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Role of coherence in quantum-dot-based nanomachines within the Coulomb blockade regime
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During the last decades, quantum dots within the Coulomb blockade regime of transport have been proposed
as essential building blocks for a wide variety of nanomachines. This includes thermoelectric devices, quantum
shuttles, quantum pumps, and even quantum motors. However, in this regime, the role of quantum mechanics
is commonly limited to provide energy quantization while the working principle of the devices is ultimately the
same as their classic counterparts. Here, we study quantum-dot-based nanomachines in the Coulomb blockade
regime, but in a configuration where the coherent superpositions of the dots’ states plays a crucial role. We show
that the studied system can be used as the basis for different forms of “true” quantum machines that should
only work in the presence of these coherent superpositions. We analyze the efficiency of these machines against
different nonequilibrium sources (bias voltage, temperature gradient, and external driving) and the factors that
limit it, including decoherence and the role of the different orders appearing in the adiabatic expansion of the
charge/heat currents.
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I. INTRODUCTION

The high degree of control and the discrete energy spec-
trum of coupled quantum dots (QDs), sometimes referred
to as quantum dot molecules, make them especially suit-
able for the manipulation of charge and energy fluxes in the
nanoscale. This is crucial for nanoscopic heat and charge
management, the development of new quantum information
technologies, and the design of different forms of quantum
machines [1–6]. In this regard, experimental and theoretical
studies have shown that quantum-dot-based designs may pro-
vide remarkable performances in thermoelectric devices that
exchange electrical and thermal energies [7–11]. The pump-
ing of charge and heat on quantum-dot-based driven systems
has been extensively studied [10,12–24]. In recent years, the
reverse process in which heat or charge currents are used
to propel a mechanical device has also gained considerable
attention [25–37].

In all the above systems, it is assumed that the typical
size of the device is smaller than the characteristic coher-
ence length of the electrons. It is clear then that quantum
mechanics becomes crucial for the description of these forms
of nanodevices, which can be put together under the generic
name of quantum machines. Depending on the type of energy
conversion involved they are usually referred to as (adiabatic)
quantum motors, (adiabatic) quantum pumps (or generators),
quantum heat engines, or quantum heat pumps [6,38]. In a
quantum motor, a dc electric current is transformed into me-
chanical work while in a quantum pump, an ac electrical or
mechanical driving is turned into a dc electric current. Quan-
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tum heat engines and heat pumps are very similar systems
but the power source involves temperature gradients instead
of bias voltages, and the focus is shifted from charge currents
to heat currents.

The role of quantum mechanics on quantum-dot-based
machines strongly depends on the system’s conditions. Here,
we focus on the adiabatic regime, where the modulation of
the system’s parameters is slow as compared with the typical
time spent by the electrons inside it. However, even within this
condition there are different transport regimes that should be
distinguished. For example, in the ballistic regime, described
by a mean-field approximation of the electron repulsion, the
working principle of adiabatic quantum pumps and motors
can be attributed to interference effects of the electrons pass-
ing through the modulation region [12,26,39–41]. On the
other hand, in the Coulomb blockade regime, quantum ef-
fects are typically restricted to energy quantization so that
the internal pumping mechanism, beyond the quantization of
the transported charge, resembles that of a classical pump. In
this case, some form of rate equation relating the occupation
probabilities of the quantum-dot states is typically used to de-
scribe the system, while the coherent superpositions between
them can be disregarded in a first approximation. Quantum
pumping [10,15,22–24,29,42–45], shuttle transport [37,46],
and even adiabatic quantum motors [31] have been studied by
using this approach. Other strategies, like the nonequilibrium
Green’s function formalism, have also been used in the past to
study quantum pumping within the Coulomb blockade regime
[47,48]. However, the working principle of the device can also
be explained by relying on a classical analog.

Based on the above, it is fair to wonder, once in the
adiabatic and Coulomb blockade regimes, how “quantum” a
nanomachine based on quantum dots can be. In this context,
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the weak interdot tunnel coupling regime provides a useful
platform to test the role of coherent superpositions of the dots’
states. This is so because the degeneracy of dots’ states brings
together both occupations and coherences [49] on the same
timescale, which correspond to the diagonal and off-diagonal
elements of the dots’ reduced density matrix, respectively. As
a consequence of that, coherences survive even at the steady
state of the system. In particular, in Ref. [50] charge pump-
ing was studied for a double quantum dot (DQD) coupled
in series. They found that the coupling between coherences
and occupations is responsible for charge pumping. However,
given that both coherences and electron transport rely entirely
on the interdot coupling, taking this coupling to zero trivially
sets the current to zero. Thus, although the “quantumness”
of the pumping mechanism is clearly present, its effect is
somewhat hidden. On the other hand, in Ref. [51] the authors
analyzed charge pumping in an Aharonov-Bohm interferom-
eter configuration of the dots. As in this case there is no
explicit interdot coupling, the role of quantum superposition
becomes more clear. Similarly, for quantum systems weakly
coupled to thermal reservoirs, the role of coherences in the
thermodynamics was analyzed in Ref. [52] for degenerate
quantum dots, while the relevance of coherent effects in the
adiabatic dynamics is discussed in Ref. [53].

In this work, we exploit the weak interdot coupling regime
in a DQD to analyze the role of coherence in a broad class of
quantum machines such as charge/heat pumps and nanomo-
tors driven by bias voltages or temperature gradients. We
use a real-time diagrammatic approach [42,54] that takes into
account both the occupations and coherences in lowest order
in the tunnel coupling to the leads. Importantly, the inclusion
of the off-diagonal elements of the reduced density matrix
goes beyond what is understood by the “sequential tunneling
regime.”

We start our description of the known [50] charge pumping
mechanism for the DQD in series and then we focus on the
parallel configuration, which highlights the role of quantum
superposition in the steady state of quantum transport. These
devices are coupled to some classical degree of freedom,
which provides the necessary dot energy level modulation for
the machine to become operational. Figure 1 illustrates the
considered models for our proposal. We show that the above-
mentioned regime dominated by coherences also applies to
quantum motors fueled by a finite bias voltage. In particular,
we demonstrate that the existence of coherences (and their
coupling to the occupations) is always necessary for these de-
vices to function. In addition, we include in our description an
external force acting on the (classical) mechanical component
of the system. Such a force allows us to bring together the
two operation modes (pump and motor) of the device on a
same basis. These ideas are also extended to the case where
the leads are subjected to different temperatures, giving rise
to quantum heat engines and refrigerators enabled by coher-
ence. We analyze the performance of these machines and the
factors that limit it. This includes (1) a decoherence model
that destroys the coherent superpositions of the DQD states,
by reducing the contribution of the off-diagonal elements of
the reduced density matrix in the transport properties, and (2)
the role of the different orders of the adiabatic expansion of
the involved currents, which leads to leaking effects.

FIG. 1. Example of the types of studied systems: A double quan-
tum dot, either in series (a) or in parallel (b), coupled to some
mechanical degree of freedom. Here, the dots are weakly tunnel
coupled to each other and to source/drain leads (golden contacts).
The dots’ energies are modulated by the gate voltages generated from
the capacitive coupling to a charged rotor (silver contacts). No tunnel
coupling between the dots and the rotor is considered in this model.
Panels (c) and (d) are simplified schemes for the DQD system in
series and in parallel, respectively. The coupling to the mechanical
degree of freedom enters through the dots’ energies E1 and E2. Lead-
dot tunneling events are characterized by four tunneling rates (�S1,
�S2, �D1, and �D2) while the interdot tunnel coupling is described by
tc. Throughout this work, the parallel DQD without interdot coupling
will be dubbed the decoupled parallel configuration.

The paper is organized as follows. In Sec. II, we present
the theoretical framework, including a brief overview of the
real-time diagrammatic approach, the expressions for the ob-
servables, the definitions of the efficiencies, and the used
decoherence model. In Sec. III, we apply the formalism to the
particular example of a DQD weakly tunnel coupled to two
external leads and capacitively coupled to a rotor. In Sec. IV,
we study the performance of the different operational regimes
of the decoupled parallel configuration of the DQD. Finally,
in Sec. V, we summarize the main results.

II. THEORETICAL FRAMEWORK

A. Hamiltonian model

We consider a system composed of QDs in which mechan-
ical and electronic degrees of freedom are present and coupled
to each other. From now on we call this system the local
system, and we model it by the following Hamiltonian:

Ĥlocal = Ĥel(X̂ ) + P̂
2

2m
+ Uext (X̂ , t ), (1)

where X̂ = (X̂1, . . . , X̂N ) is the vector (operator) of me-
chanical coordinates while P̂ = (P̂1, . . . , P̂N ) represents their
associated momenta, m is the effective mass related to X̂ , and
Uext denotes some external mechanical potential that may be
acting on the local system. We use an explicit time depen-
dence in Uext to denote that an external and nonconservative
force might be acting on the mechanical subsystem (see be-
low). The Hamiltonian Ĥel includes the electronic degrees of
freedom of the system, that are participating in the transport,
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as well as their coupling to the mechanical ones through

Ĥel(X̂ ) =
∑

i

Ei(X̂ ) |i〉〈i| , (2)

where the sum runs over all possible electronic many-body
eigenstates |i〉. The system is then weakly coupled to external
leads so the total Hamiltonian reads

Ĥtotal = Ĥlocal +
∑

r

Ĥr + Ĥtun. (3)

The leads are described as noninteracting electron reservoirs
through the Hamiltonian

Ĥr =
∑
kσ

εrk ĉ†
rkσ

ĉrkσ , (4)

where ĉ†
rkσ

(ĉrkσ ) is the creation (annihilation) operator for an
electron with state index k and spin projection σ = {↑,↓}
in the lead r, which we typically take as source and drain
reservoirs, i.e., r = {S, D}. These reservoirs are assumed to
be always in equilibrium, characterized by a temperature Tr

and an electrochemical potential μr [55]. Finally, the tunnel
coupling between the local system and the leads is given by
the tunnel Hamiltonian

Ĥtun =
∑
rkσ�

(tr�d̂†
�σ ĉrkσ + H.c.), (5)

where tr� denotes the tunneling amplitude, which we assume
to be k and spin independent for simplicity. The fermionic
operator d̂†

�σ (d̂�σ ) creates (annihilates) an electron with spin σ

in the quantum dot � composing the local system. The tunnel-
coupling strengths, defined as �r� = 2πρr |tr�|2, quantitatively
describe the rate at which electrons enter (leave) the quantum
dot � from (to) the r reservoir. We also define the total tunnel
rate as � = ∑

r� �r�. The reservoirs are taken to be in the
wideband limit where their densities of states ρr are assumed
to be energy independent. Throughout this paper, we set e = 1
for the absolute value of the electron charge and h̄ = 1.

B. Stationary state regime

We suppose that the dynamics of the electronic and me-
chanical degrees of freedom are well separated from each
other, and therefore we can treat them through the Born-
Oppenheimer approximation. Under this approximation, the
mechanical coordinates can be treated as classical variables
obeying the following Langevin-like equation:

mẌ + Fext = F + ξ, (6)

where F = −〈∇Ĥel〉 = i 〈[∇Ĥel, P̂]〉 is the mean value of the
current-induced forces (CIFs) while ξ stands for its fluctua-
tion. Later on we will see that a friction component arises from
expanding F in terms of the velocity of the mechanical coor-
dinates [26,31,56–61]. The term Fext represents an external
force applied to the mechanical part of the local system and is
related to the potential Uext in Eq. (1). This force will be, in
general, opposed to the bias-induced direction of the CIF, so
we define it with a minus sign for convenience. As we shall see
later, in our model such a quantity appears as the key tool to
set up the different operation modes of the electromechanical
device. If we manage to calculate the expectation value of

the CIF (see Sec. II D) then we can use Eq. (6) to integrate
the classical equations of motion and derive the effective
dynamics of the local system, including both electronic and
mechanical degrees of freedom. In realistic systems, friction
and stochastic forces may have different origins, such as the
coupling to other phononic degrees of freedom. Here, how-
ever, we are only interested in the quantum effects of CIFs.
Thus, we will only take into account friction and stochastic
forces that arise from the coupling to the electronic degrees of
freedom.

Before continuing, some comments about the system are
in order. First, we will focus on systems whose mechanical
part is capable of reaching a stationary regime characterized
by a steady cyclic motion (with some frequency � ∝ Ẋ ) and
whose dynamics can be described by an angular Langevin
equation. If we assume that this rotor follows a circular tra-
jectory then only one parameter, the angle θ , is needed for the
study of its dynamics. In this case we can project Eq. (6) on
the angular direction θ̂ to obtain the following angular form
[6,31]:

θ̈ = 1

I (F − Fext + ξθ ), (7)

where I is the moment of inertia of the mechanical subsystem,
F is the current-induced torque, Fext is the torque associated
with the external force, and ξθ is the stochastic torque which
comes from the angular projection of the CIF’s fluctuation.

Second, in addition to the assumption of cyclic mechanical
motion, we consider that the terminal velocity reached by
the system is constant, i.e., θ̇ = �, during the whole cycle.
This is also justified for large values of I, where the vari-
ation of the angular velocity (together with its fluctuations)
along the cycle becomes negligible [6,27,30,31]. Both nu-
merical and analytical procedures for the calculation of θ̇ ,
before and after reaching stationarity, have been carried out in
Refs. [31,6].

We are now in position to derive a relation between the
work related to the torques F and Fext. This is done by
integrating Eq. (7) over a whole period of the system at the
stationary state, yielding [6]

WF =
∫ τ

0
F θ̇ dt =

∫ τ

0
Fext θ̇ dt = Wext, (8)

where τ = 2π/� is the period of the cycle. The equation
implies that, once the cycle is completed, the work related
to the CIF is balanced by the work done by the external
mechanical force. This equality is fundamental in the sense
that it defines the stationary state condition mentioned before
and allows us to extract the value of θ̇ = �.

C. Generalized master equation

In this section we introduce the formalism that describes
the dynamics of the electronic part of the system. This will
allow us to calculate the expectation value of the CIF, together
with other relevant observables like charge and heat currents,
while exactly taking into account the strong Coulomb inter-
action in the local system. We assume that, before certain
initialization time t0, the leads and the local system are de-
coupled, such that the total density matrix can be factorized
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as ρ̂ = p̂res ⊗ p̂. Here p̂res describes the leads’ density ma-
trix, while p̂ represents the reduced density matrix of the
local system. When both subsystems are coupled together, the
relevant information of the local system dynamics at times

t > t0 is encoded in p̂(t ) = Trres[ρ̂(t )], where Trres is the trace
over the reservoirs’ degrees of freedom. The time evolution
of the matrix elements is governed by the generalized master
equation [42]

d

dt
pα,β (t ) =

∑
α′,β ′

(
−iLα′,β ′

α,β (t )pα′,β ′ (t ) +
∫ t

−∞
dt ′W α′,β ′

α,β (t, t ′)pα′,β ′ (t ′)
)

, (9)

where pα,β (t ) = 〈α| p̂(t ) |β〉 and we have taken the limit t0 →
−∞, in order to neglect any transient effect. The first term
on the right-hand side of this equation takes into account
the internal dynamics of the QDs through the Liouvillian
superoperator L • ≡ [Ĥel, •], while the second term describes
state transitions due to electron tunneling processes between
the leads and the local system. This is quantified by the kernel
superoperator W [62] representing all irreducible diagrams in
the Keldysh double contour [54], and whose matrix element
W α′,β ′

α,β describes the transition between states α′ and β ′ at time
t ′, and states α and β at time t , due to tunnel processes.

To simplify the notation, we gather the diagonal (occupa-
tions) and off-diagonal (coherences) elements of the reduced
density matrix into a vector, p̂ → p ≡ (pd , pn)T, yielding a
matrix representation for both W and L superoperators, i.e.,
W → W and L → L. Here, the diagonal and off-diagonal
elements of the reduced density matrix are contained in pd and
pn, respectively. Thus we can think of W and L as composed
by the following block matrices:

W =
(

W dd W dn

W nd W nn

)
, L =

(
Ldd Ldn

Lnd Lnn

)
. (10)

As we already mentioned, Eq. (2) tells us that the dots’ energy
levels are affected by the cyclic mechanical motion, char-
acterized by a frequency � proportional to the mechanical
velocities Ẋ . If we assume that the dwell time of the electrons
in the local system is much shorter than the mechanical period
τ , then it is possible to perform a frequency expansion on
p(t ) [6,15,31,42,50]. Strictly speaking, this adiabatic approx-
imation holds if the adiabaticity condition �/� � kBT/δε

is satisfied, where δε stands for the energy amplitude of the
QDs’ energy levels. This allows us to expand the reduced
density matrix as p(t ) = ∑

k�0 p(k)(t ) with p(k) ∼ (�/�)k .
The first term, p(0)(t ), represents the steady-state solution
at which the electronic part of the system arrives when the
mechanical coordinates are frozen at time t . In other words,
this order corresponds to the adiabatic electronic response to
the mechanical motion. Note that here we are referring to
the steady state of the electronic part of the system, which
should not be confused with the steady-state regime of the
mechanical degrees of freedom mentioned in the previous
section. From now on, every time we talk about stationarity, it
will be referred to as the mechanical part of the local system.
Higher-order terms (k > 0) represent nonadiabatic corrections
due to retardation effects in the electronic response mentioned
earlier.

On top of this adiabatic expansion for small �, we perform
a perturbative expansion in the tunnel coupling strengths, tak-

ing only terms up to first order in � (which is reasonable in
the weak tunnel coupling limit considered here). Higher-order
processes, like cotunneling, are therefore ignored throughout
this paper. This double expansion gives rise to the following
hierarchy of equations [6,15,31,42,44,50]:

W eff p(0) = 0, W eff p(k) = d

dt
p(k−1), (11)

where we have defined the effective kernel W eff as the zero-
frequency Laplace transform of W − iL, with both matrices
evaluated up to first order in �. We omit the frequency
order superscript in the effective kernel since at this level
of approximation it is always O(�0). We remark that the
above order-by-order expansion relies in (1) taking up to
first-order terms in �, and (2) that the off-diagonal elements
pα,β of the reduced density matrix are of the same order as
the diagonal ones. The latter is due to the fact that in the
weak interdot coupling regime considered in this work (see
Sec. III), the internal parameters of the DQD system are of
the same order as �, and therefore we can take L ∝ � in
this particular case. In other words, we will always work
with the secular elements of the reduced density matrix, de-
fined as those pα,β where |Eα − Eβ | � � [63]. Nonsecular
elements of p̂ can be safely neglected in this lowest order
in � approximation [64]. It should be noted that, even at
this level of the approximation, the above set of equations
goes beyond the sequential tunneling approach since, for the
regime considered, the secular part of p̂ also includes those
off-diagonal elements (α �= β) that cannot be disregarded.
These equations, combined with the normalization condition
on the reduced density matrix, eT p(k) = δk0, allow us to it-
eratively calculate p(0) and any nonadiabatic correction p(k).
The vector eT ≡ (1, . . . , 1, 0, . . . , 0)T is a representation of
the local system’s trace operator, where the number of ones
equals the dimension of the reduced Hilbert space. In light of
this, the nonadiabatic corrections can be written as [44]

p(k) =
(

W̃
−1 d

dt

)k

p(0). (12)

Here W̃ represents the (invertible) pseudokernel, defined as
W̃i j ≡ W eff

i j − W eff
ii for the dd block and W̃i j ≡ W eff

i j for the re-
maining ones, in order to exclude the zero eigenvalue through
the normalization condition. Since the effective kernel is lin-
ear in �, the k term of the reduced density matrix, p(k), is
proportional to (�/�)k . This forces us to assume � < �, in
order to avoid any divergence [42]. More specifically, as the
time dependence considered in this work enters through the
energy levels of the DQD, the above expansion leads to the
aforementioned adiabaticity condition [6]. Once we get p(0)
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(see Appendix B) and any required nonadiabatic correction
p(k), we can proceed with the calculation of all observables
related to the performance of adiabatic quantum machines. In
the next section we discuss the procedure used to achieve this
task.

D. Observables

Now we are going to make use of the formalism described
in the previous section to determine the expectation values
of a set of observables. First, we consider the charge current
Ir (t ) ≡ 〈Îr (t )〉 and the heat current Jr (t ) ≡ 〈Ĵr (t )〉, both asso-
ciated with the r lead. For these quantities we take the sign
convention that in each lead the particle and heat currents are
positive when particles and heat are flowing toward the lead;
thus we can write the currents in the lead r as

Ir (t ) = d

dt
Tr[N̂r ρ̂(t )], (13)

Jr (t ) = d

dt
Tr[(Ĥr − N̂rμr )ρ̂(t )], (14)

where N̂r is the number operator for the electrons in the
reservoir r. We also address the CIF which, unlike the pre-
vious observables, constitutes a local quantity. As we showed
before, Eq. (2) tells us that the mechanical part of the system
only interacts with the local parameters of the dots via their
many-body eigenenergies. This implies that the CIF only con-
sists of fermionic dot operators, and therefore we can write its
expectation value as

F(t ) = − Tr
local

[∇Ĥel p̂(t )], (15)

where the gradient is taken with respect to the mechanical
coordinates X .

The adiabatic expansion developed in Sec. II C can also be
performed over any observable R of interest (Ir , Jr , and F in
our case),

R(t ) =
∑
k�0

R(k)(t ). (16)

To lowest order in �, the R(k) terms can be written as

R(k) = eTAR p(k), (17)

where AR stands for the kernel/matrix associated with the
observable R. The charge and heat currents flowing from the
lead r into the device are represented by the following kernels
[6,10,15,31]:

[AIr ]i j = −ni
[
W eff

r

]
i j, (18)

[AJr ]i j = −(Ei − μrni )
[
W eff

r

]
i j, (19)

where ni and Ei are the number of particles and energy asso-
ciated with the local system’s eigenstate |i〉, respectively, and
W eff

r is the r-lead evolution kernel such that W eff = ∑
r W eff

r .
Regarding the ν component of the CIF, we can directly con-
struct a diagonal matrix from

[AFν ]i j = − ∂Ei

∂Xν

δi j, (20)

where again we make use of its local condition, such that these
elements do not depend on the effective kernel [6,31].

As in the case of p(0), the zeroth-order terms I (0)
r (t ) and

J (0)
r (t ) describe the steady-state currents flowing through the

system in a stationary situation where all time-dependent pa-
rameters are kept constant at time t . The only way for these
terms to be nonzero is when the system is subject to a bias
voltage or a temperature gradient since, in this case, the time
variation of the mechanical parameters has no effective role
in the observables. Higher-order terms represent additional
contributions to the steady-state currents due to the delayed
response of the system to the mechanical motion. From the
above-defined currents R = {Ir, Jr}, we will work with their
integrated quantities over a modulation cycle, i.e., Q(k)

R =∫ τ

0 R(k)dt . In particular, we will refer to Q(1)
R as the pumped

charge/heat per cycle due to the first-order charge/heat cur-
rent R(1).

A similar analysis applies to the CIF, where we take con-
tributions up to first order in the mechanical velocity �, i.e.,
F(t ) = F (0) + F (1). The lowest-order term can be split into
(1) an equilibrium contribution, which is conservative and it
can be interpreted as the Helmholtz free energy of the local
system, and (2) a nonequilibrium term, which appears as a
consequence of temperature gradients or bias voltages among
the leads [31]. The first adiabatic correction to the CIF, pro-
portional to �, gives the frictional force that dissipates energy
from the mechanical part of the local system toward the elec-
tronic reservoirs [6]. For systems with multiple mechanical
degrees of freedom, it also contributes to the energy exchange
between modes and, for finite voltages, it can even allow the
flux of energy from the leads toward the mechanical degrees
of freedom [56,65].

If we now perform an adiabatic expansion of the torque F ,
integrate it over a cycle, and use Eq. (8), we get the relation

WF = s
∑

k

(∫ 2π

0

dθ

k!

∂kF
∂θ̇ k

∣∣∣∣
θ̇=0

)
θ̇ k = s

∑
k

C (k)
F θ̇ k, (21)

where s is the sign of θ̇ and gives the direction in which the
trajectory is traversed. Here, we defined the force coefficients
C (k)

F which are independent of the direction of motion of the
system, not obvious a priori [6]. If we take terms up to k = 1,
the angular velocity can be obtained from Eq. (21) as follows:

θ̇ = � = C (0)
F − Cext

−C (1)
F

, (22)

where we defined Wext = sCext to keep track of every term’s
sign. Note that, for the mechanical subsystem to achieve a
stationary regime in the present model, the stability condition
C (1)

F < 0 should be fulfilled, which implies a positive “friction
coefficient” [6].

E. Efficiency

Previously we stated that the mechanical subsystem per-
forms a cyclic motion along a circular trajectory while
affecting the dots’ energy levels. If we define a closed trajec-
tory C for the system’s parameters that are being modulated,
then the work W (0)

F done by the zeroth-order contribution of
the CIF can be calculated by performing a line integral of F (0)
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along this trajectory or, for two parameters and with the aid of
Stokes’ theorem, we can calculate it in the following way:

W (0)
F =

∫∫
S

∇ × F (0) · dS ≡
∫∫

S
BF · dS. (23)

This means that the work associated with the zeroth-order CIF
can be understood as the surface integral of a curvature vector
BF = ∇ × F (0) (the curl of the force), which is frequency
independent. Analogously, we can define a pumping curvature
for the charge current flowing from/to reservoir r as

Q(1)
Ir

=
∮
C

∂I (1)
r

∂Ẋ
· dX =

∫∫
S
BIr · dS, (24)

and the same can be done for the pumped heat Q(1)
Jr

, via the
curvature BJr . These relations (which are only valid to first or-
der in �) highlight the geometrical nature of these observables
in the sense that they only depend on the chosen trajectory C
[15,45,66].

Equations like (23) and (24) provide a geometrical ap-
proach to the study of adiabatic quantum devices, which has
been discussed by several authors [12,66–68]. One immediate
conclusion from these equations is that the trajectory followed
by the modulation parameters should enclose a finite area.
This implies that there must be at least two out-of-phase
parameters modulating the device.

With the help of the geometric curvatures BF , BIr , and
BJr , one can set a convenient working point in the parame-
ters’ space around which a trajectory C will be defined. For
example, if the goal is to design a nanomotor, this trajectory
should enclose regions of large BF . On the other hand, if
a charge pump is desired, then we should create a closed
trajectory over regions where BIr is large. All these quantities,
together with their integrals, are not independent but related
via order-by-order energy conservation, Onsager’s reciprocal
relations, and the second law of thermodynamics [4–6,28,38].

The order-by-order energy conservation is given by [6,15]∑
r

(
Q(k)

Ir
δVr + Q(k)

Jr

) = −W (k−1)
F . (25)

Here, the superscript (k) indicates the order in the frequency
expansion of the integrated observables, and δVr = δμr/e
where δμr = μr − μ0 (μ0 is the reference chemical poten-
tial). The above equation can be useful to identify energy
losses. For example, in a nanomotor driven by a bias voltage,
energy losses at k = 1 are only due to the pumped heat Q(1)

Jr

resulting from the modulation of the system’s parameters; see
also Ref. [6].

Onsager’s reciprocal relations appear in the linear regime
of transport, characterized by low bias voltages, small tem-
perature gradients, and low velocities of the modulation
parameters [26,38]. For example, in a two-lead configuration
with r = {S, D} and when the leads are kept at the same tem-
perature (i.e., δTr = 0), Onsager’s reciprocal relations imply

Q̃(1)
I �V = −W (0)

F , (26)

where Q̃(1)
I ≡ (Q̃(1)

IS
− Q̃(1)

ID
)/2, δVS,D = ±�V/2, and we use

a tilde in the pumped charge to denote that this quantity is
being evaluated in the limit of zero bias. Similarly, when a

temperature gradient at zero bias voltage is applied between
the contacts we have∑

r

Q̃(1)
Jr

δTr

Tr
= −W (0)

F , (27)

where, again, the tilde states that the pumped heat is evaluated
at equilibrium. Onsager’s relations such as those shown in
Eqs. (26) and (27) provide a general strategy for developing
novel devices from the reciprocal of known machines. For ex-
ample, an adiabatic quantum motor is in essence an adiabatic
quantum pump working in reverse, at least at low bias voltages
[26,31].

The second law of thermodynamics can be expressed in the
following form for the type of systems treated here [6]:

∑
k

[
W (k)

F +
∑

r

(
Q(k)

Ir
δVr + Q(k)

Jr

δTr

Tr

)]
� 0, (28)

where δTr = Tr − T0 (T0 is the temperature of reference).
Equation (28) allows us to derive bound expressions for the
device’s efficiencies which, as usual, are defined as the ratio
between the output and input powers per cycle [6]. Before
doing this, we first need to know how to determine the oper-
ational mode of the device, namely, whether the device acts
like a motor or a pump. Using Eq. (22), the sign s of the
constant velocity θ̇ can be determined and, with it, the sign
of Wext. The latter determines the direction of the energy flux
between the local system and the external agent that is acting
on it through Uext; see Eq. (1). If Wext > 0, the energy current
flows from the leads to the dots and, there, it is transformed
into mechanical work, so the device operates as an electric
motor/heat engine depending on the nonequilibrium source.
On the contrary, if Wext < 0 the external agent is performing
mechanical work which is then dissipated through the dots to
the leads, so the device operates as a pump.

Now considering that only a bias voltage is applied, the
generated electrical current delivers an input energy QI�V per
cycle [69], while the output energy is Wext = W (0)

F + W (1)
F .

Thus, the efficiency of this electrical motor is given by

ηem = − W (0)
F + W (1)

F

�V
(
Q(0)

I + Q(1)
I + Q(2)

I

) � 1, (29)

in consistence with Eqs. (25) and (28) for a truncation in the
frequency expansion up to first order in the CIF, which implies
a second-order term in the currents [6,15]. In the opposite
case where Wext < 0, now the input and output energies swap
roles, so the efficiency of this electrical pump is

ηep = −�V
(
Q(0)

I + Q(1)
I + Q(2)

I

)
Wext

� 1. (30)

Such a quantity, however, is only well defined in the case
where the total amount of transported charge per period QI

is opposed to that given by the natural direction of the bias
current. In the used sign convention for the charge currents
this means that QI�V > 0.

A similar analysis can be done in the case where one
replaces the bias voltage by a temperature gradient between
the contacts, such that the device can operate either as a heat
engine or a refrigerator. By establishing different temperatures
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in the leads, defined as Thot = T + �T/2 and Tcold = T −
�T/2, a heat current flows through the DQD system which,
in turn, may activate its mechanical component. In this sce-
nario where Wext > 0, the device is driven by the heat current
coming from the hot lead, −QJhot . This means that the device
operates as a heat engine with efficiency

ηhe = − W (0)
F + W (1)

F

Q(0)
Jhot

+ Q(1)
Jhot

+ Q(2)
Jhot

� �T

Thot
, (31)

where QJhot is defined as the time integral of Jhot over a period
given by �, while Jhot is taken up to second order in this
quantity. On the other hand, when Wext < 0 the heat current
flows against the temperature gradient. Assuming that the total
amount of transported heat to the cold reservoir is negative,
QJcold < 0, we can define the efficiency (or coefficient of per-
formance) of this heat pump or refrigerator by the expression

ηhp = Q(0)
Jcold

+ Q(1)
Jcold

+ Q(2)
Jcold

Wext
� Tcold

�T
, (32)

where again the heat current Jcold is taken up to second order
in � [6].

Finally, it is convenient to define normalized efficiencies
with respect to the maximum theoretical value, given by
Eqs. (31) and (32), i.e.,

η̃he = Thot

�T
ηhe, and η̃hp = �T

Tcold
ηhp. (33)

F. Decoherence model

One of the key questions motivating this work is whether
quantum coherence plays a role in the operation of QD-based
nanodevices such as adiabatic quantum motors and pumps.
In this regard, studying the effect of decoherence on the ma-
chines’ performance is crucial.

Calculating decoherent relaxation times from a micro-
scopic theory would require identifying the dephasing mech-
anisms, which is beyond the scope of this work. Instead, we
choose a phenomenological approach [14,70] that consists of
inserting the relaxation times directly into the master equa-
tions. In our case, this implies adding to the kernel W eff a
decoherence rate �φ [71]. The inclusion of �φ is only done in
the diagonal elements of the nn block of W eff , i.e., [W eff

nn ]ii →
[W eff

nn ]ii − �φ . This phenomenological rate describes any de-
coherent process that may occur in the quantum dots, present
even in the absence of a coupling to the leads. This type
of decoherence destroys the information about the relative
phase in a superposition of states α and β (pα,β ) without
changing the populations of the states (pα,α and pβ,β ). Without
a coupling to the reservoirs, this formally leads to a decay
of the off-diagonal matrix element pα,β (t ). In our case, how-
ever, there is also a replenishing mechanism given by the
fact that when electrons enter into the system, they do it in
a superposition state. Therefore, it is expected that coherences
pα,β reach a �φ-dependent steady state at long times. In the
following sections, we will take �φ as an “external knob” that
can be used to test the effect of decoherence on the machines’
performance.

III. DQD IN THE WEAK INTERDOT COUPLING REGIME

In this section we will apply the formalism and assump-
tions described previously to the particular example of a
double dot weakly coupled to two external leads and capac-
itively coupled to a rotor.

A. Hamiltonian and physical model

The local system we are about to study is a DQD device
composed of two single-level spin-degenerate quantum dots
coupled to each other, together with a rotative mechanical
piece placed in their proximity and capacitively coupled to
them. This will be the only type of coupling considered be-
tween the dots and the rotor; i.e., tunneling events between
these subsystems are not taken into account. At the same time,
the whole device is weakly coupled to source (S) and drain
(D) leads, as depicted in Fig. 1. By weak coupling we mean
that the broadening due to tunneling events is much smaller
than the temperature broadening, i.e., � � kBT . Notice that,
depending on the choice of the tunnel rates �r�, it is possible
to configure the double quantum dot arrangement either in
series or in parallel [see Figs. 1(c) and 1(d)]. The asymmetry
between source and drain rates is quantified by the factor

λ = (�S − �D)/�, (34)

where �r = �r1 + �r2. In addition, for a specific lead r =
{S, D}, we define the lead-dot asymmetry factor as

λr = (�r1 − �r2)/�r . (35)

These factors will be useful later on for setting different sys-
tem configurations and for the search of a suitable working
point (see Secs. III C and IV). The local system is represented
by the electronic Hamiltonian

Ĥel =
∑

�

E�n̂� + Un̂1n̂2 + U ′

2

∑
�

n̂�(n̂� − 1)

− tc
2

∑
σ

(d̂†
1σ d̂2σ + H.c.), (36)

where n̂� is the �-dot particle number operator, defined as n̂� =∑
σ d̂†

�σ d̂�σ , while E� = E�(X ) represents the on-site energy
of each dot � = {1, 2}, which is locally tuned by its coupling
to the mechanical part of the system. tc denotes the interdot
coupling amplitude while U and U ′ represent the inter- and
intradot Coulomb interactions, respectively. For the sake of
simplicity, we will take in the following these parameters to
be much larger than all other energy scales in the system
(U,U ′ → ∞), such that the double-dot device can only be
singly occupied or empty. Due to these assumptions, the only
states relevant for our system are |0〉 and |�σ 〉, where the
former means that both quantum dots are empty and the latter
that there is one electron with spin σ in the dot �.

Applying a bias voltage and/or a temperature gradient
between the leads will cause charge and heat to flow through
the dots. If the mechanical piece is coupled to the DQD
then an energy exchange between these subsystems is pos-
sible. As Figs. 1(a) and 1(b) suggest, the cyclic motion of
the rotor (which can be thought of as an electrical dipole)
modifies the quantum dots’ energy levels, similarly to the
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action of externally controlled gate voltages. In agreement
with Eqs. (25)–(27), once a bias voltage or a temperature
gradient is applied, the current flowing through the dots re-
leases part of its energy to the mechanical subsystem making
it rotate. The opposite scenario can be achieved by applying
an external force into the mechanical system, such that its
motion produces a finite current through the electronic device.
In Appendix A we discuss in more detail the example shown
in Fig. 1 and how it might be possible to control the coupling
between the quantum dots and the rotor. Another possibility
could be a dipolar molecule in proximity to the quantum
dots such that there exists a capacitive coupling between the
subsystems. In any case, for the purpose of the present work,
what really matters is not the specific details of the mechanical
system, but its effects on the electronic Hamiltonian. What
enables this energy conversion is the dependence of the energy
levels of the dots on the position of the mechanical rotor,
which in this case can be characterized by an angle θ . This
θ dependence is related to physical characteristics such as the
rotor’s length and its position with respect to the DQD, and
the coupling strength between the rotor and the dots. A strict
derivation of this angular dependence requires an accurate
knowledge of the rotor’s details, which can yield complex
parametrizations for the dots’ on-site energies. As the aim of
the work is to unveil the role of coherences on CIFs and not
to focus on specific details of a particular device, we assume
a simple θ dependence for the dots’ energies, given by

E1(θ ) = Ē1 + δE cos(θ ) + δε sin(θ ),

E2(θ ) = Ē2 + δE cos(θ ) − δε sin(θ ), (37)

where δE and δε describe the electromechanical coupling.
According to the model shown in Fig. 1 and discussed in
Appendix A, they are related to the capacitances acting on
the DQD. In the energy space, these equations describe an
elliptic trajectory of radius δE and δε around the working point
(Ē1, Ē2). This trajectory is convenient given the typical shape
of the curvatures for the configuration of interest of the DQD;
see Fig. 3(a) for example. We assume that these energies
Ē� can be externally tuned (for example, by external gate
voltages) so that the working point can be chosen favorably.
If we are thinking in the performance of motors or pumps,
then this convenience lies in the fact that, to get useful work
or pumped charge/heat, we need to find some region in the
parameter space where their associated curvatures are nonzero
(cf. Sec. II E). Obviously, the above parametric approach also
applies to the energy difference ε = E1 − E2 and the mean
level energy E = (E1 + E2)/2, such that these can also be
treated as tunable parameters through the following equations:

E (θ ) = Ē + δE cos(θ ), and ε(θ ) = ε̄ + 2δε sin(θ ). (38)

Importantly, at the level of approximation used in this work,
the energy difference between the dots needs to be taken
perturbatively, i.e., ε ∼ �. As we shall see next, the regions
in which the curvature associated with the CIF is nonzero
lies below this constraint, such that we can safely define a
trajectory enclosing the relevant region of BF with δε on the
order of �.

B. Regime of parameters

With the purpose of studying the potential role of quan-
tum coherences on these devices, we will now focus on
the weak interdot coupling regime where tc ∼ �. Adiabatic
quantum motors, heat engines, and charge/heat pumps in the
strong-coupling regime (tc � �) have already been addressed
[6,15,31,50]. There, it was shown that coherences have no
important contributions to any of the quantities of interest
(e.g., charge and heat currents, CIFs, etc.) and can therefore
be disregarded to lowest order in �. On the contrary, in the
weak-coupling regime, the role of the coherent superposition
among the DQD states becomes crucial for the operation of
electron pumps. This was studied in Ref. [50]. Due to the
connection between adiabatic quantum motors and pumps [cf.
Eqs. (25)–(27)], it is expected that coherent effects are also
relevant for the performance of quantum motors and heat
engines in the weak-coupling regime.

Whether or not a system is in the weak or in the strong
coupling regimes depends on the comparison between � and
the energy difference between the eigenstates of the system.
When this difference is much bigger than �, coherent effects
can be disregarded, at least to the lowest order in � [72,73].
Here we are in the opposite case, which occurs when both
ε and tc are of the order of �. The assumption implies that
single-electron states are almost degenerate and guarantees
the coherences’ survival [50], laying the ground for the study
of their potential effect on autonomous quantum machines like
the one studied here.

With respect to the kernel W eff , see Eqs. (10), (11) and
Appendix B, all kernel blocks depend on the mean level
energy E . However, the ε dependence only enters in the
W eff

nn block, which contains local information of the system
through the Liouvillian L. As discussed before in Sec. II E,
the geometrical nature of the first-order pumped charge and
heat, and the zeroth-order work of the CIFs, implies that a
two-parameter dependence is necessary for these quantities to
be nonzero. In our system, this condition can only be fulfilled
if there is a coupling between the diagonal and nondiagonal
blocks of W eff . The coupling of the kernels’ blocks inevitably
leads, in turn, to the coupling of occupations and coherences
of the reduced density matrix. Therefore, we can state that
occupations and coherences need to be coupled to have finite
pumping/work in DQD-based nanodevices within the weak-
coupling regime.

Note that since we work in a regime where tc ∼ ε ∼
�, taking up to first-order terms in these parameters im-
plies that the exact bonding/antibonding basis reduces to
the local energy basis. Specifically, the system’s eigen-
states need to be taken into account in zeroth order in
these parameters and equal those of the fully decoupled
single dots |1σ 〉 and |2σ 〉; see Refs. [72] and [50] for
more details. The vector p then adopts the form p =
(p0, p1↑, p1↓, p2↑, p2↓, p1↑,2↑, p1↓,2↓, p2↑,1↑, p2↓,1↓)T, where
we use pα = pα,α . Its components represent the occupation
probabilities for the device to be either in the empty state |0〉
(p0) or in the singly occupied state |�σ 〉 (p�σ ), and coherent
superpositions between single-particle eigenstates |�σ 〉 and
|�′σ 〉 (p�σ,�′σ ). As we shall see later on, when the DQD is
connected in series, such a coupling will be provided by tc.
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FIG. 2. (a) Map of the charge current curvature BI as a function
of Ē and ε̄ for a DQD in series and in the absence of bias voltages and
temperature gradients. The shown curvature is normalized to its max-
imum absolute value within the shown map, Bmax ∼ 0.06 e/(kBT )2.
(b) A cut of the curvature for Ē = 3� [see red arrow in (a)] and
for several decoherence rates: �φ = 0, 0.25, 0.5, 0.75, and 1, in units
of �. The darkest curve corresponds to the case where there is no
decoherence (�φ = 0) while the lightest one denotes the case of
highest decoherence rate (�φ = �). The rest of the curves are for
intermediate values of �φ . The other parameters used are � = tc =
0.5kBT , λ = 0.5, λS = 1.0, and λD = −1.0.

However, in the parallel configuration we will see that even in
the absence of tc, the coupling between pd and pn still holds.
This is due to the fact that, under this condition, electrons
coming from the leads enter into the DQD in a coherent
superposition of states.

C. Role of coherences and the decoupled parallel configuration

A serially coupled DQD in the weak interdot coupling
regime was considered in Ref. [50]. There it was shown that
the system is capable of pumping charge without an applied
bias voltage if the DQD is asymmetrically coupled to the
leads (λ �= 0). This can be seen in Fig. 2(a) where we show
a map of the charge current curvature BI as a function of Ē
and ε̄. This quantity allows one to determine those regions
in the space of parameters over which a closed trajectory can
be traced for the production of a net pumped charge current
after one modulation cycle [45]. In the figure, we observe a
two-lobe pattern with opposite signs. The shift of sign of the
current curvature is due to a renormalization of energy levels
attributed to the Coulomb interaction [50,72]. As discussed
in Sec. II E, moving the parameters E and ε such that their
trajectory encircles any region of Fig. 2(a), without a change
of sign, ensures a finite pumped charge. This alone proves that
the system can be used as an adiabatic quantum pump.

The configuration in series of the DQD, see Figs. 1(a)
and 1(c), allows one to access different operational modes of
the device, i.e., adiabatic quantum motors, adiabatic quantum
pumps, etc. However, in this case, quantum coherences come
entirely from the coupling between the quantum dots. This
is clear also when one analyses the structure of the effective
kernel W eff . There, for the series configuration, the nd and
dn blocks of the effective kernel are only given by the local
Hamiltonian, such that

W eff
dn/nd = −iLdn/nd. (39)

FIG. 3. (a) Map of the charge current curvature BI as a function
of Ē and ε̄ for a DQD in parallel and in the absence of bias voltages
and temperature gradients. The shown curvature is normalized to
its maximum absolute value Bmax ∼ 0.5 e/(kBT )2 within the shown
map. (b) A cut of the curvature for Ē = 3� [see red arrow in (a)]
and for several decoherence rates: �φ = 0, 0.25, 0.5, 0.75, and 1, in
units of �. The darkest curve corresponds to the case where there
is no decoherence (�φ = 0) while the lightest one denotes the case
of highest decoherence rate (�φ = �). The rest of the curves are
for intermediate values of �φ . The used parameters are � = 0.5kBT ,
tc = 0, λ = 0, λS = 0.5, λD = −0.5.

These blocks are responsible for the arising of coherences and
for the coupling with the W eff

nn block (which ultimately leads to
finite pumping). In this configuration, all matrix elements in
W eff

dn/nd are proportional to tc; i.e., there are no contributions
from the evolution kernel W . Thus, e.g., taking tc = 0 not
only destroys any coherent superposition but also trivially
cuts charge/heat transport through the local system. In this
sense, the parallel configuration of the DQD, see Fig. 1(b),
offers a richer example to study the role of coherences. There,
coherences do not solely come from the interdot coupling
but also from the particles entering simultaneously to both
dots. This comes from the fact that novel tunnel processes are
enabled, since the matrix elements of W nd/dn ∝ tr,1t∗

r,2 become
nonzero (see Appendix B).

In contrast to the configuration in series, in the parallel
scenario it is possible to pump charge or heat even if the dots
are decoupled (tc = 0); see Fig. 3(a). This particular case does
not have a classical analog as classical particles entering one
dot do not have a way of getting information from the other
one. Then, a “classical” DQD should behave as two indepen-
dent single-parameter systems and, because of that, the total
pumped charge, e.g., should be zero. Therefore, the quantum
nature of electrons, which allows for a coherent superposition
of the wave functions, is what is ultimately responsible for the
pumping of charge and heat, and the production of finite work
from the CIFs. One can interpret that quantum coherences
are what allows a particle to get information from both dots
making the pumping depend on two parameters, E1 and E2

(or E and ε). In this sense, devices based on this configuration
can be considered as “true” quantum machines.

An important aspect of the coherent superposition of the
dots’ states should be mention here. To some extent, the in-
teraction between the mechanical and electronic components
of the system takes place through a measurement on the level
occupations of the DQD. Such a measurement by the classical
part of the system would destroy any superposition state ex-
isting in the DQD. Since we argue that in this system the work
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extraction (or pumped charge/heat) relies on the coherent
superpositions, and these are destroyed in order to know the
dots’ occupations, it might seem like there is a contradiction
here. However, one should notice at this point that the occupa-
tions already contain information on the superpositions. The
occupations are not separated from the coherences, as would
be the case in the sequential tunneling regime. Instead, they
can be written as the sum of two terms (see Appendix B).
One of them corresponds to the incoherent contribution to the
occupations: these are the ones that would be obtained in a
sequential tunneling regime. The second term corresponds to
the coherent contribution which comes from the superposition
of the DQD states. It is precisely this term that is related to
the work extraction and adiabatic pumping. To give a rather
physical interpretation, one can imagine that the electron en-
ters into the DQD system in a superposition state. Of course,
when the slow mechanical system interacts with the electronic
component, this superposition gets destroyed, but the proba-
bilities for the final electron states |�σ 〉 are still defined by
the above two contributions. In summary, since the classical
component is assumed to be much slower than the typical
electron timescales, the resulting work done by the CIF (or
pumped charge/heat) comes from the average of the statistical
ensemble of the many electrons passing through the device, an
average that in turn contains information about the coherent
superposition of the dots.

Before analyzing the effect of decoherence on the series
and the decoupled parallel configurations of the DQDs, we
want to analyze an interesting case of the system’s parameters
that leads to zero pumping. As we pointed out before, the cou-
pling between the E -dependent block of the effective kernel
(W eff

dd ) and the ε-dependent one (W eff
nn ) is what provides the

two parameters needed for finite pumping. However, even in
the presence of such a coupling, we found that setting λS = λD

leads to zero pumping, in the absence of a bias voltage or
a temperature gradient, independently of the choice of λ.
This occurs despite the fact that there is no obvious inversion
symmetry [see Eqs. (34) and (35)], even when parameters E
and ε enclose a finite area in the parameters’ space. How-
ever, this particular case can be understood once one realizes
that the pumping currents become proportional to each other:
I (1)
r = (�r/�r′ )I (1)

r′ , where r, r′ = {S, D}; see Appendix C. The
proportionality between both currents implies that each one
can be written as the total time derivative of the average
zeroth-order occupation number 〈n̂〉 and, thus, they integrate
to zero for a whole cycle; see Appendix C.

As a way to test the role of coherences on DQD-based
quantum machines in the series configuration, we show in
Fig. 2(b) the current curvature for a fixed mean energy, Ē =
3�, and different decoherence rates �φ . There it can be seen
that �φ produces an amplitude decay and a widening of the
curvature peaks which can be attributed to a gradual atten-
uation in the coherent coupling between the quantum dots.
Interestingly, for intermediate values of �φ there are some
regions in parameter space where decoherence increases the
magnitude of the curvature due to its broadening effect; see
for example ε̄ ∼ 3�.

In Fig. 3(a) we show the current curvature BI but for the
decoupled parallel configuration. Now, we observe a three-
lobe pattern but dominated by a single sign (here the absolute

value of the central peak is much greater than that correspond-
ing to the side peaks). The role of �φ on the curvature, see
Fig. 3(b), is the same as in the configuration in series, but the
fact that tc = 0 in this case allows us to give a more direct
interpretation of its effect for sufficiently large values. In this
limiting situation, the two dots become effectively decoupled
since the characteristic survival time of the superposition now
goes like 1/�φ . Then, each dot is unaware of the other dot’s
existence as all phase information gets lost much faster than
the typical time spent by the electron in the DQD system. As
mentioned, this leads to a monoparametric scheme (with E
the only parameter being modulated), such that BI → 0, and
therefore no working device can be created.

IV. QUANTUM MACHINES BASED ON THE DECOUPLED
PARALLEL CONFIGURATION

In the previous section, we discussed the role of coherence
in charge pumping, but the studied device admits other op-
erational regimes. Here, we study the effects of applying an
external driving force together with a bias voltage or a tem-
perature gradient to the decoupled parallel configuration. This
takes the system into different operational regimes, namely,
electric motor, charge pump, heat engine, or heat pump. We
start by describing the effect of a bias voltage and an external
force.

The shown charge current curvatures in Figs. 2 and 3 are
clear indications that the device may operate as a charge
pump in the situation where there is no applied bias voltage.
Although not shown, the force curvature BF displays a similar
pattern thus implying that the device could also work as an
electrical motor for the chosen parameters. However, to under-
stand in more detail the device’s operational behavior, we need
to take into account the effect of the external force Fext. This
force will finally determine whether the system is operational
or not, together with its subsequent working mode, i.e., motor
or pump. For simplicity we assume that the external force
is constant and points along the tangential direction θ̂, i.e.,
Fext = Fext θ̂, so its associated torque Fext is constant along
the whole trajectory and we can take Wext = 2πsFext. Let us
recall that s = ±1 gives the dynamically determined direction
of rotation, since θ̇ = s|θ̇ |.

One of the interesting aspects of the system analyzed here
is that one can control its operational mode externally, switch-
ing between a pump and a motor by moving the bias voltage
or the externally applied torque. For the case of the motor, the
system will act as such when the external work is positive,
which means that s and Fext need to have the same sign. How-
ever, although Fext can be controlled, this a priori does not
determine s. As Eq. (22) states, the direction of rotation also
depends on the CIF’s coefficient. For the case of the charge
pump, on the other hand, an additional condition to Wext < 0
is required: The system will act as a proper pump when the
first-order current overcomes the leakage currents, typically
given by the zeroth- and second-order contributions. This
implies |Q(1)

I | > |Q(0)
I + Q(2)

I |. Recalling that Q(k)
I ∝ �k−1 and

Eq. (22), it is clear that the external torque ultimately controls
the compensation between the leakage and pump currents.
One can also take the voltage as the pump knob. Here, one
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FIG. 4. (a) Map of the efficiencies ηem and ηep as functions of the external torque Fext and the bias voltage �V . The efficiencies have
been normalized with respect to the maximum value ηmax = 1.05 × 10−2 achieved in the shown region. Shaded areas denote the regions
where the adiabaticity condition is not fulfilled (see main text). (b) Electric motor efficiencies as a function of Fext for �V = 0.3kBT and
different decoherence rates in units of �: �φ = 0 (black), 0.25, 0.5, 0.75, and 1 (cyan). (c) Electric pump efficiencies as a function of Fext for
�V = 0.03kBT and the same values of �φ as in (b). The other used parameters are � = 0.5kBT , tc = 0, λ = 0, λS = 0.5, and λD = −0.5. The
chosen trajectory is given by Ē = 1.1kBT , ε̄ = 0, δE = 5kBT , and δε = 0.15kBT .

is mainly controlling the zeroth-order current, proportional to
�V , at low bias.

In Fig. 4(a) we show a map of the electric motor/pump
efficiencies ηem and ηep, see Eqs. (29) and (30), as a function
of the external torque Fext and the bias voltage �V for the de-
coupled parallel configuration. The plot allows us to visualize
the regions in which the device becomes operational, while
giving us a quantitative idea on the performance it can reach.
The vertical arms of this cross-shaped map correspond to the
motor efficiency [see also panel (b), which shows ηem for
�V = 0.3kBT ], while the horizontal arms depict the charge
pump efficiency [see also panel (c), which shows ηep for
�V = 0.03kBT ]. The figure shows that the studied device can
indeed act as a motor or a pump. However, the operational
regions are very limited in the parameters’ space; see the
colored regions. The operational regions of the motor (ver-
tical arms) depend on �V (as a rule of thumb the greater
the voltage the greater the CIFs) and on Fext (at some point
this quantity becomes so large that it cannot be counteracted
by the CIFs). As mentioned before, the operational regions
of the pump (horizontal arms) are subjected to the balance
between the different components Q(k)

I of the total transported
charge per period. Finally, it should be mentioned that not all
regions in the shown map are consistent with the adiabaticity
condition discussed in Sec. II C upon which our expansion is
justified. As a guideline, the unshaded regions in the figure
correspond to �δε/�kBT � 0.05, in which our expansion
should be adequate.

In Figs. 4(b) and 4(c) we show the typical behavior of
the motor and pump efficiencies, respectively, as a function
of the external force for a fixed bias voltage. For the case
of the motor, panel (b), the shape of the efficiency curve
can be understood by taking two limiting situations. When
Fext ∼ F (0), the rotor’s frequency goes to zero; cf. Eq. (22).
In this situation there is a huge waste of energy given by
the zeroth-order leakage current, since Q(0)

I ∝ �−1. Conse-
quently, the denominator of Eq. (29) becomes so large that
the motor’s efficiency is strongly reduced. When Fext ∼ 0, the

stationary-state condition of Eq. (8) implies that the numerator
of Eq. (29) tends to zero, and so the motor’s efficiency. This
means that most of the work done by the CIF (W (0)

F ) is wasted
as heat due to the electronic friction (W (1)

F ).
For the case of the pump, Fig. 4(c), there are also two

limiting cases where the efficiency gets suppressed due to the
leakage currents and their dependence on �. On the one hand,
at small Fext we have relatively low velocities, so � is small
and Q(0)

I becomes dominant. On the other hand, a large Fext

produces a large rotor’s velocity, such that in this case Q(2)
I

is the main source of leakage. In these situations the pumping
current, independent of Fext, is not enough as to counteract the
leakage currents, so the total transported charge per cycle still
flows in the bias direction, given by I (0). This can be seen in
Fig. 5(a), where the three contributions to the total transported
charge are shown as a function of the external force.

To evaluate the role of decoherence, in Figs. 4(b) and 4(c)
we also show the device’s efficiency for different values of

FIG. 5. Different order contributions to the transported charge
as a function of the external torque Fext. The sum of all these
contributions, denoted by QI , is shown in solid black. The gray
area indicates the region where the device is capable of pumping
charge and therefore becomes operational. We considered the same
parameters as in Fig. 4(c) with �φ = 0 (a) and �φ = 0.25� (b).
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�φ . In general, we could say that the decoherence rate has
an adverse effect over the performance in the sense that it
reduces the maximum efficiency. This result was expected
since, as seen before in Sec. III C, �φ reduces the peaks in the
curvature BI (BF ), which is proportional to the pumped charge
(CIF work). For the electric motor this is quite evident as all
curves progressively fall off below the zero-decoherence case.
Note also that the range in which the device acts as a motor
always decreases with �φ . This range is determined by the
crossing of the curves with the line η = 0; see Fig. 4(b). For
the electric pump, however, the situation is different. There,
even though there is an overall decrease of the efficiency,
decoherence injection makes the system more resilient to the
effects of the external force. In Fig. 4(c) we can see that for
�φ = 0, the device can only bear torques up to approximately
0.3kBT/rad, a small value compared to the torques it can
withstand for �φ > 0. Interestingly, this allows the system to
be “activated” by decoherence in regions where, in principle,
it would not be operational. Such effect has already been
discussed in a similar quantum system in Ref. [27], where, for
certain parameter conditions, the performance of an adiabatic
quantum motor was improved with the aid of decoherence. In
the mentioned reference the device was described within the
Landauer-Büttiker formalism, as is usual in systems where the
Coulomb interaction between electrons can be taken as a mean
field. Here we see that a similar decoherence-induced activa-
tion appears in the pumping regime but under strong Coulomb
interaction. The reason for this decoherence-induced activa-
tion becomes clearer when comparing Figs. 5(a) and 5(b).
There, one can notice that, although all contributions to QI

decrease with an increase of decoherence, the second-order
term is affected much more dramatically, making it negligible
within the shown range of parameters. As a consequence of
that, the range over which charge pumping is possible gets
considerably extended.

In the energy range shown in Fig. 4(a) and for the con-
sidered set of parameters, the maximum (motor) efficiency
achieved was ηmax ≈ 0.01, a small value if one compares it

with the strong interdot coupling regime discussed in Ref.
[31], where efficiencies up to 75% were obtained. While in
the motor operation mode this value can be increased (see
below), for the electric pump, the small value of η (up to
∼0.7 ηmax) seems not so easy to overcome. The reason behind
this again lies in the interplay between the different orders
of the transported charge per cycle which, as discussed, obey
different laws as one moves the external torque. As a con-
sequence, the first-order contribution, which is the relevant
quantity for the device’s performance, only surpasses the sum
of the other contributions in a small range of the external
force, demarcated by the gray area in Fig. 5. Increasing the
voltage only worsens the situation. As can be seen in Fig. 4(a),
there is only a limited range for �V in which charge can
be pumped. Outside this region Q(1)

I cannot exceed the other
contributions, independently of the value of Fext. In other
words, for a large �V there is an overlap of the regions where
the dominant contribution is either Q(0)

I or Q(2)
I . Summarizing,

this limitation in the operational range of the parameters re-
duces the possibilities to increase the efficiency of the charge
pump. Despite that, we remark that the goal of the present
work is not to perform an exhaustive search for highly effi-
cient pumps, but to study up to what extent coherences play
a role in QD-based quantum machines within the Coulomb
blockade regime.

As mentioned, the situation is quite different for the motor
regime. There, although the operational region is still limited
by Fext, this can be compensated by increasing �V . There-
fore, there is more freedom to explore the space of parameters
in this operational mode. Although not shown, this allowed
us to find conditions where adiabatic quantum motors can
achieve efficiencies up to 50% (for �V ∼ 20kBT ).

Recently there has been an increasing interest in studying
different forms of heat machines, which drove us to address
other operational regimes of our system. In particular, we
explored its role as a heat pump (refrigerator) and as a heat
engine (temperature-driven motor); see Fig. 6. The results are

FIG. 6. (a) Map of the normalized efficiencies η̃he and η̃hp as a function of Fext and �T . These functions have been divided with respect to
the maximum value η̃max = 1.04 × 10−2 achieved in the shown map. As in Fig. 4, the shaded areas denote the regions where the adiabaticity
condition is not satisfied. (b) Plots of η̃he vs Fext for �T = 0.1T and for different decoherence rates (in units of �): �φ = 0 (black), 0.05,
0.1, 0.15, and 0.2 (cyan). (c) Plots of η̃hp vs Fext for �T = 0.005T and for the same values of �φ as in (b). The other used parameters are:
� = 0.5kBT , tc = 0, λ = 0, λS = 0.5, and λD = −0.5. The chosen trajectory is given by Ē = 5kBT , ε̄ = 0, δE = 5kBT , and δε = 0.2kBT .
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FIG. 7. Different order contributions to the transported head
from the cold reservoir as a function of the external torque Fext. The
sum of all these contributions, denoted by QJcold , is shown in solid
black. The gray area indicates the region where the device is capable
of pumping heat and therefore becomes operational. We considered
the same parameters as in Fig. 6(c) with �φ = 0 (a) and �φ =
0.05� (b).

similar to those described above for the charge pump and
the electric motor regimes. The main differences are (1) the
heat pump is more sensitive to decoherence—see Fig. 6(c)
and notice the difference in the value of �φ with respect to
Fig. 4(c)—and (2) due to the way in which the efficiencies
are affected by �φ , we can conclude that there is no activation
by decoherence at least in this regime of the parameters. We
observe that efficiencies of the order of 4% were obtained
when taking temperature gradients close to the limit of zero
temperature in the cold reservoir [where Carnot’s efficiency
is 1 and which is out of the range of Fig. 6(a)]. On the other
hand, the quantum refrigerator achieves an efficiency which
is approximately 2% of Carnot’s limit. Again, these values
are small when compared to the ones reported for the strong
interdot coupling regime, where efficiencies higher than 50%
of Carnot’s limit were obtained for both the heat engine and
the refrigerator operational modes [6,15]. As discussed above,
the reason behind these low values lies in the fact that leakage
currents are dominant in the considered regime of parameters.
In Fig. 7 we show the contributions for the transported heat
per cycle as a function of the external torque for �φ = 0 and
0.05�. We can see that both the zeroth- and second-order
transported heat (i.e., those coming from the leakage currents)
are almost not affected by decoherence, while the first-order
contribution clearly decays with �φ .

V. CONCLUSIONS

We studied quantum-dot-based nanomachines in the
Coulomb blockade regime in a situation where the coherences
can dominate the transport properties of the device. We fo-
cused our analysis on what we called the decoupled parallel
configuration. In this setup, coherences do not come from
the interdot coupling which is zero, but from the particles
entering/leaving the two dots simultaneously. Therefore, the
only way particles entering the system get information from
the two dots is through a coherent superposition of states. This
makes the modulation manifold effectively bi-parametric, as
required in the adiabatic regime. In this sense, the decoupled
parallel configuration can be used as the basis for different

forms of “true” quantum machines, namely, quantum motors,
quantum pumps, quantum heat engines, and quantum heat
pumps.

We analyzed the impact of decoherence on the above ma-
chines. As expected, we found that the overall result is to
decrease the efficiency of the machines. In the strong deco-
herence limit, this can be interpreted as the situation in which
the quantum superposition is destroyed, so the electrons in
the device can no longer access the two parameters, and the
amount of pumped charge/heat or useful work per cycle goes
to zero. However, for intermediate values of �φ , its effect is
more complex due to two main factors. The first one is that,
although decoherence tends to decrease the maximum of the
geometric curvatures (current, heat, and force), it also widens
them. The second factor is that decoherence can affect the
various orders of the adiabatic expansion of the observables in
a different way. These two factors are the reason for the found
differences between charge and heat pumps regarding the
effect of decoherence on them. Importantly, this also causes
that, under specific parameters, some forms of quantum ma-
chines can be activated by decoherence, in the sense that they
require a minimum amount of it to operate. Indeed, such a
“decoherence activation” mechanism appears, provided that
coherences are still present in the local system.

ACKNOWLEDGMENTS

We acknowledge financial support by Consejo Nacional
de Investigaciones Científicas y Técnicas (CONICET); Sec-
retaría de Ciencia y Tecnología de la Universidad Nacional de
Córdoba (SECYT-UNC); and Agencia Nacional de Promo-
ción Científica y Tecnológica (ANPCyT, PICT-2018-03587).

APPENDIX A: TRAJECTORY IN THE PARAMETER SPACE

In Sec. III A we stated that it is convenient to take an
elliptic trajectory around the origin of the energy space in
order to take advantage of the shape of BI and thus increase
the efficiency of the device. More specifically, this elliptic
trajectory should be much wider along the E axis than in the
ε axis [cf. Fig. 3(a)]. With this in mind, we now show how the
experimental setup displayed in Fig. 1 can be configured to al-
low for such a trajectory. Let C1 and C2 be the capacitances of
the side contacts and C0 the capacitance of the central contact,
displayed in the middle of the two dots. For the considered
configuration, the dots’ energies can be described by

Ei(θ ) = E (0)
i + q0(θ )

C0
+ qi(θ )

Ci
, i = {1, 2}, (A1)

where E (0)
i is the energy in the absence of contacts, and the

q’s denote the amount of charge accumulated in each one
of the contacts, as a function of the rotor’s position. For
the specific geometry of the rotor and the used configuration
for the contacts, we could argue that q1(θ ) = −q2(θ ), as the
charges in the rotor are assumed to be the same in magnitude,
but opposite in sign. Besides, we could simplify the above
dependence by stating that C1 = C2. Due to the position of the
central contact with respect to the C1 contact, it is reasonable
to expect a phase shift of π/2 in q0, i.e., q1(θ ) = q0(θ +
π/2). Accordingly, we replace these assumptions in the above
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expressions and obtain

E1,2(θ ) = E (0)
1,2 + q0(θ )

C0
± q0(θ + π/2)

C1
. (A2)

If we now define E = (E1 + E2)/2, ε = E1 − E2, E (0) =
(E (0)

1 + E (0)
2 )/2, ε (0) = E (0)

1 − E (0)
2 , CE = C0, and Cε = C1/2,

we arrive at the following parametric equations:

E (θ ) = E (0) + q0(θ )

CE
, ε(θ ) = ε (0) + q0(θ + π/2)

Cε

. (A3)

Thus, if an elliptic trajectory with Emax � εmax is desired, then
it is enough to take Cε � CE .

APPENDIX B: EFFECTIVE EVOLUTION KERNEL

In this Appendix we show how the blocks of the effective
evolution kernel W eff are related to the energy parameters E
and ε. As discussed in Sec. II C, this effective kernel is defined
as the sum of the evolution kernel W and the Liouvillian L,
which can be decomposed into two contributions, Ldot and Lc,
by separating the tc-dependent term in the electronic Hamilto-
nian of Eq. (36). To study the energy dependence, we will treat
these components individually. For the system treated in this
work, the matrix elements of the evolution kernel W depend
on the DQD’s eigenenergies in the following way [73]:

[W ]a0+,a0−
a2+,a2− = i

∑
p2 p1

∑
rη

∑
a1+,a1−

p2 p1

[∑
σ

�
a2p2 a1p2
rσ (η̄p2 ) �

a1p1 a0p1
rσ (ηp1 )

]

× δa2 p̄2 ,a1 p̄2
δa1 p̄1 ,a0 p̄1

[
p1φr

(
qr,η

a1+,a1−

)
+ iπ f

(
p1qr,η

a1+,a1−

)]
, (B1)

where

�aa′
rσ+ = √

ρr

∑
�

tr� 〈a| d̂†
�σ |a′〉 ,

�aa′
rσ− = √

ρr

∑
�

t∗
r� 〈a| d̂�σ |a′〉 . (B2)

Here, pi = ± is an index that distinguishes forward (+) from
backward (−) time evolutions on a Keldysh double con-
tour diagram while η = ± is a particle index denoting the
annihilation/creation of an electron in the r lead. We use
the shorthand notation p̄i = −pi and η̄ = −η. The indexes
ai+ and ai− run over the DQD’s eigenstates, and f (x) =
[1 + exp(x)]−1 is the usual Fermi function. The function φ(x)
is defined as

φr (x) = −Re ψ

(
1

2
+ i

x

2π

)
+ ln

D

2πkBTr
, (B3)

where ψ is the digamma function and D denotes the reser-
voir’s bandwidth, which we assume to be independent of r for
simplicity. The q argument in the above functions corresponds
to the energy difference between initial and final eigenstates,
with respect to the r-lead electrochemical potential and di-
vided by the thermal energy, i.e.,

qr,η
a1+,a1− = Ea1+ − Ea1− − ημr

kBTr
. (B4)

If we set the energy of the empty state as reference, i.e., E0 =
0, then all nonvanishing elements of W depend only on the

energies of the singly occupied states |�σ 〉. At the same time,
as in the approximation mentioned in Sec. III B the effective
kernel W eff must be taken up to first order in �, and since
all elements in W are multiplied by a prefactor proportional
to �, the energy differences entering in q need to be taken
up to zeroth order in the small parameters ε ∼ tc ∼ �. This
means that the q argument can only retain the zeroth-order
contribution, so all elements in W only depend on the mean
level energy E [50,72].

If we now consider the Liouvillian Lc, we can see that

[Lc]a′,b′
a,b = 〈a|Ĥc|a′〉δb,b′ − 〈b′|Ĥc|b〉δa,a′ , (B5)

where Ĥc accounts for the interdot coupling Hamiltonian [last
term on the right-hand side of Eq. (36)]. Due to the Kronecker
deltas and the off-diagonal structure of Ĥc in the local basis,
this Liouvillian will only contribute to the dn and nd blocks
of W eff with terms of the form ±i tc/2. Lastly, we study the
energy dependence of the Liouvillian Ldot. In this case it can
be shown that

[Ldot]
a′,b′
a,b = (Ea − Eb)δa,a′δb,b′ . (B6)

This means that Ldot will only contribute to the nn block of
W eff . In the explicit matrix representation of these superop-
erators [cf. Eq. (10)] and since we are working in the local
basis, this implies that Ldot is diagonal, whose elements are
±ε. The matrix representation of the complete Liouvillian
L = Ldot + Lc is thus given by Ldd = 0,

Ldn = tc
2

⎛
⎜⎜⎜⎝

0 0 0 0
1 0 −1 0
0 1 0 −1

−1 0 1 0
0 −1 0 1

⎞
⎟⎟⎟⎠, (B7)

together with Lnd = LT
dn and Lnn = ε diag(1, 1,−1,−1).

Regarding the decoherence rates, all the blocks of the deco-
herence matrix �φ are zero, except for the nn block, which is
simply �φ times the 4 × 4 identity matrix.

To summarize this analysis, we conclude that all blocks
of W eff are E dependent but only its nn block depends on
the energy difference ε. With regard to the interdot coupling,
we can see that for the configuration in series, the elements
in Lc are the only ones connecting the dd and nn blocks
of the effective kernel, such that coherences are completely
determined by this parameter. However, in the configuration in
parallel, additional matrix elements proportional to tr,1t∗

r,2 [cf.
Eqs. (B1) and (B2)] contribute in the dn and nd blocks of W ,
such that coherences may even survive without any interdot
coupling.

Occupations and coherences. Now that we know all matrix
elements of W eff , we can solve Eq. (11) for the adiabatic
occupation probabilities p(0)

d . The first step is to exclude the
zero eigenvalue present in the equation. To this end, we make
use of the normalization condition eT p(0) = 1 by introducing
the pseudokernel W̃ , defined below Eq. (12). This leads to the
matrix equation(

W̃ dd W̃ dn

W̃ nd W̃ nn

)(
p(0)

d

p(0)
n

)
=

(
vd

0

)
, (B8)
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where [vd ]i = −[W eff ]ii and i belongs to the d block. This
equation can be solved for both the occupations and the co-
herences by taking the inverse of the pseudokernel, i.e.,

p(0) = W̃
−1

v, (B9)

with v = (vd , 0)T. With this solution, one can calculate the
nonadiabatic corrections p(k) through Eq. (12). If we now want
to know about the contributions to the occupations due to the
coherences, at least at zeroth order in �, we can return to the
d block of Eq. (B8), such that

p(0)
d = [W̃ dd]−1vd − [W̃ dd]−1W̃ dn p(0)

n . (B10)

Interestingly, from this equation we can identify two contribu-
tions to the occupation probabilities: (1) the first term, which
corresponds to the incoherent occupations that would come
from a sequential tunneling regime where the coupling to the
coherences is neglected, and (2) the second term, associated
with the presence of coherent superpositions of the dots’
states.

APPENDIX C: SYMMETRIC COUPLINGS TO THE LEADS

Here we go into detail on the particular case where
the DQD system is coupled to the leads through the same
asymmetry factors, i.e., λS = λD. Under this condition, the

tunneling rates satisfy

�r,i = �r

�r′
�r′,i, (C1)

where r, r′ = {S, D}, and i = {1, 2}. In the absence of any bias
voltage or temperature gradient, as the asymmetry factors only
enter in W eff through the tunneling rates, this results in similar
relations when decomposing the effective kernel in its r-lead
components, such that the same can be applied for the charge
currents [cf. Eq. (18)],

W eff
r = �r

�r′
W eff

r′ ⇒ I (k)
r = �r

�r′
I (k)
r′ . (C2)

On the other hand, charge conservation on the first-order cur-
rents gives rise to the following relation:∑

r

I (1)
r = − d

dt
〈n̂〉(0) , (C3)

where n̂ is the DQD occupation number operator. Hence, if
we make use of Eq. (C2) we get

I (1)
r = −�r

�

d

dt
〈n̂〉(0) . (C4)

As the above quantity corresponds to a total time derivative
of a periodic function, the pumped charge, defined as the time
integral of I (1)

r over a period of the modulation cycle, clearly
integrates to zero. This result is expected since no net charge
can be accumulated/lost in the DQD system after each cycle.
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