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Anomalous Floquet tunneling in uniaxially strained graphene
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The interplay of strain engineering and photon-assisted tunneling of electrons in graphene is considered for
giving rise to atypical transport phenomena. The combination of uniaxial strain and a time-periodic potential
barrier helps to control the particle transmission for a wide range of tunable parameters. With the use of
the tight-biding approach, the elasticity theory, and the Floquet scattering, we find an angular shift of the
transmission maximum in the sidebands for uniaxial strains breaking the mirror symmetry with respect to the
normal incidence, which is called anomalous Floquet tunneling. This strain also modulates the transmission
maximum in the sidebands and favors photoinduced currents. From Floquet scattering theory, we derive a
generalized Snell’s law for electrons in the presence of time-periodic potentials and uniaxial strain. We show
that electron tunneling depends strongly on the barrier width, incident angle, uniaxial strain, and the tuning of
the time-periodic potential parameters. An adequate modulation of the barrier width and oscillation amplitude
serves to select the transmission in the sidebands. These findings can be useful for controlling the electron current
through the photon-assisted tunneling being used in multiple nanotechnological applications.
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I. INTRODUCTION

Photon-assisted tunneling is a powerful tool for controlling
electron current in a device through the illumination of a
particular area of the system [1–24]. The tuning of the laser
frequency and the intensity can serve to explore different
features in quantum transport. The understanding of the inter-
action of electrons under external electromagnetic fields has
led to a huge number of technological applications. Never-
theless, there are many unusual electronic transport effects
in the presence of time-periodic potentials that require an
exhaustive study and revision from the new perspective given
by the rising of two-dimensional materials [25–33]. Most of
these materials belong to the classification of Dirac matter,
where the Dirac-Weyl equation describes the dynamics of
low-energy excitations [25,28,34–42]. With that, the Floquet
scattering formalism has been the most recurrent theory for
depicting the dynamics of photon-assisted tunneling [43–47].
This approach allows a simplified vision of electron tunneling
through sidebands. Electrons impinging the oscillating poten-
tial barrier are reflected or refracted from different energy
channels by the absorption or emission of one or multiple
photons [43,48–50,52–57]. In this way, Floquet scattering has
been used successfully for explaining the constructive inter-
ference of continuum and bound states in quantum wells, an
effect known as Fano resonances [58–64]. Other interesting
phenomena have been predicted based on the Floquet scatter-
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ing theory, among them the Hartman effect [65], suppression
of Klein tunneling [23,49,66,67], Floquet topological insula-
tors [47,68–75], non-Hermitian Floquet invisibility [76], and
photoelectronic-induced emission [77–79].

The interplay between strain engineering and photon-
assisted tunneling may open more possibilities due to the
increment of external variables to control the electron tunnel-
ing. By applying strain in graphene and related materials, the
electronic band structure is modified drastically and serves
to modulate the electronic, optical, and transport properties
[80–100]. Inhomogeneous strain gave rise to the emergence
of valleytronics and pseudomagnetic fields [92,93,101–106].
Outstanding electron optics-like effects appear in uniaxially
strained graphene [34,107]. Such a system displayed partial
positive refraction in asymmetric Veselago lenses, a nega-
tive reflection of electrons, and anomalous Klein tunneling
[31,107,108]. Those theoretical results may be tested not
only in uniaxially strained graphene, but also hexagonal op-
tical lattices and photonic crystals [72,102,109]. Recently,
a time-periodic potential in optical lattices was experimen-
tally realized in [72]. Photonic crystal emulations of strained
graphene evidenced that Klein tunneling persists for deforma-
tions along the zig-zag and armchair directions [110].

In this paper, we show that the combination of photon-
assisted tunneling and strain engineering present singular
transmission effects. The application of uniaxial strain causes
anisotropy in the electron tunneling. Dependent on the am-
plitude of time-periodic potential and frequency, there are
preferential incidence angles for electron tunneling in the
sidebands. The electron tunneling presents an angular shift
and a nontrivial modulation of the transmission maximum
in the sidebands. The angular deviation of the transmission
maximum has a linear behavior for tensile strains up to 10%.
This new phenomenon, the anomalous Floquet tunneling,
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FIG. 1. (a) Schematic representation of uniaxially strained graphene in a time-periodic potential. Violet and blue circles indicate the sites of
triangular sublattices A and B, respectively. The vector T corresponds to the applied tension in the ζ direction. Each nearest-neighbor possesses
a hopping parameter τ j and bond length δ j . The quantities a1 and a2 are the deformed lattice vectors. The external gates induce a time-periodic
potential barrier in region II. (b) Description of the Floquet scattering across the time-periodic potential and Dirac cone structure. Horizontal
green lines represent the energy channels E − mh̄ω, where transmission in the sidebands occur.

evidences the role of pseudospin conservation in tunneling
processes that involve time-dependent potentials and strain
effects. Moreover, the tuning of the potential barrier width
or the oscillating potential amplitude serves to select and
improve the transmission in sidebands to produce a photoin-
duced electronic current. We also derive the electron optics
laws using the conservation of linear momentum and side-
bands energies, which evidence unusual transport effects such
as sideband-dependent negative reflection due to the interplay
of strain-engineering and Floquet physics.

The paper is structured as follows. In Sec. II, we give a
short review of how the tight-binding approach and elastic-
ity theory is useful for the development of a strain-modified
Hamiltonian in graphene and related anisotropic hexagonal
lattices. In Sec. III, we apply the Floquet scattering theory to
analyze the transmission features of a fully strained graphene
sheet and electron optics laws under time-periodic potential
barrier. We present in Sec. IV the results of our numerical and
analytical calculations of the transmission probabilities for the
sidebands. We expose the conclusions and final remarks in
Sec. V.

II. DIRAC-WEYL HAMILTONIAN OF UNIAXIALLY
STRAINED GRAPHENE

Uniaxially strained graphene and anisotropic hexagonal
lattices are composed by two deformed triangular sublattices
A and B with a basis of two atoms per unit cell, as shown in
Fig. 1(a). According to the elasticity theory, the application
of a uniaxial strain deforms the lattice vectors in the pristine
configuration, and they are given by [34,80,107]

a1 = (a1x, a1y ) =
√

3a(1 + ρ−ε + ρ+ε cos 2ζ , ρ+ε sin 2ζ ),

a2 = (a2x, a2y ) =
√

3

2
a[1 + ρ−ε + 2ρ+ε cos(2ζ − 60◦),

√
3(1 + ρ−ε) + 2ρ+ε sin(2ζ − 60◦)],

(1)

where the constants ρ± are defined as

ρ± = 1
2 (1 ± ν) (2)

and ν = 0.18 is the Poisson ratio, while a = 0.142 nm is the
bond length in pristine graphene [25]. The vectors δ j with
j = 1, 2, and 3 indicate the three nearest neighbors’ site on
the underlying sublattice A, as shown in Fig. 1(a). The strain
parameters ε and ζ quantify the percentage of tensile strain
and the direction of the applied tension T with respect to
the x axis. The failure strain has been estimated to occur at
the approximated value ε ≈ 28% [111,112]. However, we use
a moderated range of ε from 0 to 10% in all our calcula-
tions within the linear elastic regimen, where tight-binding
(TB) and density functional theory (DFT) calculations were
demonstrated to have a good agreement [83]. Nevertheless,
controlled and reversible extreme strains ε > 10% have been
realized experimentally [113]. Using the TB approach to first
nearest neighbors, we consider one orbital per atom in the
unit cell and neglect the overlap orbital among neighboring
sites. The scaling rule τ j = τ exp[−β(δ j/a − 1)] relates the
hopping parameters τ j with the deformed bond lengths δ j . In
graphene, β = 2.6 is the Grüneisen constant and τ = 2.7 eV
is the isotropic hopping [25,114]. This scaling rule evidences
that the Fermi velocity is anisotropic and has a tensorial char-
acter. In the Fourier basis and expanding around the Dirac
cone, the Hamiltonian is [34,107]

HD = h̄

[
0 vc∗ · k

vc · k 0

]
, (3)

where k = (kx, ky ) is the wave vector and

vc = (vc
x, v

c
y ) = i

h̄

(
a1τ1e−iKD·δ1 + a2τ2e−iKD·δ2

)
, (4)

are the complex velocities, being KD the Dirac point position,
which is the solution of

3∑
j=1

τ je
−iKD·δ j = 0. (5)
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The Hamiltonian (3) is the Dirac-Weyl type H = vi jσi p j ,
where vi j is the Fermi velocity tensor and p j = h̄k j are
the components of linear momentum. The electronic band
structure of anisotropic hexagonal lattice, in the semimetallic
phase, present generally elliptical and rotated Dirac cones.
The dispersion relation

E = sh̄|vc · k| (6)

of the Hamiltonian (3) displays this cone around the Dirac
point in the reciprocal space, where s is the band index [107].
The eigenstates of the Dirac-Weyl-like Hamiltonian (3) have
the form

�s,k(r) = 1√
2

(
1

seiφ(k)

)
eik·r (7)

and the definition of pseudospin angle φ(k) is

tan φ(k) = −vxkx sin μx + vyky sin μy

vxkx cos μx + vyky cos μy
, (8a)

vc
x = vxe−iμx , (8b)

vc
y = vyeiμy . (8c)

Here vc
x,y are the x- and y-components of the complex

vector vc with norm vx,y and phase μx,y. The pseudospin
direction, wave vector, and the group velocity are generally
not parallel.

The direction of group velocity is found to be [107]

tan θ = v2
y ky + vxvykx cos(μx + μy)

v2
x kx + vxvyky cos(μx + μy)

(9)

and allows to obtain the wave vector in terms of incidence an-
gle. The application of uniaxial strains out of the zig-zag and
armchair direction have led to the emergence of anomalous
Klein tunneling [107], which occurs at the incidence angle

θKT = arctan[vy cos(μx + μy)/vx] (10)

when ky = 0 in Eq. (9).
We now rewrite the dispersion relation (6) in the more

explicit form

E = sh̄
√

k2
x v

2
x + 2kykxv2

x tan θKT + k2
y v

2
y . (11)

In the next sections, we shall evidence that this symmetry
breaking with respect to the x axis modifies drastically the
electron transmission for the sidebands.

III. PHOTON-ASSISTED TUNNELING THROUGH A
TIME-PERIODIC POTENTIAL BARRIER

We study the tunneling of electrons in uniaxially strained
graphene under the presence of a time-periodic potential bar-
rier, as shown in Fig. 1. The photon-assisted mechanism, such
as a time-periodic potential used here, causes the appearance
of many sidebands [43,49,66]. These sidebands correspond to
multiple copies of the dispersion relation with a relative en-
ergy separation h̄ω, where h̄ and ω is the Planck constant and
the potential frequency, respectively. The Floquet scattering is
the usual theory to describe the tunneling of a single electron
with energy E to cross the time-periodic potential gaining or
losing the energy quantity mh̄ω, where m = 0,±1,±2, . . .

indicates the sideband [see Fig. 1(b)]. The tunneling is elas-
tic (inelastic) if the electron crosses the oscillating barrier
without (with) changes in the energy. Most of the experi-
mental realizations that involved photon-assisted tunneling
are observed generally in the frequency range from the mi-
crowave to infrared electromagnetic spectrum [1,9,11,14,17–
21,24,73,74,78,79].

We have several external variables to control the electron
tunneling by means of the application of uniaxial strain and
tuning of amplitude, frequency, barrier height, and width of
the time-periodic potential. From a general point to view, we
write the time-dependent Schrödinger equation as

[H (p) + V (r, t )]ψ (r, t ) = ih̄∂tψ (r, t ), (12)

where H (p) can be a general Hamiltonian that depends only
on the linear momentum p. Therefore, the following develop-
ment from Eqs. (12) to (18) can be applied to multiple systems
in condensed matter to depict the Floquet scattering of elec-
trons in the presence of a time-periodic potential barrier.

The eigenvectors of H (p) are the wave functions �s,k(r) of
the electron belonging to the momentum k and band index
s. For instance, in the particular Hamiltonian (3) the wave
functions �s,k(r) are given by Eq. (7). We define E (s, k) to
be the corresponding eigenvalue

H (p)�s,k(r) = E (s, k)�s,k(r). (13)

The time-periodic potential is given by

V (x, t ) =
{

V0 + V1 cos(ωt ), for 0 < x < D,

0, otherwise, (14)

which can be created through external metallic gates with a
harmonically varying electric potential [14]. We divide the
system in three regions, namely, x � 0, 0 � x � D, and D �
x, denoted by regions I, II, and III respectively. We define

α = V1

h̄ω
(15)

and find the general plane wave solutions for all three regions:

WsIkI (r, t ) = �sI,kI (r) exp [−iE (sI, kI )t/h̄], (16a)

WsIIkII (r, t ) = �sII,kII (r) exp[−(i/h̄)(V0t

+ E (sII, kII )t + V1 sin(ωt )/ω)]

= �sII,kII (r)
∞∑

m=−∞
Jm(α) exp[−(i/h̄)(V0

+ E (sII, kII ) + mh̄ω)t], (16b)

WsIIIkIII (r, t ) = �sIII,kIII (r) exp [−iE (sIII, kIII )t/h̄]. (16c)

The second equality in Eq. (16b) follows from the identity

exp [−iα sin(ωt )] =
∞∑

m=−∞
Jm(α)e−imωt , (17)

where Jm(α) are Bessel functions of the first kind. We now
determine linear superpositions of these various solutions
�sI,kI (r, t ), �sII,kII (r, t ), and �sIII,kIII (r, t ) in such a way as to
yield continuous behavior at the interfaces x = 0 and x = D
for all times.
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We assume that the incoming wave in region I is character-
ized by a wave vector k0 and a band index s0. To match this in
region II, we need all momenta qm such that

E := E (s0, k0) = E (s′
m, q±

m ) + V0 + mh̄ω, (18a)

ky,0 = q±
y,m, (18b)

where the second relation follows from the conservation of
ky,0 at all interfaces. The expressions (18a) are the sidebands
for the system described by the Hamiltonian H (p) in the pres-
ence of the time-periodic potential V (x, t ). Using the specific
Hamiltonian of uniaxially strained graphene (3) in this general
development, we have

q±
m,x = ±s′

m

√
(E − V0 − mh̄ω)2

h̄2v2
x

− v2
y

v2
x

k2
y,0 sin2(μx + μy)

− ky,0 tan θKT , (19a)

s′
m = sgn(E − V0 − mh̄ω), (19b)

where the ± sign indicates the two possible solutions for qm,
which are obtained by the dispersion relation (11). There are
two states with these wave vectors qm and the same energy,
we shall use them to represent “left-going” and “right-going”
waves in region II, in the same way as it would happen with
kx and −kx in isotropic systems. Now, to match the e−imωt

behavior in region II, we must introduce the wave vectors km

in regions I and III, defined by

E (sm, k±
m ) = E − mh̄ω, (20a)

ky,0 = k±
y,m. (20b)

Note again that k±
m are uniquely determined by k0. Also, the

± sign is related to a choice of left-going and out-going waves,
see Eq. (21a). Similarly, the solution of Eq. (20) is given by:

k±
x,m = ±sm

√
(E − mh̄ω)2

h̄2v2
x

− v2
y

v2
x

k2
y,0 sin2(μx + μy)

−ky,0 tan θKT , (21a)

sm = sgn(E − mh̄ω). (21b)

It is possible to express ky,0 in terms of the incidence angle
θ inverting Eq. (9)

ky,0 = vx|E |(tan θ − tan θKT )

h̄v2
y sin2(μx + μy)

√
1 + v2

x (tan θ−tan θKT )2

v2
y sin2(μx+μy )

. (22)

Using the above expression and the linear conservation of
ky,0 in Eqs. (18b) and (20b), we can establish the generalized
electron optics laws from Floquet scattering theory

tan θ±
m = n−

0 (tan θ − tan θKT )

n±
m

√
1 +

[
1 −

(
n−

0
n±

m

)2](
vx (tan θ−tan θKT )

vy sin(μx+μy )

)2

± tan θKT , (23)

where θ−
m and θ+

m are the reflection and refraction angles for
the sideband m. The effective refraction index is defined as

n±
m = E − (1 ± 1)V0/2 − mh̄ω

vy sin(μx + μy)
. (24)

To identify the incidence range for propagating waves, we
obtain the critical angles θd,±

c,m in each sideband m

tan θd,±
c,m = tan θKT + (−1)d vy sin(μx + μy)

vx

√(
n−

0
n±

m

)2
− 1

, (25)

where the index d = 1, 2 corresponds to the minimum and
maximum critical angle, respectively. It is important to note
that there are critical angles for the reflection and refraction,
which are indicated by the sign in the refraction index n±

m .
We now make the following ansatz for the wave function

ψ(r, t ) in terms of the band index and wave vector values in
the three different regions I, II, and III:

ψI (r, t ) = 1√
2

eiky,0ye−iEt/h̄

[(
1

s0eiφ+
0

)
eik+

x,0x

+
∞∑

m=−∞
rm

(
1

smeiφ−
m

)
eik−

x,mxe−imωt

]
, (26a)

ψII (r, t ) = 1√
2

eiky,0ye−iEt/h̄
∞∑

n,m=−∞
Jn(α)

[
t ′
m

(
1

s′
meiξ+

m

)

×eiq+
x,mx + r′

m

(
1

s′
meiξ−

m

)
eiq−

x,mx

]
e−i(n+m)ωt , (26b)

ψIII (r, t ) = 1√
2

eiky,0ye−iEt/h̄
∞∑

m=−∞
tm

(
1

smeiφ+
m

)

×eik+
x,mxe−imωt , (26c)

where we define the phases corresponding to the various wave
vectors, as described in Eq. (8)

φ±
m = φ(k±

m ), (27)

ξ±
m = φ(q±

m ), (28)

and we use the particular eigenstates (7). The coefficient rm

is the reflection amplitude of the incident wave back into
region I; t ′

m and r′
m are the amplitudes of the right-going and

left-going waves in region II respectively; and tm is the total
transmission amplitude from I to III, while gaining or losing
an energy mh̄ω in the process. The sideband index indicates
the conduction (s′

m = 1) or valence (s′
m = −1) band.

With the matching of the wave functions (26) at (x =
0) and (x = D) and using the orthonormality condition of
Fourier basis, we obtain the following equations system:

δm0 + rm =
∞∑

l=−∞
Jm−l (α)(t ′

l + r′
l ), (29a)

smδm0eiφ+
m + smrmeiφ−

m =
∞∑

l=−∞
s′

l Jm−l (α)(t ′
l e

iξ+
l + r′

l e
iξ−

l ),

(29b)

tmeik+
x,mD =

∞∑
l=−∞

Jm−l (α)(t ′
l e

iq+
x,l D + r′

l e
iq−

x,l D),

(29c)
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smtmeik+
x,mDeiφ+

m =
∞∑

l=−∞
s′

l Jm−l (α)(t ′
l e

iq+
x,l Deiξ+

l

+ r′
l e

iq−
x,l Deiξ−

l ). (29d)

The linear equations system (29) must be truncated up to a
maximum number of terms because, in principle, it is infinite.
We can define this maximum number L in the sum and impose
the conditions

rm = t ′
m = r′

m = tm = 0, (|m| � L + 1). (30)

In this way, the dimension of the system is d × d , where d =
4(2L + 1), and the sum index m runs over −L to L. We chose
the ordered basis for the amplitude coefficients defining the
vector of d components by

X = (r−L, . . . , rL, t ′
−L, . . . , t ′

L, r′
−L, . . . , r′

L, t−L, . . . , tL )T

= [(rm
)L

m=−L, (t ′
m)L

m=−L, (r′
m)L

m=−L, (tm)L
m=−L]T, (31)

where we use the notation (am)
L
m=−L = a−L, . . . , aL with

am = rm, t ′
m, r′

m or tm. We now write the equations system (29)
in a slightly more compact form as follows:

M1 = [−IJJO], (32a)

M2 = [OJJ − I], (32b)

J = Jml = Jm−l (α), (32c)

D1 = diag[(smeiφ−
m )L

m=−L(s′
meiξ+

m )L
m=−L

(s′
meiξ−

m )L
m=−L(smeiφ+

m )L
m=−L], (32d)

D2 = diag[(eik−
x,mD)L

m=−L (eiq+
x,mD)L

m=−L

(eiq−
x,mD)L

m=−L(eik+
x,mD)L

m=−L], (32e)

b1 = (δm,0)L
m=−L, (32f)

b2 = s0eiφ0 b1, (32g)

where the square submatrices I and O are the identity and null
matrix of size d/4 × d/4, respectively. Therefore, Eqs. (29)
can be written as,

M1X = b1, (33a)

M1D1X = b2, (33b)

M2D2X = 0, (33c)

M2D1D2X = 0. (33d)

On the one hand, we can identify that the rectangular matrices
M1 and M2 control the scattering of electrons in the time-
periodic potential barrier through a unique tunable parameter
α. On the other hand, the diagonal matrices D1 and D2 contain
the effect of strain from the phases in Eq. (27) and wave
vectors given by Eqs. (19a) and (21a). The photon-assisted
tunneling amplitudes tm are provided by the last 2L + 1 com-
ponents of vector

X = M−1b, (34a)

M = [M1 M1D1 M2D2 M2D1D2]T. (34b)

Here M is the total square matrix of the system defined
by Eqs. (29a) to (29d) and b = (b1, b2, 0, 0). Therefore, the

coefficients are given by Tm = |tm|2 which quantify the trans-
mission probabilities of electrons from the central band E
to cross the time-periodic potential barrier and transit to the
sideband E − mh̄ω.

In Appendix A, we show an approximate solution of this
equation system with validity in the range 0 < α < 1.

IV. DISCUSSION AND RESULTS

The application of uniaxial strain along the ζ = 45◦
changes drastically the transport properties in anisotropic
hexagonal materials. Electrons impinging the electrostatic
potential barrier at the specific incidence angle θKT present
the anomalous Klein tunneling [107]. This effect emerges
for strains that break the mirror symmetry with respect to
the x axis. We set the values ε = 10% and ζ = 45◦, where
anomalous Klein tunneling appears for the incidence angle
θKT = −10.8◦ in the static barrier α = 0, [see Fig. 2(a)].
This perfect transmission occurs when the wave vector is
perpendicular to the barrier, as obtained setting ky,0 = 0 in
Eq. (9). The incidence angle is different to zero due to that the
wave vector, pseudospin, and group velocities are generally
not parallel [31,107]. If we turn on the time-periodic potential,
the anomalous Klein tunneling suppresses. The transmission
probabilities in the central and sidebands depend on α. In most
of the cases, we only consider the transmission coefficients Tm

with m = −2,−1, 0, 1, 2 because the other ones with |m| > 2
have a maximum value smaller than 0.1 in the whole range
of 0 < α < 8 and therefore they can be neglected. There are
consistent numerical solutions of Tm with values L > 8. We
chose L = 11 which corresponds to solve numerically the
linear equation system in Eq. (34a) of dimension 92 × 92. The
transmission probability Tm starts to be relevant for α > |m|,
as shown in Fig. 2. We can see that electrons absorbing
or emitting m photons have the same probability to cross
the barrier [see Fig. 2(a)]. This equiprobability appears for the
specific case where the wave vector is perpendicular to the
barrier and also by the linear dispersion relation of electrons.

When electrons impinge under normal incidence to the
time-periodic potential, as shown in Figs. 2(b) and 2(c), the
wave vector is not perpendicular anymore as a consequence
of the uniaxial strain out of the main axes x and y, This is
contrary to the unstrained case, where it is perpendicular to
the barrier and perfect transmission is observed for α = 0
[49,115]. Due to the strain the Dirac cones are elliptical and
rotated in the low-energy regime, Klein tunneling deviates
from the normal direction, and the transmission probability
splits out slightly for the absorption and emission of pho-
tons, namely, Tm 	= T−m. This splitting of the transmission
probabilities has a different origin in comparison to isotropic
and gapped graphene in time-periodic potentials [49,50,53].
The perfect transmission for normal incidence by the Klein
tunneling in the static case α = 0 is destroyed, as verified
by changing the energy values to E = 90 and 120 meV in
Figs. 2(b) and 2(c). This resonant tunneling is atypical for
normal incidence. In a related system, the Hartman effect of
a strained graphene barrier with a time-dependent oscillat-
ing potential has been studied [51]. However, in this setup
a relative shift of the Dirac points occurs, which can be
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FIG. 2. Transmission probability Tm = |tm|2 for electrons with energy E from the central band to cross the oscillating barrier and lie on the
sideband E − mh̄ω. This transmission is obtained from the numerical solution of the linear equation system (34b), as a function of the ratio
α = V1/h̄ω, where V1 is the oscillation amplitude for a time-periodic potential of height V0 = 200 meV, width D = 100 nm, and frequency
ω = 5 THz. The set of uniaxial strain parameters are ε = 10% and ζ = 45◦. Transmission probability for the cases of anomalous Klein
tunneling in the incidence angle θKT = −10.8◦ and using the energy E = 82 meV in (a) normal incidence in (b), (c) for the energies E = 90
and 120 meV, respectively.

misinterpreted as the opening of a band gap and lead to er-
roneous conclusions [51].

We call anomalous Floquet tunneling to the angular shift of
the transmission maximum of the sidebands by the application
of a uniaxial tension different to the direction ζ = 0◦ and
90◦, as shown in Figs. 3(a) to 3(f). For isotropic systems, the
angular shift in the transmission probability appears by time-
reversal symmetry breaking with an external magnetic field
[66]. The vector potential, which generates the magnetic field,
shifts the Dirac cone in the reciprocal space. In the present
work, the strain affects the Dirac cone differently changing

the circular shape to a rotated and elliptical one. The common
feature here with systems presenting time-reversal symmetry
breaking is due to that incident electrons with a wave vector
perpendicular to the interface have a nonzero parallel group
velocity vy. In Fig. 3, we chose a shortened incidence angle
range to avoid the evanescent waves. The incident electrons
have critical angles that depend on the sideband, which are
given by the expressions in Eq. (25). Increasing ε in Figs. 3(a)
to 3(c), we observe that this angular deviation in the maximum
of transmissions improves. Moreover, we can see in Figs. 3(d)
to 3(f) that the tensile strain also affects the transmission

FIG. 3. Anomalous Floquet tunneling of electrons at the energy E = 100 meV as a function of the incidence angle θ . The set of values for
the time-periodic potential are V0 = 200 meV, D = 100 nm, and ω = 5 THz. Transmission probabilities Tm = |tm|2 using the strain parameters
ε = 0, 5, 10% and ζ = 45◦ with α = 2 in (a), (b), and (c), and α = 2.8 in (d), (e), and (f), respectively.
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FIG. 4. Anomalous Klein tunneling angle [Eqs. (10) and (35)]
and the numerically determined angular shift of the transmission
maximum T0, T1, and T−1 as a function of the tensile strain parameter
ε at the direction ζ = 45◦ and the ratio α = V1/h̄ω = 2, 2.8, and 5.

maximum of the sidebands. The value of T0 for normal in-
cidence is bigger than the other transmissions Tm when ε = 0,
but increasing the tensile strain, the maximum of T0 decreases
being now less than the ones of T1 and T−1. Hence, the uniaxial
strain is useful to favor the transmission of inelastic tunneling
and generate photoinduced electronic currents.

We show in Fig. 4 the angular shift of the transmission
maximum θmax as a function of the tensile strain. This angular
shift has a good agreement with the anomalous Klein tunnel-
ing angle θKT predicted by Eq. (10). It is worth noting that this
angular shift of the transmission maximum depends only on
the tensile strain ε and tension angle ζ . We find that θm for all
values of α follows the linear behavior of θKT . This indicates
that the conservation of pseudospin in this direction is persis-
tent and robust enough, being unaffected by the time-periodic
potential barrier. The expansion of Eq. (10) (see Appendix
B), keeping only the first-order terms in ε, we lead to a very
simple and straightforward relation of the anomalous Klein
tunneling angle with the parameters ε and ζ

θKT ≈ 360◦

π
ρ+(1 − β )ε sin 2ζ , (35)

which has a negligible deviation of the exact relation (10)
in the whole strain range considered. It is important to note
that θKT indicates the direction for the conservation of the
pseudospin. For this reason, the anomalous Klein tunneling,
though largely suppressed, can be recognized in Fig. 3. Uniax-
ial strain along with the directions ζ = 0◦ and 90◦ (not shown)
does not break the mirror symmetry with respect to the normal
axis. In this case, the group velocity and the wave vector
are parallel for normal incidence which restores the angular
transmission symmetry. We quantify the anomaly in the trans-
missions using the direction of the Klein tunneling deviation
in Eq. (10), which depends only on the strain parameters ε

and ζ . Figure 5 shows this anomaly in the whole strain range.
As expected, the uniaxial strains along the perpendicular and
parallel directions to the interface keep the symmetry in the
transmission. While tensions in a different direction to ζ 	= 0
and 90◦ cause the anomalous Floquet tunneling. We find that

FIG. 5. Anomalous Klein tunneling angle as a function of the
strain parameters ε (radius from 0 to 10%) and ζ (polar angle in
degrees).

the highest angular shift value is θKT ≈ −10.8◦ for the set of
parameters ε = 10% and ζ = 45◦.

We show in Fig. 6 the Floquet scattering angles of electron
beams impinging the interface of time-periodic barriers. We
can see that the reflected and refracted beams depend on
the sideband energy. The inelastic electron scattering process
changes the direction of the propagation wave with probabil-
ities determined by the amplitudes rm and tm. This behavior
is similar to Compton scattering, where the photon changes
its direction and energy by the collision with the electron.
However, the electron interacts absorbing or emitting a photon
of energy mh̄ω, and the anisotropy induced by the tensile
strain leads to generalized Snell’s laws, as shown in Fig. 6.
The application of uniaxial strain out to the axes x and y

FIG. 6. Electron optics laws from Floquet scattering theory. The
solid (dashed) curves correspond to reflection (refraction) angles as
a function of the incidence angle for the central band (black) and the
sidebands m = −2 (green) and m = 2 (red), using Eqs. (23) with
the set of values E = 25 meV, V0 = 50 meV, ε = 10%, ζ = 45◦,
and ω = 5 THz. The blue (white) region indicates negative (positive)
reflection and refraction.
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FIG. 7. Transmission probability (a) T0, (b) T−1, and (c) T−2 as a function of uniaxial strain parameters ε (radius from 0 to 10%) and ζ

(polar angle in degrees) for electrons with normal incidence and energy E = 100 meV in a time-periodic potential V0 = 200 meV, D = 100
nm, α = 2, and ω = 5 THz.

causes negative reflection for the electrons in the sidebands
with an incidence angle in the range from −30◦ to 0◦. We
can also observe partial positive refraction of electrons in the
same incidence range. It is important to note that there are
critical angles for the reflection, as predicted by Eqs. (25), and
they are due to photon emission processes. In a symmetric
barrier V0 = 2E , these critical angles for the refraction are
identical to the reflection ones in the absorption of photons.
Such electron scattering phenomena are summarized in the
optics laws Eqs. (23), where the refraction index media is
determined by the uniaxial strain and sideband energies.

To understand how the uniaxial strain affects the behavior
of photon-assisted tunneling, we show the probability trans-
mission as a function of ε and ζ in Fig. 7 for the case of normal
incidence. We can see that in a wide range of ζ , the behavior
of Tm is strongly anisotropic with the angle ζ , and the increase
of ε causes a reduction in the probability transmission T0, as
shown in Fig. 7(a). However, for the tension angle ζ = 90◦,
normal incident electrons have an almost constant probability
of crossing the barrier regardless of the tensile strain. It is
worth noting that the independence of transmission on the
tensile strain at ζ = 90◦ also appears for other sidebands,
as shown in Figs. 7(b) and 7(c). The transmission T1 and
T2 present an identical behavior with respect to the emission
counterpart. The application of strain in the directions near the
x-axis shows an increase of T−1 and T−2. While uniaxial strain

along the y-axis decreases the electron transmission in the
sidebands. The time exposition of electrons to the oscillating
barrier explains the strain-induced transition from elastic to
inelastic tunneling. Positive tensile strains in the direction
ζ = 0◦ increase the bond lengths. Therefore, the probability
amplitude of electrons decreases to hop among neighboring
sites. In this way, there is more time exposition to interact
with the time-periodic potential. Thus, electrons cross the
barrier inelastically with transmission probabilities T1 and T2.
In contrast, deformations parallel to the interface decrease the
zigzag bond lengths, and electrons have a major probability to
cross the barrier elastically.

We examine the behavior of the transmission probability
Tm as a function of barrier width and incidence angle, as
shown in Fig. 8. In general, the reminiscence of the anomalous
Klein tunneling makes that almost all the transmission occurs
around the incident angle θ = −10.8◦. We find that the tuning
of barrier width can serve as a selector of the transmission
in the sidebands. In thin barriers D < 50 nm [see Fig. 8(a)],
the transmission is mainly due to the central band, where other
sidebands participate only scarcely. The increase of the barrier
width can suppress the transmission in the central band and fa-
vors the emergence of another transmissions in the sidebands.
Figure 8(b) shows that electrons absorbing or emitting one
photon have a higher probability of crossing the time-periodic
barrier if the width is within the range of 100 to 150 nm. The

FIG. 8. Transmission probabilities of (a) T0, (b) T1, and (c) T2 as a function of barrier width and incidence angle for the potential height
V0 = 200 meV.
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FIG. 9. Transmission probabilities of (a) T0, (b) T1, and (c) T2 as a function of the parameter α and incidence angle θ for the potential
height V0 = 200 meV and width D = 100 nm.

same occurs for T2 in Fig. 8(c) in the range 150 < D < 300
nm. This is due to the fact that, for electrons to cross the
barrier, they need more exposition time to interact with the
time-periodic potential, and therefore, it favors the promotion
of electrons to travel through other sidebands with a higher
energy difference. We note a similar behavior (not shown)
for the transmissions T−1 and T−2 compared with T1 and T2,
respectively. These results imply that an adequate selection
of the barrier width allows that the device converts incoming
electron current with energy E to two outcoming photoex-
cited currents, with a difference between them of 2nh̄ω. The
uniaxial deformation improves the inelastic tunneling and en-
hances the output of photon-excited currents (in comparison
to isotropic systems [19–21]).

Another alternative way to select transmission in a par-
ticular sideband is to modulate the oscillating amplitude V1.
Figure 9 shows the transmissions T0, T1, and T2 as a function of
α and θ for a constant value of the barrier width. Anomalous
Klein tunneling and resonant peaks are suppressed by increas-
ing α, while electron transmissions in other sidebands arise.
Dependent on the amplitude of the oscillation, the device in
Fig. 1(a), can convert electron current to a photoexcited one.

V. CONCLUSION AND FINAL REMARKS

We study the effect of uniaxial strain on the transport
properties of electrons in graphene in the presence of a
photon-assisted tunneling mechanics. The interplay of uni-
axial strain and photon-assisted tunneling opens possibilities
to control electron flow. We applied the Floquet scattering
theory in anisotropic hexagonal lattices. This approach serves
to understand the interaction of electron current with the

time-periodic potential in systems such as uniaxially strained
graphene, photonic crystals, molecular graphene, and optical
lattices. We calculate the transmission probabilities with the
absorption or emission of multiphoton processes as well as
the electron optics laws for time-periodic potentials. The main
transmission features as anomalous Floquet tunneling and the
modulation of the transmission maximum in the sidebands
occur with the application of uniaxial strains out of the x
and y axes. We find that applying uniaxial strain in the par-
allel direction at the interface, photon-assisted tunneling is
unaffected by the increase of the tensile parameter. Whereas,
uniaxial strain perpendicular to the barrier enhances the elec-
tron transmission from the sidebands. The generalized Snell’s
laws describes the scattering of electrons in the oscillating
barrier, identifying negative reflection and positive refraction
for interband tunneling, which depends on the sideband ener-
gies. An appropriate design of the barrier width, or tuning the
amplitude of oscillation, can select the electron tunneling to
absorb or emit n photons. Therefore, the device converts an
electron current to a photoexcited one. Such findings may be
useful to control the electron flow in nanoelectronic devices
through the photon-assisted tunneling and strain engineering.

ACKNOWLEDGMENTS

P.M. gratefully acknowledges a fellowship from UNAM-
DGAPA. We acknowledge financial support from CONACYT
Project A1-S-13469, CONACYT Project 254515, CONA-
CYT Project Fronteras 952, and the UNAM-PAPIIT research
Grants No. IA-103020 and No. IN113620. We thank T. H.
Seligman and L. E. F. Foa-Torres for useful discussions and
comments.

APPENDIX A: APPROXIMATE SOLUTION OF FLOQUET SCATTERING OF ELECTRONS
IN UNIAXIALLY STRAINED GRAPHENE

It is possible to obtain an approximate solution for the transmission coefficient Tj = |t j |2 with j = −1 and 1 using the exposed
method in Sec. III. As we can see, the fact that the Jn(α) is negligible at n 
 L in the range 0 < α < L, it causes that the infinite
system evolves a finite one from −L up to L. In the case L = 0, the equation system has dimension d = 4 and we can calculate
the transmission coefficient for the static barrier

Tsm = cos2 χm cos2 χ ′
m

cos2 χm cos2 χ ′
m cos2 γ ′

m + [1 − sms′
m sin χm sin χ ′

m]2 sin2 γ ′
m

, (A1)
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which is the probability of an electron to cross the barrier from the same sideband with energy E − mh̄ω, where

χm = φ+
m + μx, (A2a)

χ ′
m = ξ+

m + μx, (A2b)

γ ′
m = D|E − V0 − mh̄ω|

vx h̄
cos(ξ+

m + μx ). (A2c)

Due to the dependence on barrier width in Eq. (A1), resonant tunneling occurs for γ ′
m = Nπ being N an integer. While

anomalous Klein tunneling appears for the incidence angle θ = θKT . Without deformation, the above values are μx = 0, μy =
π/2, vx = vy = 1, recovering the expression of transmission coefficient in a static barrier of graphene [115]. With the definition
of transmission probability in photon-assisted tunneling Tm = |tm|2 and solving the equation systems for L = 1, we find an
analytical transmission for the transmission T1 valid in the range 0 < α < 1

T1 =
(

J1(α)|(�1 − �0) + (�1 − �0)|
J0(α)|eiφ+

1 − eiφ−
1 |

)2

Ts0Ts1, (A3)

where the quantities � j and � j are defined as

� j = eiq−
x, j D(eiφ−

1 + eiξ−
j )(eiφ+

0 + eiξ+
j )

eiξ−
j − eiξ+

j

, (A4a)

� j = eiq+
x, j D(eiξ+

j + eiφ−
1 )(eiφ+

0 + eiξ−
j )

eiξ−
j − eiξ+

j

, (A4b)

with the index j = 0 or 1. An identical expression is obtained for the transmission T−1 replacing 1 → −1 in all the relations
above. In the unstrained case, the transmission probability (A3) is identical to those calculated in [49].

APPENDIX B: LINEAR RELATION OF ANOMALOUS KLEIN TUNNELING ANGLE WITH THE UNIAXIAL STRAIN

To obtain the linear dependence on the tensile strain ε of anomalous Klein tunneling angle, we expand Eq. (10) keeping the
first-order in ε. First, we calculate the ratio of the complex velocities components (4)

vc
y

vc
x

= a1yτ1e−iKD·δ1 + a2yτ2e−iKD·δ2

a1xτ1e−iKD·δ1 + a2xτ2e−iKD·δ2
. (B1)

This expression is useful to express Eq. (10) as

θKT ≈ 180◦

π
Re

(
vc

y/v
c
x

) = 180◦

π

a1xa1yτ
2
1 + a2xa2yτ

2
2 + (a1xa2y + a2xa1y)τ1τ2 cos[KD · (δ1 − δ2)]

a2
1xτ

2
1 + a2

2xτ
2
2 + 2a1xa2xτ1τ2 cos[KD · (δ1 − δ2)]

. (B2)

Taking into account that the solution for Eq. (5) is

cos[KD · (δ1 − δ2)] = τ 2
3 − τ 2

2 − τ 2
1

2τ1τ2
(B3)

and the deformed lengths of uniaxially strained graphene are

δ j ≈ a{1 + ρ−ε + ρ+ε cos[2ζ + (2 j − 1)60◦]}, (B4)

we expand the exponential decay rule for the hopping parameters τ j up to first order in ε

τ j

τ
≈ 1 − β{ρ− + ρ+ cos[2ζ + (2 j − 1)60◦]}ε. (B5)

Substituting the above expression in Eq. (B3)

cos[KD · (δ1 − δ2)] ≈ − 1
2 [1 + 3βρ+ε cos(2ζ − 60◦)]. (B6)

In the same way, we expand the relations

a1xτ1 ≈
√

3aτ (1 + c1xε), (B7)

a1yτ1 ≈
√

3aτρ+ε sin 2ζ , (B8)

a2xτ2 ≈
√

3

2
aτ (1 + c2xε), (B9)

a2yτ2 ≈
√

3

2
aτ (

√
3 + c2yε), (B10)
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where we used Eqs. (1) and (B5). The coefficients c1x, c2x, and c2y are, respectively,

c1x = ρ− + ρ+ cos 2ζ − β[ρ− + ρ+ cos(2ζ + 60◦)], (B11)

c2x = ρ− + 2ρ+ cos(2ζ − 60◦) − β[ρ− − ρ+ cos 2ζ ], (B12)

c2y =
√

3ρ− + 2ρ+ sin(2ζ − 60◦) −
√

3β[ρ− − ρ+ cos 2ζ ]. (B13)

Substituting the relations (B7) to (B10) and (B6) in Eq. (B2), we obtain

θKT ≈ 180◦

π

2ρ+(1 − β )ε sin 2ζ

1 + 3[c1x + c2x − βρ+ cos(2ζ − 60◦)]ε

≈ 360◦

π
ρ+(1 − β )ε sin 2ζ , (B14)

which is the result as shown in Eq. (35).
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