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Analytical representation of the local field correction of the uniform electron gas
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The description of electronic exchange-correlation effects is of paramount importance for many applications
in physics, chemistry, and beyond. In a recent paper, Dornheim et al. [Phys. Rev. Lett. 125, 235001 (2020)]
have presented the effective static approximation (ESA) to the local field correction (LFC), which allows for
the highly accurate estimation of electronic properties such as the interaction energy and the static structure
factor. In this work, we give an analytical parametrization of the LFC within ESA that is valid for any wave
number, and available for the entire range of densities (0.7 � rs � 20) and temperatures (0 � θ � 4) that are
relevant for applications both in the ground state and in the warm dense matter regime. A short implementation in
PYTHON is provided, which can easily be incorporated into existing codes. In addition, we present an extensive
analysis of the performance of ESA regarding the estimation of various quantities like the dynamic structure
factor, static dielectric function, the electronically screened ion potential, and also the stopping power in an
electronic medium. In summary, we find that the ESA gives an excellent description of all these quantities in the
warm dense matter regime, and only becomes inaccurate when the electrons start to form a strongly correlated
electron liquid (rs ∼ 20). Moreover, we note that the exact incorporation of exact asymptotic limits often leads
to a superior accuracy compared to the neural-net representation of the static LFC [T. Dornheim et al., J. Chem.
Phys. 151, 194104 (2019)].
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I. INTRODUCTION

The accurate description of many-electron systems is of
paramount importance for many applications in physics,
quantum chemistry, material science, and related disciplines
[1,2]. In this regard, the uniform electron gas (UEG) [3,4],
which is comprised of correlated electrons in a homogeneous,
neutralizing positive background (also known as “jellium” or
quantum one-component plasma), constitutes a fundamental
model system. Indeed, our improved understanding of the
UEG has facilitated many key insights like the quasiparticle
picture of collective excitations [5] and the Bardeen-Cooper-
Schrieffer theory of superconductivity [6].

In the ground state, many properties of the UEG have been
accurately determined on the basis of quantum Monte Carlo
(QMC) simulations [7–19], which have subsequently been
used as input for various parametrizations [20–26]. These, in
turn, have provided the basis of the possibly unrivaled success
of density functional theory (DFT) regarding the description
of real materials [27–29].

Over the last decade or so, there has emerged a remarkable
interest in warm dense matter (WDM), an exotic state with
high temperatures and extreme densities. In nature, these con-
ditions occur in various astrophysical objects such as giant
planet interiors [30–32], brown dwarfs [30,33], and neutron
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star crusts [34]. On earth, WDM has been predicted to occur
on the pathway towards inertial confinement fusion [35], and
is relevant for the new field of hot-electron chemistry [36,37].

Consequently, WDM is nowadays routinely realized in
large research facilities around the globe; see Ref. [38] for
a recent review of different experimental techniques. Further,
we mention that there have been many remarkable experimen-
tal discoveries in this field, such as the observation of diamond
formation by Kraus et al. [39,40], or the measurement of
plasmons in aluminum by Sperling et al. [41].

At the same time, the theoretical description of WDM is
notoriously difficult [42,43] due to the complicated interplay
of (i) Coulomb coupling, (ii) quantum degeneracy of the elec-
trons, and (iii) thermal excitations. Formally, these conditions
are conveniently expressed by two characteristic parameters
that are of the order of one simultaneously: the density param-
eter (Wigner-Seitz radius) rs = r/aB, where r and aB are the
average interparticle distance and Bohr radius, and the degen-
eracy temperature θ = kBT/EF, with EF being the usual Fermi
energy [1,44]. In particular, the high-temperature rules out
ground-state approaches and thermal DFT [45] simulations,
too, require as input an exchange-correlation (XC) functional
that has been developed for finite temperature [46–49].

This challenge has resulted in a substantial progress re-
garding the development of electronic QMC simulations at
WDM conditions [50–68], which ultimately led to the first
parametrizations of the XC free energy fXC of the UEG
[69,70], allowing for thermal DFT calculations on the level
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of the local density approximation (LDA). At the same time,
DFT approaches are being developed that deal efficiently with
the drastic increase in the basis size for high temperatures
[71–75], and even gradient corrections to the LDA have be-
come available [49,76].

Of particular relevance for the further development of
WDM theory is the response of the electrons to an external
perturbation as it is described by the dynamic density response
function χ (q, ω) [see Eq. (1) below], where q and ω denote
the wave vector and frequency. Such information is vital for
the interpretation of x-ray Thomson scattering experiments
(XRTS), a standard method of diagnostics for WDM which
gives access to plasma parameters such as the electronic tem-
perature [77,78]. Furthermore, accurate knowledge of χ (q, ω)
would allow for the construction of advanced XC functionals
for DFT based on the adiabatic connection formula and the
fluctuation-dissipation theorem (see Refs. [79–82] for details)
or as the incorporation as the dynamic XC kernel in time-
dependent DFT [83,84]. Finally, we mention the calculation
of energy-loss properties like the stopping power [85], the
construction of effective ion-ion potentials [86–88], the de-
scription of electrical and thermal conductivities [89], and
the incorporation of electronic exchange-correlation effects
into other theories such as quantum hydrodynamics [90,91]
or average atom models [92].

Being motivated by these applications, Dornheim and
coworkers have recently presented a number of investiga-
tions of both the static and dynamic density response of the
warm dense electron gas based on ab initio path-integral
Monte Carlo (PIMC) [93] simulations [89,94–99]. In par-
ticular, they have reported that often a static treatment of
electronic XC effects is sufficient for a highly accurate
description of dynamic properties such as χ (q, ω) or the
dynamic structure factor (DSF) S(q, ω). Unfortunately, this
static approximation (see Sec. II C below) leads to a substan-
tial bias in frequency-averaged properties like the interaction
energy v [100].

To overcome this limitation, Dornheim et al. [100] have
presented the effective static approximation (ESA), which en-
tails a frequency-averaged description of electronic XC effects
by combining the neural-net representation of the static local
field correction (LFC) from Ref. [94] with a consistent limit
for large wave vectors based on QMC data for the pair distri-
bution function evaluated at zero distance; see Ref. [101] for a
recent investigation of this quantity. In particular, the ESA has
been shown to give highly accurate results for different elec-
tronic properties such as the interaction energy and the static
structure factor (SSF) S(q) at the same computational cost
as the random phase approximation (RPA). Furthermore, the
value of the ESA for the interpretation of XRTS experiments
has been demonstrated by reevaluating the study of aluminum
by Sperling et al. [41].

The aim of this work is twofold: (i) we introduce an
accurate analytical parametrization of the LFC within ESA,
which exactly reproduces the correct limits at both small and
large wave numbers q = |q| and can be easily incorporated
into existing codes without relying on the neural net from
Ref. [94]; a short PYTHON implementation is freely available
online [102]; (ii) we further analyze the performance of the
ESA regarding the estimation of various electronic properties

such as S(q, ω) and χ (q) over a large range of densities and
temperatures.

The paper is organized as follows: In Sec. II, we introduce
the underlying theoretical background including the density
response function, its relation to the dynamic structure factor,
and the basic idea of the ESA scheme. Section III is devoted
to our analytical parametrization of the LFC within ESA (see
Sec. III C for the final result), which is analyzed in the subse-
quent Sec. IV regarding the estimation of numerous electronic
properties. The paper is concluded by a brief summary and
outlook in Sec. V.

II. THEORY

We assume Hartree atomic units throughout this work.

A. Density response and local field correction

The density response of an electron gas to an external har-
monic perturbation [64] of wave number q and frequency ω is,
within linear response theory, fully described by the dynamic
density response function χ (q, ω). The latter is conveniently
expressed as [1,103]

χ (q, ω) = χ0(q, ω)

1 − 4π
q2 [1 − G(q, ω)]χ0(q, ω)

, (1)

where χ0(q, ω) denotes the density response function of
an ideal Fermi gas known from theory and the full wave-
number- and frequency-resolved information about exchange-
correlation effects is contained in the dynamic local field
correction G(q, ω). Hence, setting G(q, ω) = 0 in Eq. (1)
leads to the well-known RPA which entails only a mean-field
description of the density response.

Naturally, the computation of accurate data for G(q, ω)
constitutes a most formidable challenge, although first ab
initio results have become available recently at least for parts
of the WDM regime [89,95–98].

Let us next consider the static limit, i.e.,

χ (q) = lim
ω→0

χ (q, ω). (2)

In this limit, accurate data for Eq. (1) have been presented by
Dornheim et al. [94,99,104] based on the relation [9]

χ (q) = −n
∫ β

0
dτ F (q, τ ), (3)

with the imaginary-time density-density correlation function
being defined as

F (q, τ ) = 1

N
〈ρ(q, τ )ρ(−q, 0)〉 . (4)

We note that Eq. (4) is the usual intermediate scattering func-
tion [77], but evaluated at an imaginary-time argument τ ∈
[0, β]. In addition, we note that it is straightforward to then
use χ (q) to solve Eq. (1) for the static local field correction

G(q) = lim
ω→0

G(q, ω)

= 1 − q2

4π

(
1

χ0(q)
− 1

χ (q)

)
. (5)
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Based on Eq. (5), Dornheim et al. [94] have obtained an
extensive data set for G(q) for Np ∼ 50 different density-
temperature combinations. These data, together with the
parametrization of G(q; rs) at zero temperature by Corradini
et al. [25] based on ground-state QMC simulations [10,11],
was then used to train a deep neural network that functions as
an accurate representation G(q; rs, θ ) for 0 � q � 5qF, 0.7 �
rs � 20, and 0 � θ � 4.

B. Fluctuation-dissipation theorem

The fluctuation-dissipation theorem [1]

S(q, ω) = − Imχ (q, ω)

πn(1 − e−βω )
(6)

relates Eq. (1) to the dynamic structure factor S(q, ω) and,
thus, directly connects the LFC to different material prop-
erties. First and foremost, we mention that the DSF can be
directly measured, e.g., with the XRTS technique [77], which
means that the accurate prediction of S(q, ω) from theory is of
key importance for the diagnostics of state-of-the-art WDM
experiments [78].

The static structure factor is defined as the normalization
of the DSF

S(q) =
∫ ∞

−∞
dω S(q, ω), (7)

and thus entails an averaging over the full frequency range. We
stress that this is in contrast to the static density response func-
tion χ (q) introduced in the previous section, which is defined
as the limit of ω → 0. The SSF, in turn, gives direct access to
the interaction energy of the system, and for a uniform system
it holds [4]

v = 1

π

∫ ∞

0
dq[S(q) − 1]. (8)

Finally, we mention the adiabatic connection formula
[4,69,70]

fXC(rs, θ ) = 1

r2
s

∫ rs

0
drs v(rs, θ )rs, (9)

which implies that the free energy (and equivalently the par-
tition function Z) can be inferred if the dynamic density
response function, the only unknown part of which is the
dynamic LFC G(q, ω), of a system is known for all wave num-
bers and frequencies, and for different values of the coupling
parameter rs. This idea is at the heart of the construction of
advanced exchange-correlation functionals for DFT calcula-
tions within the ACFDT formulation; see, e.g., Refs. [79–82]
for more details.

C. Static approximation

Since the full frequency dependence of G(q, ω) remains
to this date unknown for most parts of the WDM regime
(and also in the ground state), one might neglect dynamic
effects and simply substitute G(q) in Eq. (1). This leads
to the dynamic density response function within the static

approximation [89,96]

χstat(q, ω) = χ0(q, ω)

1 − 4π
q2 [1 − G(q)]χ0(q, ω)

, (10)

which entails the frequency dependence on an RPA level,
but exchange-correlation effects are incorporated statically.
Indeed, it was recently shown [89,95,96] that Eq. (10) allows
to obtain nearly exact results for χ (q, ω), S(q, ω), and related
quantities for rs � 5 and θ � 1.

Yet, while results for individual wave numbers are rel-
atively good, the static approximation is problematic for
quantities that require an integration over q, such as the in-
teraction energy v [100]. More specifically, it can be shown
that neglecting the frequency dependence in the LFC [LFCs
that are explicitly defined without a frequency dependence are
hereafter denoted as G(q)] leads to the relation [105]

lim
q→∞ G(q) = 1 − g(0), (11)

where g(0) denotes the pair distribution function (PDF) g(r)
evaluated at zero distance, sometimes also called the on-top
PDF or contact probability. Yet, is has been shown both in the
ground state [106,107] and at finite temperature [94,104] that
the exact static limit of the dynamic LFC diverges towards ei-
ther positive or negative infinity in the q → ∞ limit. Equation
(11) thus implies that using G(q) as G(q) in Eq. (10) leads to
a diverging on-top PDF, which is, of course, unphysical. This,
too, is the reason for spurious contributions to wave-number
integrated quantities like v at large q.

D. Effective static approximation

To overcome these limitations of the static approximation,
Dornheim et al. [100] have proposed to define an effectively
frequency-averaged theory that combines the good perfor-
mance of Eq. (10) for q � 3qF with the consistent limit of
G(q) from Eq. (11).

More specifically, this so-called effective static approxima-
tion is constructed as [100]

GESA(q; rs, θ ) = Gnn(q; rs, θ )[1 − A(x)]

+ [1 − g(0; rs, θ )]A(x), (12)

with x = q/qF, and where Gnn(q; ts, θ ) is the neural-net rep-
resentation of PIMC data for the exact static limit G(q) =
G(q, 0) of the UEG [94], and g(0; rs, θ ) denotes the on-top
pair distribution function that was parametrized in Ref. [100]
on the basis of restricted PIMC data by Brown et al. [53].
Further, A(x) denotes the activation function

A(x) = A(x, xm, η) = 1
2 {1 + tanh[η(x − xm)]} (13)

resulting in a smooth transition between Gnn and Eq. (11)
for large q. Here the parameters xm and η can be used to
tune the position and width of the activation. In practice,
the performance of the ESA only weakly depends on η and
we always use η = 3 throughout this work. The appropri-
ate choice of the position xm is less trivial and is discussed
below.

An example for the construction of the ESA is shown
in Fig. 1 for the UEG at rs = 20 and θ = 1. In the top
panel, we show the wave-number dependence of the static
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FIG. 1. Illustration of the effective static approximation (ESA)
[100] for rs = 20 and θ = 1. Top panel: static LFC. Green squares
are exact PIMC data for G(q; rs, θ ) taken from Ref. [104], and
dashed black line the neural-net representation from Ref. [94]. The
solid red curve shows the frequency-averaged LFC G(q; rs, θ ) within
ESA [Eq. (12)] and the dotted blue curve the same quantity within
STLS [105,108]. The purple dashed-dotted line shows the activation
function A(x, xm, η) [for xm = η = 3, see Eq. (13)] and corresponds
to the right y axis. Top panel: static structure factor S(q) from the
same methods, and in RPA (dashed-dotted yellow).

LFC G(q), with the green squares depicting exact PIMC
data for N = 66 taken from Ref. [104] and the black dashed
curve the neural-net representation from Ref. [94]. Ob-
serve the positively increasing tail at large q from both
data sets, which is consistent to the positive value of the
exchange-correlation contribution to the kinetic energy at
these conditions [106,109].

The solid red line corresponds to the ESA and is indistin-
guishable from the neural net for q � 2qF. Further, it smoothly
goes over into Eq. (11) for larger q and attains this limit for
q � 3.5qF. The purple dashed-dotted curve shows the corre-
sponding activation function A(x) (using xm = 3) on the right
y axis and illustrates the shape of the switchover between the
two limits. As a reference, we have also included G(q) com-
puted within the finite-temperature version [105,108] of the
STLS approximation [110] (see the dotted blue curve). First
and foremost, we note that STLS constitutes a purely static
theory for the LFC and, thus, exactly fulfills Eq. (11), i.e.,

FIG. 2. Temperature dependence of the transition wave number
xm from Eq. (14).

it attains a constant value in the limit of large wave numbers,
although for significantly larger values of q. In addition, STLS
is well known to violate the exact compressibility sum rule
[108] [see Eq. (15) below] and deviates from the other curves
even in the small-q limit. Finally, we note that it does not
reproduce the peak of both the neural net and ESA around
q = 2.5qF.

The bottom panel of Fig. 1 shows the corresponding results
for the static structure factor S(q), with the green crosses
again being the exact PIMC results from Ref. [104]. At this
point, we feel that a note of caution is pertinent. On the
one hand, the PIMC method is limited to simulations in
the static limit, as dynamic simulations are afflicted with an
exponentially hard phase problem [111] in addition to the
usual fermion sign problem [112]. Therefore, PIMC results
for both χ (q, ω) and G(q, ω) are only available for ω = 0.
Yet, the PIMC method is also capable to give exact results
for frequency-averaged quantities like S(q), as the frequency
integration is carried out in the imaginary time [93]. Thus,
the green squares do correspond to the results one would
obtain if the correct, dynamic LFC G(q, ω) was inserted into
Eq. (1).

This is in contrast to the black dashed curve, that has been
obtained on the basis of the static approximation (10), using as
input the neural-net representation [94] of the exact static limit
G(q). Evidently, the static treatment of exchange-correlation
effects is well justified for q � 2qF, but there appear sys-
tematic deviations for larger q; see also the inset showing a
magnified segment around the maximum of S(q). In partic-
ular, S(q) does not decay to 1, and, while being small for
each individual q, the error accumulates under the integral in
Eq. (8).

The solid red curve has been obtained by inserting G(q)
within the ESA into Eq. (10). Plainly, the inclusion of the on-
top PDF via Eq. (12) removes the spurious effects from the
static approximation, and the ESA curve is strikingly accurate
over the entire q range.

The dotted blue curve has been computed using G(q)
within the STLS approximation. For small q, it, too obeys
the correct parabolic limit [59,113], which is the consequence
of perfect screening in the UEG [1]. For larger q, there ap-
pear systematic deviations, and the correlation-induced peak
of S(q) around q ∼ 2.2qF is not reproduced by this theory;
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FIG. 3. Top panel: static local field correction for rs = 20 and
θ = 2. Green squares are PIMC data for G(q) from Ref. [104], and
dashed black line the neural-net representation from Ref. [94]. The
solid red line shows G(q) within the ESA using Eq. (14) (i.e., xm =
3.58), and the dashed-dotted yellow and dashed-double-dotted purple
line show the ESA for xm = 3 and 2.5. The dotted blue line shows
G(q) from STLS, and the light gray line the analytical limit from
Eq. (11). Bottom panel: corresponding results for the static structure
factor S(q).

see also Ref. [104] for an extensive analysis including even
stronger values of the coupling strength rs.

Finally, the dashed-dotted yellow curve has been computed
within the RPA. Clearly, neglecting exchange-correlation ef-
fects in Eq. (1) leads to an insufficient description of the SSF,
and we find systematic deviations of up to ∼30%.

III. ANALYTICAL REPRESENTATION OF THE ESA

A. Choice of the activation function

The ESA as it has been defined in Eq. (12) has, in prin-
ciple, two free parameters, which have to be defined and
parametrized before an analytical representation of G(q; rs, θ )
can be introduced. More specifically, these are the transition
wave number xm and scaling parameter η from the activation
function A(x; xm, η); see Eq. (13).

FIG. 4. Static local field correction for rs = 5 and θ = 0 (top)
and 3 (bottom). Green squares are ground-state QMC data from
Ref. [11] [PIMC data for G(q) from Ref. [94]] for θ = 0 (θ = 3),
and dashed black lines the neural-net representation from Ref. [94].
The solid red line shows G(q) within the ESA using Eq. (14), and the
light blue dashed-dotted curve the corresponding fit from Eq. (16).
The dotted blue line shows G(q) from STLS, and the light gray line
the analytical limit from Eq. (11).

Scaling parameter η. We choose η(rs, θ ) = 3 = const, as
GESA(q; rs, θ ) only weakly depends on this parameter; see
Ref. [100] for an example.

Transition wave number xm. The choice of a reasonable
wave number of the transition between the neural net and
Eq. (11) is less trivial. What we need is a transition around
xm ∼ 2.5qF for θ � 1, whereas it should move to larger wave
number for higher temperatures. The dependence on the den-
sity parameter rs, on the other hand, is less pronounced and
can be neglected. We thus construct the function

xm(θ ) = Ax + Bxθ + Cxθ
2, (14)

with Ax, Bx, and Cx being free parameters that we determine
empirically. In particular, we find Ax = 2.64, Bx = 0.31, and
Cx = 0.08. A graphical depiction of Eq. (14) is shown in
Fig. 2.

An example for the impact of xm on both G(q) and the
corresponding SSF is shown in Fig. 3. The top panel shows
the LFC, and we observe an overall similar trend as for θ = 1
depicted in Fig. 1. The main differences both in the PIMC
data and the neural net results for G(q) are (i) the comparably
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reduced height of the maximum, (ii) the increased width of
the maximum regarding q, and (iii) the decreased slope of
the positive tail at large wave numbers. The red curve shows
the ESA results for G(q) using the transition wave number
obtained from Eq. (14), i.e., xm ≈ 3.58. In particular, the red
curve reproduces the peak structure of the exact static limit
G(q), and subsequently approaches the large-q limit from
Eq. (11) (light dotted gray line). In contrast, the dashed-dotted
yellow and dashed-double-dotted purple lines are ESA results
for xm = 3 and 2.5, respectively, and start to significantly
deviate from G(q) before the peak. Finally, the dotted blue
curve shows G(q) from STLS, and has been included as a
reference.

Regarding S(q), the solid red curve shows the best agree-
ment to the PIMC data, whereas the static approximation
again exhibits the spurious behavior for large q, albeit less
pronounced than for θ = 1 shown above. The ESA results for
xm = 3, too, are in good agreement to the PIMC data, although
there appears an unphysical minimum around q = 3qF. The
ESA curve for xm = 2.5, on the other hand, does not repro-
duce the maximum in S(q) from the other data sets. Finally,
the STLS curve does not provide an accurate description of the
physical behavior and systematically deviates from the exact
results except in the limits of large and small q.

B. Analytical representation

Let us start this discussion by introducing a suitable func-
tional form for the q dependence of GESA when rs and θ are
fixed. First and foremost, we note that our parametrization is
always constructed from Eq. (12), which means that the task
at hand is to find an appropriate representation of Gnn(q; rs, θ )
that is sufficiently accurate in the wave-number regime where
the neural net contributes to the ESA. The correct limit for
large q, on the other hand, is built in automatically.

In addition, we would like to incorporate the exact long-
wavelength limit of the static LFC that is given by the
compressibility sum rule [94,108] (CSR)

lim
q→0

G(q; rs, θ ) = GCSR(q; rs, θ )

= − q2

4π

∂2

∂n2
(n fXC). (15)

This is achieved by the ansatz

Grs,θ
nn,fit(q) = GCSR(q; rs, θ )

×
[

1 + αrs,θx + βrs,θ
√

x

1 + γ rs,θ x + δrs,θx1.25 + GCSR(q; rs, θ )

]
,

(16)

where x = q/qF is the reduced wave number and the super-
scripts in the four free parameters αrs,θ , βrs,θ , γ rs,θ , and δrs,θ

indicate that they are obtained for fixed values of θ and rs.
We note that the GCSR(q; rs, θ ) term in the denominator of the
square brackets compensates the equal prefactor for large q.

Two examples for the application of Eq. (16) are shown
in Fig. 4, where the local field correction is shown for rs =
5 and θ = 0 (top) and θ = 3 (bottom). The red curve shows
G(q) within the ESA, and the light blue dashed-dotted curve
a fit to these data using Eq. (16) as a functional form for θ

and rs being constant. First and foremost, we note that the
fit perfectly reproduces the ESA, and no fitting error can be
resolved with the naked eye.

The dashed-dotted yellow curves show the CSR [Eq. (15)],
which has been included into Eq. (16). In the ground state,
we indeed find good agreement between the CSR, the QMC
data, the neural net, and also the ESA for q � 2qF. This
is somewhat changed for θ = 3, where the yellow curve
exhibits more pronounced deviations from the PIMC data
and all other curves. Still, we note that the functional form
from Eq. (16) is capable to accommodate this finding, and
attains the small wave-number limit only for small q in
this case.

We thus conclude that Eq. (16) constitutes a suitable ba-
sis for the desired analytical representation GESA(q; rs, θ ).
As a next step, we make Eq. (16) dependent on the density
parameter rs. To achieve this goal, we parametrize the free
parameters as

κθ (rs) = aθ
κ + bθ

κrs

1 + cθ
κrs

, (17)

with κ ∈ {α, β, γ , δ}. Thus, the characterization of the rs de-
pendence for a single isotherm requires the determination of
12 free parameters. This results in the isothermic representa-
tion of the LFC of the form

Gθ
nn,fit(q; rs) = GCSR(q; rs, θ )

[
1 + αθ (rs)x + βθ (rs)

√
x

1 + γ θ (rs)x + δθ (rs)x1.25 + GCSR(q; rs, θ )

]
. (18)

This isothermic representation is illustrated in Fig. 5,
where we show the full rs dependence of the four free parame-
ters α–δ (clockwise) for θ = 0 (green), θ = 1 (red), and θ = 4
(black). The symbols have been obtained by fitting Eq. (16) to
ESA data for G(q) for constant values of rs and θ . The solid
lines have been subsequently obtained by fitting the represen-
tation of Eq. (17) to these data over the entire rs range. The
resulting curves are indeed smooth and mostly qualitatively
capture the main trends from the data points. The dashed
curves have been computed by fitting Eq. (18) to ESA data
over the entire rs range, but for constant values of θ . Naturally,

the agreement to the individual data points is somewhat worse,
as the parameters from this fit have been optimized to fit GESA

itself, and not the fit coefficients obtained for fixed values of
θ and rs. Interestingly, this final optimization step results in a
qualitative change of the description of all four parameters for
θ = 4, but only mildly changes the results for both θ = 1 and
0. As the agreement between the rs fit and the ESA input data
regarding the LFC itself remains excellent (cf. Fig. 6 below),
this indicates that the functional form of Eq. (16) allows for
different combinations of the free parameters to give similar
results.
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FIG. 5. Dependence of the fit parameters α–δ (clockwise) from Eq. (16) on the density parameter rs for θ = 0 (green), 1 (red), and 4
(black). The symbols have been obtained by fitting Eq. (16) to ESA data for individual constant values of both rs and θ , and the solid lines
have been fitted to these data using Eq. (17) as a functional form. The dashed lines have been obtained from isothermal fits over the full rs

range using Eq. (18), and the dotted curves from the final fit over the full rs-θ -q dependence [see Eq. (20)].

Let us for now postpone the discussion of the dotted curve
in Fig. 5, and consider Fig. 6 instead. In particular, we show
the results of the isothermic fitting procedure for θ = 1 (top)
and θ = 4 (bottom), with the red, green, and black curves
corresponding to different data sets for rs = 0.7, 2, and 5,
respectively. More specifically, the solid lines show the ESA
reference data for G(q), and the dashed curves have been
obtained by fitting the data points for α–δ shown in Fig. 5
via Eq. (17). For θ = 1, this simple procedure alone leads
to an excellent representation of G

θ
(q; rs). The dotted curve

has been obtained by performing the full isothermic fits, i.e.,
by fitting Eq. (18) to ESA data over the entire rs range, but
with θ being constant. Indeed, we find only minor deviations
between the dashed and the dotted curve.

For θ = 4, on the other hand, the simple representation
of the fit parameters from Eq. (16) results in a substantially
less accurate representation of G

θ

ESA(q; rs), and the systematic

error is most pronounced at high density rs = 0.7. This short-
coming can be remedied by performing the full isothermic fit
of the entire q-rs dependence, and the dotted curves are in
excellent agreement to the original ESA data everywhere. We
thus conclude that the functional form of Eq. (18) constitutes
an adequate representation of G

θ

ESA(q; rs).
C. Final representation of GESA(q; rs, θ)

The final step is then given by the construction of an analyt-
ical representation of the full rs-θ -q dependence by expressing
the parameters aθ

κ , bθ
κ , and cθ

κ in Eq. (17) as a function of θ :

fκ (θ ) = a f + b f θ + c f θ
1.5. (19)

This results in three free parameters for each of the 12 coeffi-
cients required for the characterization of the rs dependence,
i.e., a total of 36 parameters that have to be determined by the
fitting procedure.

The full three-dimensional fit function is then given by

Gnn,fit( q ; rs, θ ) = GCSR(q; rs, θ )

[
1 + α(rs, θ )x + β(rs, θ )

√
x

1 + γ (rs, θ )x + δ(rs, θ )x1.25 + GCSR(q; rs, θ )

]
, (20)

where the functions κ (rs, θ ) [with κ ∈ {α, β, γ , δ}] are given by

κ (rs, θ ) = aκ (θ ) + bκ (θ )rs

1 + cκ (θ )rs
, (21)

and the θ -dependent coefficients follow Eq. (19).
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FIG. 6. Illustration of the isothermic fit function of the local field
correction GESA(q) for θ = 1 (top) and 4 (bottom). The red, green,
and black curves depict different results for rs = 0.7, 2, and 5, re-
spectively. Solid: ESA; dashed: fitted rs dependence of the individual
coefficients α–δ from Eq. (16) according to Eq. (17); dotted: full
isothermic fits of G

θ

ESA(q) via Eq. (18).

Our final analytical representation of the LFC within the
effective static approximation immediately follows from plug-
ging Eq. (20) into Eq. (12):

GESA,fit(q; rs, θ ) = Gnn,fit(q; rs, θ )(1 − A(x))

+ [1 − g(0; rs, θ )]A(x). (22)

The thus fitted coefficients are given in Table I, and a cor-
responding PYTHON implementation is freely available online
[102]. The representation of the fit parameters α–δ is included
in Fig. 5 as the dotted lines. We observe a pronounced differ-
ence to the other curves, in particular at θ = 0 (green). This is
again no problem, as GESA is accurately represented for all rs

and θ , as we discuss in the following.
The resulting analytical representation GESA(q; rs, θ ) is il-

lustrated in Fig. 7, where we compare it (dashed lines) to the
original ESA data at rs = 5 (top) and 2, i.e., two metallic
densities that are of high interest in the context of WDM
research.

More specifically, rs = 5 corresponds to a strongly coupled
system, where an accurate treatment of electronic exchange-
correlation effects is paramount [114]. These conditions can
be realized experimentally in hydrogen jets [115] and evapo-
ration experiments [47,114,116,117]. The green, red, black,
and blue curves show results for θ = 0, 1, 2, and 4, re-
spectively, and we find that our analytical representation of
GESA(q; rs, θ ) is in excellent agreement to the ESA input data
everywhere.

The bottom panel corresponds to rs = 2, which is relevant,
e.g., for the investigation of aluminum [41,118]. Here, too, we
find excellent agreement between the fitted function and the
ESA input data for θ = 0 and 4, while small, yet significant
deviations appear at intermediate wave numbers for θ = 2 and
1. Still, it is important to note that these deviations do not
exceed the statistical uncertainty of the original PIMC input
data for G(q) on which the neural net from Ref. [94] and the
ESA are based.

We thus conclude that our analytical representation of
GESA(q; rs, θ ) provides a highly accurate description of
electronic-exchange correlation effects over the entire relevant
parameter range. The application of this representation for the
computation of other material properties like the static struc-
ture factor S(q), interaction energy v, or dielectric function
ε(q) is discussed in detail in Sec. IV.

IV. RESULTS

A. Static local field correction

Let us begin the investigation of the results that can be
obtained within the ESA by briefly recapitulating a few

TABLE I. Fit parameters for the analytic parametrization of GESA(q; rs, θ ) from Eq. (20). For each of the coefficients aα, bα, . . . , cγ , we
give the three free parameters from Eq. (19), af , bf , and c f . A short PYTHON implementation is freely available online [102].

aα 0.66477593 −4.59280227 1.24649624
α bα −1.27089927 1.26706839 −0.4327608

cα 2.09717766 1.15424724 −0.65356955

aβ −1.0206202 5.16041218 −0.23880981
β bβ 1.07356921 −1.67311761 0.58928105

cβ 0.8469662 1.54029035 −0.71145445

aγ −2.31252076 5.83181391 2.29489749
γ bγ 1.76614589 −0.09710839 −0.33180686

cγ 0.56560236 1.10948188 −0.43213648

aδ 1.3742155 −4.01393906 −1.65187145
δ bδ −1.75381153 −1.17022854 0.76772906

cδ 0.63867766 1.07863273 −0.35630091
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FIG. 7. Analytical representation of GESA(q; rs, θ ): shown are
ESA results (solid lines) and our final analytical representation (22).

important properties of GESA(q; rs, θ ) itself. To this end, we
show the LFC in the θ -q plane for rs = 20 (top) and 5 (bottom)
in Fig. 8. More specifically, the dashed black lines show the
neural-net results for G(q) from Ref. [94], and the solid red
lines the corresponding data for our analytical representation
of GESA(q; rs, θ ). First and foremost, we note that the tem-
perature dependence is qualitatively similar for both values
of the density parameter; a more detailed analysis of the rs

dependence of the LFC is presented in Fig. 9 below. As
usual, G(q) exhibits a nonconstant behavior for large wave
numbers, whereas the ESA converges towards Eq. (11). In
addition, our parametrization nicely reproduces the neural net
for x < xm(θ ), which further illustrates the high quality of the
representation. Finally, we find that the exact static limit of
the LFC, too, becomes increasingly flat at large q for high
temperatures, which can be seen particularly well for rs = 20.
In fact, simultaneously considering large values of rs and θ

brings us to the classical limit, where G(q) converges towards
one for large wave numbers [119]

lim
q→∞ Gclassical(q) = 1. (23)

Moreover, the ESA and G(q) converge in this regime as the
static structure factor can always be computed from the static

FIG. 8. The local field correction in the θ -q plane: The solid
red and dashed black curves show our analytical representation of
GESA(q; rs, θ ) and the neural-net representation of the exact static
limit G(q) from Ref. [94] for rs = 20 (top) and 5 (bottom).

FIG. 9. The local field correction in the rs-q plane: The solid
red and dashed black curves show our analytical representation of
GESA(q; rs, θ ) and the neural-net representation of the exact static
limit G(q) from Ref. [94] for θ = 1. Note the logarithmic scale of
the rs axis.
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LFC only via the exact relation [119,120]

Sclassical(q) = 1

1 − 4π
q2 [Gclassical(q) − 1]βn

. (24)

In other words, the spurious effects due to the static ap-
proximation and the need for the ESA in WDM applications
are a direct consequence of quantum effects on electronic
exchange-correlation effects, which only vanish in the clas-
sical limit.

Let us next consider the dependence of the LFC on the
density parameter rs, which is shown in Fig. 9 for θ = 1. For
strong coupling, we observe a positive tail in the neural-net
results for G(q) which begins at smaller values of x = q/qF

for larger rs. Between rs = 2 and 1, i.e., in the middle of the
WDM regime, this behavior changes and we find instead a
negative slope, which ultimately even leads to negative values
of G(q). From a physical perspective, the long-wave-number
limit is dominated by single-particle effects and the sign of
the slope follows from the exchange-correlation contribu-
tion to the kinetic energy K [106,107], which changes its
sign at these conditions [101,109]. The ESA, on the other
hand, is invariant to this effect and, as usual, attains the
consistent limit for G(q) given by Eq. (11) for all values
of rs.

As a further motivation for our ESA scheme, we consider
an effective local field correction Ginvert(q), which, by defini-
tion, exactly reproduces QMC data for S(q) where they are
available. More specifically, such a quantity can be defined as

Ginvert(q) = minG(|SG(q) − S(q)|), (25)

where SG(q) denotes the SSF computed with respect to
some trial static LFC G. In practice, we solve Eq. (25)
by scanning over a dense G grid for each q point and
search for the minimum deviation in the SSF. In this
way, we have effectively inverted S(q) for the LFC G,
even though the relation between the two quantities is not
straightforward when quantum mechanical effects cannot be
neglected.

The results for this procedure are depicted in Fig. 10, where
we show different LFCs at rs = 20. The top and center panels
correspond to θ = 0 and 1, and both G(q) and GESA(q) exhibit
the familiar behavior that has been discussed in the context of
Fig. 1 above. The yellow triangles show the inverted results
for Eq. (25) and are in remarkably good agreement to both
G(q) and GESA(q) for q � 2qF. For larger q, Ginvert(q) follows
GESA(q) and attains the same finite limit instead of diverging
like the exact static limit of the LFC. In fact, the curves can
hardly be distinguished within the given level of accuracy (in
particular at θ = 0), which further substantiates the simple
construction of the ESA, Eq. (12).

Let us briefly postpone the discussion of the purple di-
amonds and instead consider the bottom panel of Fig. 10
showing results for θ = 4. At these conditions, G(q) and
GESA(q) only start to noticeably deviate for q � 5qF, and the
PIMC data, too, appear to remain nearly constant for large q.
In addition, the black dashed curve is only reliable for q � 5qF

as data for larger wave numbers had not been included into the
training of the neural net (see Ref. [94] for details).

FIG. 10. Inverted local field correction for rs = 20 at θ = 1 (top),
1 (center), and 4 (bottom). Green squares and black dashed line:
PIMC results for G(q) from Ref. [104] and corresponding neural-
net results [94]. Solid red and dotted gray: ESA and large-q limit
[Eq. (11)]. Yellow triangles: inverted LFC Gclassical(q) [see Eq. (25)].
Purple diamonds: LFC from the classical relation (26).

Unsurprisingly, the inverted data for Ginverted(q) closely
follow GESA(q) over the entire q range, and both ESA and
the static approximation give highly accurate results for S(q)
and v.

Let us next more closely examine the connection between
the ESA and the classical limit, where G(q) is sufficient to
compute exact results for S(q) [see Eq. (24) above]. In partic-
ular, Eq. (24) can be straightforwardly solved for G(q), which
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gives the relation

Gclassical(q) = 1 − q2

4π

(
1

S(q)
− 1

)
1

βn
, (26)

which, too, is exact in the classical limit.
At the same time, it is interesting to evaluate Eq. (26) for

a quantum system to gauge the impact of quantum effects on
exchange-correlation effects at different wave numbers q. The
results are depicted by the purple diamonds in Fig. 10. In the
ground state, i.e., β → ∞, it holds Gclassical(q) = 1 for all q,
as the second term is proportional to T and, hence, vanishes.
For θ = 1, Gclassical(q) does depend on q, but is still quali-
tatively wrong over the entire depicted wave-number range.
In particular, it strongly violates the compressibility sum rule
(15) and does not even decay to zero in the limit of small
q. Finally, Gclassical(q) does more closely resemble the other
curves at θ = 4, but still substantially deviates everywhere.
We thus conclude that quantum effects are paramount even at
θ = 4 and rs = 20, and can only be neglected at significantly
higher temperatures.

B. Static structure factor

The next quantity to be investigated with the ESA scheme
is the static structure factor S(q), which we show in Fig. 11.
The left column corresponds to rs = 20 and, thus, constitutes
the most challenging case for the ESA due to the dominant
character of exchange-correlation effects at these conditions.

Let us start with the top panel, showing results for the
ground state. The green squares are state-of-the-art diffusion
Monte Carlo results by Spink et al. [17] and constitute the
gold standard for benchmarks. The solid red curve has been
obtained using GESA(q) and is in remarkable agreement for all
q, even in the vicinity of the peak of S(q) around q ≈ 2.25qF.
In contrast, the blue dotted STLS curve does not capture this
feature and exhibits pronounced systematic deviations except
in the limits of small and large wave numbers.

The center panel in the left column has been obtained for
θ = 0.5, and the green squares are finite-T PIMC data taken
from Dornheim et al. [104]. Again, the ESA gives a very good
description of S(q), although the peak height is somewhat
overestimated. Still, the description is strikingly improved
compared to the STLS approximation.

Lastly, the bottom panel has been obtained for θ = 4,
where ESA cannot be distinguished from the PIMC reference
data within the given Monte Carlo error bars. STLS, too, is
quite accurate in this regime, although there remain systematic
deviations at intermediate q.

Finally, we mention the dashed-dotted yellow curve in all
three panels, that have been obtained within RPA. Evidently,
this mean-field description is unsuitable at such low densities
even at relatively high values of the reduced temperature θ .

The right column of Fig. 11 has been obtained for a
density that is of prime interest to WDM research, rs = 5.
Again, the top panel corresponds to the ground state and
shows relatively good agreement between diffusion Monte
Carlo, ESA, and STLS, although the latter does not capture
the small correlation induced peak in S(q). The RPA, on the
other hand, remains inaccurate despite the reduced coupling
strength compared to the left panel.

At θ = 1 (center panel), the situation is quite similar, with
the ESA being nearly indistinguishable to the PIMC data over
the entire q range, whereas STLS is too large for small and
too small for large wave numbers.

Finally, the bottom panel corresponds to θ = 4. Here, too,
only the ESA is capable to reproduce the PIMC data, whereas
STLS and in particular RPA exhibit systematic errors.

C. Interaction energy

The next important quantity to be investigated in this work
is the interaction energy v, which, in the case of a uniform
electron gas, is simply given by a one-dimensional integral
over the static structure factor S(q) [see Eq. (8)] that we
evaluate numerically. The results are shown in Fig. 12, where
we depict the θ dependence of v for four relevant values of the
density parameter rs.

More specifically, the top left panel corresponds to rs = 2,
i.e., a metallic density that is typical for WDM experiments
using various materials, and we plot the relative deviation in
v compared to the accurate parametrization of the UEG by
Groth et al. [69]. At these conditions, both the ESA (solid red)
and the static approximation (dashed gray) are very accurate
over the entire θ range, with a maximum deviation of �v/v ∼
1%. The STLS approximation (dotted blue), too, is capable to
provide accurate results for v, with a maximum deviation of
∼2%.

Let us proceed to the top right panel corresponding to rs =
5, a relatively sparse density that can be realized, e.g., in ex-
periments with hydrogen jets (see above). First and foremost,
we note that both the ESA and STLS provide a remarkably
good description of the interaction energy, and the systematic
error never exceeds 2%. Somewhat surprisingly, STLS even
gives slightly more accurate data for small values of θ com-
pared to ESA. Yet, this is due to a fortunate cancellation of
errors in S(q) under the integral in Eq. (8) [S(q) is too large for
small q and too small for large q, which roughly balances out]
[4,100] since the static structure factor S(q) is comparatively
much better in ESA than in STLS (cf. Fig. 11). Similarly, the
LFC in STLS differs significantly from both the static limit
and the ESA at these conditions (see Fig. 4 above). In addition,
we note that the static approximation performs substantially
worse for low temperatures, which is due to the unphysically
slow convergence of S(q) towards 1 for large q (see Secs. II C
and II D above).

The bottom left panel shows the same analysis for rs =
10, and even for this strong coupling strength that constitutes
the boundary of the electron liquid regime [96], the error in
ESA does not exceed 2%. In addition, the STLS exhibits a
comparable accuracy in v, whereas the static approximation
fails at low θ as it is expected.

Finally, the bottom right panel shows results for very strong
coupling rs = 20. Overall, the ESA gives the most accurate
data for v of all depicted approximations, and is particularly
good both at large temperature and in the ground state. In con-
trast, the STLS approximation for G(q) results in a relatively
constant relative deviation of ∼2% − 3%, whereas the static
approximation cannot reasonably be used for these values of
the density parameter.
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FIG. 11. Static structure factor at rs = 20 (left) and 5 (right) at different θ . Green squares: T = 0 QMC data [17] and finite-T PIMC data
[104]; solid red: ESA; dotted blue: STLS [105,108,110]; dashed-dotted yellow: RPA.

D. Density response function

This section is devoted to a discussion of the suitability of
frequency-averaged LFCs for the determination of the exact
static limit of the density response function χ (q). In this case,
the previously discussed static approximation, i.e., using the
neural-net representation of G(q, 0) from Ref. [94], is exact,
and the large-q limit of frequency-independent theories G(q)
given by Eq. (11) is spurious. On the other hand, we might
expect that the impact of the LFC decreases for large q,

such that GESA(q) and G(q) could potentially give similar
results.

To resolve this question, we show χ (q) in Fig. 13 for three
representative values of the density parameter rs, with the
green, red, and black sets of curves corresponding to θ = 4,
1, and 0, respectively. Let us start with the top panel showing
results for a metallic density rs = 2, with the dotted, dashed,
and solid curves corresponding to ESA, the exact static limit,
and STLS, respectively. First, we note that all three curves
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FIG. 12. Relative deviation in the interaction energy v [see Eq. (8)] compared to the parametrization by Groth et al. [69]. Solid red circles:
ESA; dotted blue diamonds: STLS [105,108,110]; dashed gray crosses: static approximation using the neural-net representation from Ref. [94].

exhibit the correct parabolic shape for small wave numbers
[113]

lim
q→0

χ (q) = −4π

q2
. (27)

In particular, Eq. (27) is a direct consequence of the 4π/q2

prefactor in front of the LFC in Eqs. (1) and (10), which
means that its impact vanishes for small q. With increasing
wave numbers, χ (q) exhibits a broad peak around q ≈ 1.5qF,
which is also well reproduced by all curves. Moreover, the
ESA is virtually indistinguishable from the exact result for
all three temperatures, whereas STLS noticeably deviates, in
particular at θ = 0.

The center panel shows the same analysis for rs = 5. As
discussed above, the increased coupling strength means that
the impact of the LFC is more pronounced in this case,
and the STLS curve substantially deviates at intermediate
wave numbers, except for the highest temperature θ = 4. In
stark contrast, the ESA is in excellent agreement to the exact
curve everywhere, and we find only minor deviations for
2qF � q � 3qF. In this sense, the ESA combines the best from
two worlds, by giving excellent results both for frequency-
averaged quantities like S(q), and really static properties like
χ (q, 0) over the entire WDM regime.

This nice feature of the ESA is only lost when entering the
strongly coupled electron liquid regime, as it is demonstrated
in the bottom panel of Fig. 13 for rs = 20. In this case, the
static density response function is more sharply peaked at low
temperature and exhibits a nontrivial shape that is difficult to
resolve. Therefore, the STLS approximation is not capable to
give a reasonable description of either the peak position or
the shape (see Ref. [104] for a more extensive analysis on this
point including even larger values of the density parameter rs).
The ESA, on the other hand, is strikingly accurate for both

θ = 4 and 1, but substantially deviates from the exact curve
for 2qF � q � 4qF in the ground state.

E. Dielectric function

The dynamic dielectric function ε(q, ω) is defined as

ε(q, ω) = 1 − χ (q, ω)
q2

4π
+ χ (q, ω)

, (28)

and is important in both classical and quantum electrodynam-
ics, in particular for the description of plasma oscillations
[98,121,122]. Since a more detailed analysis of this quantity
has been presented elsewhere [89,98], here we restrict our-
selves to a brief discussion of ESA results for the static limit
of Eq. (28), ε(q).

The results are shown in Fig. 14, where the left panel shows
the dielectric function for rs = 5 and θ = 1. Remarkably, we
find substantial disagreement between the different results for
small wave numbers q, which is in striking contrast to linear
response properties like χ (q) and also the SSF S(q). For the
latter quantities, the impact of the LFC vanishes for small q
as it has been explained above, such that even the mean-field
description within the RPA becomes exact in this limit. The
dielectric function, on the other hand, always diverges for
small q, and this divergence is connected to the CSR for the
static LFC [Eq. (15)] [89,108]:

lim
q→0

ε(q) = − 4πχ0(q)

q2[1 + 4πCχ0(q)]
, (29)

where C is the prefactor to the parabola in Eq. (15):

C = − 1

4π

∂2

∂n2
(n fXC). (30)

In principle, exact knowledge of the static LFC as it is encoded
in the neural-net representation from Ref. [94] gives access to
the exact static dielectric function depicted in Fig. 14. Yet,
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FIG. 13. Static density response function χ (q) for rs = 2 (top),
5, and 20 (bottom). The dotted, solid, and dashed lines have been
obtained by inserting into Eq. (10) GESA(q), GSTLS(q), and the neural-
net representation of G(q, 0) from Ref. [94], respectively. Green
curves: θ = 4; red: θ = 1; black: θ = 0.

while the exact relation (15) was indeed incorporated into
the training procedure of the neural net, it was not strictly
enforced and, thus, is only fulfilled by the static (gray dashed)
curve with a finite accuracy. Therefore, this curve violates
Eq. (29) and attains a finite value in the limit of q → 0, which
is unphysical.

Our new analytical representation of GESA(q), in contrast,
exactly incorporates the CSR, which means that the solid red
curve exhibits the correct asymptotic behavior (depicted as
the dashed-dotted green curve). Finally, the dotted blue curve

has been obtained on the basis of the approximate GSTLS(q),
and starkly deviates from the exact asymptotic limit. Indeed,
the violation of the CSR is a well-known shortcoming of the
STLS approach [108], which has ultimately led to the devel-
opment of the approach by Vashista and Singwi [123,124].

The right panel of Fig. 14 shows the corresponding data
for the inverse dielectric function ε−1(q). Here the static
and ESA curves are in excellent agreement over the entire
q range, which, again, highlights the value of the analytical
parametrization which is capable to accurately describe both
ε(q) and ε−1(q) at the same time.

Let us conclude this section with an example at strong
coupling, rs = 20 and θ = 1, depicted in Fig. 15. First, we
note that here the ESA and CSR curves for ε(q) diverge
towards negative infinity, which is the result of a negative
compressibility at these conditions (see also Refs. [89,108]).
For completeness, we note that this is a necessary, but not
sufficient condition for instability [1], and, thus, not problem-
atic. The STLS curve, too, diverges towards negative infinity,
although with a substantially different slope. Finally, the static
curve becomes increasingly inaccurate for small q and again
attains a finite value for q = 0.

Regarding the inverse dielectric function (right panel), the
negative compressibility is reflected by a nontrivial shape of
this quantity, with a minimum around q ≈ 1.8qF. Here, too,
we note that ESA and the static curve are in excellent agree-
ment everywhere, whereas the STLS approximation gives a
substantially wrong prediction of both the location and the
depth of the minimum in ε−1(q).

F. Dynamic structure factor

The final property of the UEG to be investigated in this
work is the dynamic structure factor S(q, ω), which is shown
in Fig. 16 for θ = 1. The left panel corresponds to the usual
metallic density rs = 2, and the dotted green curves are ab
initio PIMC results taken from Ref. [96] that have been ob-
tained by stochastically sampling the dynamic LFC G(q, ω).
In addition, the solid red and dashed black curves have been
obtained by using the ESA and the static approximation, and
are in virtually perfect agreement to the PIMC data every-
where. This illustrates that a static description of the LFC is
fully sufficient to describe the dynamic density response of
electrons at these conditions (see also Refs. [89,95–97] for
more details).

The right panel corresponds to a stronger coupling strength
rs = 10, which is located at the margins of the electron liquid
regime. While the ESA and static approximation here, too,
basically give the same results, both curves exhibit systematic
deviations towards the exact PIMC data. This is a direct conse-
quence of the increased impact of the frequency dependence
of electronic exchange-correlation effects expressed via the
dynamic LFC at these conditions [96].

Interestingly, the impact of the dynamic LFC only mani-
fests in a pronounced way in the shape of S(q, ω), whereas its
normalization [i.e., the SSF, see Eq. (7)] is hardly affected.
This is demonstrated in Fig. 17, where we show the cor-
responding S(q) for the same conditions. For example, for
both q = 1.25qF and 1.88qF, the shape of the PIMC data for
S(q, ω) significantly deviates from the other curves, whereas
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FIG. 14. Left: static dielectric function ε(q) for rs = 5 and θ = 1. Solid red: ESA; dashed gray: exact static limit using the neural net from
Ref. [94]; dashed-dotted green: CSR, Eq. (15); dotted-blue: STLS [105,108,110]. Right: same data for the inverse dielectric function ε−1(q).

the SSF is nearly perfectly reproduced by both the ESA and
the static approximation.

For larger q, the results for the SSF of G(q) and GESA(q) do
start to deviate, but this has no pronounced impact on S(q, ω)
itself.

We thus conclude that both the usual static approximation
and our ESA scheme [100] are equally well suited for the
description of dynamic properties at WDM conditions, but are
not suited for a qualitative description of the dynamic density
response of the strongly coupled electron liquid regime, for
which a fully dynamic local field correction has been shown
to be indispensable.

G. Test charge screening.

According to linear response theory, the screened potential
of an ion (with charge Ze) can be computed using the static
dielectric function as [88,125]

�(r) =
∫

d3q

(2π )3

4πZe

q2

eiq·r

ε(q)
, (31)

which is valid for the weak electron-ion coupling. The latter
condition is satisfied at large distances from the ion [126].

As discussed in Sec. IV E above, the violation of the exact
limit (29) leads to the unphysical behavior of the static dielec-
tric function computed using the neural-net representation of
the LFC from Ref. [94]. This results in incomplete screening
when the corresponding static dielectric function is used to
compute the screened potential. To illustrate this, we show
the screened ion potential (with Z = 1) for rs = 2, θ = 0.5,
and θ = 1.0 in Fig. 18, where the screened ion potential is
computed using ESA given by Eq. (22), the neural-net repre-
sentation of the LFC from Ref. [94], and RPA.

From Fig. 18, it is clearly seen that the neural-net repre-
sentation based result for the screened potential exhibits an
∼1/r asymptotic behavior at large distances. In contrast, the
screened potential obtained using the analytical representa-
tion GESA(q; rs, θ ) correctly reproduces complete screening
like RPA based data, with a Yukawa-type exponential screen-
ing at large distances [126]. Finally, we note that electronic
exchange-correlation effects, taken into account by using the

FIG. 15. Left: static dielectric function ε(q) for rs = 20 and θ = 1. Solid red: ESA; dashed gray: exact static limit using the neural net from
Ref. [94]; dashed-dotted green: CSR, Eq. (15); dotted-blue: STLS [105,108,110]. Right: same data for the inverse dielectric function ε−1(q).
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FIG. 16. Dynamic structure factor of the uniform electron gas at θ = 1 for rs = 2 (left) and 10 (right). Solid red: ESA; dashed black: static
approximation; dotted green: ab initio reconstructed PIMC results using a stochastically sampled dynamic LFC, taken from Ref. [96].

LFC, lead to a stronger screening of the ion potential com-
pared to the RPA result [87,88,126].

H. Stopping power

A further example for the application of the LFC is the
calculation of the stopping power, i.e., the mean energy loss
of a projectile (an ion) per unit path length, and related
quantities such as the penetration length, straggling rate, etc.
These energy dissipation characteristics are of paramount
importance for such applications as ICF and laboratory astro-

FIG. 17. Static structure factor of the UEG for rs = 10 and θ = 1
(cf. right panel of Fig. 16). Green squares: PIMC data taken from
Ref. [96]; solid red: ESA; dashed black: static approximation; dotted
blue: STLS [105,108,110]; dashed-dotted yellow: RPA.

physics [127,128]. A linear response expression based on the
dynamic dielectric function that describes the stopping power
for a low-Z projectile when the ion-electron coupling is weak
[129,130] is given by [129]

S(v) = 2Z2e2

πv2

∫ ∞

0

dk

k

∫ kv

0
dω ω Im

[ −1

ε(k, ω)

]
, (32)

where v is the ion velocity.
Recently, using Eq. (32), the neural-net representation of

the LFC [94] was used to study the ion energy-loss character-
istics and friction in a free-electron gas at warm dense matter
conditions [85]. Therefore, it is required to check whether the
discussed unphysical behavior of certain quantities based on
the neural-net representation of the LFC [94] also manifests
in the stopping power. The comparison of the ESA (22) based
data for the stopping power to the results obtained using the
neural-net representation of the LFC [94] is shown in Fig. 19
for rs = 2, θ = 0.5, and θ = 1.0. From Fig. 19 we see that
the ESA and the neural-net representation based results for
the stopping power are in agreement with a high accuracy.
Additionally, a comparison to the RPA based data shows
that electronic exchange-correlation effects are significant at
projectile velocities v � vF . We refer an interested reader to
Ref. [85] for a more detailed study in a wider parameter range.

V. SUMMARY AND DISCUSSION

A. Summary

The first main achievement of this work is the construction
of an accurate analytical representation of the effective static
approximation for the local field correction GESA(q; rs, θ )
covering all wave numbers and the entire relevant range
of densities (0.7 � rs � 20) and temperatures (0 � θ � 4).
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FIG. 18. Screened ion potential at rs = 2, θ = 0.5, and θ = 1.
Solid red: the data computed using the analytical representation of
the ESA (22); dashed black: static approximation computed using
the neural-net representation of the static local field correction from
Ref. [94]; dotted blue: RPA result; dashed gray line shows ∼1/r be-
havior of the neural-net representation based data at large distances.

Our fit formula [Eq. (20)] well reproduces the original ESA
scheme presented in Ref. [100] while exactly incorporating
the CSR in the limit of small wave numbers, and without the
need for the evaluation of the neural net from Ref. [94]. A
short implementation of Eq. (20) in PYTHON is freely avail-
able online [102] and can easily be incorporated into existing
codes; see the next section for a short list of potential applica-
tions.

FIG. 19. Stopping power at rs = 2, θ = 0.5, and θ = 1. Solid
red: data computed using the analytical representation of the ESA
(22); dashed black: static approximation computed using the neural-
net representation of the static local field correction from Ref. [94];
dotted blue: RPA result. The lower x axis corresponds to v/vth and
the upper x axis to v/vF , with vth and vF being the thermal velocity
and Fermi velocity of electrons, respectively.

The second aim of this paper is the further analysis of the
ESA in general and our fit formula in particular regarding the
estimation of various electronic properties. Here one finding
of considerable interest has been the estimation of an effective
static LFC Ginvert(q) that, when being inserted into Eq. (1),
exactly reproduces the static structure factor S(q) known from
QMC calculation both in the ground state and at finite temper-
ature. Remarkably, Ginvert(q) almost exactly follows GESA(q)
for all wave numbers, which further substantiates the quality
of the relatively simple idea behind the ESA. As it is expected,
the latter gives very accurate results both for S(q) and the
interaction energy v, in particular at metallic densities where
we find relative deviations to PIMC data not exceeding 1%.

A further point of interest is the utility of the ESA re-
garding the estimation of the static density response function
χ (q) and the directly related dielectric function ε(q). More
specifically, the neural-net representation of the exact static
LFC G(q; rs, θ ) should give exact result for these quantities,
whereas the definition of GESA(q; rs, θ ) as a frequency-
averaged LFC could potentially introduce a bias in this limit.
Yet, we find that the ESA gives virtually exact results over the
entire WDM regime (even in the ground state), whereas said
bias only manifests in χ (q) for the strongly coupled electron
liquid regime rs = 20. In addition, the exact incorporation of
the CSR for small q in our parametrization of GESA(q; rs, θ )
means that the present results for the dielectric function ε(q)
are even superior to the corresponding prediction by the neu-
ral net, where the CSR is only fulfilled approximately, i.e.,
with finite accuracy. In particular, the ESA gives the correct
divergence behavior of ε(q) in the limit of small q, whereas
the neural net predicts a finite value for q = 0, which is un-
physical [1,89].

A third item of our analysis is the application of the ESA
for the estimation of the dynamic structure factor S(q, ω),
where we find no difference to the usual static approxi-
mation [89,95,96]. More specifically, both G(q; rs, θ ) and
GESA(q; rs, θ ) are highly accurate at WDM densities, but can-
not reproduce the nontrivial shape of S(q, ω) associated with
the predicted incipient excitonic mode [26,131] in the electron
liquid regime.

Furthermore, we have compared our parametrization of
GESA(q; rs, θ ) and the neural-net representation of G(q; rs, θ )
regarding the construction of an electronically screened ionic
potential �(r). While the resulting potentials are in excellent
agreement for small to intermediate distances r, the afore-
mentioned inaccuracies of the neural net at small q lead
to a spuriously slow convergence of �(r) at large ionic
separations r.

Finally, the stopping power calculation results show that
the ESA and the neural-net representation of the LFC are
equivalent for this application. Therefore, both the presented
analytical fit formula for the ESA and the neural-net repre-
sentation of the LFC can be used to study ion energy-loss in
WDM and hot dense matter.

B. Discussion and outlook

The ESA scheme has been shown to give a highly reli-
able description of electronic XC effects and, in our opinion,
constitutes the method of choice for many applications both
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in the context of WDM research and solid-state physics in the
ground state.

Due to its definition as a frequency-averaged LFC, the
ESA is particularly suited for the construction of advanced
XC functionals for DFT simulations based on the adia-
batic connection and the fluctuation dissipation theorem
[79–82]. This is a highly desirable project, as the pre-
dictive capability of DFT for WDM calculations is still
limited [118].

Second, we mention the interpretation of XRTS experi-
ments [77,78] within the Chihara decomposition [132] where
electronic correlations are often treated insufficiently. In this
regard, the remarkable degree of accuracy provided by both
ESA and the static approximation, and the promising results
for aluminum shown in Ref. [100], give us hope that an
improved description of XRTS signals can be achieved with
hardly any additional effort.

Third, the ESA can be used to incorporate electronic XC
effects into many effective theories in a straightforward way.
Here, examples include quantum hydrodynamics [90,91,133],
average atom models [92], electronically screened ionic po-
tentials [87,134,135], and dynamic electronic phase-field
crystal methods [136].

Finally, we mention the value of the LFC in general and the
ESA in particular for the estimation of a multitude of material
properties like the electronic stopping power [85], thermal
and electrical conductivities [89], and energy relaxation rates
[137–139].

From a theoretical perspective, the main open challenge is
given by the estimation of the full frequency dependence of
the LFC G(q, ω), which is currently only possible for certain
parameters [89,95,96]. One way towards this goal would be
the development of new fermionic QMC approaches at finite
temperature, to estimate the imaginary-time density-density
correlation function F (q, τ ), the crucial ingredient for the re-
construction of both S(q, ω) and G(q, ω). Here, the phaseless
auxiliary-field QMC method constitutes a promising candi-
date [66].

A second topic for future research is given by the
comparison of GESA(q; rs, θ ) to different dielectric theories
[105,108,124,140–142], in particular the recent scheme by
Tanaka [140] and the frequency-dependent version of STLS
[143–145].
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