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‘We present a comprehensive and systematic study of thermal rectification in a prototypical low-dimensional
quantum system—a nonlinear resonator: we identify necessary conditions to observe thermal rectification and
we discuss strategies to maximize it. We focus, in particular, on the case where anharmonicity is very strong and
the system reduces to a qubit. In the latter case, we derive general upper bounds on rectification which hold in the
weak system-bath coupling regime, and we show how the Lamb shift can be exploited to enhance rectification.
We then go beyond the weak-coupling regime by employing different methods: (i) including cotunneling
processes, (ii) using the nonequilibrium Green’s function formalism, and (iii) using the Feynman-Vernon path
integral approach. We find that the strong coupling regime allows us to violate the bounds derived in the
weak-coupling regime, providing us with clear signatures of high-order coherent processes visible in the thermal
rectification. In the general case, where many levels participate to the system dynamics, we compare the heat
rectification calculated with the equation of motion method and with a mean-field approximation. We find that
the former method predicts, for a small or intermediate anharmonicity, a larger rectification coefficient.
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I. INTRODUCTION

Thermal transport in quantum devices has garnered vast
attention in the past decade fuelled by the incessant ef-
forts in the miniaturization of electronic and thermal devices.
Furthermore, the research in this field has been constantly
growing thanks to advances in the experimental realization
of nanoscale thermal devices that have sharpened our under-
standing on how energy/heat flows through small (quantum)
systems [1-6].

The phenomenon at the heart of our investigation is ther-
mal rectification, an intriguing effect which may arise also at
the nanoscale, where it may play a key role for heat manage-
ment in small devices. It refers to the asymmetric conduction
of heat, whereby the heat flow in one direction is different with
respect to the heat flow in the opposite direction; see Fig. 1.
Thermal rectification, first observed experimentally by Starr
in 1935 [7], has been studied in a variety of setups since then,
both theoretically [8—34] and experimentally [35-39].

From the practical viewpoint, the importance of thermal
rectification stems from the fact that it can be used in a
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nanoscale device to divert heat from sensitive areas, while
preventing it from flowing back in. However, it is interesting
to understand what are the fundamental physical requirements
for a system to exhibit thermal rectification and what are the
strategies to optimize it. In this paper we study thermal recti-
fication through a multilevel quantum system (S) coupled to
two thermal baths kept at different temperatures as schemati-
cally sketched in Fig. 1. This is a paradigmatic situation that
applies to several different experimentally available setups,
such as the experiment of Ref. [39] where the effect was first
observed in an artificial atom.

Few ingredients are necessary for rectification to oc-
cur. As we shall see in the following, the baths must
be asymmetrically coupled to the system and inelastic
scattering/interactions must necessarily be present. Indeed,
in the absence of the latter, the current can be described by
the Landauer-Biittiker scattering approach [40,41], expressed
as an energy integral of a transmission function (which does
not depend on temperature) multiplied by the difference of
energy distribution of the baths. In this situation no rectifica-
tion is possible, since the temperatures of the baths enter only

©2021 American Physical Society
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FIG. 1. Schematic representation of a quantum system S coupled
to the two heat baths. The left and right baths are characterized,
respectively, by the temperatures 7; and 7x. Panel (a) represents the
positive bias case, i.e., T =T + AT /2 and Tx =T — AT /2 with
AT > 0, while panel (b) represents the negative bias configuration
where the sign of AT is reversed. In the presence of some asymmetry
in the coupling to the baths (represented by the different thickness
of the grey barriers), the magnitude of the heat currents flowing
through the device may depend on the sign of AT, leading to thermal
rectification.

through their distributions. Inelastic processes occur naturally
in the presence of nonlinearities, for example induced by
interactions, or by time-dependent driving in the Hamiltonian
describing the system [42]. In the presence of interactions,
at least when the spectral density of the baths have identical
energy dependence, one can formally express the heat current
analogous to the scattering theory with an effective transmis-
sion coefficient which now depends also on the temperatures
of the baths [32,43]. If, in addition, the quantum system S is
coupled asymmetrically to the two baths, then thermal rectifi-
cation can take place.

Within this framework, we can identify three possible ways
the transmission probability can change upon inverting the
temperature bias (from positive to negative). As schematically
shown in Fig. 2, the transmission functions can change in
height (a), position (b), and width (c). The height shift is the
main mechanism that allows rectification even in the weak
coupling regime, and it is present whenever one accounts for
inelastic processes. The position shift is caused by the real
part of the self energy, known as Lamb shift, which accounts
for the renormalization of the system energy scales due to the
system-bath coupling. Finally, the width of the transmission
probability may change when the system is strongly coupled
to the baths. In most cases we consider, the width and height
shift occur together.

Rectification has been studied in different nanoscale de-
vices, such as quantum dots [18,23,33], spin-boson models
[10,32], nonlinear harmonic resonators [14,15], and hybrid
quantum devices [16,17,25], to name a few. In most cases,
the weak coupling, wide band approximation has been em-
ployed. Asymmetric system-bath coupling and the presence
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FIG. 2. Schematic representation of the transmission function, as
a function of the energy ¢, for the positive and negative bias case.
Each panel corresponds to a different variations of the transmission
function which can give rise to heat rectification.

of nonlinearities are sufficient conditions to rectify [17]. When
studying the spin-boson model [10,32] and the nonlinear har-
monic resonator [14], it has been observed that rectification
increases both as a function of the temperature difference
and as a function of the asymmetry between the system-bath
coupling strengths. The spin-boson model has been studied
also beyond the weak coupling regime in Ref. [32] using
nonequilibrium Green’s functions or the noninteracting-blip-
approximation (NIBA) [10,44].

Although thermal rectification has been studied in various
specific systems, strategies to maximize rectification remain,
to a large extent, is unclear. Moreover, it is not known if there
are any fundamental bounds to the maximum rectification
that can be obtained, and what is the impact of quantum
coherence on rectification. In this paper, we address these
issues by considering, as a prototype model of a multilevel
system, an anharmonic quantum oscillator. In the limit of
very strong anharmonicity the system reduces to a a qubit
(two-level systems) coupled to two different thermal baths.
In our analysis we employed different formalisms to explore
different regimes. In the qubit case we used: (1) the Master
equation (ME) taking cotunneling into account, (2) nonequi-
librium Green’s functions (NEGF), and (3) exact calculations
based on Feynman-Vernon path integral approach. In the case
of arbitrary anharmonicity we used the equation of motion
(EOM) method.

In the limit of very strong anharmonicity (qubit case), with-
out assuming any specific model for the bath and system-bath
Hamiltonian, we studied how to maximize the rectification
and we derived general upper bounds valid within the weak
coupling regime. Furthermore, we found that the rectification
can be enhanced by exploiting the temperature dependence
of the Lamb shift, together with gapped density of states in
the baths. Going beyond the weak-coupling regime we gen-
eralized the calculation of Ref. [32] by addressing general
spin couplings between the system and the baths, and by
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including the effect of the Lamb shift. Furthermore, employ-
ing the Feynman-Vernon path integral approach, we were also
able to study the strong coupling regime in an exactly solvable
case. Thanks to the combination of all these approaches it was
possible to see that many bounds and limitations emerging in
the weak coupling regime can be overcome, and that recti-
fication can be enhanced by higher-order quantum coherent
processes. The violation of such bounds provides a clear and
simple, experimentally observable, strong-coupling signature
of thermal rectification.

For smaller anharmonicity, the multilevel dynamics of the
system comes into play and the qubit approximation breaks
down. Ruokola et al. [14] studied thermal rectification in a
nonlinear harmonic resonator using the mean-field Hartree ap-
proximation. Such approximation gives accurate results when
the strength of anharmonicity is small compared to other
energy scales of the system. In this paper, we go beyond
the mean-field approximation employing the EOM method to
study thermal rectification in the strong coupling and large-
interaction regime.

The paper is organized as follows. In Sec. II we introduce
the model we are going to analyze in the rest of the paper. The
two baths, kept at different temperatures, can be of fermionic
or bosonic nature. The Hamiltonian of the system is that of
an anharmonic oscillator, more specifically with a Kerr-like U
nonlinearity. In the case of very large U, the model reduces
to a two level system. Different types of coupling between the
system and the baths are considered as well to see if different
choices may lead to an enhancement of the rectification. The
heat current and the rectification coefficient will be defined
in Sec. III. Here we will also introduce an expression for
the current that will be used in the remainder of the paper
when developing our approximation schemes. Sections IV-VI
contain the results of our analysis. We first start by analyzing
the U — oo case. In Sec. IV we study the qubit case in the
weak coupling regime, while in Sec. V we go beyond the weak
coupling regime. The various approximation schemes here are
also compared to an exact solution that we are able to derive
for a specific choice of the couplings. In Sec. VI, we relax the
approximation of a two-level system and study thermal recti-
fication in a nonlinear resonator as a function of U. Finally, in
Sec. VII we draw the conclusions. Appendices contain several
different details of the calculations, not inserted in the main
text to favour the readability of the paper.

II. THE MODEL

We consider a quantum system S arbitrarily coupled to two
thermal baths denoted by L (left) and R (right) [see Fig. 1 for
a sketch]. The Hamiltonian governing the dynamics of this
setup is given by

H=HL+Hr+Hy + HL,S + HR,s, Q)

where H,,, for « = L, R, is the Hamiltonian of bath «, Hy is
the Hamiltonian of the system S and H,_ s describes the cou-
pling between bath « and S. Each of these components—the
baths, the system, and the couplings—contribute in different
ways to the thermal properties of the device. Below we de-
scribe in detail these different parts.

A. Thermal baths

The baths are assumed, as customary, to be “large” quan-
tum systems in equilibrium with a well defined temperature
T, (and equal chemical potential @ in the fermionic case).
The Hamiltonian of the bosonic (B) and fermionic (F) baths
is given by

H&B) = Z Enk bz{kbaka H((XF) == Z €ak Clkcotkv (2)
k k

where b,; and bsz (cqr and clk) are, respectively, the de-
struction and creation bosonic (fermionic) operators of an
excitation with energy €, in bath o and quantum number
k. The operators satisfy the usual commutation and anti-
commutation relations: [byy, bZ'k'] = S Ok.k'> [Paks bari] =
0, {Caks €} = Su.wrdip and {car, co} = 0, where [....., ...]
and {...,...} denote, respectively, the commutator and
anticommutator. In the following, for simplicity, we will
generically use the symbol d,; to denote both cases and will
later specify the nature of the particles forming the bath. Since
the baths are at thermal equilibrium, the bosonic baths are
prepared in a thermal Gibbs state p® = ¢~ He’/(sTe) ;7(B)
where Z® = Tr[e~"&"/®s7)] is the partition function of
bath «, while we assume the fermionic baths to be pre-
pared in the state pF) = ¢~ ("o’ —Ne)/(sTe) /7() \where ZF) =
Trle~ ("t —#N)/ksT2)] ig the grand partition function of bath
o and N, =), clkcak is the particle number operator of
bath «.

B. The system

The system S connecting the two reservoirs is a multi-
level quantum system. As discussed in the Introduction, as
a paradigmatic case also relevant for experiments, we will
consider a nonlinear resonator whose Hamiltonian is given by

U ..
Hy = Ab'h+ EbTb'bb, (3)

where A determines the frequency of the harmonic resonator,
b (b%) is a bosonic destruction (creation) operator, and U
describes the strength of the nonlinear term. The essential
ingredient, we believe, are the multilevel structure of the
spectrum and its nonharmonic nature. In this perspective, the
Kerr-like form represents a generic situation capturing all
these features. In fact, it bridges between weakly anharmonic
systems like the transmon [45] for small values of U to mul-
tilevel qubits like the fluxonium [46,47] or the phase qubits
[48] for increasing values of the anharmonicity parameter. In
the limit of large U, only the two number states |[n = 0) and
|[n = 1) are relevant for the dynamics and the corresponding
Hamiltonian reduces to that of a qubit (U = 00)
A

Hoo = EGZ “4)
(we dropped an irrelevant constant), where A is the energy
spacing between the ground and excited state, and o, denotes
a Pauli matrix. Physically, in a bosonic system the qubit may
represent a nonlinear harmonic oscillator where the interac-
tion is so strong that only the first two states are energetically
accessible.

155434-3



BIBEK BHANDARI et al.

PHYSICAL REVIEW B 103, 155434 (2021)

C. System-bath coupling

The coupling allows energy exchange between the baths
and S. In the U = oo (qubit) case, we can write the most
general system-bath interaction as

HQ,S=U+®BQ+07®BZ+UZ®BMT’ (5)

where B, is an arbitrary operator (not necessarily Hermi-
tian) acting on the Hilbert space of bath «, while B, is
an Hermitian operator acting on the space of bath o (see
Appendix A for details). This expression can be derived by
expanding the operators acting on the tensor space of S and
of the bath onto the product basis, and choosing the Pauli
matrices and the identity as basis of Hermitian operators
acting on the qubit space. Aside from deriving some general
properties, throughout this paper we will mainly consider the
“linear coupling” and the “nonlinear coupling” cases, i.e.,

B =" Vi due 6)
k
B =y Vo di. @)
k

respectively. Obviously the nonlinear coupling [Eq. (7)] only
applies to the case of boson baths. The coupling strength is
determined by V,;. When assessing strong coupling effects,
we will focus on the spin-boson model, i.e., we will con-
sider a bosonic bath coupled to the qubit via the following
interaction:

Hos= Y Uaioi® Y Vak (b + b)),  (8)

iI=Xx,),2 k

where ii, = (sin 6, cos ¢y, sin G, sin ¢, cos 6, ) is a unit vec-
tor parametrized by the angles 6,, and ¢, .

In the generic nonlinear resonator case (finite U), we will
consider bosonic baths. Interactions are already present in S,
so we will focus on the following linear coupling:

Has =D Vaxbyb + He. ©)
k

As we will see in the following, the system-bath interaction
can be conveniently characterized by the spectral density:

To(€) =27 Y 8(€ — €arc)Vak Vi (10)
k

Taking the continuum limit for the energy spacing of the
baths, and assuming that the coupling constants V,; only
depend on the energy €., we can rewrite Eq. (10) as

To(€) = 2D (€)|Va(e)l?, Y

where D, (¢€) is the density of states of bath «, and V(e ) =
Vak- In the following, we will consider generic spectral densi-
ties for the two baths. In some cases, explicitly mentioned, we
will focus on bosonic baths with Ohmic spectral densities and
an exponential cutoff energy €c, i.e.,

I,(e) =K, ee </c =K, J(e), (12)

where K|, is the dimensionless Ohmic coupling strength [49].

III. HEAT CURRENT AND RECTIFICATION
COEFFICIENT

We are interested in studying the steady-state heat current
flowing across the device when a temperature bias is imposed
between the baths. Specifically, as depicted in Fig. 1, we fix
TL=T+ AT/2andTgr =T — AT /2, where T is the average
temperature. Since no work is performed on the system (in the
fermionic case we consider no chemical potential bias), the
first principle of thermodynamics tell us that heat will flow
from left to right if AT > 0 [positive bias case, see Fig. 1(a)];
otherwise, it will flow from right to left [negative bias case,
see Fig. 1(b)]. Furthermore, since we consider steady state
currents, the heat flowing out of one bath is equal to the one
flowing into the other bath. Therefore, for simplicity we define
the heat flowing out of the left lead as

) d
IAT) = = lim —(HL)(). (13)
where (...)() = Tr[p(t)...], p(t) being the density matrix
representing the state of the total system at time ¢. Notice that
the time variation of the energy associated with the coupling
Hamiltonian vanishes in steady state [50]. According to the
definition Eq. (13), the heat current I(AT) is positive when
AT > 0 and negative when AT < 0.

As discussed in the Introduction, it is possible to construct
devices where the magnitude of the heat current depends on
the sign of the temperature bias. Specifically, if the left-right
symmetry is broken, then the magnitude of the heat current
I(AT) induced by a positive bias may be different with re-
spect to the magnitude of /(—AT), which is the heat current
induced by a negative bias. We therefore define the rectifica-
tion coefficient R as

_ I(AT) +I(—AT)
" I(AT) = I(=AT)’

for AT > 0 [so that I(—AT) < 0 and the numerator repre-
sents the difference of the magnitudes of the currents]. The
definition is such that |R| < 1. Furthermore, R = 0 means
that no rectification takes place, while |R| = 1 means that we
have perfect rectification (i.e., the heat current is finite in one
direction, and null in the other). Positive (negative) values of
R indicate that the heat flow is greater for positive (negative)
temperature biases.

For later convenience, it is useful to write the current in
a Meir-Wingreen [51] form which will make apparent the
necessary ingredients for rectification. Starting from the for-
mal definition of the heat current given in Eq. (13), we can
simplify the calculation of the heat current using a standard
procedure known as “bath embedding” [52], which is valid
whenever the operators of the bath appear linearly in H, s.
This approach applies to all models except for the qubit with
nonlinear coupling, Eq. (7), which will be treated in the weak
coupling regime only. Under such a hypothesis, the formally
exact Meir-Wingreen-type formula [51] for the heat current
can be written as [43,53-56]

(14)

d
I(AT) = / T GO ()~ GTOZ @), (15)

where the integration is performed over [0, +0o0]
([—o00, +00]) for bosonic (fermionic) baths, and the Tr[...]
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runs over the internal degrees of freedom of the system S.
In the previous expression GS(e) is the Fourier transform
of the lesser/greater Green’s function of S, in the presence
of the baths, defined as G<(t —t') = Fi({d"(t')d(t)) and
G>(t —t') = —i(d(t)d'(t")) (upper sign for bosons and lower
sign for fermions). Moreover, X (¢) = Fil'L(¢)n (¢) and
2 () = —il'L(e)[1 £ ni(e)] are, respectively, the Fourier
transform of the lesser and greater embedded self energies
induced by the left bath, and n (¢) denotes the energy distri-
bution of the left bath. Therefore, ny (¢) = (¢¢/*sL) — 1)1
for bosonic baths, while np(e) = (el€~#/%sTi) 4 1)1
for fermionic baths. The only quantities which must be
determined in Eq. (15) are GS(¢).

There is a typical situation in which Eq. (15) can be written
as a simpler and more transparent expression. Namely, if the
spectral densities I',(e) of the baths are proportional, i.e.,
I'L(e) o< I'r(€), we can write Eq. (15) as [57]

de
I(AT) = / EGT(G, T, AT)[ni.(¢) —nr(e)], (16)

where
[CL(e)Tr(€)

T(E, T,AT)= lTr{m

[G>(€)—G<(6)]},

a7
and n, (€) denotes the energy distribution of bath «. This for-
mula was used in Ref. [32] to study the spin-boson problem.
The dependence of T (e, T, AT) on the temperatures may
arise from GS(¢), which are indeed correlation functions of
S computed in the presence of the baths. We notice that, in
the absence of this temperature dependence, the magnitude of
the heat current would remain the same in the positive and
negative bias cases, and there would be no thermal rectifica-
tion. Indeed, this is the case for noninteracting systems, where
Eq. (17) reduces to the well-known scattering formula with a
transmission function that does not depend on the temperature
of the baths. It is therefore crucial to introduce a nonlinearity
in the local system or in the coupling Hamiltonian to observe
thermal rectification.

By computing the Green function in certain approximation
schemes, rectification can be explored at different orders in
the system-bath coupling. We will first consider the weak
coupling approximation where the results can equivalently be
derived by a Master Equation.

IV. U = c0o—WEAK COUPLING REGIME

We start our analysis considering the case of two-level sys-
tem (the U = oo case). Furthermore, in this section, we derive
general properties and upper bounds to the rectification coef-
ficient R in the limit in which the baths are weakly coupled
to the qubit. This regime is obtained by performing a leading
order expansion in H,_s. At this level the baths are effectively
treated as Markovian [58] and transport is described by a
Lindblad master equation for the reduced density matrix of
the system. Heat transport takes place via sequential tunneling
processes where the transition from the ground (excited) to
the excited (ground) state involves single photon absorption
(emission) in the bosonic case [10,59]. The approximations
considered in this section lead to height and position shifts
in the transmission function (see Fig. 2), but width shifts are

neglected. Indeed, in this regime the width of the transmission
function is the smallest energy scale, so it is infinitesimal; see
Eq. (B5). Width shifts will appear beyond the weak coupling
regime, as discussed in the following sections.

Under weak coupling, the rectification ratio is found to be
(see Appendix B for details)

oo 0N + 00 T) = Y (T — Yy (T)
YT + Y (Te) + YL (Tr) + Y ' (TL)

where Y, (T) = [1 + e 2/®T)]Y(T) is the total dissipation
rate induced by bath « [60]. The rate Y, (T') is associated to
the transition of the qubit from the excited to the ground state
by exchanging energy with bath «. Since bath « is prepared
in a thermal state, the other rate Y, (T) (from the ground
to the excited state) is related by the detailed balance. The
dissipation rate can then be calculated by evaluating

(18)

1 +00 ) .
Y, (7)== f di ¢™/"(B,(1)B}(0)),  (19)
I J oo

where the expectation value is taken with respect to the equi-
librium thermal state p, of the bath, A is the energy spacing
of the qubit, B, () and B (¢) are interaction picture operators
[see Appendix C for a derivation of Eq. (19)]. Notice that
Eq. (18) holds for arbitrary spectral densities of the baths. The
role of the Lamb shift, which is neglected in Eq. (18), will be
discussed in Sec. IV D.

We can now study R for any weakly coupled system using
Egs. (18) and (19), which are generally easy to compute (we
will consider various models explicitly in the following sub-
sections). As a consequence of the weak coupling assumption,
the coupling term o, ® B, [see Eq. (5)] does not contribute
to I(AT), therefore neither to R. This is due to the fact that,
in the weak coupling regime, the heat current is mediated
by transitions in S. Therefore, the heat current only depends
on the population of the qubit, which in turn is solely deter-
mined by the coupling terms proportional to o+ and o~ (see
Appendix B for more details). There is nevertheless ample
room for optimizing the rectification by considering different
coupling Hamiltonians. We decompose the dissipation rate as

Yo(A,T) =Ta(A)ga(A, T), (20)

where 'y (A) is the spectral density of bath «, given by
Eq. (11), and g,(A, T) > 0 are arbitrary nonnegative func-
tions. In Appendix D we explicitly evaluate g,(A,T) for
various models.

The rest of the section is organized as follows: in Sec. IV A
we consider the case in which the two functions g (A, T) and
gr(A, T) are equal. Under such a weak condition on the baths,
we derive general bounds on R. We then study the impact of
linear and nonlinear coupling to the baths. In Sec. IVB we
show that rectification can be enhanced in the case in which
gL # gr.In Sec. IV C, we study a generic spin coupling to the
bath. At last, in Sec. IV D we show how the Lamb shift can be
exploited to further enhance rectification.

A. g1, = gg case
In this section we assume that, in Eq. (20), gL(A, T) =
gr(A,T)=g(A,T). This implies that the dissipation rates
of the two baths, as a function of temperature, are equal up to
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a prefactor. However, the rates may have any dependence on
the gap of the qubit through the spectral densities.
Having defined the asymmetry coefficient A as

_ 'L(A) —T'r(A)
IL(A) + Tr(A)’

such that |A| < 1, and using Eq. (20), one can cast Eq. (18)
into the simple form

e 8(A, Tc) — g(A, Tn)
gA, To) + g(A, Ty)

Without specifying the precise model, we can derive the fol-
lowing general properties of R:

(i) If A > 0O, then R is a decreasing function of g(A, Ty)
and an increasing function of g(A, T¢) (the monotonicity is
inverted if A < 0). Therefore, if g(A, T') is monotonous with
respect to T, then R is monotonous with respect to AT .

(i1) R is linear, therefore monotonous, with respect to A.

(iii) Given the first property, we can maximize the possible
rectification by taking the limits where g(A, Ty) and g(A, Tc)
respectively tend to zero and infinity. This yields the following
bound

2n

(22)

IR| < |A]. (23)

As a consequence, the maximum rectification is severely lim-
ited by the asymmetry ratio A. As expected, for A = 0 we find
that there is no rectification, and the only way to obtain perfect
rectification is to have a vanishingly small coupling to one
bath.

(iv) Given the second property, |R| is bounded by
[g(A, Te) — g(A, Te)l/[g(A, Te) + g(A, Ty)ll. We  there-
fore have stronger rectification when g(A, T') has a strong
temperature dependence.

1. Linear system-bath tunnel couplings

In this subsection we study heat rectification through a
qubit where the coupling to the baths is linear, i.e., defined
by Eq. (6). For fermionic baths weakly coupled to the qubit,
we have that (see Appendix D 1, for details)

g(A,T) = 1. 24)

Plugging this value into Eq. (22) shows us that no rectification
is possible [39]. This is indeed expected, since a qubit coupled
to fermionic reservoirs can be described by a noninteracting
fermionic Hamiltonian, where the Landauer-Biittiker formula
can be used to compute the heat current. Next, we consider
bosonic baths. In this case, as shown in Appendix D2, we
have that

8(A, T)=rcoth[A/(2kgT)], (25)

so rectification is possible. In particular, we find the following
properties:

(i) Since g(A, T') is a monotonous increasing function of
T, A, and R have opposite signs. This means that more heat
flows out of the lead which is more weakly coupled.

(i) Since g(A, T) is a monotonous function of 7, the
rectification increases with AT.

(iii) Since g(A, T') is never zero, but it diverges for T —
00, the bound in Eq. (23) is saturated only in the limit of
infinitely hot reservoir (Ty — 00).

(iv) It can be explicitly seen that R is a decreasing function
of the gap A, so it is maximum in the limit A — 0. In this
limit, we can expand the hyperbolic cotangent, finding the
following bound:

Tu — Tc
Tu+Tc

IRl < & (26)

2. Bosonic baths with nonlinear coupling

For the nonlinear coupling g(A, T) is defined through
the relation Y,(A,T)=T4(A/2)g(A,T)/2. By replacing
I'y(A) with T',(A/2) in the definition of A, Eq. (21), the
function g(A, T') reads [see Appendix D 3]

(A, T) =1+ coth’[A/(4kgT)]. (27)

The properties listed below follow:

(i) g(A, T), as afunction of T, has the same monotonicity
as the bosonic case with linear coupling, it only diverges for
T — o0, and it is never zero. Therefore, it has the same first
three properties of Sec. IV A 1.

(i) Also in this case, g(A, T') is monotonous with respect
to A, such that R is maximized in the limit A — 0. Perform-
ing an expansion for small A, we find the following bound:

T3 -T2

IRI <A —5——5-
T3+ 12

(28)

Comparing with Eq. (26), we see that the nonlinear coupling
may be more effective in rectifying the heat current. This can
be explicitly verified by comparing the exact expressions of R
using Eq. (22).

B. gL # gr case

It may be useful to check if allowing arbitrary functions
gL(A, T) and gr(A, T) in Eq. (20) results in a stronger rec-
tification. Notice that g; and gr are different whenever the
correlation function in Eq. (19) is different for the two baths.
This may happen considering different bath Hamiltonians,
and/or different coupling Hamiltonians.

As an example, we take the two bosonic baths, but we
consider two different coupling Hamiltonians. We assume the
left bath to be linearly coupled to the qubit (as in Sec. [V A 1)
and the right bath to be nonlinearly coupled to the qubit (as in
Sec. IV A 2). Plugging the respective rates for the left and the
right lead into Eq. (18) yields an exact expression for R which
in the limit A — 0 is simply given by

T — Tc

= 29
Ty +Tc (29)

regardless of ) [under the obvious assumption that I'y (A —
0) does not diverge]. Notably, a general property of the regime
analyzed in Sec. IV A is that |R| < |A|, while here we have
rectification even for A = 0, and it can be made arbitrarily
large simply by choosing larger and larger temperature dif-
ferences.

This shows that, in general, an asymmetry in the form
of the system-bath couplings can produce large rectification
coefficients.
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C. Generic spin coupling

In this section, we investigate what happens when the qubit
is coupled to the baths through the same arbitrary bath opera-
tors, but through different Pauli spin matrices. As an example,
we consider the coupling Hamiltonian given in Eq. (8) with
Wk = VR, although also nonlinear couplings can be treated
on the same footing. As shown in Appendix D 4, this system
can be mapped into the case discussed in Sec. [V A with an ef-
fective 'y (A) o sin® 6. Therefore, all the properties derived
in Sec. IV A hold in this case, where the asymmetry coefficient
is given by

) )
. s%n2 oL, s?n2 GR, (30)
sin” 6, + sin” 6g

while the function g(A, T') depends on the bath and system-
bath Hamiltonian [in the specific case of Eq. (8), we have
g(A,T) = coth[A/(2kgT)], see Eq. (25)]. The rectification
does not depend on the angle ¢,; as we will show, this prop-
erty does not hold beyond the weak coupling regime thanks
to coherent transport effects. The only relevant parameter is
0y, which is the angle between the coupling term and the
qubit Hamiltonian (proportional to ;). Since the rectification
is linear in A, it reaches the maximum when 9y is 0 and 6y is
7 /2, or viceversa.

D. Role of the Lamb shift

Until now we have ignored the Lamb shift, i.e., the
renormalization of the energy gap of the qubit induced by
the presence of the baths. The renormalization of the qubit
splitting depends on both (L/R) temperatures, thus it may
influence the rectification properties of the device. This allows
us to have rectification not subject to the bounds derived in the
previous sections.

As shown in Appendix F, if the system-bath Hamiltonian
does not contain terms proportional to o, (i.e., By, = 0), the
Lamb-shift Hamiltonian (which has to be summed to the bare
Hamiltonian H,) takes the following form [58]:

H = [8AL(A, TL) + 8AR(A, TR)]o, (31

where

1 T Y (€, T)
8A4(e,T) = 2—73 ———de€'. (32)
b4

’
Lo €—E€

In Eq. (32), P indicates a Cauchy principal value integration.
We recall that the A appearing in Eq. (31) is the bare gap. The
renormalized gap is therefore given by

A(AT) = A+ SALA, T + AT/2) + SAR(A, T — AT /2),
(33)
and it may change upon inverting the temperature bias
(AT — —AT). In the presence of a Lamb shift, R is still
given by Eq. (18) provided that we replace A — A(AT).

In general, we notice that the renormalization terms
0A(A, T,) is of the same order in the coupling strength as
the rates Y, (€, Ty,) (which are evaluated at leading order in
the coupling). Therefore, if the rates Y, (e, T,,) are smooth
functions of ¢, their variation due to the Lamb shift will be
beyond leading order in the coupling strength. The effect of
the Lamb shift on rectification is thus negligible in the weak

1.45

1.40 +

kBT

1.35 1

1.30 -

— I(AT)
g 10— ji-am)

0.5 1

[KL(kT)?/h

0.0

T T T T T
1.42 1.43 1.44 1.45 1.46
A [ksT)

FIG. 3. Upper panel: the bare gap A, the renormalized gap
A(AT) in the positive bias case and the renormalized gap A(—AT)
in the negative bias case, as a function of the bare gap A. The
dashed gray line corresponds to the gap €, in the density of states
of the baths, while the region highlighted in gray shows where the
renormalized gaps are respectively larger and smaller than €. Lower
panel: the heat currents /(AT) and |I(—AT)|. In the highlighted
region we have perfect rectification (up to higher-order corrections
in the coupling strength). The parameters are: Kr/Ki =5, ec =
(20/3)kgT, €g = (4/3)kgT and AT /T = 2/3. Note that the current
is plotted in units of (kzT)?/h and, once the ratio Kz /Ky is fixed,
scales with Kj .

coupling regime when the spectral density of the baths is a
smooth function of the energy (on the AY, scale). On the
contrary, the Lamb shift may become relevant for rectification
whenever there is a strong energy dependence in Y, (e, Ty,),
for example, if the density of states of the baths has a gap.
As we will show in detail in the following, even a small
renormalization of the gap can have a large impact on the
current.

‘We consider two bosonic baths with a cutoff frequency ec
and a gap in the density of states ¢,

Y,(e, T,) = %Ka O(e — ep) e e~/ coth [e/(2kgT,)], (34)

where 6(¢) is the Heaviside function and K, is the dimen-
sionless Ohmic coupling strength introduced in Eq. (12). In
the upper panel of Fig. 3 we show the bare gap A (black
curve), the renormalized gap A(AT) for the positive bias
case (blue curve), and the renormalized gap A(—=AT) for the
negative bias case (green curve), as a function of the bare gap
A. The renormalized gaps are different in the positive and
negative bias cases. In particular, in the highlighted region
A(—AT) is inside the gap, i.e., it is smaller than €, (dashed
gray line), while A(AT) is outside the gap. We therefore
expect a finite heat current in the latter case, and a zero
heat current in the former. This is confirmed in the lower
panel of Fig. 3, where I(AT) and |I(—AT)| are plotted as a
function of the bare gap. The heat currents are computed using
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Eq. (B5) with A — A(AT) to account for the Lamb shift. The
highlighted region is the one in which perfect rectification is
possible.

This is however an ideal situation. The inclusion of higher-
order effects in the coupling strength (for example cotunneling
effects) will reduce the rectification. Indeed, the perfect rec-
tification visible in the grey region in the lower panel of
Fig. 3 is a consequence of the current /(—AT) being directly
proportional to the density of states, therefore exactly zero
for A(—AT) < €. However, higher-order effects create small
yet finite currents even in this parameter range. Nonetheless,
it is useful to have identified a mechanism to enhance rectifi-
cation exploiting the Lamb shift.

V. U = co—BEYOND WEAK COUPLING

As shown in the previous section, in the weak-coupling
regime there are bounds to the rectification coefficient R. In
this section, we show that some of these bounds can be over-
come by increasing the coupling between the system and the
baths. We will see that quantum coherence can be beneficial
for rectification. From the point of view of the transmission
function, see Fig. 2, going beyond the weak coupling regime
allows us to consider also the effect of a width shift, which was
neglected in the sequential tunneling regime. For concreteness
we focus on bosonic baths and consider three different ap-
proaches. First, we include cotunneling contributions to the
heat current in the sequential tunneling regime derived from
the master equation. The importance of considering cotun-
neling resides not only in improving the analysis compared
to the weak-coupling regime. It is also an important guide
to interpret the results derived with other two methods we
employ. These consist first of all in an approach based on
nonequilibrium Green’s function theory (NEGF); secondly in
a formal exact solution for the heat current valid for general
spectral densities and coupling strengths derived within the
Feynman-Vernon path-integral approach. For Ohmic baths we
consider the special strong coupling condition characterized
by Kg + K; = 1/2 where the heat current is derived in closed
form. This solution, which extends to the nonequilibrium case
the Toulouse limit of the spin-boson model, also provides a
benchmark for the nonperturbative nonequilibrium Green’s
function results. In addition, it holds beyond the nonadiabatic
regime treated in the NIBA [10,32,44].

We will mainly consider two different couplings: the “XX
coupling,” where both left and right baths are coupled to the
system through o,1.e. 0, = 60r = /2, ¢ =0, ¢r =0, and
the “XY coupling,”i.e.,6, =0r =7 /2, ¢ =0, ¢pr = /2.
Since the XX and XY couplings only differ by the angle ¢,
[see Eq. (8)], both cases display identical rectification within
the weak coupling regime (see Sec. IV C). As we will see, this
property is violated when going beyond the weak coupling
regime, signaling the effect of higher-order coherent quantum
effects. Heat transport in the A — 0 limit will be studied for
arbitrary spin coupling as defined in Eq. (8). This limiting
case exhibits vanishing heat current in the sequential tun-
neling limit. Hence, thermal current and thermal rectification
becomes solely due to higher-order processes.

We proceed by considering first cotunneling processes (in
Sec. V A), and then applying the NEGF method in Sec. V B.

The exact results, based on Feynman-Vernon path integral
approach, will be introduced in Sec. V C, while its impact
on rectification will be discussed in Sec. V D. The results for
arbitrary couplings in the A — O limit are presented at the
end of the section.

A. Cotunneling processes

Both for the XX and XY couplings, only elastic cotunnel-
ing processes contribute. These are processes that coherently
transfer an excitation from one bath to the other (via a virtual
state) without changing the state of the qubit, and thus without
affecting the ME itself. The reason why cotunneling processes
can only be elastic comes from the fact that in a cotunneling
process the coupling Hamiltonian (which changes the state of
the qubit) is applied twice. Therefore the two-level system is
brought back to the initial state.

The heat current, including both sequential and cotunnel-
ing processes, can be expressed as (see Appendix G for details
of the calculation)

I(AT) = IP*UAT) + I°°Y(AT), (35)
where I°*1(AT) is the heat current relative to the sequential

regime, given by Eq. (BS), and

I°Y(AT) = /OO d—ee I'L(e)Tr(€)
0

2 h
: : 2["12 (€) —nL(e)]
X +
A4+e+in A—e+in

(36)

is the contribution due to cotunneling, where 1 is an in-
finitesimal positive quantity, and n,(¢) is the Bose-Einstein
distribution relative to bath ««. The plus sign in Eq. (36) refers
to the XX coupling, while the minus sign to the XY coupling.

Equation (36) diverges logarithmically in the limit n —
0™, but the cotunneling rates can be regularized as discussed
extensively in the literature; see Refs. [61-64]. Assuming that
the two-level system is in the ground state, the first term inside
the square modulus of Eq. (36) arises from virtual transitions
of an excitation from one bath to the qubit, and then from the
qubit to the other bath (see Appendix G). The second term
instead arises from the (virtual) process in which excitations
are created both in one bath and in the qubit, and then by
destroying an excitation in the qubit and in the other bath. The
choice of the XX and XY couplings produce opposite interfer-
ence effects between these two processes. If we had neglected
the “counter-rotating” terms in H, s [Eq. (8)], then the second
term inside the square modulus would have vanished and the
cotunneling rates would have become the same in the XX and
XY cases.

Crucially, since in Eq. (36) the temperatures only enter
through the Bose-Einstein distributions, I°°(AT) is an anti-
symmetric function, i.e., I°®(—AT) = —I°®(AT). Therefore,
the contribution of cotunneling to the heat current is the same
both for the positive and negative bias case. The impact of
cotunneling on rectification can be easily appreciated by plug-
ging Eq. (35) into Eq. (14):

3 I*I(AT) + I*(=AT)
= ISCQ(AT) _ Iseq(_AT) + 2]C0t(AT) )

(37
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where we fixed AT >0, so that I(AT)> 0 and
I(—AT) < 0. Notably, cotunneling only appears in the
denominator of Eq. (37). Defining R*4 = [[**(AT)+
*Y(=AT)]/[I**Y(AT) — I**9(—=AT)], we see that if
I°Y(AT) < 0, then

IR] > [R*], (38)

(IR| < |R**9| if I°®(AT) > 0). Therefore, in the presence of
sequential tunneling, cotunneling can enhance rectification
despite being an elastic process which would induce no recti-
fication on its own.

Interestingly, as discussed below, the cotunneling contri-
bution I°°*(AT) is usually negative when sequential tunneling
dominates. In the weak coupling regime (i.e., when A is the
smallest energy scale), sequential tunneling dominates when
A is of the order of kgT. In the presence of sequential tun-
neling processes only, the transmission function 7 (e, T, AT)
in Eq. (16) can be thought of as an infinitely narrow function
in € peaked at the resonant condition. The cotunneling con-
tributions broadens the transmission function, as qualitatively
illustrated in Fig. 2(c). As the width of the transmission func-
tion increases, the weight of 7 (¢, T, AT ) moves from its peak
to its tails. Therefore, where sequential processes dominate,
i.e., around the peak, cotunneling contributions decrease the
heat flow. However, where sequential tunneling is suppressed,
i.e., in the tails of the transmission function, cotunneling in-
creases the heat flow.

B. Nonequilibrium Green’s function method

In this section we will employ the NEGF method to
compute heat currents. It is convenient to first express spin
operators in a Majorana representation [65-67]

i
Oq = _5 Z €abe NMpMcs (39)

be=x,y,z

where €, is the Levi-Civita symbol, and 1, denotes three Ma-
jorana fermion operators (they satisfy the anti-commutation
relation {n,, np} =0 for a # b, nZ =1 and 5, = 772;). The
system and coupling Hamiltonians [see Egs. (4) and (8)]
therefore become (up to an irrelevant additive constant)

A
Hoo = —lzﬁxﬂy,

i .
Ha,S = _5 Z U, a€abe MbTc ® Z szk(bak + bjxk)a (40)
abc k

where the indices a, b and ¢ run over x, y, and z in the sum.
The advantage is that in this representation the system Hamil-
tonian is quadratic, while the nonlinearity is transferred to the
coupling term. In the Majorana representation the system-bath
coupling gives us the nonlinear effects that, as we discussed,
are necessary to observe rectification.

Assuming that the spectral densities of the two baths are
proportional, the heat current is given by Eq. (16) where
T(e,T,AT), in general, must be computed numerically.
However, we are able to find an analytic expression for the
transmission function by solving the Dyson equation for the
Green’s functions with an expression for the self energy ex-
panded to leading order in the coupling Hamiltonian H, s in

Eq. (40) (see Appendix H for details). In the XX coupling
case, this method leads to

Txx(e, T, AT)

4 AT (e)Tr(€)

(€2 —2¢(8AL(e, TL) + 8Ag(€, Tr)) — A2) + £2(€)
(41)

where &(e) =€), To(e)[l +2ny(e)], and 68A,(e, Ty),
which describes the Lamb shift induced by bath «, is defined
in Eq. (32) with 7Y,(¢, T,) = I'y(€’) coth [¢'/(2kg T,)]
[Eq. (20) with Eq. (25)] [68].

Instead, in the XY coupling case we find

4€>TL(e)Tr(€)

Tx T, AT) = ,
xv(e = @ X -2+

(42)

where

X(€) =2€[0AL(e, T) + §Ar(€, Tr)) + (1 + 2nL(€)]
x [1 4+ 2nr(e)]I'L(e)I'r(€)
—48AL(e, TL)S AR(e, TR), (43)

and

[26Aq(e, Ty) — €]

Yer= .

o,f=L.R a#p
x [1 4 2ng(e)]Tg(€). (44)

As shown in Appendix H, this approach provides results
which are more accurate with respect to the ME approach
also including cotunneling processes, since it contains higher-
order processes beyond sequential and cotunneling thanks to
the implicit re-summation performed by solving the Dyson
equation. As shown in Fig. 4, indeed the transmission function
Eq. (41) includes height (top panel) and position (bottom
panel) shifts effects bridging between the sequential and
sequential-plus-cotunneling regimes illustrated in the previ-
ous sections. Red solid curves refer to the positive bias, while
black dashed curves refer to negative bias. The vertical lines
in the bottom panel are guides to the eye to highlight the Lamb
shift. A discussion of the results deriving from this formula-
tion will be deferred to Sec. VD to allow for a comparison
between the different approaches.

C. Exactly solvable case—Ky + K;, = 1/2

By applying the Feynman-Vernon path-integral approach
to the spin-boson problem [49], rectification can be computed
exactly for the XX coupling condition. This case will also
serve as a benchmark for approximate studies in the nonper-
turbative regimes. The exact formal expression for the heat
current Eq. (15) for generic spectral densities of the two baths
having the same energy dependence, i.e., I'L(€) o I'r(€),
takes the form of Eq. (16) with 7 (e, T, AT) replaced by

I'L(e)'r(€)
I'L(e) + T'r(e)

(see Appendix H 4 for details). In Eq. (45), x (¢) is the Fourier
transform of the qubit dynamical susceptibility in the presence

TS (e, T, AT) =2 Im[x (€)] (45)
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FIG. 4. Transmission function 7xx (e, T, AT) as a function of
energy € for K, = 0.006 and K = 0.003 (top panel); K;, = 0.06 and
Ki = 0.03 (bottom panel). Red solid (black dashed) curves are for
positive (negative) bias, while the vertical lines are guides for the eye.
The other parameters are A = kgT', €c = 6kgT and the temperature
difference is AT = 0.6T.

of the two baths, x(t) = (i/h)O(){[0o.(?), 0,(0)]), given in
Eq. (H58).

Here we focus on Ohmic spectral densities, defined as in
Eq. (12). The dimensionless coupling strength K, enters the
exact expression of the dynamical susceptibility in a form
which allows the path summation in analytic form when
Kr + KL = 1/2, analogously to the K = 1/2 regime of the
spin-boson model, corresponding to the Toulouse limit of the
anisotropic Kondo problem [49,69]; see Eq. (H62). We obtain

2A2 00
x (@) = 3—®(t)e*w/2/ dtP(1)
ry 0

x [e—)/ll—fl/2 _ e—VIH-T\/Z]’ (46)

where y = w A?/(2li ec) and

_ e . (mltlkeT, \]
P(T)—H ey sinh — i (47)

We note that x(¢) takes the same form of the spin-boson
model at K = 1/2 with the only difference that the bath-
induced (dipole or intra-blip, see Appendix H4) interactions
involving the two baths enter P(t) in factorized form. When
Ky, = Kr = 1/4 and AT = 0 we recover the susceptibility at
the Toulouse point and the heat current trivially vanishes.

To evaluate the rectification, the heat current Eq. (16) is
more conveniently written by substituting Egs. (45) and (46),

—— NEGF(XY)
0.4 - =~ ME(cot XY)
O2ING ] e ME(seq)
1 Losd || —— NEGF(XX)
0.2 J| ===~ ME(cot XX)
0.0 1
Ao
—0.21
—0.4 1
—0.6 1
—0.81
0.000 0.025 0.050 0.075 0.100
K,

FIG. 5. Rectification coefficient R, computed with the three
methods described in the legend, plotted as a function of K; both
for the XX and XY couplings [the ME(seq) case is the same for
both couplings]. The parameters are Kg = 0.005, A = 0.8kgT, ec =
10kgT, and AT /T = 8/5. We denote with “NEGF” the calcula-
tions performed with the nonequilibrium Green’s function method
described in Sec. VB, with “ME(cot)” those performed with the
master equation which includes cotunneling described in Sec. V A,
and with “ME(seq)” the calculations performed in the weak coupling
limit as described in Sec. IV. The inset shows the same points plotted
as a function of A for A € [0.25, 1]. We neglect the Lamb shift in this
plot.

and it reads

1 KK /+°°
=-—Y dt x(t)F(—1), 48
hKL‘}'KRg—oo X ()F (—t) (43)
where
ks T t
F(=1) = (kBTR>3w<2)[1 + == (1- fi)]
€C h
ks Ty t
- (kBTL)3¢<2>[1 + ﬂ(l - zei)} (49)
€C h

and ¥ (z) denotes the second derivative of the digamma
function. The resulting exact form of the heat rectification
includes all possible heat transfer processes. In the following
we will evaluate it explicitly by numerical integration of the
current expressed as in Eq. (48).

D. Rectification coefficient

In this subsection we show that the general properties and
bounds derived in Sec. IV can be overcome in the strong-
coupling regime, allowing the system to enhance rectification.
Furthermore, we will also identify the effect of higher-order
coherent transport processes on rectification. We will consider
Ohmic spectral density, as in Eq. (12), for both baths.

In Fig. 5 we plot R as a function of K, in the XX and XY
case comparing the NEGF calculation, the ME calculation
including cotunneling effects [ME(cot)] and the ME calcu-
lation in the weak coupling regime [ME(seq)]. The coupling
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0.8
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—— NEGF(XX)
= =- ME(cot XX)

041
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0.0+

A[kpT)

FIG. 6. Rectification coefficient R, computed with the three
methods described in the legend, plotted as a function of the
qubit gap A. The parameters are Ki = 0.006, Kr = 0.03, ¢c =
10kgT, and AT /T = 1.9. The horizontal magenta line shows |A| =
(KL — Kr)/(KL + Kr)| = 0.67. We neglect the Lamb shift in this
plot.

constant Ky is set to 0.005 and the temperatures are fixed. First
we notice that for small values of Kp , i.e., in the weak coupling
limit, all curves coincide, as expected. As Ki increases, we
notice that the NEGF and ME(cot) curves nicely agree up to
K1 =~ 0.025, and then we see some deviations. Interestingly,
we notice that the rectification obtained using NEGF and
ME(cot) method is different in the XX and XY cases, con-
trary to what is obtained using the ME(seq) method. Indeed,
in Sec. IVC we showed that, in the weak coupling regime,
rectification only depends on the angle between the qubit (o)
and the coupling term. Higher-order coherent processes, in-
stead, are able to distinguish these different couplings, as they
produce different interference effects [see the £ in Eq. (36)].
Rectification is enhanced in the XX coupling case thanks to
higher-order processes, while it is suppressed in the XY case
(we will explain this behavior describing Fig. 6). In the inset
of Fig. 5 we plot the same points as a function of the asym-
metry coefficient A = (K, — Kr)/(KL + Kr) [see Eq. (21)].
We recall that, in the weak coupling regime, we proved that
R is linear in A (see Sec. IV A). Indeed, for small values of
A, the behavior is linear. Interestingly, the behavior becomes
nonlinear for larger values of A, which correspond to larger
values of the coupling constant K. This nonlinearity is yet
another signature of higher-order coherent processes.

In Fig. 6 we plot R, computed with the three methods
described above, as a function of A. The choice of the values
of the coupling constants has been made to show that the
NEGF and ME(cot) results, although qualitatively agreeing
with each other, present quantitative deviations with respect
to the ME(seq) calculation. First of all we notice that for
A > 2kgT all methods predict similar values of R. However,
for A < 2kgT, rectification is stronger in the XX case (blue
curves), while it is weaker in the XY case (green curves)
as compared to the sequential tunneling result, consistently
with Fig. 5. This means that coherent processes can decrease
(XY case) or increase (XX case) rectification. This different

x 1072
1.4 ’
—— NEGF(XY)
===~ ME(cot XY)
1.29 ME((seq)
— NEGFXX) S e
1.0 == - ME(cot XX)
NE 0.8
~
m&m
— (0.6 1
~
0.4 1
0.24
0.0 1 | i : |
00 0.5 1.0 L5 20
AT/T

FIG. 7. Heat current and rectification (inset) as functions of the
temperature bias AT for A = 0.8kzT and all other parameters as in
Fig. 6. The color code of the curves is the same as for Figs. 5 and 6.

behavior can be understood by recalling the discussion in
Sec. V A and that the cotunneling contributions depend on
the coupling. In particular, in the XY case I°®(AT) is posi-
tive and, according to Eq. (37), R is suppressed with respect
to the sequential result, while in the XX case I°°'(AT) is
negative and R is increased. We also notice that, for small A,
in the XX case the two terms inside the square modulus of
Eq. (36) tend to cancel each other, resulting in a small cotun-
neling contribution, while in the XY case cotunneling remains
finite. At the same time, the heat current due to only sequen-
tial processes tends to zero as A/(kgT) — O [see Eq. (BS)].
These observations explain the large deviation between the
ME(seq) curve and the XY case for small A. Moreover, we
notice that in the XY case, thanks to higher-order processes,
the NEGF and ME(cot) are nonmonotonous with respect to
A (as discussed in Sec. IV A 1, R is monotonous in A in the
weak coupling regime).

Interestingly, the value of R computed using the NEGF and
ME(cot) methods in the XX case shows a violation of the
general weak-coupling bound of Eq. (23), i.e., we find that
[R| > |A| = 0.67 (denoted with a horizontal magenta line in
Fig. 6). Finally, according to expectations, we mention that the
contributions of cotunneling on the heat current gets smaller
for decreasing A (corresponding to increasing temperature).
This, however, does not prevent R from largely deviating with
respect to R%®4, since such deviations depend on the ratio be-
tween cotunneling and sequential contributions to the current
[see Eq. (37)].

We now study, in Fig. 7, the behavior of the currents,
calculated with the three methods, and rectification (inset) as
a function of the temperature bias. As far as the currents are
concerned, all the curves show that the increase of I with AT
slightly deviates from the linear behavior already for small
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FIG. 8. Heat current (upper panel) and rectification coefficient
(lower panel) plotted as functions of the qubit gap A in the strong
coupling regime (in the XX coupling case) computed using the two
methods indicated in the legend. The NEGF calculation includes
the Lamb shift. The parameters are: K; = 0.49, Kr = 0.01, ec =
100kgT, and AT /T = 1.9.

values of temperature bias, and all the curves have the same
qualitative behavior. We also notice that NEGF and ME(cot)
methods give essentially the same results in both in the XX
and XY cases. In particular, the current in the XY (XX) case
is larger (smaller), in the whole range of AT considered,
with respect to the result obtained accounting for sequential
processes only. However, R shows a nearly linear behavior up
to AT /T = 1. The curves relative to R calculated with the two
methods [NEGF and ME(cot)] show an increasing relative
deviation with AT, while the value of rectification reaches
around 0.35 for the XY case and almost 0.5 for the XX case.

In Fig. 8 we plot the heat current (upper panel) and the
rectification coefficient (lower panel) as a function of A. We
compare the analytic results obtained in the XX case using
the NEGF method including the Lamb shift (see Sec. VB)
with the exact calculation obtained using the Feynman-Vernon
path integral approach (see Sec. V C). In doing so, we are
constrained to fixing the coupling strength as K + Kg = 1/2.
The exact and NEGF calculations for the heat current, al-
though in qualitative agreement, give quantitatively different
results. The NEGF method tends to overestimate the magni-
tude of the heat current for values of A/(kgT) < 10, while it
underestimates the heat current for larger values of A/(kgT).
A similar trend is followed by the rectification coefficient:
the NEGF calculation overestimates R, with respect to the
exact one, when A/(kgT) < 3. For large values of A, the
rectification coefficient predicted by both methods tends to
0. Note that the qualitative agreement was not a priori ex-
pected, considering that the NEGF method is perturbative in
the coupling strength (valid, strictly speaking, only for K| and
Kr < 1).

In Fig. 9 we plot the heat current (top panel) and the
rectification (bottom panel) obtained with the exact calcula-
tion as functions of the coupling constant Kj. Because of

x107°
— 47 ’
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~
P
& 24
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0 ---- |I(=AT)|; A/(ksT) = 0.01 ¢

—— A/(kgT) =0.01
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Y

0.0 0.1 0.2 0.3 0.4 0.5

FIG. 9. Heat current and rectification, obtained with the exact
calculation, as a function of K setting Kr = 1/2 — K. The parame-
ters not shown on the figure are A/ec = 0.005 and AT /T = 1.9.

the constraint Kg = 1/2 — K, here we can explore a very
asymmetric coupling condition (one bath strongly coupled
and the other weakly coupled), which cannot be treated by
using approximate analytical approaches and it is difficult to
address even numerically. In the top panel the solid curve refer
to positive bias, while the dashed curve refer to the negative
bias, for a fixed value of A = 0.01k5T. Notice that the two
curves are symmetric with respect to the point K, = 1/4. Both
currents vanish for K = 0 and K = 1/2, since no current
can flow when one of the two coupling strengths is zero. The
maximum occurs at around K;, = 0.15 for the current relative
to the positive bias. In the bottom panel the two solid curves of
R correspond to different values of A. It is worth stressing that
they differ by a little extent even though A spans two orders of
magnitude. This is peculiar of the asymmetric coupling condi-
tion, with one bath strongly coupled, and significantly differs
from the behavior observed for smaller couplings reported in
Fig. 6. The rectification vanishes when the coupling strengths
are equal, K;, = 1/4, and it is maximum for K, = Q or 1/2, as
expected from the fact that this is the most asymmetric situa-
tion. We observe that the rectification fulfills the bound |R| <
|A| [Eq. (23)] derived for the weak coupling, as shown by the
green dashed curve which represents (—A) as a function of K.

The dependence on the (average) temperature of the cur-
rents and rectification is analyzed in Fig. 10 under asymmetric
coupling conditions (K;, = 0.49, Kz = 0.01) for fixed values
of AT and A. As shown in the top panel, for kg7 2 0.05¢c
both currents (obtained with the exact calculation) decrease,
as one can expect from the fact that the ratio AT /T decreases.
However, for the smallest temperatures, with kg7 < A, both
currents show an increase (the current for positive bias being
maximum when kgT =~ A). The (absolute value of) rectifi-
cation, instead, monotonously decreases with T, taking its
maximum value when the weakly coupled bath (R) is at zero
temperature (Tx = 0, i.e. T = AT /2). This can be explained
by the fact that the ratio AT /T is maximum in this situation,
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FIG. 10. Plot of the heat currents (top panel) and rectification
(bottom panel) as functions of kT, obtained with the exact calcu-
lation. The inset in the bottom panel shows a zoom of the curves in a
range of small temperatures (from kT = kg AT /2 = 0.005¢¢). Rec-
tification is clearly maximized at low temperatures. The parameters
are: K1 = 0.49, Kr = 0.01, A = 0.05¢c, and kg AT = 0.01ec.

thus maximizing the asymmetry between the two baths. For
increasing T', R reduces tending to zero.

Analogously to what we did in the sequential tunneling
limit (Sec. IV C), also here it is interesting to understand the
case of a generic coupling. We focus on the A/(kgT) —
0 limit where heat transport is determined by higher-order
coherent processes (sequential tunneling component being
vanishingly small, as discussed above). We therefore consider
the coupling Hamiltonian, given in Eq. (8), with an arbitrary
coupling to the left bath, i.e., 6, = 6 and ¢ = ¢, but with
fixed o, coupling to the right lead, i.e g = 7 /2 and ¢r = 0.
The XX and XY cases can be recovered, respectively, by
settingf = /2and ¢ = 0,0r6 = 7 /2 and ¢ = 7 /2. Notice
that, by considering a coupling with 0 # 7 /2, we are includ-
ing also a o, coupling to the left lead. We recall that, in the
weak coupling regime, the o, coupling does not contribute to
the heat current. To isolate the impact on rectification of differ-
ent spin couplings, we consider the case of identical spectral
densities for the two baths, i.e., I'L(€¢) = I'r(€). Therefore,
the only asymmetry in the coupling, which can give rise to
rectification, is given by the different directions described by
ﬁL and ﬂR.

In Fig. 11 we show a contour plot of the heat current
I(AT), at fixed temperatures and for equal Ohmic spectral
densities [i.e., K = Kg, see Eq. (12)], as a function of the two
angles 6 and ¢ in the small gap limit, i.e., for A/(kgT) — 0.
For simplicity, we neglected the Lamb shift. Strikingly, the
heat current is maximum when the left lead is coupled through
o0,, i.e., for 6 = 0 (lower part of Fig. 11). This is surprising
for two reasons: first, in the weak coupling limit the heat
current at & = 0 would be null even for finite values of A,
since o, does not contribute to the heat currents. Second,

I(AT) [(ksT)? /1]

/2 0.10
0.08

0.06

> /4

0.04

0.02

O T T T T 1 000

0 /2 T 3m/2 27
¢

FIG. 11. Contour plot of I(AT), calculated with the NEGF ap-
proach, as a function of € and ¢. The parameters are: ec = 80kgT,
K. =Kr =0.06, A =0, and AT/T = 1.9.

regardless of the coupling strength, a single bath coupled to
S through o, cannot transfer heat to the system, since the
Hamiltonian of S would commute with the total Hamiltonian
(and thus it would be a conserved quantity). In this case, the o,
coupling would only produce dephasing in the qubit state. We
can therefore qualitatively describe transport in this regime
as a direct transfer of heat from one bath to the other. As 6
increases, and therefore as the o, component decreases, the
heat current decreases monotonously, to the point that it is null
in the XX case (¢ = 0), while it remain constant in the XY
case (along ¢ = 7 /2). Interestingly, also the rectification co-
efficients roughly follows a similar trend, i.e., it is maximum
where also the heat currents are maximum. This can be seen
in Fig. 12, where R is contour-plotted as a function of 6 and ¢
for the same parameters as in Fig. 11. Indeed, R is maximum
for 8 = 0, i.e., when the left lead is coupled only through o,.
As 0 increases, the modulus of R decreases monotonically
along ¢ = 0, just as the heat current itself. However, it remain
constant along ¢ = 7 /2, while for intermediate values of ¢ it
displays a nonmonotonic behavior.

R
/2 0.00

—0.02
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~0.06
—0.08
—0.10
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—0.14
~0.16

> /4

O T T T T 1
0 /2 ™ 3mr/2 2

¢

FIG. 12. Contour plot of R as a function of 6 and ¢. The param-
eters are the same as described in the caption of Fig. 11.
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We can therefore conclude that the optimal operational
points in the A/(kgT) — O limit are the XY and the XZ
coupling cases. These couplings simultaneously maximize the
magnitude of the heat current and of the rectification coeffi-
cient. We emphasize that the heat current, which in this limit
is solely due to coherent quantum processes, behaves in the
opposite way with respect to what would be expected from
weak coupling calculations (the heat currents should be zero
both because A = 0 and because o, does not contribute to the
heat current).

VI. RECTIFICATION AT FINITE U

How does the picture described so far changes when sev-
eral levels come into play in the rectification process? In this
section we will study a nonlinear resonator defined by the
Hamiltonian Eq. (3) at finite U, coupled to bosonic leads by
the Hamiltonian Eq. (9). For the sake of convenience, in our
numerical procedures we use the Ohmic spectral density in
Eq. (12) in a form with a sharp cut-off, namely,

Iy(e) =nKye ()b (ec — €). (50)

The most important effects are expected in the nonper-
turbative regime. To this end we will employ the Keldysh
nonequilibrium Green’s function technique, with the retarded
Green’s function for the system defined as G}, (t,1") =
—if(t — t'){[b(t), bT(¢")]). By following Ref. [70], we use the
equation of motion (EOM) decoupled to the second order
(see Appendix I for details) to obtain the following analytic
expression for the retarded Green’s function

1+ 2A(€)(n)
— A = 3ZO0(e) +2A(6)[ZD(e) + 2@)(6)%5’ N

G(€) =

where n(t) = b'(¢)b(t) is the number operator, (n) is the ex-
pectation value of the occupation given by

d .
= Z/ iGZ;b(G)”a(G)Fa(e)Gz;b(e)’ (52)

and

A©))U =[e = A—=Un) — Q)+ =P, (53)

n, being the Bose-Einstein distribution relative to bath «.

To calculate the Green’s function GZ; »(€), one has to solve
Egs. (51) and (52) self-consistently. In Eq. (51), the embedded
self-energy is given by

Iy
% = Z/ L—afcj-)m} oY

while the other self energies are given by

dw Iy (w)
(1) — _-
= (6)_;/27[ _e+w—2A—2U(n>—U+in]’
do [ ny(0)ly(w)
2) — | = 7
> (e)_;/bt _e—a)—i-in}’
dw Cy(w)ng(w)
3) — -
= (e)_g:/zn _6+a)—2A—2U(n)—U~|—in]

1.21

1.0
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FIG. 13. Occupation as a function U for the following parame-
ters K = 0.06, Kg = 0.003, ¢ = 100U, A = 5kpT, and AT /T =
0.4. The blue curve is calculated using the EOM, while the red
curve refers to the MF approximation. The thin magenta horizontal
line is the occupation of the excited level for a qubit with the same
parameters, calculated accounting for sequential tunneling processes
only.

The inclusion of the self-energies defined by the expres-
sions above ensures that the onsite correlations are correctly
captured [70]. The advantage of this approach is that it de-
scribes both weak and strong coupling regimes and keeps
the processes involving virtual states of the system [71].
It is worth stressing that in deriving Eq. (51), we have
neglected terms involving correlation in the baths by set-
ting ([6"(1)bar (1 )bor (1), b (1)) = 0 and (b'bex) = (bb},) =
0. The contributions from these terms become significant for
very strong coupling [70]. The lesser and greater Green’s
functions used to calculate the heat currents [see Eq. (15)] are
obtained from the following relation

G5,(€) = Gy ()T V= ()Gl (e). (55)

The mean-field (MF) approximation, however, is obtained by
decoupling the EOM for the retarded Green’s function to the
first order, so that the latter takes the simple form

Gilf(e)=le—A—-U®n —2%@E1". (56)

This expression makes clear that the MF approximation renor-
malizes the energy of the resonator, while leaving unchanged
the self-energy compared to the noninteracting case. This
means that higher-order onsite correlations are not taken into
account. The MF approximation was employed in Ref. [14] to
calculate the rectification in nonlinear quantum circuits. Con-
sidering an average thermal energy kg7 of the order of A, we
checked that the onsite correlation effects become significant
when U is of the order of the spectral density,i.e. U ~ K, A.
For U « mK, A, MF approximation and EOM give similar
results [14]. In the absence of the nonlinearity, Eqs. (51) and
(56) reduce to the same expression for exact Green’s function
of a noninteracting harmonic resonator, which yields no recti-
fication.

In Fig. 13 we plot the occupation (n), calculated using
the EOM (blue dashed curve) and in the MF approximation
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(red curve), as a function of the nonlinearity parameter U. For
small values of U the two curves are close to each other, but
they start to significantly depart from U =~ 20kgT. We also
checked that MF and EOM results nearly coincide for U <
0.1kgT and A = kgT. The two curves of (n) are monotoni-
cally decreasing, as expected from the fact that with increasing
U the number of levels available in the resonator for transport
decreases, and so does the expectation value of the occupa-
tion. For U very large one reaches the situation corresponding
to a qubit. Indeed, the curve relative to the EOM approaches
the magenta line which represent the occupation of the excited
level for a qubit, characterized by the same parameters, calcu-
lated accounting for sequential tunneling processes only. In
Fig. 14, we plot the heat current as a function of the resonator
energy A for a few values of the nonlinearity parameter U.
We fix the coupling strength to be within the weak coupling
regime, i.e., K, = 0.06 and Kr = 0.003. The heat current is
calculated using both methods: (i) the MF approximation (red
curve), whose Green’s function is Eq. (56), and (ii) the EOM
method to second order (dashed blue curve), whose Green’s
function is Eq. (51). In addition, as a reference we include
the heat current relative to the qubit (i.e., U — 00) calculated
using the master equation formulation taking into account the
cotunneling contributions (dotted green curve).

Figure 14 shows that, for all values of U considered, the
three curves coincide starting from A > 5kgT. This means
that for A > 5kgT the system behaves as a qubit, whereas
for A < 5kgT the nonlinear resonator acts as a multilevel
quantum system. At U = 10kgT (middle panel) the curve
for ME departs from the other two curves for a slightly
smaller value of A, with respect to the case U = kgT. For
U = kgT, EOM and MF curves start deviating for A < 4kgT,
and the EOM method predicts a much higher current. Both
MF and EOM curves display a maximum for small values of
A. When U reaches 10kgT (middle panel) the heat current
calculated with EOM reduces by roughly a half, tending to
agree more with the MF result (which though does not display
a maximum). Nearly no changes are observed for the MF
curve by increasing U up to 20kgT, while the heat current
predicted by the EOM method gets further reduced. We note
that the heat current obtained for the qubit case, green curve,
gets vanishingly small for A = 0, whereas the MF and EOM
calculations predict a finite heat current. Interestingly, for
larger values of U (lower panel), the heat current computed
with the EOM method approaches the ME(cot) curve even for
small values of A, as one would expect.

In Fig. 15 we plot the rectification coefficient R (calcu-
lated using both EOM and MF methods) as a function of
the resonator energy A (top panel) for fixed thermal bias and
coupling strengths, and of the nonlinearity parameter U, for
two values of A (bottom panel). The top panel shows that the
two methods agree for A > 4.5kgT, while for smaller values
of A EOM predicts always larger rectification, with respect
to the MF method, which displays a maximum at A >~ kgT.
The largest value of rectification found is around 40%. In the
bottom panel, we first notice that the two methods do not agree
over the whole range of values of U considered, since we have
chosen small resonator energies (A = kgT and A = 2kgT).
The EOM method, for both values of A, predicts a larger
rectification with respect to the MF method. Furthermore,
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FIG. 14. Heat current calculated with three different methods
as a function of resonator energy A for AT /T = 8/5, e = 100U,
K;, = 0.06, and Kr = 0.003. The three panels refer to different val-
ues of U.

the EOM curve presents a maximum for U of order kg7,
then R steadily decreases with increasing U. The MF curves,
however, are also nonmonotonous with U, but with a very
broad maximum.

VII. CONCLUSIONS

In this paper we have presented a systematic theoretical
study of thermal rectification in a paradigmatic multilevel
quantum system, namely a nonlinear harmonic resonator, cou-
pled to two thermal baths kept at different temperatures Ty
and Tc, corresponding to a thermal bias AT = Ty — T¢. Ther-
mal rectification, consisting in an asymmetric heat conduction
occurring under reversal of the thermal bias, is possible in the
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FIG. 15. Rectification as a function of the resonator energy A
(top panel) for U = kT and of the nonlinear parameter U (bottom
panel) for A = kgT (solid curve) and A = 2kgT (dashed curve).
Other parameters are the same as in Fig. 14.

presence of an asymmetry in the coupling between system and
baths and of interactions. On a general perspective, both in the
fermionic and bosonic cases, our aim was to explore in such a
quantum system under which conditions thermal rectification
can be induced and maximized, to find fundamental bounds
to the maximum rectification, and to assess the impact of
coherent processes on rectification. To this end, we have first
focused on the case where the strength of the nonlinear term
U in the Hamiltonian [Eq. (3)] is so large that the system
behaves as a qubit (a two-level system with energy spacing,
gap, A). In this case we have considered different transport
regimes, depending on the strength and on the nature of the
coupling between system and baths, and have used different
theoretical approaches. To the lowest order in the coupling,
we have employed a master equation to calculate the heat
current and we have determined, in different conditions, the
behavior and fundamental bounds of the rectification coef-
ficient R in terms of the temperatures 7y and 7¢ and of the
asymmetry in the system-bath couplings (|JR| < 1 and R =0
for no rectification). In particular, under the only assumption
that the dissipation rates of the two baths, as a function of
temperature, are equal up to a gap-dependent prefactor, we
have found that:

(i) the rectification ratio R is monotonous with respect to
AT, if the dissipation rates are monotonous in temperature
(for example when the baths are bosonic);

(ii) R is a linear function of A;

(iii) the modulus of R is upper bounded by A (|R| < |A]);

(iv) R is larger when the temperature dependence of the
dissipation rates is stronger.

Here A is the asymmetry between the spectral densities
of the two baths. In particular, for the case of bosonic baths
we have found that R is a decreasing function of the energy
spacing A and, in the limit of small A,

(i) |R| is upper bounded by A(Ty — Tc)/ (T + 1c) in the
case of linear coupling;

(ii) |R| is upper bounded by A(T;? — T2)/(T; + T2) in the
case of nonlinear coupling.

However, we have found that when the dissipation rates of
the two baths are arbitrary the rectification can be stronger. For
example, in the case of bosonic baths and assuming the qubit
to be linearly coupled to the left and nonlinearly coupled to
the right we have found that R = (Ty — Tc)/(Ty + Tc) in the
limit of small gap. This means that rectification can be made
arbitrarily large simply by choosing a large temperature dif-
ference, regardless of . We have then considered the case of
arbitrary spin operators involved in the coupling Hamiltonian
Eq. (5) to the left H s and to the right Hg s. In particular,
with XX coupling we specify that both left and right baths are
coupled to the system through o, while with XY coupling we
specify that the left bath is coupled through o, and right bath is
coupled through o,. We have found that R only depends on the
angle between the coupling term and the qubit Hamiltonian
(proportional to o). Finally, we have assessed how the Lamb
shift can give rise to an enhancement of the rectification when
the baths have a gap in their density of states.

Next, we have investigated what happens in the regime
beyond the weak coupling by making use of three different
techniques which allow us to describe increasingly stronger
coupling between system and baths and the effect of quantum
coherence. Namely, first we have included cotunneling effects
in the master equation approach, then we have used a per-
turbative approach based on nonequilibrium Green’s function
theory and, finally, we have performed an exact calcula-
tion employing the Feynman-Vernon path integral approach
which accounts for general spectral densities and coupling
conditions. All these approaches allow us to conclude that
the rectification can be enhanced by going beyond the weak
coupling regime, even violating the bounds found in the first-
order coupling regime. In particular, we have found that:

(i) cotunneling processes enhance rectification when heat
transport is dominated by sequential tunneling;

(i) R is in general nonmonotonous with the coupling
strength and depends on the spin operators involved in the
coupling Hamiltonian;

(iii) R increases with increasing coupling strength in the
XX coupling case;

(iv) R increases with A faster that linear in the XX cou-
pling case;

(v) R increases with decreasing A in the XX coupling
case, and is nonmonotonous for the XY coupling;

(vi) the heat currents calculated with nonequilibrium
Green’s function method and with the exact method are qual-
itatively in agreement even for large system bath couplings;

(vii) in the limit of small A, where the coherent (higher-
order) contributions to the heat current dominates, heat
currents and R are maximized in the XY and the XZ coupling
cases.
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Finally, we have considered the case in which the nonlin-
ear term U is finite. Employing the Keldysh nonequilibrium
Green’s function technique we have calculated the heat cur-
rent using the equation of motion (EOM) decoupled to the
second order and in the mean-field approximation. We have
discussed the behavior of the heat current and of the rectifica-
tion as functions of the resonator energy and of U. We have
found that the rectification, using the EOM approach, is not
monotonous in both A and U and reaches a maximum of 40%,
much larger that what is predicted employing the mean-field
approximation.

The paper is enriched with a number of appendices which
contain the details of the calculations described in the main
text.

To conclude, we believe that our results can be very
valuable for the design and interpretation of experiments on
thermal rectifiers based on qubits and nonlinear harmonic
resonators.

ACKNOWLEDGMENTS

We thank J. Pekola for many stimulating discussions and
for his comments on the draft. R.F. research has been con-
ducted within the framework of the Trieste Institute for
Theoretical Quantum Technologies (TQT). E.P. acknowl-
edeges hospitality of ICTP where part of this work has been
carried out. We acknowledge support from the SNS-WIS joint
laboratory QUANTRA, and E.P. acknowledges support by the
University of Catania, Piano di Incentivi per la Ricerca di Ate-
neo 2020/2022, proposal Q-ICT, and by the CNR-QuantERA
grant SiUCs.

APPENDIX A: MOST GENERIC SYSTEM-BATH
COUPLING IN THE QUBIT CASE

In this Appendix we prove that the system bath interaction
described by Eq. (5) is indeed the most generic system-bath
interaction in the qubit case.

The most generic Hermitian operator acting on the tensor
product space between S (a two-dimensional Hilbert space)
and the baths (an arbitrary dimensional Hilbert space) can
be expanded on the product basis of the two Hilbert spaces.
We therefore consider a basis {B;}; of Hermitian operators
acting on the space of the bath, and the specific basis 5; =
{1, oy, 0y, 0;} of Hermitian operators acting on the qubit
space. This yields

Ha’S:ZaUB,-@)Uj :ZBj®O-jv
J

ij

(AD)

where B; = ), a;;5; is an Hermitian operator acting on the

bath space. Using the relations
oo=0t4+0", oy=ioct —io", (A2)

we obtain Eq. (5), where B, = B, + iB,.
APPENDIX B: RECTIFICATION IN THE WEAK

COUPLING REGIME AND QUBIT CASE

We now compute the heat current flowing out of the leads
in the weak coupling regime, valid when H, s is “small

enough” [58]. Under these conditions the evolution of the re-
duced density matrix pg of the qubit obeys a Lindblad master
equation. Furthermore, when the qubit is not degenerate (i.e.,
when A ## 0), the Lindblad master equation can be cast in
the form of a rate equation for the occupation probabilities
of the qubit, defined by Py = Trpsoto~ and Py =1— P.
Only the terms in H, s proportional to o and o~ contribute
to the rate equation. Indeed, rewriting H, s as in Eq. (A1), the
rate equation only depends on the following matrix elements
of the o operators [58]:

{Ola;[1), (B1)

where {|0),|1)} are the eigenstates of the qubit. Since
(Oloj|1) =0 for o; =1, 0,, the only terms that determine
the populations are the ones proportional to o, and oy, and
therefore to o™ and o .

Neglecting for the moment the Lamb shift, the probabilities

satisfy [58]
d (P . Tt (A) T7(A) Py
E(Pl) = ( T+(A) —T(A)) (P1>’ B2)

where T*(A) = YE(A, L) + Yi(A, Tr), and YE(A,T),

for « = L, R, are derived in Appendix C. Using Eq. (B2) and
Py + P, = 1, we can find the steady-state populations

_ T (A) _ TH(A)
T Y (A)+ YA T Y (A)+YHA)

The heat current flowing out of bath « at temperature 7,, [see
Eq. (13)] can then be computed as

L(T,) = AR, (A, Ty) — PIY, (A, Ty)). (B4)

Py 1 (B3)

Obviously, the steady-state heat current and, as a con-
sequence, the rectification ratio within the weak-coupling
regime only arise from the terms proportional to o™ and o ~.
Since Y, (A, T,) and Y, (A, T,) are related by the detailed
balance equation, Y, (A, T,)= e /W)Y (A, T,), we
can express them as Tj(A, T,) = Yo (A, T, fIE£A/ (ks Ty)],
where f(x) = (1 + ¢*)~!. Using Eqs. (B3) and (B4), the heat
current is given by

TL(A, TL)TR(A, TR)
TL(A, 1) + Tr(A, Tr)

x {flA/(ksTL)] — fIA/(ksTR)1}, (B5)

where T;, =T + AT /2 and Tr = T — AT /2. In conclusion,
under weak coupling and neglecting the Lamb shift, the
heat current only depends on the tunneling rates Y, (A, Ty)
which can be explicitly evaluated for the models considered
in Sec. IV. By plugging Eq. (B5) into Eq. (14) we find the
general expression for R, i.e., Eq. (18).

I(AT) = A

APPENDIX C: TUNNELING RATES

In this section we prove Eq. (19) following Ref. [58]. To
this end we consider the system-bath Hamiltonian as written
in Eq. (A1), such that all operators are Hermitian. As shown
in Appendix B, the term proportional to o, does not contribute
to the heat current, therefore we consider

Ha,S =By @0, + Bay Q oy, (ChH
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where

B' +B i(BY — B,
A

Using the results of Ref. [58] with H, s given by Eq. (C1), the
dissipation rate induced by bath « is given by

Y, (A T)= )" yi{lloil0)(0lo;|1)
i, j={x.y}

= Yo+ Yy + iV — iV

400
= / dt ¢ (B,(s)BL(0)), (C3)

o]

where

+00
vii = / dt '™ (%) B} (1)B(0). (C4)
—0Q

Here B,;(t) is the time evolution of B,; in the interaction
picture, i.e., B,;(t) is the Heisenberg picture operator evolved
solely according to Hamiltonian of the bath H,. In the last
step of Eq. (C3) we used Eq. (C2) to express By, and By, in
terms of B, and B . This concludes the proof.

APPENDIX D: TUNNELING RATES IN SPECIFIC MODELS

In this section we derive the expression for Y (A, T) in
various models.

1. Fermionic baths with linear (tunnel) couplings

In this subsection we consider a fermionic bath H{", as de-
fined in Eq. (2). Since we consider the case of equal chemical
potentials, we define the energies €4, in Eq. (2) as measured
respect to the common chemical potential . Therefore, the
energies €, are defined in the interval [—oo0, 4+-00]. Plugging
the linear coupling Hamiltonian, given in Eq. (6), into Eq. (19)
yields

T, (A, T)_ZVakV /

In the interaction picture, time-evolved bath operators O sat-
isfy (with i = 1)

o0

dt ™ (cqr(t)cl). (D)

do(t .
@) = i[Hy, O@)]. (D2)
dt
Using the fact that [H,, Cor] = —€wikCak, We find
Cak(1) = € oy (D3)

Plugging Eq. (D3) into Eq. (D1) yields

Yo (A T) =271 Ve () okl S(A — €a)
k

=27 ) [V [1 = f(Bu€ar)IS(A — €qc),
k
(D4)

where f(x) = (exp(x) + 1)~!. Recognizing the spectral func-
tion, defined in Eq. (10), we have that

Yo (A, To) = o (M1 — f(A/(kgTa))]. (D5)

Using the detailed balance condition, we find that
To(A,T) =To(A),
which implies g(A, T) = 1. This proves Eq. (24).

(D6)

2. Bosonic baths with linear (tunnel-like) coupling

In this section we consider a bosonic bath H(®, as defined
in Eq. (2), and a linear coupling as in Eq. (6). As in the
fermionic case, we have that [H®), byr] = —€uibar, SO also
in this case we have that the interaction picture destruction
operator is given by

bar(t) = e " by (D7)

Performing the same steps as in the fermionic case we end up
with Eq. (D4) with (b akbak> instead of (cakc )» which leads
to having 1+ nley/(ksTy,)] instead of 1 — f[eak/(kBT )],

where n(x) = [exp(x) — 1]~!. We therefore find

Yo (A, Ty) = To (A1 + n[A/(ksT:)1}, (D8)
which, using the detailed balance condition, leads to

Yo(A, Ty) = Ty (A)coth [A/(2kpTy)]. (DY)

This proves Eq. (25).

3. Bosonic baths with nonlinear coupling

In this section we consider a bosonic bath H(®), as defined
in Eq. (2), and a nonlinear coupling as in Eq. (7). Using
Eq. (19), we have that

Y (A, T,) = ZVka’f/

kK -

+00

dt &2 (b(t)(b})%).  (D10)

Using Eq. (D7), we can compute the time integral, finding
Yo (A, To) =27 ) Ve P (B (b)) 8(A — 2€q). (D11)
k

We therefore need to compute the expectation value
(b k(b k)2> Using the commutation relations, we have that

(B2 (BL ) = (n2) + 3n(ear/ (ks T)) + 2,

where ( 0 = ((b bai)?) is the thermal expectation value of
the square number. The calculation of (n ak} is performed in
Appendix E. Using Eq. (E6), we have that

(B2, (BT )7 = 2fnleq/(kpT)] + 112 (D13)

Plugging this into Eq. (D11), recalling that §(A — 2¢;) =
8(A/2 — €;)/2 (which can be proven changing variables), and
recognizing the spectral function, we find

(D12)

Y, (A, To) = To(A/2){1 +n[A/QksT)]Y.  (D14)
Finally, using the detailed balance condition we find
1 A
T (A T,) = EFQ(E) {1+ coth’[A/(4ksT,)]}. (DI15)

Replacing Eq. (20) with Y, (A, T) =T4(A/2)g(A,T)/2,
g(A, T)is given by Eq. (27). This implies that, for the results
of Sec. IVA2, I'y(A) has to be replaced with 'y (A/2) in the
definition of A [Eq. (21)].
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4. Arbitrary baths with different o couplings

In this subsection we consider arbitrary baths coupled to
the qubit via Eq. (8). In fact, in this Appendix we consider a
more general case given by

Hus = Y (1i0:) ® (By + B),

i=x,y,2

(D16)

where ii, = (sin 6, cos ¢, sin 6, sin ¢, cos 6, ) is a unit vec-
tor, and B, is an arbitrary bath operator. As discussed in
Sec. IV, the term proportional to o, does not contribute to the
heat current, so we can neglect it. The term that matters is

[l 1c0 + [ie]yoy = sin by (e 0™ + e %07).  (D17)
Assuming that A > 0, and that Bl produces excitations in
bath o with positive energy, also the terms proportional to
B'o* and Bo~ vanish. The relevant terms of the interacting
Hamiltonian thus become

Hos =0T ®By+0~ ®B], (D18)

where we define

By = sinf,e'*B,. (D19)

This interacting Hamiltonian is now of the form of Eq. (5).
Therefore, the tunneling rates can be computed from Eq. (19),
yielding

Y, (A, T,) = sin® 0,h(A, T,), (D20)

where h(A, T,) = [dt ¢ (B,(1)B}(0),) only depends on
the bath through the temperature, and it does not depend on
6, nor ¢,. Using the detailed balance condition we find

Yo (A, T,) = (sin® 6,)h(A, Tp)(1 + e~ 2/®T)y - (D21)

This situation therefore corresponds to the equal-g case [gr, =
gr = g in Eq. (20)], where I'y(A) = sin® @,, and g(A,T) =
h(A, T)(1 + e~ 2/,

APPENDIX E: THERMAL AVERAGES

In this section we show how to compute the expectation
value (nik) for the bosonic bath. Let us define the inverse
temperature B, = 1/(kpT,) The partition function Z, is given
by

+00

Z= ") p(n. (ED)

;=0
where the sum is over each »; from O to +o00, and where
p{ni}) = e~ Pe2uinices (E2)

is the canonical probability of finding the bath in a Fock state
with occupation numbers {7;}. Using these two definitions,
and recalling that (n]),) = > p({ni}) ny, itis easy to prove that

18InZ

e = ), (E3)

1 82InZ

P% = (2 — (). (E4)
ak

Plugging Eq. (E2) into (El), and recognizing that we can
perform all the sums as geometric series, we can express the
logarithm of the bosonic partition function as

InZ=-Y In(l—ePw). (E5)
k

Plugging Eq. (ES) into (E3), we find the well-known result
that (nyx) = n(By€qar)- Plugging Eq. (ES) into (E4), we find

(%) = 20 (Bu€ar) + n(Bear).- (E6)

APPENDIX F: LAMB SHIFT

In this Appendix we compute the Lamb shift of the qubit
gap induced by the bath in the weak coupling regime, and we
derive Eq. (31). To use the results of Ref. [58], we consider
a coupling Hamiltonian as written in Eq. (C1). As shown in
Ref. [58], we have that

D>

e={0,£A} i,j={x,y}

Sy (€)a; (€)aj(e), (F1)

where
1 +o00 »
Site) = 5P / V) 4y = Silys@), (F2)
T J o €—w
with

+0o0
Vij(@) = / dt ¢ (B} (1)B;(0)) (F3)

]

defined exactly as in Eq. (C4), where A is replaced with w,
and where

oi(e) = Z l€”)(€"|oile") (€] (F4)
€' —€"=€

Notice that the functional S.[...], defined in Eq. (F2), is
linear, and that €” and €’ run over the two eigenvalues of
the qubit, —A/2, A/2. For ease of notation, we identify the
excited state of the qubit with |1) =|A/2), and the ground
state with |0) = | — A/2). Expanding the sum in Eq. (F4), we
have

0i(A) = (0loy| 1) [0) (1],
0i(0) = Y (kloilk) k) (k| =0, (F5)

k=0,1

oi(=A) = (1]o30) [1)(0],

where we used the fact that both o, and o, have only zeros
on the diagonal in the last equality. Therefore, the nonnull
elements are given by

ox(A)=o0",

0y(A) = —io ™,

ox(—A)=0",
oy(—A) =io*. (F6)

Plugging these results into Eq. (Fl), using the anti-
commutation relation {o~, 07} = 1, and neglecting the terms
proportional to the identity, we find

H ZUZ[Sxx(A) + Syy(A) - iny(A) + l.Syx(A)]

- az[Sxx(_A) + Syy(_A) + iny(_A) - iSyx(_A)]-
(F7)
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Expressing S;;(£A) in terms of the functional S, yields

H =0, Salym(w) + V)’y(w) - iyxy(w) + lyyx(w)]

— 0. S_Alyu(w) + Vyy(w) + iyxy(w) - iyyx(w)]~
(F8)

Using the definition of y;;(w) in Eq. (F3), and expressing By
and By in terms of B and BT through Eq. (C2), it can be shown
that

Yix (@) + Yy (@) — iyyp(@) + () = T (0),
Yax(@) + Vyy(w) + iyxy(w) - iyyx(w) = T+(—a)), (F9)

where Y~ (w) and Y (w) are the rates introduced in Eq. (B2).
Plugging Eq. (F9) into Eq. (F8) yields

H = 0 {SAIY ™ (@)] — S_al YT (~w)]}. (F10)

Using Eq. (F2), it can be shown that the operator Sal...]
satisfies the general property S_a[f(—w)] = —Salf(w)].
Therefore, we find

H = 0.SA[YT () + YT (w)]. (F11)

Finally, recalling that Y*(w) = Y (w, 1) + Ti (0, Tr), we
have that

T (w)+ Y () = T(w, L) + Tr(w, TR). (F12)
Therefore, we find
H = 0 {SalYL(@, TL)] + SalTr(w, TR}, (F13)

which proves Eq. (31).

APPENDIX G: COTUNNELING CALCULATION

In this Appendix we derive Eq. (36), i.e., the contribution to
the heat current of cotunneling processes. We will focus on the
XX and XY coupling cases, defined in Sec. V. For simplicity,
in this Appendix we express the system bath Hamiltonian
He.s as

His=(0"+07)® Y Varlba +bly).
k

MHes=(q0" +q0)® Y Valbax +b;). (G
k

where ¢ is a complex coefficient given by ¢ = 1 in the XX
case (since 0, = 0" + 0 7) and by ¢ = i in the XY case (since
oy, =ioct —io7).

Co-tunneling is a second-order process where a state of the
uncoupled system evolves into another state of the uncoupled
system passing through a “virtual state” by interacting twice
with H, 5. Since H, s contains the operators ot and o7,
and since cotunneling rates are obtained by acting twice with
He.s, the state of the qubit remains unaltered during a co-
tunneling process. This property, which is denoted as “elastic
cotunneling,” implies that cotunneling rates do not enter the
master equation for the probabilities.

We start by considering all processes which transfer an
excitation from the left to the right bath while the qubit is in
the ground state. Let us denote with |0) and |1) the ground and
excited state of the qubit, and with |n,); a Fock state with n,
excitations in mode k of bath «. The initial |i), final | f), and

possible intermediate states |v;) involved in the cotunneling
process are respectively given by

li 0) ® [nL)x ® |nr)w,
)

) =1
/) =10) ® [nL — 1); ® |ng + L)y,
vi) = 1) ® InL — 1) ® |nr)w,
[v2) = [1) @ |nL)k ® |nr + 1)g, (G2)

for all choices of k and k’. Using the Fermi golden rule, the
rate of transition from the initial state |i) to the final state | f)
is given by

2
Tinp= 7|Aif|25(€i —€5), (G3)

where ¢;,¢ is the energy of the initial /final state in the absence
of the system-bath interaction, and

(f12 0 HaslVi) il D Hasli)
Aif = : o
/ Z € — €y, +1in

) (G4)
J
n being an infinitesimal positive quantity and €, the energy

of |v;). Using Egs. (G1) and (G2), we have that the nonnull
matrix elements are

(fIHrslv) = (n2|Hrsli) = qVrigv/ R + 1,

(i HLsli) = (fIHLsIv2) = Vi /nL. (G5)

The cotunneling heat current Ifi(g) that accounts for the trans-
fer of an excitation from left to right, while the qubit is in state
|0}, is obtained by performing a weighed sum, according to
the equilibrium probabilities, over all the initial and final states
of the quantity Y;_,, multiplied by the transferred energy.
Combining Egs. (G5), (G4), and (G3), and using for simplicity
€ = €14 and €y = €gy, we have that

2
R = D e Vi Ve P (e[ + e )]
kk'

* q 2

A — e +in

3(6]( — Ekr).

(Go)

‘ q
X .
A+ e +in

As usual, we assume that the energies in the leads form a
continuum, so we can replace the sum with an integral. Per-
forming some calculations, and recalling that |g|> = 1 both in
the XX and XY case, we have that

cot(0) oe de
LR = ~— e ML(e)I'r(€)nL(€)[1 + nr(€)]
0

2 h
1 1 2
x _+ 2 _[. @
A+e+in qg*A—e+in

Note that the term g/q* is respectively 1 and —1 in the XX
and XY cases.

The cotunneling heat current Ig‘i«ﬂ) transferring an ex-
citation from right to left bath when the qubit is in |0)
is given by Eq. (G7) exchanging L <> R. We thus find
that the net heat current while the qubit is in the ground
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t(0) _ gcot(0) cot(0) -
10 = 7R — 1

state k1. 1s given by

2nh
1 q 1 2
A+e+in g*A—e+in
Repeating the same derivation assuming that the qubit is in
the excited state, it can be shown that the net heat current /¢!
is the same, i.e., 1°U® = jot)) Therefore, the heat current

due to cotunneling processes is 1°°t = 10 = [ given by
Eq. (G8) which corresponds to Eq. (36) in the main text.

cot(0) __ oo d_E _
I = e M'L(e)I'r(€)[nr(€) — nr(€)]
0

(G8)

APPENDIX H: NONEQUILIBRIUM GREEN’S FUNCTION
CALCULATION

In this Appendix we will consider a qubit in contact with
bosonic baths. In all our calculations, we fix the coupling on
the left hand side to have only the 6, component, i.e., u , =
ur,; = 0 and up , = 1. The total Hamiltonian in terms of spin
operators

H= %61 + Z €aih! boi + ZuR,j&jBR +6:B.. (HD)
k,a J
Spin operators do not satisfy the usual Wick’s theorem. The
usual Feynman diagram techniques applied to obtain Dyson
equations cannot be used. To overcome this difficulty, one can
undergo Majorana fermion transformation of spin operators
using the following relations [65,67]:

6y = —iflynz; 6y = —ifl iy 6 = —ifjxn)y. (H2)

The total Hamiltonian in terms of Majorana fermions reads

A Z s o h
H=- Tnxny + eakblkbak - l[uR,xnynzBR
k,a

+ uR,yﬁzﬁxBR + uR.zﬁxﬁyéR] - iﬁyﬁzBL' (H3)

We write the Green’s function for spin operators as
Gr(t.1') = =i(61(61(1),
Gl (1, 1) = =i®@ — )([6:1), 61 (1)).

The relations between the Green’s function in the Majorana
representation and the Green’s function in spin representation
are given by [72,73]

(H4)

</> </>

Gr7 @, )y =FI077 ¢, 1),
G(t.t") =0t — I (t, 1))+ T, 1],
where Hf,,(t t") = i{frEHR()) and 1‘[,>, @, 1t) =
—i{f; )7y (")) are the lesser and greater Green’s functions

for Majorana operators, respectively. The heat current flowing
from the lead L to the system is given by

(H5)

1) = <[HL(t> H(®))) = ——ZeLkvaRe[Gka(t 0,
(H6)

where Gy, (t,1") = —i(b},(')6.(1)). Following standard
Keldysh NEGF treatment using Langreth theorem, the steady

state heat current as defined in Eq. (13) can be written as

I(AT) = —%/de € Re[Gl ()] (€) + G (e)Zf(e)],

H7)
where () =), |Vik|>gri(€) is the self energy of the bath
L and g;x(€) is the Green’s function for the uncoupled bath
L. Applying the relations of Eq. (HS), the heat current can be
computed as

I(AT):—/ A€ 7 (OB5 (6) + ()T (o)),
0

2h
(H8)
where the self energies due to system bath coupling, X (¢)
and X; (¢) are defined in Sec III. To evaluate the heat currents,
one needs to calculate the lesser and greater components of the
Majorana Green’s function.

1. Derivation of Green’s function

In this section we will derive the Green’s functions in Ma-
jorana representation. Normal ordering for Majorana fermions
is not defined. It is useful to write the Majorana operators in
terms of Dirac operators [72]

=Ff+ 7 a=ifT = =8+  (HY
The fermionic nature of £ is consistent with,
A~ het+if A2 Ao
f=="""2 f2=0; f" =0, {f,f1Y=1, (HIO)

2

and should hold for g as well. The Majorana representation
does not suffer from vertex problem [72] and the constraints
on spins are naturally imposed on Majorana operators [66].
The Hamiltonian for the qubit gets transformed to

A P
o =51 =2f'f). (HI1)

whereas the contact Hamiltonians are

Hps = Z Vielur x (fF = £, — iuy 0.(f + £
k

+ ug (1 = 2f7 f)1Bg, (H12)

and

s= ) V("= B (H13)
k

Note that we consider general spin coupling in the right lead
whereas a fixed o, coupling in the left. The contour ordered
Green’s function for the Majorana operators can be written as

. I (t,1")
I1 (1,1:/)=|:U‘A ’
xx 1—[;((1‘7 t/)

We also define the Green’s function for Dirac fermions f
in the Bogoliubov-Nambu representatlon U= ( f FHT and

U = (f7, f), such that Gy (z, ') = —i(T¥(x)¥(r')). On

ﬁ)_fx(f’f’)} (H14)

@)
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expansion in the Keldysh contour,

Gy(r, 7))
Gt}ﬁ (t, t’/) Gt’ff(t, t’/) Gz fi (t, t/,) fo(t, t’,)

_ Gf,l.f.l.(t,t ) Gf.;.f(t, t") fo.r(t,t ) Gﬂ.f(t,t )
Grpt, 1) Gr, 1) G, 1)) Gyt 1)
Gt t') G, t') G}w (t,t) G_’ﬂf(t, t')

(H15)

where, for instance, Gsi(t, 1) = —i(Tf@)ff(t"). For
more clarification, see Egs. (A2) and (A3) in Ref. [32]. The
lesser and greater Green’s function in Majorana representation
are

O57@ =01 16,7, t’)m,

5= 1) =1 —I]G;’>(t,t')|:_lli|. (H16)

2. Calculation of Dyson equation

To obtain a Dyson equation for v/, we need to do perturba-
tion expansion in terms of the contact Hamiltonian for Dirac
fermions f, namely,

Gpi(t, ')

i
=G, T+ EZ

o

« / dt1d s (TTH s s @) O F ) + -
(H17)

After a long but straightforward calculation, we obtain

Gy(r.v) =G (r.7)

+ f dridT Gy (1, 1)5y (71, ©)GY (1, ),

(H18)
where f)w = f)m + fix//,R,
2y r(T1, 12) = iDg(11, Tz)(“ixng,z(fl, )k
+ uﬁqyl'lg’z(rl, ™)1
L a2 |G m) 0
R,z 0 G?%f(fls )| /)’
(H19)
and
2yL(t1, 1) = iDp(ty, )T (11, T2)A, (H20)

where 1 is the matrix of ones, the embedded self energy
Dy (11, 12) = —i Yy Vet |* (T [Bra(71)Bia (12)1), and

A 1 —1
=4 7]

Writing the equation of motion for CA;?D, we get
G?,,(r, r/)(—fa_t, + A6,) =8(r — 1), (H21)

where 1 is a unit matrix. The retarded and advanced self
energies due to coupling to the bath are given by

1 1
Dr/ae — Va 2 _
w'(€) ;' d (e—eak:tin e+eakiin>

i

ZSAa(G):Fz[Fa(G)_Fa(_E)]v (H22)
where § A, (¢€) is the lamb shift defined as
oo d / Fa I Fo[ /
5y (€) = 7?/ —E< (€) Ta(e )>. (H23)
o 2m\€e—€  e4¢€

The lesser and greater components of self energy take the form

D (€) = —ing(e)[I'a(€) — Ta(—€)],

Dy (€) = —ill + na(e)l[Fa(€) — To(—€)].  (H24)

The integration for the Lamb shift can be simplified to

SAL(e) = ;—a(e e_e/ecg[i] —€ ee/ECE[_—e] — 2ec),
T €C €C (H25)
where

Elel=-P e/t dt

—€

(H26)

is a well-known exponential integral function. Note that we
used I'y (¢) = 0 for € < 0. Moreover, we have

i31//,11(6)
L[ dé N
=i / EDR(E — e’)<u§,xn§’z(e/)x
n GY . () 0
i Ml + %[ e f<e/>])’
(H27)
- . [ d€ N
Syrle)=i 2—DL(e — eNIT; (DA (H28)
=
Following Ref. [57] for
X(t1, ©2) = A(11, ©2)B(11, T2), (H29)

the Langreth rules are given by

X(11, 1) = A~(1, )B™ (11, ),
2 (11, ) =A% (11, 2)B (11, ) + A" (11, )B~ (11, T2)
+A" (11, 1)B' (11, 12). (H30)

Since both Eqgs. (H19) and (H20) have the form of Eq. (H29),
one can obtain the lesser (E; ), greater (E,; ), retarded (Zfﬂ),
and advanced (X7 ) self energies in terms of different compo-

nents of embedded self energy and the free Green’s function
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for the system using Eq. (H30). For instance,
ﬁ:;,L(e)
= i/ czz—in(e - e/)(u?mxl'[g:;(e/)fL
+up N0 + dugf [G%ff' € 0 ]) ’

0,</ 7
0 Griy(€)
(H31)

A [ de . , RN
E;R(e) = l/ EDR (e —€ )I_Ig’Z (eMHA. (H32)

Equations (H22) and (H24) give all the components of the
embedded self energies of the baths. The only unknowns are
the free Green’s functions of the system which we will discuss

below. The free dynamics of the system Hamiltonian can be
easily computed to obtain

G (e) = P{%} —imd(e + A),

+ A
r 1 y
G?,;f(e) = P{G——A} — ind(e — A). (H33)

We can use the relation, G" — G* = G~ — G~ to write

G‘};;(e) — G(f’;;(e) = —2ind(e — A),

G‘}; (€) — G‘}’ff (€) = —=2ind(e + A). (H34)
Using the fluctuation dissipation relation  [57],
G"<(e) = —f(OIG" () —G"=(e)] and G (e) =

[1 — f()[G*> () — G><(¢)], where f(¢) is the Fermi
distribution of the system defined at average temperature of

J

e+A—[Z()n —[Z}, ()2

o (2Ol €= A—[Z,()h
GuCy(€) = (25 () 125l
(X5 ()] (X5 ()]

where 6;, = diag(1, 1, —1, —1) is introduced to keep the ap-
propriate sign for two different branches of the Keldysh
contour [32]. Using Eq. (H16) along with Eq. (H42), one can
obtain the lesser and greater Green’s function in the Majorana
representation. Substituting the Majorana Green’s functions in
Eq. (HS8), we obtain the final expression for current with gen-
eral spin coupling in the right lead and a fixed spin coupling
Gy in the left lead.

3. Calculation of currents for simple models
The XX and XY case
The current for the XX and the XY system-bath coupling

can be calculated from Eq. (H8) after calculating the Green’s
functions from Eq. (H42). Note that one has to properly

the two baths, we can write

Gg’;b(e) = £2in f(£e)d(e — A),

Gji;/>(e) = £2in f(£e)d(€ + A).

The retarded and advanced Green’s function for the system in
the Majorana notation are

(H35)

2
n“(w) = , H36
e @)= o (H36)
such that
M7 () — N%(0) = N2 () — 27 (0) = —4ind(w).
(H37)

If we take the effective temperature of the Majorana fermions
to be given by Besr(BL, Br), then we have from the fluctuation-
dissipation theorem for the ordinary fermionic system in
equilibrium [57]:

2
(H38)
Using Eqs. (H37) and (H38), one can find the lesser and
greater Green’s function for the Majorana operators.

Similarly, the time ordered and antitime ordered self ener-
gies are obtained from

Sy(@)+ Sy (e) = E(e) + £ (e),

Zib(e) — Ef//(e) = E;f,(e) + Xy, (e).
Substituting Eq. (H15) in Eq. (H18) and undergoing Fourier
transform, we obtain

> < r a ﬁ ff (0
N2> () + N7 (w) = (M7 (w) — 2% (w)) tanh | = )

(H39)

Gl e) =G5 ()= Sy (e), (H40)
where the bare system Green’s function,
G (€)= =G () = €l + G, (H41)
such that
—[Z; () —[25 ()] ‘
~[Z5 () ~[Z5 ()
; : H42
c+A+IZOl (B . B4
[Z} ()] € —A+[Z)()]n

(

choose ug; to obtain the XX and XY case. Considering the
zero dimensionality of the spin system we arrive at the fol-
lowing expression for the heat current in the XY case

d
I(AT) = / e Tl (©) — (@), (He)

where

42T (e)Tr(€)
(€2 — X(e) — A2 + V()
where X'(¢) and )Y(e) are defined in Egs. (43) and (44),
respectively. We will consider Ohmic spectral density for both
baths with high frequency cut off given by ec. In Eq. (H44),

when the Lamb-shift term is neglected, the transmission prob-
ability has a Lorentzian form, whose width is determined by

Txy(€) = (H44)
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[y (€). When the coupling is very weak, i.e., [ (€) K A <

kg Ty, the Lorentzian effectively shrinks to vanishing width

and peaked around A. In this limit, one can write € ~ A,

giving

AATL(A)TR(A)
£2(0) '

The above result corresponds to the one obtained using master

equation in the sequential tunneling limit. Following a similar
calculation, the heat current for the XX case is given by

Txy(A) =~ (H45)

*© d
I(AT) =/ T e Tax(@)ln(e) —np()],  (H46)
0 wh

where the transmission probability Txy (€) is given by
4 A’T'L(€)Tr(€)
(€2 = 2¢(8AL(€) + 8AR(€)) — A2 +£2()
(H47)

Txx(€) =

where &(€) =€), [a(€)(1 4+ 2n4(€)). In Refs. [32,44] a
similar form for the transmission function has been derived
within the NEGF but without including the frequency renor-
malization expressed by the Lamb shift. For ['y(€) < A <
kgT, we obtain Txx = Txy given by Eq. (H45). In the low
temperature and weak coupling regime [[',(¢) K kgT < A],
the first-order sequential processes are generally suppressed
and the dominant contribution comes from second order co-
tunneling processes. For the heat current in the XX case we
obtain

H(AT) ~ / T e 2 TUETRO) o) pp(o)l. (H48)
0

2wh A?
The above result corresponds to the cotunneling contribution
[32] and matches with Eq. (36).

4. Exact calculation

In this section we derive the formal exact expressions for
the dynamical susceptibility entering the transmission func-
tion Eq. (45),

i
x(@) = E(@(t)([ox(t), ox(0)]), (H49)
within the path-integral approach to the spin-boson model
[49]. To deal with a correlated initial state at time ¢ = 0, we

assume that the system starts at a preparation time 7, < O in a
factorized state (Feynman Vernon),

Wiot = oL(TL) ® Pr(TR) ® p(2)),

where each bath is in the thermal equilibrium state described
by the density matrix p,(7) and p(z,) is a general state of
the qubit at the preparation time. Assuming that the system is
ergodic, the response function will not depend on the chosen
initial state when 7, — —o0. For the sake of simplicity, we
assume that the qubit starts in a diagonal state (or sojourn)
of the Pauli matrix which couples to the bath coordinates, oy,
[np), with n, = 1.

It is easy to demonstrate that in the case of XX coupling
the effect of the two baths on the qubit evolution is expressed

(H50)

by the influence functional

Flo,o';19] = exp {/ dt’/ dt” Z[é(t')
x Re[Qu(t' —t")EW") + iE(t)
x Im[Qy (t' — t")]7(t")] } (H51)

where Q,(t) = Re[Q,(t)] + iIm[Q, (¢)] is the complex bath-

« correlation function
*® dw 2T (hw) hw
(1) = — th
Qu(t) /0 o |\ 2T,

x [1 — cos(wt)] + isin(wt)}.

(H52)

The dynamical susceptibility, Eq. (H49) is expressed as fol-
lows:

x(t)——®(t) Tim D2 Z n&od (0. 1360, 0 1. 1)
==£1 &=
" (H53)

where J (1, t; &, 0; np, t,,) is the conditional propagating func-
tion to find the qubit in the diagonal (sojourn) state n = £1
at time ¢, conditioned to having measured the system in off-
diagonal (blip) state &, at time t = 0 and having prepared it in
state 7, at time t,. We find

J(,t:80,0;np, 1)

0 m+n—1
=nnp Z < 4”12) / D2m 1,2n— l{tj}

m,n=1
X z : Gn+m 1 n+m 1 z : n+m 1 n+m 1
{&j=%1} {n==x1}

(H54)

where the integration paths consist of 2n — 1 transitions
for t, <t' <0 and 2m — 1 transitions for 0 < <t and

we introduced the compact notation ft' Di{tj} x -+ =
P

Jodtiien f3 dtigy [} dty.. [ dty x - - The symbol {}' re-

minds that the sum is over all sequences of blips and sojourns

in accordance with the constraints indicated in the argument.

The blip-sojourn interactions enter the H;s, whereas the G;s
include the blip-blip interactions and are given by

m+n—2 m+n—1

Hyppoy =expi ) > EXFom,  (HSS)
k=0  j=0
n+m
Gy =exp— ) Re[05,, ]
j=1
m4n j—1
xexp—i Y > &N, (H56)
j=2 k=1
X,'ak = Im[ng %41 T ng—l 2k T ng,2k - ng—l,Zk-H]’
Aak = Re[sz 2%-1 T Qz; 1,2k ng,Zk - ng—l,Zk—l]‘
(H57)
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Inserting the conditional propagating function Eq. (H54) in the susceptibility Eq. (H53) it is possible to perform the sum over

the sojourns leading to

t)—z
x( i

m=1 n=1

: L m+n—2
X S (A6 i1+ Ponem) T 08 (B imt + Bhnim1)s

where

m
¢/?,m = Z éjxﬁk'

j=k+1

(H59)

Equation (H58) is the formal exact expression for the suscep-
tibility for a qubit simultaneously coupled to two harmonic
baths at different temperatures for general spectral densities
and temperatures.

Ohmic baths and the case K; + Kr = 1/2

We now specialize to the case of two baths with Ohmic
damping defined in Eq. (12) where we assume identical
dependence on the energies included in J(¢). The bath cor-
relation functions take the form

_ €C . wkgT,|t|
0u(1) = 2K, In {(ﬂkBTa) sinh (T)}

+ imKysgn(t).

(H60)

The blip-sojourn interactions and the phases ¢, , Eq. (H59)
simplify, taking the form

Xj‘-’sznKa, for j=k+1
X =0, for j#k+1
B nim = Exr 17Ky (H61)

The susceptibility Eq. (H58) becomes

m+n—1
x(t)——tgmw22< th) /Dzm 120-1{17)

m=1 n=1

X Z Elé:n n+m—1 n+m 1
{&j==1}

x sin( (KL + Kg)) cos(rr (K. + Kg))"" 2.
(H62)

We observe that dependence on the damping strengths K,
coming from the blip-sojourn interactions X; ;, is in the simple
form Ky + Kr. Thus, the two Ohmic baths coupled to the
qubit with strengths such that K; + Kg = 1/2 can be treated
analogously to the standard spin-boson model at the Toulouse
point. We remark that in Eq. (H62) the coupling strengths
enter non linearly the blip-blip interactions, G&,, _,GX, .
which include the temperatures of the two baths. Therefore,
the two baths at Kp + Kr = 1/2 are not simply equivalent to
a single bath at K = 1/2 with an effective temperature.

We proceed with the evaluation of Eq. (H62) for Ky +
Kr =1/2. We observe that all the terms in the sum,
except for the first one m=n=1, have n+m —2 ze-
ros from cos( (Ki. + Kg))""~2. They give a nonvanishing

_ ZZ( M) .

fDZm 1,201t} Z G-t Grym1

(&;==%1)

(H58)

(

contribution if a proper divergency comes from the interac-
tion terms between the system’s transitions included in the
G, 1GX. .. Thisis the typical case of a bath at K = 1/2.
In the case of two baths with K + Kr = 1/2 we have

lim  A%cos[7 (KL + Kg)]
Ki+Kr—1/2

]
X/ dre e~ TaRelQu()]
0

Such an integral describes a collapsed dipole which does not
interact with any other dipole, having effectively a zero dipole
moment. This mechanism allows to sum the different terms of
the sum in Eq. (H62) leading to

@(z) —V’/Z/ dt
2y 0

x & LuReIQu(N [y li=21/2 _

x@) =

e VIO (H63)

This solution extends to the nonequilibrium case the dynam-
ical susceptibility at the Toulouse limit of the spin-boson
model.

Performing its Fourier transform and inserting it in the
transmission function Eq.(45) the heat current between two
harmonic baths under the strong coupling condition K, +
Kr = 1/2 is obtained. Equivalently, the heat current Eq. (16)
with Eq. (45) and the Fourier transform of Eq. (H63) can be
written as

I Kikr o / mdr (t)F (—t) (H64)
== N —t),
nK + K ) O
where
kp T; t
F(=1) = (ke T) w<2>[1+ 5 R(l—fi)}
cc i

—~ (kBTL)31/f<2>[1 + kB—TL(l - zeﬂ)} (H65)
€C h

and ¥ ®)(z) denotes the second derivative of the digamma
function.

APPENDIX I: GREEN’S FUNCTIONS FOR THE

NONLINEAR RESONATOR
We first define a generic retarded Green’s function as
Ghpc.pt. 1) =—i0@ =) ADOBOC@)..., b (1)),
I

where A, B, and C are operators such as b, n, or by,
n(t) = b'(¢)b(t) being the number operator. In the subscript
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(A, B, C, ...; b), the operators appearing before the semicolon
are taken at time 7, while the ones appearing after the semi-
colon are taken at time ¢’

The Hamiltonian for the nonlinear resonator is given by
Eq. (3). The equation of motion for the retarded Green’s
function of the system can be written as

i,Gp,(t,t") = 8(t —t") + AG, (¢, 1)

F UG, (0 )+ D> VGl (. 1), (12)
k,a

where
Gl (1, 1) = —i6( — ') ([(@0)b(@), B (1)), (13)
and
nip(ts 1) = —i0(t — ") {[bai (1), b (1)) a4)
Using the equation of motion for G, (¢, ") we obtain
(e = A=ZO€))G, () =1+ UG, (), (I5)

where £ (¢) is the usual self energy due to system-bath
coupling defined as

20)=> 20 =Y Vakl*gopearc(€).  (16)

o k,a

where g . . is the retarded Green’s function for the free bath,
ie.,

Soear (t:1) = =0t — ') ([bar (1), BL (D)) (A7)

To evaluate Eq. (12), we need to evaluate G, ,,(€) in terms of
G, (€). Using the equation of motion we find

(€ = A)G,, (€)= 2(n) + UG, , ,(€)
+ Z Vok [2G;,ak;b(e) - Gz’b’ak%;b(e)].
ak

8)

We decouple Eq. (I8) to second order by approximating
G, .pp(€) = ()G, (€) and we obtain

(€ — A = U(n)G (€
=2(n) + Z Vak[2G) () = Gl airp(©)]. (19
ak
where

Gt 1) = —i0(t — ) {([n()n(t)b(1), b (t)]).

. . . .
We can again use equation of motion to evaluate G, ., (€)

110)

and obtain
(€ = €at)Gly (€)= Var (Gl sy — Na(€at )Gl (€)
+ (b'ba) Gl (€)) + (BT b}, (I11)
and
(€ + €ux —2A —2U (n) — U)G;ﬁb’akf;b(e)
= 2(bb}) = Vak G} 1 (€) + 2Vornta (€ar )Gy (€).  (112)

We do not take into account the terms involving correla-
tion between the leads and the system, such that (b'by) =
(bblk) = 0 [70]. Substituting Eq. (I11) and Eq. (I12) into
Eq. (I9) we obtain

_ 24 2(ZP(e) + BD(€)A(e)

Gpp = U U Gy (113)
where
AU =[e = A =U(n) — 2P)+ =V(e)] ™,
(114)
O(€) = Yo Var|*(€ — €ar +im) 7", W (e) =

Yook Varl*(€ + €ax —2A =20 (n) = U +in)~", TP(e) =
Zak |Vak|2na(6ak)(6 — €uk + iﬁ)_] and 2(3)(6) =
Zak |Vak|2na(€ak)(6 + €ak — 2A — 2U(I’l> -U+ iﬁ)_l‘

Substituting Eq. (I13) in Eq. (I2), we find the final expres-
sion for G,’);b(e), i.e.,

1+ 24(¢)(n)
€—A—XO(€)+2A)[ZP(e) + 3 (e)]”
(115)

Ghyp(€) =

The self energies are given by

do[ [y (@)
(€Y — _
= (6)_;/ 2 _6~|—w—2A—2U(n)—U~|—in}’

2(2)(6) — Z/ 521_: -noz(a))rot(a))j|7

| e —w+in

do[ Ly (@)ng(w)
(3) — -~
= (6)_;[27[_e+a)—2A—2U(n)—U~|—ini|'

For any function g we can write

f do—89_ _p / dw{&} ~Lew. e
X—w+in Xr—w 2

where the first term is the Cauchy-Hadamard principal value
distribution.

[1] E. Giazotto, T. T. Heikkild, A. Luukanen, A. M. Savin, and J. P.
Pekola, Rev. Mod. Phys. 78, 217 (2006).

[2] E. Giazotto and M. J. Martinez-Pérez, Nature 492, 401
(2012).

[3] J. P. Pekola, Nat. Phys. 11, 118 (2015).

[4] A. Ronzani, B. Karimi, J. Senior, Y.-C. Chang, J. T. Peltonen,
C.-D. Chen, and J. P. Pekola, Nat. Phys. 14, 991 (2018).

[5] O. Maillet, P. A. Erdman, V. Cavina, B. Bhandari, E. T.
Mannila, J. T. Peltonen, A. Mari, F. Taddei, C. Jarzynski, V.
Giovannetti, and J. P. Pekola, Phys. Rev. Lett. 122, 150604
(2019).

[6] O. Maillet, D. Subero, J. T. Peltonen, D. S. Golubev, and J. P.
Pekola, Nat. Commun. 11, 4326 (2020).

[7] C. Starr, Physics 7, 15 (1936).

155434-26


https://doi.org/10.1103/RevModPhys.78.217
https://doi.org/10.1038/nature11702
https://doi.org/10.1038/nphys3169
https://doi.org/10.1038/s41567-018-0199-4
https://doi.org/10.1103/PhysRevLett.122.150604
https://doi.org/10.1038/s41467-020-18163-8
https://doi.org/10.1063/1.1745338

THERMAL RECTIFICATION THROUGH A NONLINEAR ...

PHYSICAL REVIEW B 103, 155434 (2021)

[8] M. Terraneo, M. Peyrard, and G. Casati, Phys. Rev. Lett. 88,
094302 (2002).

[9] B. Li, L. Wang, and G. Casati, Phys. Rev. Lett. 93, 184301
(2004).

[10] D. Segal and A. Nitzan, Phys. Rev. Lett. 94, 034301
(2005).

[11] J.-P. Eckmann, and C. Mejfa-Monasterio, Phys. Rev. Lett. 97,
094301 (2006).

[12] N. Zeng and J.-S. Wang, Phys. Rev. B 78, 024305
(2008).

[13] T. Ojanen, Phys. Rev. B 80, 180301(R) (2009).

[14] T. Ruokola, T. Ojanen, and A.-P. Jauho, Phys. Rev. B 79,
144306 (2009).

[15] A. Purkayastha, A. Dhar, and M. Kulkarni, Phys. Rev. A 94,
052134 (2016).

[16] L.-A. Wu, C. X. Yu, and D. Segal, Phys. Rev. E 80, 041103
(2009).

[17] L.-A. Wu and D. Segal, Phys. Rev. Lett. 102, 095503
(2009).

[18] David M.-T. Kuo and Y.-C. Chang, Phys. Rev. B 81, 205321
(2010).

[19] C.R. Otey, W. T. Lau, and S. Fan, Phys. Rev. Lett. 104, 154301
(2010).

[20] L. Zhang, J.-S. Wang, and B. Li, Phys. Rev. B 81, 100301(R)
(2010).

[21] Y. Yang, H. Chen, H. Wang, N. Li, and L. Zhang, Phys. Rev. E
98, 042131 (2018).

[22] N. A. Roberts and D. G. Walker, Int. J. Therm. Sci. 50, 648
2011).

[23] T. Ruokola and T. Ojanen, Phys. Rev. B 83, 241404(R)
(2011).

[24] K. G. S. H. Gunawardana, K. Mullen, J. Hu, Y. P. Chen, and X.
Ruan, Phys. Rev. B 85, 245417 (2012).

[25] M. J. Martinez-Pérez and F. Giazotto, Appl. Phys. Lett. 102,
182602 (2013).

[26] F. Giazotto and F. S. Bergeret, Appl. Phys. Lett. 103, 242602
(2013).

[27] G.T. Landi, E. Novais, M. J. de Oliveira, and D. Karevski, Phys.
Rev. E 90, 042142 (2014).

[28] Y.-Y. Liu, W.-X. Zhou, L.-M. Tang, and K.-Q. Chen, Appl.
Phys. Lett. 105, 203111 (2014).

[29] J.-H. Jiang, M. Kulkarni, D. Segal, and Y. Imry, Phys. Rev. B
92, 045309 (2015).

[30] R. Sanchez, B. Sothmann, and A. N. Jordan, New J. Phys. 17,
075006 (2015).

[31] K. Joulain, J. Drevillon, Y. Ezzahri, and J. Ordonez-Miranda,
Phys. Rev. Lett. 116, 200601 (2016).

[32] B. K. Agarwalla and D. Segal, New J. Phys. 19, 043030
2017).

[33] A. Marcos-Vicioso, C. Lopez-Jurado, M. Ruiz-Garcia, and R.
Sanchez, Phys. Rev. B 98, 035414 (2018).

[34] F. Giazotto and F. S. Bergeret, Appl. Phys. Lett. 116, 192601
(2020).

[35] C. W. Chang, D. Okawa, A. Majumdar, and A. Zettl, Science
314, 1121 (2006).

[36] R. Scheibner, M. Konig, D. Reuter, A. D. Wieck, C. Gould,
H. Buhmann, and L. W. Molenkamp, New J. Phys. 10, 083016
(2008).

[37] M. Schmotz, J. Maier, E. Scheer, and P. Leiderer, New J. Phys.
13, 113027 (2011).

[38] M. J. Martinez-Pérez, A. Fornieri, and F. Giazotto, Nat.
Nanotechnol. 10, 303 (2015).

[39] J. Senior, A. Gubaydullin, B. Karimi, J. T. Peltonen, J.
Ankerhold, and J. P. Pekola, Commun. Phys. 3, 40 (2020).

[40] R. Landauer, IBM J. Res. Dev. 1, 223 (1957).

[41] M. Biittiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev. B
31, 6207 (1985).

[42] A. Riera-Campeny, M. Mehboudi, M. Pons, and A. Sanpera,
Phys. Rev. E 99, 032126 (2019).

[43] T. Ojanen and A.-P. Jauho, Phys. Rev. Lett. 100, 155902
(2008).

[44] N. Boudjada and D. Segal, J. Phys. Chem. A 118, 11323
(2014).

[45] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster,
J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J.
Schoelkopf, Phys. Rev. A 76, 042319 (2007).

[46] V. E. Manucharyan, J. Koch, L. I. Glazman, and M. H. Devoret,
Science 326, 113 (2009).

[47] G. Zhu, D. G. Ferguson, V. E. Manucharyan, and J. Koch, Phys.
Rev. B 87, 024510 (2013).

[48] J. M. Martinis, S. Nam, J. Aumentado, and C. Urbina, Phys.
Rev. Lett. 89, 117901 (2002).

[49] U. Weiss, Quantum Dissipative Systems (World Scientific,
2012).

[50] M. E. Ludovico, M. Moskalets, D. Sanchez, and L. Arrachea,
Phys. Rev. B 94, 035436 (2016).

[51] Y. Meir and N. S. Wingreen, Phys. Rev. Lett. 68, 2512
(1992).

[52] G. Stefanucci and R. van Leeuwen, Nonequilibrium Many-body
Theory of Quantum Systems (Cambridge University Press, Cam-
bridge, UK, 2013).

[53] K. A. Velizhanin, M. Thoss, and H. Wang, J. Chem. Phys. 133,
084503 (2010).

[54] J. S. Wang, J. Wang, and N. Zeng, Phys. Rev. B 74, 033408
(2006).

[55] K. Saito, Europhys. Lett. 83, 50006 (2008).

[56] D. Segal, Phys. Rev. E 90, 012148 (2014).

[57] H. Haug and A. P. Jauho, Quantum Kinetics in Transport and
Optics f Semiconductors (Springer-Verlag, Berlin, 2008).

[58] H. P. Breuer and F. Petruccione, The Theory of Open Quantum
Systems (Oxford University Press, Oxford, UK, 2002).

[59] D. Boese and R. Fazio, Europhys. Lett. 56, 576 (2001).

[60] To avoid clutter in the notation, in this section we use the
shorthand symbol Y (T') instead of Tai(A, T).

[61] M. Turek and K. A. Matveev, Phys. Rev. B 65, 115332
(2002).

[62] K. Kaasbjerg and A.-P. Jauho, Phys. Rev. Lett. 116, 196801
(2016).

[63] B. Bhandari, G. Chiriaco, P. A. Erdman, R. Fazio, and F. Taddei,
Phys. Rev. B 98, 035415 (2018).

[64] P. A. Erdman, J. T. Peltonen, B. Bhandari, B. Dutta, H. Courtois,
R. Fazio, F. Taddei, and J. P. Pekola, Phys. Rev. B 99, 165405
(2019).

[65] P. Schad, Y. Makhlin, B. Narozhny, G. Schon, and A. Shnirman,
Ann. Phys. 361, 401 (2015).

[66] P. Schad, A. Shnirman, and Y. Makhlin, Phys. Rev. B 93,
174420 (2016).

[67] J. Liu, H. Xu, B. Li, and C. Wu, Phys. Rev. E 96, 012135 (2017).

[68] To account for the counter-rotating terms in the coupling
Hamiltonian, in the calculation of the Lamb shift the spectral

155434-27


https://doi.org/10.1103/PhysRevLett.88.094302
https://doi.org/10.1103/PhysRevLett.93.184301
https://doi.org/10.1103/PhysRevLett.94.034301
https://doi.org/10.1103/PhysRevLett.97.094301
https://doi.org/10.1103/PhysRevB.78.024305
https://doi.org/10.1103/PhysRevB.80.180301
https://doi.org/10.1103/PhysRevB.79.144306
https://doi.org/10.1103/PhysRevA.94.052134
https://doi.org/10.1103/PhysRevE.80.041103
https://doi.org/10.1103/PhysRevLett.102.095503
https://doi.org/10.1103/PhysRevB.81.205321
https://doi.org/10.1103/PhysRevLett.104.154301
https://doi.org/10.1103/PhysRevB.81.100301
https://doi.org/10.1103/PhysRevE.98.042131
https://doi.org/10.1016/j.ijthermalsci.2010.12.004
https://doi.org/10.1103/PhysRevB.83.241404
https://doi.org/10.1103/PhysRevB.85.245417
https://doi.org/10.1063/1.4804550
https://doi.org/10.1063/1.4846375
https://doi.org/10.1103/PhysRevE.90.042142
https://doi.org/10.1063/1.4902427
https://doi.org/10.1103/PhysRevB.92.045309
https://doi.org/10.1088/1367-2630/17/7/075006
https://doi.org/10.1103/PhysRevLett.116.200601
https://doi.org/10.1088/1367-2630/aa6657
https://doi.org/10.1103/PhysRevB.98.035414
https://doi.org/10.1063/5.0010148
https://doi.org/10.1126/science.1132898
https://doi.org/10.1088/1367-2630/10/8/083016
https://doi.org/10.1088/1367-2630/13/11/113027
https://doi.org/10.1038/nnano.2015.11
https://doi.org/10.1038/s42005-020-0307-5
https://doi.org/10.1147/rd.13.0223
https://doi.org/10.1103/PhysRevB.31.6207
https://doi.org/10.1103/PhysRevE.99.032126
https://doi.org/10.1103/PhysRevLett.100.155902
https://doi.org/10.1021/jp5091685
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1126/science.1175552
https://doi.org/10.1103/PhysRevB.87.024510
https://doi.org/10.1103/PhysRevLett.89.117901
https://doi.org/10.1103/PhysRevB.94.035436
https://doi.org/10.1103/PhysRevLett.68.2512
https://doi.org/10.1063/1.3483127
https://doi.org/10.1103/PhysRevB.74.033408
https://doi.org/10.1209/0295-5075/83/50006
https://doi.org/10.1103/PhysRevE.90.012148
https://doi.org/10.1209/epl/i2001-00559-8
https://doi.org/10.1103/PhysRevB.65.115332
https://doi.org/10.1103/PhysRevLett.116.196801
https://doi.org/10.1103/PhysRevB.98.035415
https://doi.org/10.1103/PhysRevB.99.165405
https://doi.org/10.1016/j.aop.2015.07.006
https://doi.org/10.1103/PhysRevB.93.174420
https://doi.org/10.1103/PhysRevE.96.012135

BIBEK BHANDARI et al. PHYSICAL REVIEW B 103, 155434 (2021)

density I',(¢’) must be extended to negative values according [71] Y. Meir, N. S. Wingreen, and P. A. Lee, Phys. Rev. Lett. 70,

to (=€) = =T, (€). 2601 (1993).

[69] M. Sassetti and U. Weiss, Phys. Rev. A 41, 5383 [72] W. Mao, P. Coleman, C. Hooley, and D. Langreth, Phys. Rev.
(1990). Lett. 91, 207203 (2003).

[70] Y. Meir, N. S. Wingreen, and P. A. Lee, Phys. Rev. Lett. 66, [73] A. Shnirman and Y. Makhlin, Phys. Rev. Lett. 91, 207204
3048 (1991). (2003).

155434-28


https://doi.org/10.1103/PhysRevA.41.5383
https://doi.org/10.1103/PhysRevLett.66.3048
https://doi.org/10.1103/PhysRevLett.70.2601
https://doi.org/10.1103/PhysRevLett.91.207203
https://doi.org/10.1103/PhysRevLett.91.207204

