which applies in the presence
of time-reversal symmetry, because time reversal requires that
ac be even and d = 2 [d is defined in Eq. (8).] Thus, the only
constraint from Eqs. (B3) and (B4) is

2(aa − dna) + 2(ab − dnb) = 0 mod 4(or 8). (B5)

Notice that this constraint differs from the constraint in
Eq. (12), which applies when the boundary is parallel to the
unit cell. As a result, [Xu] need not be even, as we found in
Table V.

The filling anomaly η is determined by the L-independent
term

η = aa − dna mod 4(or 8), (B6)

where we have simplified the L-independent term from
Eq. (B2) by taking it mod 4 (or mod 8). Notice Eq. (B6) is
identical to Eq. (13), which is derived for the case where the
boundary is parallel to the unit cell. Therefore, the symme-
try indicators will be the same in the two cases. However,
notice that the constraint equations for zero bulk charge and
polarization are different in the two cases. Thus, the symmetry
indicators may not always be valid for both terminations.

APPENDIX C: SPIN- 3
2 MATRICES

Here we explicitly define the spin- 3
2 matrices that are used

in Eqs. (40) and (42):

Jx =

⎛
⎜⎜⎜⎝

0
√

3
2 0 0√

3
2 0 1 0

0 1 0
√

3
2

0 0
√

3
2 0

⎞
⎟⎟⎟⎠, (C1)

Jy =

⎛
⎜⎜⎜⎝

0 −i
√

3
2 0 0

i
√

3
2 0 −i 0

0 i 0 −i
√

3
2

0 0 i
√

3
2 0

⎞
⎟⎟⎟⎠, (C2)

Jz =

⎛
⎜⎜⎝

3
2 0 0 0
0 1

2 0 0
0 0 − 1

2 0
0 0 0 − 3

2

⎞
⎟⎟⎠. (C3)

APPENDIX D: DETAILS OF BCT TIGHT-BINDING MODEL

In this Appendix, we provide additional details about the
BCT model studied in Sec. III. The BCT model has the
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symmetry of space group 87 I4/m, as well as time-reversal
symmetry T .

The unit cell and hoppings are illustrated in Figs. 3(a) and
3(b). The model includes hopping to the four nearest and eight
next-nearest (if c > a) atoms. The relation between the two
hopping terms shown in Eq. (43) and the other ten hopping
terms are

V0→e1−ez = (C2I )−1V0→e1C2I,

V0→e2 = C−1
4 V0→e1C4,

V0→e2−ez = C4IV0→e1 (C4I )−1,

V0→e3−ey = C−1
4 V0→e3C4, (D1)

and

V0→r = V †
0→−r, (D2)

where the matrix forms of the symmetry generators are given
in Eqs. (40), (41), and (42), and C2 ≡ C2

4 .
The primitive lattice has one site in the unit cell. Since each

site has a spin- 3
2 degree of freedom, the Hamiltonian, defined

by Eqs. (43), (D1), and (D2), is a 4 × 4 matrix, given by

H p =t

(
cos

kx

2
cos

kz

2
+ cos

ky

2
cos

kz

2
−2 cos

kx

2
cos

ky

2

)
τzσz

+ γ sin
kz

2
τz

(
sin

kx

2
σx + sin

ky

2
σy

)

+ γ sin
kx

2
sin

ky

2
τyσ0

+ β

(
cos

ky

2
− cos

kx

2

)
cos

kz

2
τ+σ0

+ β∗
(

cos
ky

2
− cos

kx

2

)
cos

kz

2
τ−σ0 + mτzσz, (D3)

where kx, ky, kz correspond to the momenta reciprocal to ex,
ey, ez.

1. Hamiltonian and symmetry operators in conventional
unit cell

The conventional unit cell contains two sublattices, as in-
dicated in Fig. 3(a). Since each site hosts a spin- 3

2 degree
of freedom, the Hamiltonian in the conventional unit cell in
reciprocal space is an 8 × 8 matrix, which takes the form

Hc =
(

m − 2t cos
kx

2
cos

ky

2

)
ρ0τzσz

+ γ sin
kx

2
sin

ky

2
ρ0τyσ0

+ t

(
cos

kx

2
+ cos

ky

2

)
cos

kz

2
ρxτzσz

+ γ sin
kz

2
ρxτz

(
sin

kx

2
σx + sin

ky

2
σy

)

+ β

(
cos

ky

2
− cos

kx

2

)
cos

kz

2
ρxτ+σ0

+ β∗
(

cos
ky

2
− cos

kx

2

)
cos

kz

2
ρxτ−σ0, (D4)

TABLE VIII. Symmetry eigenvalues at high-symmetry points in
the HOTI phase. �, X , M reside in the kz = 0 plane, while Z , T ,
R reside in the kz = π plane. The filling anomaly for each plane is
calculated in Table V.

HSP E 1
2 g E 1

2 u E 3
2 g E 3

2 u

� 2 0 0 0
X 1 1 0 0
M 1 0 1 0
Z 1 1 0 0
T 2 0 0 0
R 0 1 1 0

where again kx, ky, kz correspond to the basis reciprocal to
ex, ey, ez, and we have introduced an additional set of Pauli
matrices ρi to indicate the sublattice degree of freedom. As in
the main text and in the Hamiltonian in Eq. (D3), σi and τi act
on the hybrid spin and orbital degrees of freedom.

In this basis, the symmetry operators are implemented by
the matrices

Cc
4 =

(
C4

C4

)
, Ic =

(
I

I

)
, (D5)

where the superscript c indicates the conventional unit-cell
basis. C4 and I are defined for the primitive lattice in Eqs. (40)
and (41).

2. Parameters for numerical calculations

There is an unexpected antiunitary symmetry in the kz = π

plane. This symmetry is artificial because it can be broken by
adding small next-next-nearest hopping terms that preserve all
the symmetries. The extra terms do not change the topology
and do not break any symmetry, but will help to eliminate
unphysical gapless surface states which are protected by the
artificial symmetry. These small next-nearest hopping terms
are

V0→ex = b(τzσz −
√

3τxσ0),

V0→ey = b(τzσz +
√

3τxσ0),

V0→ez = −2bτzσz. (D6)

We consider a system that is finite in the x and y directions,
i.e., its boundaries are normal to ex and ey, as shown in
Fig. 3(b). We terminate the boundary to respect C4 symmetry.

In our numerical calculations, the parameters are set to be
t = 1, β = 1 + i, γ = 1, b = 0.2. The parameters are taken
in such a way that when m = 0, there is a quadratic band
touching at �. The rod states are calculated for a square of
size 15ex by 15ey. In Fig. 3(c), m = −0.5, realizing the HOTI
phase. In Fig. 3(d), m = 1, realizing the DSM(i) phase.

The phase diagram in Fig. 3(e) is derived with b = 0.
This small value of b = 0.2 only slightly changes the phase
transition points of m/t .
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TABLE IX. Symmetry eigenvalues at high-symmetry points in
the DSM(i) phase. �, X , M reside in the kz = 0 plane, while Z , T ,
R reside in the kz = π plane. The kz = 0 plane has mirror Chern
number Cm = 2, while the kz = π plane is in a fragile topological
phase and has filling anomaly η = 4. There is a bulk Dirac point
in the plane kz = k0. At kz planes between 0 and k0, the symmetry
eigenvalues correspond to the last two columns E 1

2
and E 3

2
for �,

X , M as required by the conservation of angular momentum (or
equivalently the compatibility relation). At kz planes between k0 and
π , the symmetry eigenvalues correspond to the last two columns E 1

2
and E 3

2
for Z , T , R.

HSP E 1
2 g E 1

2 u E 3
2 g E 3

2 u E 1
2

E 3
2

� 1 0 1 0 1 1
X 1 1 0 0 2 0
M 1 0 1 0 1 1
Z 2 0 0 0 2 0
T 1 1 0 0 2 0
R 0 1 1 0 1 1

3. Symmetry eigenvalues in the HOTI phase and DSM(i) phase

We list the symmetry eigenvalues computed from our
model in the HOTI phase in Table VIII. The results are used
to calculate the filling anomaly in Table V.

The symmetry eigenvalues computed in the DSM(i) phase
are listed in Table IX. The results are used to calculate the
filling anomaly in Table VI. In addition, the kz = 0 plane has
mirror Chern number Cm = 2. The mirror Chern number can
be evaluated by calculating the Chern numbers of the +i and
−i sectors. The symmetry indicator formula for the Chern
number is [71]

iC =
∏

i∈occ.

(−1)F ξi(�)ξi(M )ζi(Y ), (D7)

where F is twice the total spin and can be replaced with the
number of filled bands N in our spinful case; ξi is the C4

eigenvalue of the ith band; and ζi is the C2 eigenvalue of the
ith band. Time-reversal symmetry ensures that the number of
filled band in each mirror sector is N/2. Time-reversal symme-
try also constrains the mirror Chern number: Cm = 1

2 (C+i +
C−i ) = C+i. We can determine C+i by counting the numbers
of irreps that contain mirror eigenvalue +i and plug them into
Eq. (D7). For example, EX

1
2 u

has two components: ζ (X ) = i

and ζ (X ) = −i. Since this irrep has inversion eigenvalue I =
−1, only the C2 eigenvalue ζ (X ) = −i corresponds to the

sector with mirror eigenvalue +i. Thus, (−i)
#EX

1
2 u = (i)

−#EX
1
2 u

in Eq. (D7). The other irreps come into the equation similarly.
From these facts, we obtain the symmetry indicator formula
for the mirror Chern number for our layer group p4/m1′ at
this kz = 0 plane (C4, T , and I):

Cm = N +
(

#EX
1
2 g − #EX

1
2 u

)
+ 1

2

∑
i=�,M

(
#Ei

1
2 g − #Ei

1
2 u

)

− 3

2

∑
i=�,M

(
#Ei

3
2 g − #Ei

3
2 u

)
mod 4. (D8)

FIG. 5. A square-lattice termination that breaks global C4 sym-
metry, i.e., if the crystal is rotated about a bulk C4 center (blue or
green dot), the rotated lattice does not coincide with the original
lattice. This lattice should be compared to Fig. 1(b), which shows
a C4 symmetric termination. Solid blue and hollow green dots and
pink squares indicate atoms at the Wyckoff positions 1a, 1b, and 2c,
respectively. Dashed gray lines indicate the primitive unit cell.

Plugging in the symmetry eigenvalues from Table VIII, we
find Cm = 2 at kz = 0, and Cm = 0 at kz = π . For the HOTI
phase, the mirror Chern number Cm = 0 for both kz = 0 and
π planes, as we can verify by plugging the symmetry eigen-
values from Table IX into Eq. (D8).

There are a pair of bulk Dirac points at (0, 0,±k0). The
symmetry eigenvalues at a k plane between 0 and k0 can be
obtained by “forgetting” the inversion eigenvalues of �, X ,
and M. The symmetry eigenvalues at a k plane between k0 and
π can be obtained by “forgetting” the inversion eigenvalues of
Z , T , and R.

4. Numerical calculation for a rod geometry with boundaries
that break global C4 symmetry

The corner states are protected by the global C4 symmetry.
Thus, rigorously, a C4 symmetric termination of the lattice
is required to protect the corner states. However, in practice
we find that the corner states survive on a lattice termination
that is not globally C4 symmetric if it has C4 symmetry in the
bulk (see Fig. 5 for an example of such a lattice termination).
Physically, this is reasonable because if the corners are far
apart, the local spectrum at one corner should not depend on
the termination at another corner.

In Fig. 6, we numerically compute the rod states of our
model with the same parameters as in Appendix D 2 (t = 1,
β = 1 + i, γ = 1, b = 0.2), but with boundaries that do not
cut through unit cells, breaking the global C4 symmetry. The
spectrum is similar to Figs. 3(c) and 3(d) (where global C4

symmetry is preserved) for the same system size. However,
the degeneracy of corner states is not robust in this case: it can
split by a perturbation that breaks C4 symmetry.
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FIG. 6. Spectrum for a rod (finite in the x and y directions, infinite in z) in (a) the HOTI phase and in (d) the DSM(i) phase. Every kz slice in
this rod has an integer number (15 × 15) of unit cells, breaking the global C4 symmetry. The number of electrons at charge neutrality is 1800.
The energy of each state near E = 0 is plotted for the following kz slices in the HOTI and DSM(i) phases: (b) HOTI phase, kz = π/2, η = 0
mod 4, (c) HOTI phase, kz = π , η = 4 mod 8; (e) DSM(i) phase, kz = π/4, η = 2 mod 4; (f) DSM(i) phase, kz = 3π/4, η = 0 mod 4.
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