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Topological classification of nodal-line semimetals in square-net materials
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Fermi surface topology and Berry phase of square-net-layered materials with P4/nmm space group were clas-
sified based on the first-principles analysis of Berry phases in each materials. The variation of electron-hole (e-h)
asymmetry, driven by the third-nearest-neighbor hoppings of pnictogen px,y orbitals in square-net, is essential to
yield various topological Fermi surfaces. The change of chemical potential too yields various topological Fermi
surfaces. By determining e-h asymmetry and chemical potential of the reported square-net-layered materials,
we construct the phase diagram of the Fermi surface topologies. In addition, we adopt interlayer interaction and
investigate three-dimensional Fermi surface. We classify the three-dimensional Fermi surface topologies based
on the phase diagram, and our classification reproduces the quantum oscillation and spectroscopy results for
various square-net compounds.
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I. INTRODUCTION

Dirac materials, hosting pseudorelativistic Dirac fermions
with conical energy dispersion, have been actively studied be-
cause of their outstanding physical properties like extremely
large carrier mobilities, anomalous quantum Hall effects,
giant magnetoresistance [1–7]. Following the discovery of
graphene with honeycomb lattice, various two-dimensional
Dirac materials are investigated, such as silicene with buckled
honeycomb structure [8], MoS2 allotrope with square-octagon
structure [9], and FeSn with Kagome lattice [10]. Among the
Dirac semimetals, the square-net-layered materials have been
investigated since the discovery of highly anisotropic Dirac
fermion in SrMnBi2 [11]. By studying the tight-binding (TB)
model, symmetry-protected Dirac points in the square-net-
layered semimetals with nonsymmorphic space group have
been investigated [12].

The square-net materials are classified into two families
by the stacking type of cations neighboring the square net
(Fig. 1). First, the I4/mmm family, including SrMnBi2 and
BaMnBi2, has coincident stacking order of cation atoms above
and below the square-net layer. Angle-resolved photoemis-
sion spectroscopy (ARPES) and Shubnikov-de Haas (SdH)
oscillations of the I4/mmm materials presented the strongly
anisotropic Dirac fermions, as confirmed by the density func-
tional theory (DFT) and TB analysis [11,13–15].

On the other hand, the P4/nmm family, including CaMnBi2
and ZrSiS, has staggered stacking order of cation atoms.
Although there have been intensive experimental investiga-
tions on those materials recently, the topological properties
of P4/nmm materials are theoretically less understood. The
TB studies of P4/nmm materials predict the nodal-line fea-
tures unless the charge density wave (CDW) distortion of
square-net layer changes the space group to Pnma. In addition,
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topologically nontrivial states in P4/nmm materials were
observed in SdH oscillation, ARPES, and angular magne-
toresistance (AMR). In SdH oscillation, Berry phases were
observed to be trivial in LaSbTe [16], but nontrivial in other
P4/nmm materials such as CaMnBi2 [17], YbMnBi2 [5,18],
YbMnSb2 [19], HfSiS [20], ZrGeSe [21], ZrGeTe [21], Zr-
SiSe [22], ZrSiTe [22], ZrSnTe [23], and ZrSiS [22,24]. The
unusual butterfly-shaped AMRs were observed in ZrSi(S/Se)
[25], in contrast to the typical AMR in ZrSiTe [22]. ARPES
studies revealed the tunable Dirac and Weyl states in CeS-
bTe [26,27], the anisotropic Fermi surfaces of CaMnBi2 [28],
Dirac nodal line in HfSiS [29], ZrGeSe [30], ZrGeTe [31],
ZrSiTe [32], ZrSiS [33–35], and topological bands in ZrSnTe
[36]. In spite of the variety of experimental investigations,
however, general descriptions for the topological properties
of P4/nmm materials are still insufficient.

To verify the origin of various topological properties of
P4/nmm materials, we show that the extended TB model
with distant-neighbor hoppings is needed to capture the main
features of the Fermi surface topology. We also show that
the electron-hole (e-h) asymmetry and chemical potential play
crucial roles in Fermi surface topologies of P4/nmm materi-
als in the presence of spin-orbit coupling (SOC). Based on
the low-energy band structures and TB model, we classify
the most reported P4/nmm materials into the phase diagram
of Fermi surface topologies. Lifshitz transition observed in
spectroscopy and all the reported SdH oscillation results are
consistent with our phase diagram. We also predict the pos-
sible modulation of Fermi surface topologies for P4/nmm
materials near the phase boundary.

II. TIGHT BINDING ANALYSIS

Based on the DFT calculations on P4/nmm materials
(Fig. 8 in Appendix), we confirmed that the low-energy band
structures of those materials are nearly two-dimensional and
showing nodal-line feature. Additionally, those low-energy
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FIG. 1. Families in square-net semimetals according to crystal
structures and space group. Pnma and P4/nmm materials have stag-
gered stacking of cation atoms (designated as gray spheres) above
and below square-net atoms (designated as red spheres), whereas
I4/nmm materials have coincident stacking. Pnma materials with
staggered stacking have CDW distortion of square-net layer.

band structures are dominated by px,y orbitals of square-net-
layer atoms. Therefore, we investigate the two-dimensional
TB model of the single square-net lattice, and the detailed
derivation of TB model are shown in the Appendix.

The minimal TB Hamiltonian for square-net pnictogen
with a basis set of px,y orbitals and the nearest-neighbor (NN)

hoppings is expressed as [15]

HNN(k) = t10 cos
kx

2
cos

ky

2
τ1 ⊗ σ0

+ t11 sin
kx

2
sin

ky

2
τ1 ⊗ σ1, (1)

where τ, σ are Pauli matrices of site and orbital spaces, (kx, ky)
are crystal momentum vectors, and {t10, t11} are model pa-
rameters. This minimal TB model produces the band structure
containing nodal line touching the BZ boundary as shown in
Figs. 2(a) and 2(e).

Based on the orbital character analysis, it is known that the
next-nearest-neighbor (NNN) and the third-nearest-neighbor
(TNN) hoppings are mediated by the s orbital of in-plane
atoms, and they can be expressed as

HNNN(k) = �

4
(cos kx − cos ky)τ0 ⊗ σ3,

HTNN(k) = Eeh(sin kx − sin ky)τ0 ⊗ σ1, (2)

with � of the energy gap at X point, and Eeh of e-h asymmetry.
The NNN hopping opens the energy gap at X point, so the
nodal line does not cross BZ boundary anymore as shown
in Figs. 2(b) and 2(f). The nodal line produced by NN- and
NNN-hoppings yields trivial Berry phase [15,37]. The TNN
hopping breaks the e-h symmetry because τ0 ⊗ σ1 is not an-
ticommutative with HNN and HNNN. So, it generates electron
and hole pockets as shown in Figs. 2(c) and 2(g). The linear
band crossing points on �-X lines are denoted by X ′ as shown
in Figs. 2(c) and 2(d).

When the cation atoms stack above and below the square-
net layer with staggered stacking, the degeneracy at nodal line
is lifted in the existence of the SOC. The d orbitals of stacking
atoms interact with p orbitals of square-net atoms to produce

FIG. 2. Band structures of TB models. (a)–(d) Band structures along high symmetry lines. (e)–(h) Two-dimensional band structures over
whole BZ. The band structures are reproduced from the TB Hamiltonian with the NN hopping [(a) and (e)], up to the NNN hopping [(b) and
(f)], up to the TNN hopping [(c) and (g)], and up to the TNN hopping and Kane-Mele SOC [(d) and (h)]. In (c) and (d), the red circles highlight
the SOC band gap. In (e) and (f), black solid lines indicate two-dimensional Fermi surfaces. In (e), the Fermi surface touches BZ boundary,
but does not in (f) due to the energy gap opening at X point. In (g), the blue and red lines indicate electron and hole pockets, respectively, and
the SOC gap at the nodal line splits the Fermi surface into separated pockets in (h). Inset of (d) shows the pseudospin character of the effective
Hamiltonian of low-energy band near X ′.
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the Kane-Mele SOC as [37]

HSO(k) = λτ3 ⊗ σ1 ⊗ (sin kxs1 − sin kys2), (3)

with the third Pauli matrix si of spin space. As shown in
Fig. 2(d), the SOC opens the energy gap at nodal line, forming
the separated electron and hole pockets.

The essential features of Fermi surfaces of the square-net
materials can be reproduced by the TB Hamiltonian with the
distant-neighbor hoppings and Kane-Mele SOC:

H = HNN + HNNN + HTNN + HSO. (4)

As HTNN and HSO are included, the Fermi surface is split into
individual pockets [Fig. 2(h)], the cyclotronic orbits on Fermi
surfaces are well defined, and Berry phase of each pocket can
be identified.

III. BERRY PHASE OF LOW ENERGY BANDS

As shown in Fig. 2(d), there are the four electron (hole)
pockets at X ′ and other four hole (electron) pockets on �-M
lines. As the main source of the Berry phase is shown at X ′
pockets [37], the effective Hamiltonian around X ′ with Kane-
Mele SOC becomes

Heff (q) = ±vxqx(σ3 ⊗ σ0) + λqy(σ1 ⊗ σ2)

∓λ sin K (σ1 ⊗ σ1), (5)

where vx is the effective Fermi velocity along x axis and q
is the momentum vector relative to X ′ = (K, 0). The three
terms in the effective Hamiltonian satisfy the anticommutation
relations. Therefore, it can be regarded as a two-dimensional
massive Dirac Hamiltonian with the first and second terms
as the momentum of Dirac fermion, and the third term as a
mass. The inset of Fig. 2(d) shows the pseudospin characters
(σ3 ⊗ σ0, σ1 ⊗ σ2) of the effective Hamiltonian around X ′
point. The psedudospin winding of effective Dirac fermion
shows a nontrivial Berry phase of the X ′ pocket.

The chemical potential and e-h asymmetry determine
whether the Fermi surface encloses X ′ point or not, and
whether to give nontrivial or trivial Berry phase assuming
SOC gap is very small. As shown in Fig. 3(a) and 3(b), there
are two band-crossing points along �-X and �-M lines. If the
Fermi level lies between two energy levels of the crossing
points [region (II) or (II′) in Figs. 3(a) and 3(b)], four electron
pockets and four hole pockets appear as shown in Fig. 3(d).
Then, the pockets are disconnected from each other, hence
the pockets around X ′ points yield nontrivial Berry phase in
SdH oscillations. On the contrary, if Fermi level lies above or
below both of two crossing energy levels [region (I) or (III)],
all pockets are connected as shown in Figs. 3(c) and 3(e), and
yield trivial Berry phase [37]. These results are summarized
in the Table I.

IV. CLASSIFICATION OF FERMI SURFACE

Our investigation can be generalized to three-dimensional
Fermi surface with the energy dispersion along the kz direction
by interlayer interactions. The topologies of Fermi surface
cross sections on kx-ky plane can be changed as kz value of the
plane changes. Due to the symmetry of the crystal structure,
Fermi surface of P4/nmm material has a mirror-symmetric

FIG. 3. Schematic band structure of P4/nmm materials with
(a) Eeh > 0 and (b) Eeh < 0. If the chemical potential lies in region
(II) or (II′), it yields nontrivial Berry phase. (c)–(e) Topologically
nontrivial and trivial Fermi surfaces of ZrSiSe depending on the
chemical potentials, which correspond to (I), (II), and (III) in (a),
respectively.

shape with respect to the kz = 0 and kz = ±π planes. Hence,
the Fermi surface has extremal cross-sectional area on kz = 0
and kz = ±π planes, where SdH oscillations are observed.

Figure 4 shows the phase diagram of Fermi surface topolo-
gies with respect to the Eeh and μ denoted in Fig. 3 and
Table I. In the phase diagram, the blue and red regimes indi-
cate nontrivial Berry phase at X ′ point, while the white regime
indicates trivial Berry phase.

Although there are a total of sixteen types of Fermi sur-
faces, they can be reduced to six types by switching kz = 0 and
kz = π planes, or switching electron and hole pockets, which
does not change the Fermi surface topology. Figures 4(a)–
4(f) show the six possible types by Fermi surface topologies
on kz = 0 and kz = ±π planes. The change of Fermi surface
topology is represented using gray arcs in the phase diagram
with filled and open circles indicating kz = 0 and kz = ±π

planes, respectively. If both filled and open circles are located
in the same regime in the phase diagram, the Fermi surfaces
would be nearly cylindrical [Figs. 4(a) and 4(e)]. If each
circle is located in different regimes, the Fermi surfaces show
different Berry phases in each kz = 0 and kz = ±π planes.
Figures 4(a) and 4(b) show the Fermi surfaces that are trivial

TABLE I. Electronic and topological property of two-dimen-
sional TB Hamiltonian for P4/nmm materials from Eeh and μ.

Eeh μ X ′ pocket Berry phase

μ < 0 hole Trivial
+ 0 < μ < Eeh electron Nontrivial

Eeh < μ electron Trivial

μ < Eeh hole Trivial
– Eeh < μ < 0 hole Nontrivial

0 < μ electron Trivial
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FIG. 4. Schematic phase diagram including z-axis dispersions.
Filled circles and open circles indicate kz = 0 and ±π planes, re-
spectively. (a)–(f) Three-dimensional Fermi surface with different
topologies on kz = 0 and kz = ±π planes. The Berry phases from
SdH experiment are trivial in (a) and (b), and nontrivial in (c) and
(f). Note that our classification is up to exchanging two planes or
electrons/hole pockets, and SOC gap is not presented.

on both planes; that results in trivial Berry phases in SdH
oscillations. Figures 4(c) and 4(d) show the Fermi surfaces

that are trivial on one plane and nontrivial on the other plane.
In these cases, both trivial and nontrivial Berry phases of SdH
oscillations are observed. In Figs. 4(e) and 4(f), on the other
hand, both kz = 0 and kz = ±π planes are nontrivial. Then, at
least two distinct nontrivial Berry phases are observed in SdH
oscillations, each from kz = 0 and kz = ±π plane.

V. PHASE DIAGRAM OF P4/nmm MATERIALS

We perform DFT calculation for a total of 31 P4/nmm
materials in ZrSiS, HfCuGeAs, and CaMnBi2-types (Fig. 8
in Appendix and Table II). We use full-potential linearized
augmented plane wave method with WIEN2k package [43],
and we use Perdew-Burke-Ernzerhof generalized gradient ap-
proximation (PBE-GGA) functional [44]. The number of k
points in the first Brillouin zone (BZ) are 5000 with RKmax

of 7.0. For the materials with magnetic ordering of Mn or
rare earth elements, the open-core approximation is adopted
by treating the localized 3d/4f orbitals as core states. We
then extracted the μ and Eeh from the calculated DFT band
structures of P4/nmm materials.

We show the phase diagram of the Fermi surface topology
with respect to e-h asymmetry and the chemical potential in
Fig. 5, assuming that the magnetic field is oriented along z
axis. Each numbered point in the phase diagram indicates the
Fermi surface topology of P4/nmm materials. Figures 5(a)
and 5(b) represent the Fermi surface topologies on kz = 0
and kz = ±π plane, respectively. The blue and red regimes
designate nontrivial Berry phase of the Fermi surface, and the
white regimes designate trivial Berry phase. The Fermi sur-
face topologies from DFT band structure and SdH oscillation
results are summarized in Table II. HfGeSe and HfSiTe are

FIG. 5. Phase diagram of the Fermi surface topology on (a) kz = 0 plane and (b) kz = ±π plane, with respect to the chemical potential μ

and the e-h asymmetry Eeh. The blue/white regimes indicate nontrivial/trivial Berry phase of the Fermi surface. Each point and number in the
phase diagram indicate the square-net materials in Table II, and the points are obtained from the DFT band structure. The SOC is not included
in the phase diagram.
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TABLE II. Summary of the Fermi surface topologies and SdH experimental results for square-net materials. Type (in fifth column)
corresponds to Fig. 3, and T/N denote trivial/nontrivial Berry phase, respectively.

No. Material Berry phase at kz = 0 Berry phase at kz = ±π Type SdH results

1 CaBe2Ge2 T T a
2 CaMnBi2 N T d N [17]
3 LaMnSb2 T T a
4 YbMnSb2 Nb Nb eb N [19]
5 YbMnBi2 N N f N [5]
6 LaLiBi2 T T b
7 HfCuSiAs N N e
8 HfCuGeAs N N e
9 TiCuGeAs N N e
10 TiCuSiAs N N e
11 ZrCuGeAs N N e
12 ZrCuSiAs N N e
13 CeSbTe T T b
14 HfGeS T N c
15 HfGeSe N N f
16 HfGeTe N N f
17 HfSiS T N c N [20]
18 HfSiSe N T d
19 HfSiTe N N e
20 LaSbTe T T a T [16]
21 NbGeAs N a a

22 NbGeSb N a a

23 NbSiAs N a a

24 TaSiAs N a a

25 ZrGeS T N c
26 ZrGeSe N N f N [21]
27 ZrGeTe N T d N [21]
28 ZrSiSe N T d N [22]
29 ZrSiTe, (<3 Gpa) N N e N [22]

ZrSiTe, (3–8 Gpa) N T d
ZrSiTe, (>8 Gpa) T T c

30 ZrSnTe N N e N [23]
31 ZrSiS N N e N [22,24],/T [33]

aOmitted due to a lack of two-dimensional features.
bMagnetic d/f orbitals are included.

not shown in Fig. 3(b), because their μ and Eeh are out of the
Phase diagram. (μ, Eeh) of HfGeSe and HfSiTe are (–0.30,
–0.84), (0.37, 0.88), respectively. All the reported SdH oscil-
lation results of Berry phases agree well with our prediction:
trivial for LaSbTe and nontrivial for most other materials.

Note that if Fermi surface is located close to boundary of
regime in the phase diagram, its topologies can be changed by
small perturbations. When the chemical potential is changed
by chemical doping assuming rigid-band approximation, it is
represented as the horizontal movement in the phase diagram.
Fermi surface topologies can be sensitively changed by chem-
ical doping. For example, the Fermi surface topologies of
ZrSiS can be easily changed by shifting the chemical potential
by 20 meV (Fig. 5). This is less than 0.5% of the band width
or 0.02 electrons per one formula unit.

VI. TEMPERATURE- AND PRESSURE-INDUCED
LIFSHITZ TRANSITION

The transport anomalies of ZrSiSe were observed by
scanning tunneling microscopy measurements, and they are

interpreted by the transition of Fermi surface topology in-
duced by Fermi level shift of ∼0.1 eV as temperature changes
[38]. Our analysis based on the phase diagram shown in Fig. 5
is consistant with the observed transition.

In addition, the pressure-induced transitions of Fermi sur-
face topology of ZrSiTe were observed by infrared and Raman
spectroscopy measurements [39,40]. To show the effects of
external pressure on Fermi surface topology, we performed
DFT calculation of ZrSiTe at hydrostatic pressure of 0 to
10 GPa with intervals of 1 GPa. We used the Vienna ab initio
simulation package (VASP) in the projector augmented waves
(PAW) formalism with PBE functional. The k mesh used in
the first BZ is 20×20×12. The atomic positions and lattice
are allowed to be fully relaxed.

The band structures of ZrSiTe at various pressures are
shown in Fig. 6. The band-crossing points are designated by
red and blue circles. When the pressure changes from 0 to
5 GPa, the Z-R pockets changes from electron to hole pockets.
In addition, �-X electron pocket and A − Z hole pocket at
5 GPa change to hole and electron pockets, respectively, at
10 GPa.
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FIG. 6. Band structure of ZrSiTe at pressures of 0, 5, and 10 GPa.
Dotted circles indicate �-M (Z-A) pockets. Red and blue circles
indicate kz = 0 and kz = π planes, respectively.

The phase diagrams corresponding to the band structure
of ZrSiTe are shown in Fig. 7. Because the c axis of cell
parameter is more sensitive to external pressure than the a
axis, the Fermi surface changes on kz = π plane rather than
kz = 0 plane. At ambient pressure, both cross sections of

FIG. 7. The phase diagram of ZrSiTe at kz = 0 (left) and kz = π

(right) at pressure of 0 to 10 GPa. Here, the spin-orbit coupling is
ignored.

Fermi surface in blue regime in the phase diagram, hence, the
Fermi surface belongs to type e in Fig. 4. When the pressure
exceeds 3–4 GPa, the cross section at kz = π plane changes
the topology, and the Fermi surface belongs to type d. When
the pressure is higher than 8 GPa, the Fermi surface belongs to
type a or type c. The Lifshitz transitions of ZrSiTe observed
by Raman spectroscopy and infrared spectroscopy appear at
∼4.1 and ∼6.5 GPa [39,40].

Note that we ignore the SOC of ZrSiTe, and there are
quantitative differences of transition pressure between the ex-
perimental observations and our investigation. If the SOC is
included, the nontrivial regime in the phase diagram shrinks
as much as the SOC gap. In the margin of the regimes, the
Fermi level lies within the SOC gap and the pockets disappear,
hence, Berry phase cannot be nontrivial. This may happen
when the cross section is located on the boundary of the phase
diagram, such as the 6–9 GPa cases in Fig. 7(a) and 9–10 GPa
cases in Fig. 7(b). However, our investigation of ZrSiTe based
on the phase diagram reproduces the experimental results
qualitatively.

VII. CONCLUSIONS

In summary, we clarified the origin of nontrivial Berry
phase of P4/nmm materials where the TNN hoppings have
important role in the e-h asymmetry to yield various Fermi
surface topologies. We showed that the e-h asymmetry and
chemical potential determines Fermi surface connectivity and
Berry phase as SOC is included. Furthermore, phase dia-
gram of the Fermi surface topologies well reproduces the
reported SdH experimental results and Lifshitz transition in
spectroscopy measurements. Our work provides useful guide-
lines for interpreting SdH oscillation of P4/nmm materials.
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APPENDIX

1. DFT calculation

We divided the P4/nmm materials into three types based
on structural arrangements: ZrSiS, HfCuGeAs, and CaMnBi2-
types as shown in Figs. 8(a)–8(c). The three types of
the compounds commonly have the square-net atoms (red
spheres), and their neighboring atoms (gray spheres) are
staggered stacking above and below the square-net layer.
The low-energy band structures of the three types are dom-
inated by px,y orbitals of square-net layer atoms as shown in
Figs. 8(e)–8(g). Their low-energy band structures are highly
two-dimensional, and they show nodal-line features.

Note that, there are two main differences in the three band
structures shown in Figs. 8(e)–8(g): the energy gap at X
point and the difference of two crossing levels on �-X and
�-M lines. The former is explained by next-nearest-neighbor
(NNN) hoppings mediated by the stacking metal atoms desig-
nated as the gray spheres in Figs. 8(a)– 8(c) [37]. The origin
of the latter, however, has not been clearly verified.

The single square-net Sb layer and its band structure are
shown in Figs. 8(d)–8(h). The electronic structure of the single
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FIG. 8. (a)–(c) Crystal structures of P4/nmm materials with square-net layers. (a) ZrSiS, (b) HfCuGeAs, and (c) CaMnBi2. (e)–(g) Band
structures corresponding to each compounds. (d) Crystal structures and (h) band structure of single Sb layer. In (d),

√
2 × √

2 supercell is
denoted. In the band structures, the size of the points indicates px,y orbital characters of square-net atoms designated as the red spheres in
(a)–(d).

layer reproduces the nodal-line and highly two-dimensional
features. We obtain maximally localized Wannier functions
and their hopping amplidues using the WANNIER90 code
[41,42]. We verify that p orbital bands are weakly hybridized
with s orbitals of single layer bands, and the distant-neighbor
hoppings are mediated by s orbitals.

2. The minimal TB model

Here, we deduce the minimal TB Hamiltonian of square-
net pnictogen layer with only NN hoppings. There are two
atoms in unit cell at A/B sites and px,y orbitals in each atom.
The basis set of the TB Hamiltonian is written as

�(R) = (
pA

x (R), pA
y (R), pB

x (R), pB
y (R)

)T
. (A1)

Then, the minimal TB Hamiltonian with respect to this
basis set is

H0 =
∑
R,R′

�(R)†V0(R, R′)�(R′). (A2)

Here, for A/B site in unit cell, V0(R, R′) is determined by
Slater-Koster (SK) parameters.

This TB Hamiltonian can be represented in crystal momen-
tum space by Fourier transformation as following:

H0 =
∑

k

�(k)†HNN(k)�(k), (A3)

with the Bloch states �(k) = (1/
√

N )	Re−ik·R�(R). Because
this TB Hamiltonian is a 4 × 4 matrix, it can be spanned
by τi ⊗ σ j , with τi and σi of Pauli matrices for atomic and
orbital basis space, respectively. Therefore, the conventional
TB Hamiltonian at each k can be represented as

HNN(k) = t10 cos
kx

2
cos

ky

2
τ1 ⊗ σ0

+ t11 sin
kx

2
sin

ky

2
τ1 ⊗ σ1. (A4)

Here, {t10, t11} = {2(t1π + t1σ ), 2(t1π − t1σ )} are from SK pa-
rameters, and the unit cell length is normalized. Note that
τ0 ⊗ σ0 componant is excluded because it only changes the
global energy level. Without the SOC, pz orbitals cannot hy-
bridize with px,y orbitals due to the parity with respect to z
reflection. Therefore, we need to consider only the distant-
neighbor hoppings between px,y orbitals.

3. The distant-neighbor hoppings

In terms of perturbation theory, the distant-neighbor hop-
pings are the second-order perturbations by filled s orbitals.
Therefore, they can be written as

V (k) = �(k)†
V †

sp(k)Vsp(k)

εp − εs
�(k), (A5)

with ε of the orbital energies and Vsp of the hopping matrix
between s and p orbitals.

Excluding τ0 ⊗ σ0 term, V (k) can be spanned by Pauli
matrices, then the effective NNN and TNN hopping terms can
be extracted as following:

V (k) := HNNN(k) + HTNN(k)

= �

4
(cos kx − cos ky)τ0 ⊗ σ3

+ Eeh(sin kx − sin ky)τ0 ⊗ σ1. (A6)

Here, � is the energy gap at X point, and Eeh is e-h asymmetry
energy. We verified that the two terms in V (k) have same form
as direct NNN and TNN hopping terms.

4. The SOC effect

When the metal atoms stack above and below the square-
net layer, the Kane-Mele SOC can be included. The Kane-
Mele SOC with d orbitals from stacking atoms and p orbitals
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of the square-net atoms is written as [37]

HSO(k) ∝
∑
AB

ψB(k)†VpdVd pSOCpψ
A(k) + H.c.

= λτ3 ⊗ σ1 ⊗ (sin kxs1 − sin kys2), (A7)

with extension to spin space si of the third Pauli matrices, Vd p

of the hopping matrix between p and d orbitals, A, B of two
sites in unit cell, and ψA = (pA

x,↑, pA
x,↓, pA

y,↑, pA
y,↓, pA

z,↑, pA
z,↓)T .

Note that the spinless terms like HNN, HNNN, and HTNN

are embedded as s0 in spin space. In addition, when the spin
space is introduced, each band has two-fold degeneracy due
to the time-reversal symmetry. Therefore, there are four pairs
of two-fold degenerated bands.

5. Dirac fermion around band crossing points

Along the pockets near X ′ point, two bands cross the Fermi
level. To verify Berry phase of the pocket, we derive the
effective Hamiltonian for the inner bands.

When ky = 0, the Hamiltonian with the NNN hopping
without the SOC effect is

H (k) = t10 cos
kx

2
τ1 ⊗ σ0 + �

4
(cos kx − 1)τ0 ⊗ σ1, (A8)

with the band crossing points at X ′:

X ′ := (K, 0)

=
⎛
⎝arctan

√√
16(Eeh )2 + (t10)2 − 4Eeh

t10
, 0

⎞
⎠. (A9)

Here, note that the spin space si is not introduced yet.

At X ′, the eigenstates of inner bands are
√

1
2 (0,−1, 0, 1)T

and
√

1
2 (1, 0, 1, 0)T . Then we can project the Hamiltonian on

the space, which is spanned by the eigenstates of inner bands:

Hin(k) = U †H (k)U

=
[
−�

4
(cos kx − cos ky) − t10 cos

kx

2
cos

ky

2

]
σ3.

(A10)

Here, U is the projection matrix onto inner-band-space

U = 1√
2

⎛
⎜⎝

0 1
−1 0
0 1
1 0

⎞
⎟⎠. (A11)

Note that the Pauli matrix σi does not denote orbital space
anymore but inner-band-space, as the basis set is transformed
by the projection matrix U . Because we now only care about
the inner bands, it is much convenient to deal with the reduced
2 × 2 matrix Hin rather than the original 4 × 4 Hamiltonian.

When the spin space si is introduced, Hin and U are
represented as Hin ⊗ s0 and U ⊗ s0 respectively. Hence, the
Kane-Mele SOC can be projected onto inner-band-space as
following:

HSO
in (k) = (U † ⊗ σ0)HSO(k)(U ⊗ σ0)

= 1
2λσ1 ⊗ (− sin kxσ1 + sin kyσ2). (A12)

Around ±X ′, the effective Hamiltonian with the SOC be-
comes

Heff (q) = ±vxqx(σ3 ⊗ σ0) + λqy(σ1 ⊗ σ2)

∓λ sin K (σ1 ⊗ σ1), (A13)

where vx = 1
2 t10 sin ( K

2 ) + Eeh sin K and {kx, ky} = {K +
q′

x, q′
y}. The first term is from Hin(k) and the second and the

third are from HSO
in (k).

In the same way, we can also deduce the effective Hamil-
tonian around Y ′ = (0, K ) on ky axis:

H ′
eff (q′) = ±vxq′

y(σ3 ⊗ σ0) − λq′
x(σ1 ⊗ σ2)

± λ(sin K ⊗ σ1), (A14)

with {kx, ky} = {q′
x, K + q′

y}.
The pockets around X ′ have nontrivial Berry phase. The

Berry phases for X ′ and Y ′ have same absolute values.

6. 3D dispersion effect

DFT calculations show that the low-energy band structures
of P4/nmm materials on kz = π planes keep nodal-line fea-
tures. However, Eeh and μ on kz = 0 and kz = π are different
due to interlayer interactions. We introduced the simplest
kz−dependent terms of chemical potential and e-h asymmetry
to take into account the interlayer interaction:

H3D(q′) = −μz cos kzτ0 ⊗ σ1

+ E ′
eh cos kz(sin kx − sin ky)τ0 ⊗ σ1. (A15)

The second term of H3D can be represented by modifying Eeh

to E3D
eh in (A6):

E3D
eh (kz ) = Eeh + E ′

eh cos kz. (A16)

Here, we assumed monotonic variation of μ and Eeh, and
used cosine function for kz dependence.
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