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Tunneling magnetoresistance and spin-valley polarization in magnetic silicene superlattices
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We study the tunneling magnetoresistance and the spin-valley transport in silicene-based magnetic super-
lattices. The superlattice profile is obtained by the periodic modulation of the exchange field induced by
ferromagnetic electrodes. The silicene band gap in the superlattice structure is also modulated through an external
perpendicular electric field. The concept of parallel and antiparallel magnetization configurations of single
magnetic junctions is extended to the periodic case by switching the magnetization orientation of the adjacent
magnetic barriers in parallel and antiparallel fashion. The transfer matrix method and the Landauer-Büttiker
formalism are used to obtain the transmission and transport properties, respectively. We find an oscillating
conductance once the periodic modulation is incorporated. By tuning the external perpendicular electric field a
conductance gap is obtained for the antiparallel configuration, which results in an enhancement of the tunneling
magnetoresistance with respect to single magnetic junctions. In the case of the spin-valley polarization it is
not possible to obtain two well-defined polarization states by simply switching the magnetization orientation,
as in single magnetic junctions, due to the equivalence of the spin-valley conductance components. However,
by inducing structural asymmetry in the width of barriers-wells, two well-defined polarization states can be
reached. Moreover, an additional enhancement of the tunneling magnetoresistance is induced by the structural
asymmetry. Our findings indicate that magnetic periodic modulation can be an option to improve the tunneling
magnetoresistance and the spin-valley polarization of silicene-based structures.

DOI: 10.1103/PhysRevB.103.155431

I. INTRODUCTION

The multiple degrees of freedom of two-dimensional (2D)
materials are ideal for versatile multifunctional devices. In
particular, the spin and valley degrees of freedom raise the
prospects of spintronics and valleytronics [1–3]. For instance,
the long diffusion length, the lifetime, and the compatibil-
ity with other 2D materials, including ferromagnets, make
graphene ideal as a spin transport channel material. The
graphene’s low spin-orbit coupling (SOC) and the high carrier
mobility can enhance the spin coherence length as well as
the spin diffusive transport. In fact, it has been reported that
spin signals can be transported up to 35.5 μm and even up
to 90 μm using carrier drift [4,5]. Another important factor
is the so-called spin injection efficiency, that is, the injection
of a well-polarized current from a ferromagnetic electrode
to the graphene transport channel. Actually, since the first
demonstration of spin transport in graphene [6], the spin in-
jection efficiency has been improved systematically, reaching
values of up to 60% [7]. In the case of valleytronics, signif-
icant progress has been made since the first demonstration
of valley polarization in 2D materials [8]. Nowadays, it is
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possible to achieve valley polarization by valley-selective cir-
cular dichroism [8], optical pumping techniques [9,10], and
electrical methods [11,12]. The 2D material par excellence for
valley polarization so far has been MoS2, owing to its intrinsic
characteristics such as inequivalent valleys, strong SOC, and
lack of inversion symmetry. However, other 2D materials with
inequivalent valleys are also candidates for valleytronics. Re-
cently, the state of the art of spintronics and valleytronics has
been well documented in excellent reviews [1–3]. Another im-
portant breakthrough that can advance significantly the field
of spin-valleytronics is the integration of 2D materials with
materials with intrinsic magnetic properties. In fact, recently
graphene has been integrated with antiferromagnetic CrSe, re-
sulting in an exchange splitting of about 134 meV [13]. So, we
can think about manipulating spin-valley degrees of freedom
by placing 2D materials close to ferromagnets, ferrimagnets,
and antiferromagnets.

Under this context, the door is open for other 2D materials
that meet the fundamental requirements for spin-valleytronics.
Such is the case of silicene [14–16], a 2D material with two
inequivalent valleys, significant SOC [17], and a local band
gap (on-site potential) [17,18] modulable via gating [19,20].
Since 2012 there is experimental evidence of its fabrication
by epitaxial growth on metallic substrates [21–23], and in
2015 its integration in device geometries was possible [24].
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Furthermore, novel phenomena such as the spin Hall ef-
fect [17], the quantum anomalous Hall effect [25], the
valley-polarized quantum Hall effect [26], topological super-
conductivity [27], and the bipolar spin-valley diode effect [28]
have been reported.

In silicene the spin and valley are coupled and can give
rise to spin currents generated in each valley with opposite
polarities. The silicene’s electron spin has a long relax-
ation time and a long coherence length [29,30]. To induce
spin-valley-polarized currents, we need to break the valley
and/or time-reversal symmetry [31,32]. The valley asymme-
try gives rise to fundamental differences in the electronic
states, resulting in effective valley polarization [25,26,28].
Magnetoresistance is another quantity of great technologi-
cal relevance that has attracted a lot of interest in silicene
due to the giant values reported in silicene nanoribbons
[33] and silicene with ferromagnetic gates [34]. For the lat-
ter, the stray field associated with the ferromagnetic gates
induces wave vector filtering that results in substantial dif-
ferences in the transport properties of the parallel and
antiparallel magnetization configurations, giving rise to giant
tunneling magnetoresistance. In principle, the modulation of
silicene’s band structure allows us to control the spin-valley
degrees of freedom as well as to enhance the magnetore-
sistance response. Thus we can think about multifunctional
silicene-based devices with spin-valley polarization and mag-
netoresistive capabilities. For instance, in single magnetic
tunnel junctions it is possible to achieve 100% spin-valley
polarization and a tunneling magnetoresistance response with
percents of hundreds to thousands by modulating the ex-
change field strength and the on-site potential [35]. Moreover,
the 100% positive-negative spin-valley polarization states are
accessible by simply switching the magnetization configu-
ration. As far as we know, there are few works dealing
with these multifunctional silicene structures [35–38]. Most
of the proposals focus on the optimization of the spin-
valley polarization. In fact, several strategies were proposed
such as gating [39–46], strain [47–50], Fermi velocity barri-
ers [51–53], magnetic barriers, and ferromagnetic junctions
[54–64]. In the case of the tunneling magnetoresistance, sim-
ilar structures were assessed [65–68]. However, in this case
the parallel and antiparallel magnetization configurations are
always in play. Of particular interest are superlattices owing
to the possible optimization of the spin-valley polarization
[44–46,49,50,53,59–64] and the enhancement of the tunneling
magnetoresistance [67,68]. The periodic modulation results in
oscillating transport properties with significant differences in
the spin-valley components or the magnetization configura-
tions. In this context, we consider that a thorough assessment
of versatile silicene superlattices with spin-valley polarization
and tunneling magnetoresistance capabilities is necessary.

Here, we show that by extending the concept of the mag-
netic tunnel junction to the periodic case, which from now
on we refer to as magnetic silicene superlattices (MSSLs),
it is possible to improve the silicene’s tunneling magnetore-
sistance response significantly as well as to obtain two well-
defined spin-valley polarization states. Specifically, we find
that the periodic magnetic modulation induces oscillations in
the transport and transport-related properties: conductance,
spin-valley polarization, and tunneling magnetoresistance.

FIG. 1. (a) Schematic representation of magnetic silicene su-
perlattices. Silicene is placed on a supporting substrate such as
SiO2 and nanostructured with ferromagnetic electrodes in periodic
fashion to generate the magnetic superlattice profile. The exchange
field profile is shown along the superlattice axis for the (b) parallel
and (c) antiparallel magnetization configurations of the system. The
superlattice unit cell is composed of two ferromagnetic electrodes
(barriers) and two free regions (wells), the second electrode being the
soft region of the magnetic superlattice. The parallel and antiparallel
magnetization configurations are set by keeping or reversing the
magnetization of the soft region.

More importantly, the tunneling magnetoresistance of MSSLs
is enhanced with respect to single magnetic tunnel junctions
[35]. Furthermore, in order to obtain two well-defined spin-
valley polarization states it is necessary to induce structural
asymmetry in MSSLs. Structural asymmetry also helps to
improve the tunneling magnetoresistance. So, our findings
indicate that MSSLs represent an excellent option for versatile
devices that demand spin-valley polarization and magnetore-
sistance capabilities.

The rest of this paper is organized as follows: In Sec. II,
the details of MSSLs are presented in conjunction with the
theoretical model used to obtain the spin-valley and mag-
netoresistance transport properties. In Sec. III we show and
discuss the most relevant results of symmetric and asymmetric
MSSLs. Finally, we summarize our work with the correspond-
ing conclusions in Sec. IV.

II. THEORETICAL FORMALISM

The system that we are interested in is shown in Fig. 1(a).
It consists of a silicene layer placed on a supporting sub-
strate such as SiO2 and ferromagnetic electrodes (FMEs) over
silicene arranged in periodic fashion to create the so-called
MSSLs. A dielectric slab (not shown) is typically placed be-
tween silicene and the FMEs to avoid silicene degradation.
Two FMEs alternating with two free regions constitute the unit
cell of MSSLs, the second FME being the soft region. This
region allows us to change the magnetization configuration
of our structure. In particular, we can go from parallel (PM)
to antiparallel magnetization (AM) configuration by reversing
the magnetization direction. The exchange field profile for
PM and AM configurations is shown in Figs. 1(b) and 1(c),
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respectively. For PM we have a stepwise exchange field
profile, while for AM the profile is alternated with positive
and negative exchange field regions. A metallic electrode
along the superlattice structure and underneath FMEs is used
to modulate the silicene on-site potential �z (local band
gap) through an electric field applied perpendicularly to the
silicene. The exchange field strength that results from the
magnetic proximity effect of the FMEs is given by h [69–71],
the widths of the magnetic barriers are given by dB1 and dB2,
and the widths of the well (free) regions are given by dW 1

and dW 2. The number of superlattice periods N is given by
the number of unit-cell repetitions. For the MSSLs shown in
Fig. 1 we have considered three superlattice periods.

The charge carriers in MSSLs can be described by the low-
energy effective Hamiltonian [17–19,54,72]

Ĥ = vF (pxσx − τz pyσy) − (szτz�so − �z(x))σz − szh(x),
(1)

where

�z(x) =
{
�z for barriers and wells
0 otherwise, (2)

and

h(x) =
{
θh for barriers
0 for wells. (3)

Here, vF ≈ 0.5×106 m/s is the Fermi velocity of
the charge carriers in silicene, �p = (px, py) is the two-
dimensional momentum, �σ = (σx, σy, σz ) is the vector of
Pauli matrices related to the sublattice pseudospin, and �so

represents the spin-orbit interaction. In addition, sz = ±1 and
τz = ±1 stand for the spin and valley indices, while θ = ±1
stands for the magnetization configuration. In the case of the
AM configuration the magnetization of the second barrier in
the superlattice unit cell is reversed (θ = −1).

To implement the transfer matrix method and with it ob-
tain the transmission and transport properties of MSSLs, it
is necessary to know the wave functions and wave vectors
in the different regions of the superlattice structure. We can
know this information by solving the eigenvalue equation
Ĥψ = Eψ . In particular, the wave functions in the barrier
regions are given as

ψb
±(x, y) = Ab

±

(
1
vb

±

)
e±iqb

x x+iqb
y y, (4)

with

vb
± = h̄vF

(±qb
x − iτzqb

y

)
E + szθh − (τzsz�so − �z )

(5)

and

qb
x = 1

h̄vF

√
(E + szθh)2 − (τzsz�so − �z )2 − (

h̄vF qb
y

)2
.

(6)
In the case of the well regions, the wave functions and wave

vector can be obtained straightforwardly by setting h = 0, and
in the semi-infinite regions by setting �z = 0 and h = 0. To
identify the well region quantities, we use w as a superscript.

Now, we can relate the coefficients of the wave functions
in the left semi-infinite region of our structure with the cor-
responding ones in the right semi-infinite region through the

transfer matrix of the superlattice structure. Namely,
(

AL
+

AL
−

)
= MSL

(
AR

+
AR

−

)
, (7)

where

MSL = [
MSL

uc

]N
, (8)

MSL
uc being the transfer matrix of the superlattice unit cell.

Here, it is important to remark that we can define two unit
cells within the superlattice unit cell, as we can appreciate in
the exchange field profiles of Figs. 1(b) and 1(c). So, we can
write MSL

uc as

MSL
uc = Muc1Muc2, (9)

with Muc1 and Muc2 being the transfer matrix of the first
and second unit cell of the superlattice unit cell, respectively.
These matrices can be written in terms of the transfer matrices
of the corresponding barrier and well regions

Muc1 = Mb1Mw1, (10)

Muc2 = Mb2Mw2, (11)

where

Mb1 = D−1
0

(
Db1Pb1D−1

b1

)
D0, (12)

Mw1 = D−1
0

(
Dw1Pw1D−1

w1

)
D0, (13)

Mb2 = D−1
0

(
Db2Pb2D−1

b2

)
D0, (14)

Mw2 = D−1
0

(
Dw2Pw2D−1

w2

)
D0, (15)

with D0, Db1, and Db2 and Pb1, Pw1, Pb2, and Pw2 being the so-
called dynamic and propagation matrices. These matrices are
given in terms of the wave function coefficients, wave vectors,
and widths of the barrier and well regions. Explicitly,

Di =
(

1 1
vi

+ vi
−

)
(16)

and

Pi =
(

e−iqi
xdi 0

0 eiqi
xdi

)
, (17)

where i = 0, b1, b2,w1,w2 runs over the barrier and well
regions. Here, it is important to remark that as the semi-
infinite are identical, the dynamic matrices are the same, D0.
Similarly, as the wells are identical Dw1 = Dw2.

The transmission probability or transmittance is defined in
terms of the probability density fluxes

T θ1θ2
τzsz

=
∣∣∣∣ jout

x

jin
x

∣∣∣∣, (18)

jin
x being the probability density flux associated with the

incoming waves in the left semi-infinite region and jout
x be-

ing that corresponding to the outgoing waves in the right
semi-infinite region. By considering the x component of the
probability density flux for Dirac electrons jx = vF ψ†σxψ

we can write the transmission in terms of the wave function
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amplitudes of the incoming and outgoing waves as

T θ1θ2
τzsz

= qR
x

qL
x

[
(E + szhLφL ) − (

τzsz�so − �L
z

)]
[
(E + szhRφR) − (

τzsz�so − �R
z

)]
∣∣∣∣AR

+
AL+

∣∣∣∣
2

. (19)

This expression applies in general for superlattices in
which the left and right semi-infinite regions are subjected to
exchange and electric fields, φL and φR being the angles of the
wave vectors qL and qR in those regions. However, in our case
the semi-infinite regions are free, and then the transmission
adopts the following form:

T θ1θ2
τzsz

=
∣∣∣∣AR

+
AL+

∣∣∣∣
2

, (20)

or according to Eq. (7),

T θ1θ2
τzsz

=
∣∣∣∣ 1

MSL
11

∣∣∣∣
2

, (21)

MSL
11 being the (1,1) element of MSL. We have labeled the

transmission with the valley, spin, and magnetization con-
figuration indices to identify the transmission components
associated with a specific magnetization configuration as well
as a specific valley-spin channel. In particular, we will identify
PM when θ1θ2 → ⇑⇑ and AM when θ1θ2 → ⇑⇓, the K and
K ′ valley when τz → K and τz → K ′, and spin up and spin
down when sz → ↑ and sz → ↓. For instance, T ⇑⇑

K↑ will be
the transmission associated with the K valley and the spin-up
component for the PM configuration.

The transport properties are obtained within the lines of
the Landauer-Büttiker formalism. In specific, the spin-valley
resolved conductance for a particular magnetization configu-
ration at zero temperature is given as

Gθ1θ2
τzsz

= G0

∫ π/2

−π/2
T θ1θ2

τzsz
cos φdφ, (22)

where G0 = e2LykF /2πh is the fundamental conductance fac-
tor. Here, Ly represents the width of the silicene sheet, kF =√

E2 − �2
so/h̄vF represents the Fermi wave vector in the

semi-infinite free regions, and φ represents the angle of the
impinging charge carriers.

The conductance allows us to compute the tunneling
magnetoresistance (TMR) through the so-called total charge
conductance

TMR = G⇑⇑
c − G⇑⇓

c

G⇑⇓
c

, (23)

where G⇑⇑
c = ∑

τzsz
G⇑⇑

τzsz
(G⇑⇓

c = ∑
τzsz

G⇑⇓
τzsz

) is the total
charge conductance for the PM (AM) configuration.

Finally, the conductance spin-valley polarizations for the
magnetization configurations are given as [31,73]

ηθ1θ2
s =

∑
τz

(
Gθ1θ2

τz↑ − Gθ1θ2
τz↓

)
∑

τzsz
Gθ1θ2

τzsz

(24)

and

ηθ1θ2
v =

∑
sz

(
Gθ1θ2

Ksz
− Gθ1θ2

K’sz

)
∑

τzsz
Gθ1θ2

τzsz

. (25)

III. RESULTS AND DISCUSSION

In this section we will analyze the main results of the mag-
netoresistance and spin-valley polarization of MSSLs. Firstly,
we will show the results of symmetric MSSLs (S-MSSLs),
that is, superlattices in which the structural parameters such
as the widths of the barriers and wells as well as the strength
of the external fields are the same. Secondly, we will ad-
dress the so-called asymmetric MSSLs (A-MSSLs), that is,
superlattices in which the structural parameters are dissimilar.
In particular, we want to see whether structural asymmetry
is helpful to improve the magnetoresistance and spin-valley
polarization of MSSLs. Here, it is important to mention that
we will focus on the variation in �z as a practical modulating
parameter, keeping constant the energy of the charge carriers
(E = 3.0�so) and the superlattice periods (N = 10) through-
out the analysis. In what follows, the energies and widths
will be given in units of �so and lso = h̄vF /�so = 89.6 nm,
respectively.

A. Symmetric MSSLs

First, we analyze the transmission characteristics of the
charge carriers through S-MSSLs. In Fig. 2 we show the
transmission maps as a function of �z and φ. The first row of
panels corresponds to PM, while the second row corresponds
to AM. The width of barriers-wells and the strength of the
exchange field are dB1 = dB2 = dW 1 = dW 2 = 2.0lso and h =
0.6�so, respectively. As we can see, all transmission maps for
PM are different, while for AM there is a symmetry between
the transmission maps of spin-up (spin-down) electrons in the
K valley and spin-down (spin-up) electrons in the K ′ valley.
These characteristics are directly related to the distribution
of Dirac cones along the superlattice axis according to the
spin and valley as well as the magnetization configuration.
In fact, the spin-valley distribution of Dirac cones for PM
and AM is shown in Figs. 3 and 4, respectively. As we can
notice, for PM the distribution is different for all spin-valley
possibilities. In the case of AM, at first sight, the distribution
is also different for all spin-valley components. However, if
we look carefully, the distribution of Dirac cones for spin-up
(spin-down) electrons in the K valley from right to left is the
same as that corresponding to spin-down (spin-up) electrons
from left to right. So, as the transmission properties are inde-
pendent of whether electrons propagate from the left or from
the right, the transmission map result is the same for spin-up
(spin-down) electrons in the K valley and spin-down (spin-up)
electrons in the K ′ valley. We can also see in all transmission
maps semicircular regions with high and low transmission as a
consequence of the periodic magnetic modulation. Moreover,
we can notice that propagating modes dominate the trans-
mission characteristics of spin-up (spin-down) electrons in
the K (K ′) valley for both PM and AM, while evanescent
modes shape to great extent the transmission characteristics
of spin-down (spin-up) electrons in the K (K ′) valley for
both magnetization configurations as well. In particular, in
the latter case, the transmission is practically negligible for
angles greater than ±π/4 and on-site potentials larger than
�so, except for spin-up electrons in the K ′ valley for which
the angular and on-site energy ranges are a bit larger. The
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FIG. 2. Transmission maps as a function of the on-site potential energy �z and the angle of incidence φ for S-MSSLs. (a)–(d) correspond
to the transmission maps of the different spin-valley components for PM, while (e)–(h) correspond to the transmission maps of the spin-valley
components for AM. The energy of the incident electron is E = 3.0�so, the width of barriers and wells is the same, dB1 = dB2 = dW 1 = dW 2 =
2.0lso, the strength of the exchange field is h = 0.6�so, and the number of superlattice periods N = 10.

propagating or evanescent character of electrons is dictated by
Eq. (6), in which the on-site potential, the angle of incidence,
the spin-valley indices, and the magnetization configuration
are involved. In particular, if the wave vector is real, we are
dealing with propagating modes, while if it is pure imaginary,
we are talking about evanescent modes. As we will see in
short, all these characteristics of the transmission maps will
be reflected in the conductance, spin-valley polarization, and
magnetoresistance.

In Fig. 5 the spin-valley conductance of S-MSSLs for PM
[Fig. 5(a)] and AM [Fig. 5(b)] is shown. The solid curves
correspond to electrons in the K valley, while the dashed
ones correspond to electrons in the K ′ valley. The superlattice
parameters are the same as in Fig. 2. In correspondence with
the characteristics of the transmission maps, the electronic
transport is dominated by spin-valley electrons in which prop-
agating modes are preponderant. Specifically, spin-up (spin-

down) electrons in the K (K ′) valley have a larger conductance
for both magnetization configurations. This preponderance
takes place for almost all on-site potential values considered,
except for �z < �so, where spin-up electrons of the K ′ valley
dominate over its spin-down counterparts. Furthermore, all
spin-valley components of the conductance are different for
PM, while for AM identical conductances are presented for
spin-up (spin-down) electrons in the K valley and spin-down
(spin-up) ones in the K ′ valley. The oscillating character
of the conductance as a consequence of the periodic mag-
netic modulation is presented in all spin-valley components.
In particular, the conductance as a function of �z presents
two fundamental characteristics: descending envelopes with
peaks inside them proportional to the number of wells in
the structure. See, for instance, G⇑⇑

K↑ and G⇑⇓
K↑ in Figs. 6

and 7, respectively. More importantly, the periodic mag-
netic modulation creates on-site potential energy windows

PM, K(b)

Unit-cell

h

h

SO

SO

PM, K’

Unit-cell

(c)

h
SO

SO

PM, K’(d)

Unit-cell

h

(a)

Unit-cell

PM, K

SO

SO

FIG. 3. (a)–(d) Distribution of Dirac cones along the superlattice axis for the different spin-valley components of the PM configuration of
S-MSSLs. For this particular schematic representation, �z = 1.0�so, h = 1.0�so, and N = 2. As can be seen, all Dirac cone distributions are
different in the case of PM. The different colors highlight the mentioned difference.
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AM, K(b)

Unit-cell

h
SO

SO

AM, K’

Unit-cell

(c)

h
SO

SO

AM, K’(d)

Unit-cell

h
h

h
h

(a)

Unit-cell

AM, K

SO

SO

FIG. 4. (a)–(d) Distribution of Dirac cones along the superlattice axis for the different spin-valley components of the AM configuration of
S-MSSLs. The parameters are the same as in Fig. 3. In this case, the Dirac cone distribution for spin-up (spin-down) electrons in the K valley
is equivalent to that corresponding to spin-down (spin-up) electrons in the K ′ valley. The equivalence in the colors highlights the equivalence
of the spin-valley components.

in which the spin-valley components of the conductance for
PM are enhanced, while those corresponding to AM are di-
minished. This is quite evident for �z > 3.5�so, where the
total conductance for AM has collapsed and that correspond-
ing to PM is still significant; see the solid black and dashed
blue curves in Fig. 8(a). This is in stark contrast to the con-
ductance dynamics in single magnetic tunnel junctions [35],
where the difference between the conductance of PM and AM
is not as significant as for MSSLs. Regarding the TMR, what
is fundamental is not only the difference between G⇑⇑

c and
G⇑⇓

c , but also that G⇑⇓
c be as low as possible. Actually, this

combination takes place for 3.2�so < �z < 3.8�so, as we can

FIG. 5. Conductance as a function of �z for (a) PM and (b) AM
configurations of S-MSSLs. The solid curves correspond to the con-
ductance spin components in the K valley, while the dashed curves
correspond to the conductance spin components in the K ′ valley. The
superlattice parameters are the same as in Fig. 2.

appreciate in Fig. 8(a). In fact, it is in this on-site potential
energy window that the TMR reaches its maximum values as
shown in Fig. 9(a). The magnetoresistance also oscillates as
a result of the periodic magnetic modulation. The descending
envelopes and the peaks inside them are also presented in the
TMR. In addition, at the start of each descending envelope
an abrupt rise in the TMR takes place. These characteris-
tics result in maximal TMR on the low-energy side of the
descending envelopes. In particular, we can see two max-
ima associated with the oscillating magnetoresistance, one at
about �z = 3.4�so and the other around �z = 3.65�so. The
former is 2.4 times larger than the maximum value reported
in single magnetic tunnel junctions for h = 0.6�so [35], while

FIG. 6. (a)–(f) Conductance as a function of �z of S-MSSLs for
different numbers of periods as indicated. All plots correspond to the
spin-up component of the K valley for PM. The other superlattice
parameters are the same as in Fig. 2.
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FIG. 7. (a)–(f) Same as Fig. 6, but for the AM configuration.

the latter is 4.8 times the maximum value mentioned for single
magnetic tunnel junctions [35]. By increasing the strength of
the exchange field it is possible to enhance the TMR. Specif-
ically, if we increase the exchange field up to h = 1.2�so,
the mentioned TMR maxima increase by almost an order of
magnitude. This enhancement is 4.8 times greater than the
maximum value reported for single magnetic tunnel junctions
for the same exchange field strength [35]. The exchange field

FIG. 8. (a) Total conductance as a function of �z for S-MSSLs
with h = 0.6�so. The solid black, dashed blue, and dash-dotted red
curves correspond to the total conductance for PM, the total con-
ductance for AM, and the difference between both magnetization
configurations, respectively. (b) Same as (a), but for h = 1.2�so. In
both cases the other superlattice parameters are the same as in Fig. 2.

FIG. 9. TMR as a function of �z for S-MSSLs with (a) h =
0.6�so and (b) h = 1.2�so. In both cases the other superlattice pa-
rameters are the same as in Fig. 2.

increase also shifts the TMR maxima to lower on-site po-
tential energies. In particular, the maxima are now located
at about �z = 3.0�so and �z = 3.44�so. The enhancement
and shift of the TMR maxima obey the enlargement of the
on-site potential energy region, in which the combination of a
significant difference between G⇑⇑

c and G⇑⇓
c and a low G⇑⇓

c
is taking place. In fact, this fundamental combination now
is presented from �z = 2.6�so to �z = 3.9�so, as shown in
Fig. 8(b).

To end this section, we analyze the impact of the peri-
odic magnetic modulation on the spin-valley polarization. In
Fig. 10 we show the spin [Fig. 10(a)] and valley [Fig. 10(b)]
polarization for the PM configuration of S-MSSLs. The solid
black and solid blue curves correspond to exchange field

FIG. 10. (a) Spin and (b) valley polarization as a function of
�z for S-MSSLs. The solid black curves correspond to h = 0.6�so,
while the solid blue curves correspond to h = 1.2�so. For both po-
larizations the other superlattice parameters are the same as in the
preceding figures.

155431-7



J. G. ROJAS-BRISEÑO et al. PHYSICAL REVIEW B 103, 155431 (2021)

strengths h = 0.6�so and h = 1.2�so, respectively. As we can
notice, the spin-valley polarization also presents oscillations
as a result of the periodic magnetic modulation. The oscil-
lations are more pronounced for h = 0.6�so. Furthermore,
the degree of spin-valley polarization is low at small on-site
potential energies and is enhanced as the on-site potential
energy increases, reaching full polarization after �z = 3.5�so

(�z = 2.6�so) for h = 0.6�so (h = 1.2�so). Actually, the full
polarization region for h = 0.6�so is practically the same
as for single magnetic tunnel junctions [35]. However, the
periodic magnetic modulation gives us the possibility to in-
crease the full polarization region by increasing the exchange
field strength. In the case of single magnetic tunnel junc-
tions the full polarization region remains practically the same
regardless of the exchange field strength [35]. Regarding
AM, the symmetry between spin-up (spin-down) electrons
of the K valley and spin-down (spin-up) electrons of the
K ′ valley impedes any spin-valley polarization. This can be
seen straightforwardly from Eqs. (24) and (25), in which
the equivalence between the spin-valley components of the
conductance G⇑⇓

K↑ = G⇑⇓
K ′↓ and G⇑⇓

K↓ = G⇑⇓
K ′↑ results in null

spin-valley polarization η⇑⇓
s = η

⇑⇓
v = 0. So, the price to pay

for the enhancement of the magnetoresistance through pe-
riodic magnetic modulation is the lack of two well-defined
spin-valley polarization states. Specifically, in the case of S-
MSSLs it is not possible to switch the state of spin-valley
polarization by simply changing the magnetization configu-
ration from PM to AM. This contrasts with single magnetic
tunnel junctions, in which two well-defined spin-valley po-
larization states can be reached by simply reversing the
magnetization configuration [35]. Actually, we can also obtain
two well-defined spin-valley polarization states by revers-
ing the magnetization of both barriers in the unit cell; see
Figs. 11(a) and 11(b). However, there is no magnetoresistive
response due to the equivalence between G⇑⇑

c and G⇓⇓
c as

shown in Fig. 11(c). In fact, this is essentially what happens
in most silicene superlattices [44,46,59], which are good spin-
valley polarizers but poor magnetoresistive response systems.
To overcome this obstacle and be able to obtain MSSLs with
magnetoresistive and spin-valley polarization capabilities, we
envisage two possibilities: (1) considering other distributions
of Dirac cones, such as periodic arrangements with defects
and/or aperiodic (Fibonacci, Thue-Morse, etc.) ones, and (2)
changing the resonant conditions of the superlattice structure
by inducing asymmetries through differentiating the width
of barriers-wells and/or the strength of the exchange field
between barriers. We will opt for the latter because the former
requires a thorough assessment that goes beyond the aim of
the present study.

B. Asymmetric MSSLs

Here, we will analyze the impact of the structural asym-
metry on the transport, magnetoresistance, and spin-valley
polarization of MSSLs. In particular, we analyze the conse-
quences of having barriers-wells of different width. In Fig. 12
we show the transmission maps as a function of �z for the dif-
ferent spin-valley components of A-MSSLs. The first row of
panels corresponds to PM, while the second row corresponds
to AM. The widths considered for the barriers and wells that

FIG. 11. (a) Spin and (b) valley polarization, and (c) total con-
ductance as a function of �z for S-MSSLs in which all magnetic
barriers are inverted in the AM configuration. As we can notice,
an effective spin-valley polarization takes place for AM. However,
the PM and AM conductances are the same, resulting in null TMR.
The exchange field considered is h = 0.6�so. The other superlattice
parameters are the same as in the preceding figures.

constitute the unit cell are dB1 = 3.0lso, dW 1 = 1.0lso, dB2 =
2.0lso, and dW 2 = 2.0lso, while the strength of the exchange
field in the barriers is h = 0.6�so. As in the case of S-MSSLs
the transmission characteristics are dominated by spin-up and
spin-down electrons in the K and K ′ valley, respectively.
However, as we can notice, practically all the transmission
maps for both PM and AM are different. This is a good sign
because in principle we can have spin-valley polarization for
both magnetization configurations. Now, the matter is to see
whether the magnetoresistance is preserved or not under the
influence of the structural asymmetry induced by the width of
barriers-wells. In Fig. 13 the different spin-valley components
of the conductance for PM [Fig. 13(a)] and AM [Fig. 13(b)]
are shown. As we can see, the structural asymmetry intensifies
the oscillating character of the conductance. Also still evident
is the difference between the spin-valley components of the
conductance between PM and AM, which allows us to think
about a good magnetoresistance response. More importantly,
we can see a difference between the spin-valley components
of the conductance for AM. Actually, the difference is not as
significant as for PM, but at least the structural asymmetry
can give us some on-site potential energy windows in which
it is possible to achieve good spin-valley polarization charac-
teristics. In Fig. 14 the total conductance of A-MSSLs for h =
0.6�so [Fig. 14(a)] and h = 1.2�so [Fig. 14(b)] is presented.
The solid black, dashed blue, and dash-dotted red curves
correspond to the conductance for PM, the conductance for
AM, and the difference between the magnetization configura-
tions, respectively. As we can see, the on-site potential energy
window in which there is a significant difference between
G⇑⇑

c and G⇑⇓
c as well as a diminished G⇑⇓

c takes place from
�z = 3.2�so to �z = 3.8�so for h = 0.6�so. If we increase
the exchange field strength to h = 1.2�so, the on-site potential
energy window enlarges, taking place now from �z = 2.3�so
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FIG. 12. Transmission maps as a function of �z and φ for A-MSSLs. (a)–(d) correspond to the transmission maps of the different spin-
valley components for the PM configuration, while (e)–(h) correspond to the transmission maps of the spin-valley components for the AM
configuration. Here, the asymmetry is induced by considering different widths for barriers and wells: dB1 = 3.0lso, dB2 = 2.0lso, dW 1 = 1.0lso,
and dW 2 = 2.0lso. The exchange field strength and the number of superlattice periods are h = 0.6�so and N = 10, respectively.

to �z = 4.0�so. This energy window is fundamental because
in it we can have a significant magnetoresistance as well as a
high degree of spin-valley polarization.

The impact of the structural asymmetry on the TMR is
presented in Fig. 15. As we can note, the modification of
the resonant conditions owing to the structural asymmetry
shifts the TMR maxima to higher on-site potential energies
and more importantly enhances significantly the TMR with
respect to S-MSSLs. For instance, in the case of h = 0.6�so,
the TMR maxima are now located at about �z = 3.5�so

and �z = 3.71�so and have increased 2.93 and 1.64 times
with respect to the corresponding ones of S-MSSLs. For h =
1.2�so the maxima have moved to �z = 3.2�so and �z =
3.6�so with enhancements of 4.6 and more than an order of

FIG. 13. Conductance as a function of the on-site potential en-
ergy for (a) PM and (b) AM configurations of A-MSSLs. The solid
curves correspond to the conductance spin components in the K
valley, while the dashed curves correspond to the conductance spin
components in the K ′ valley. The superlattice structural parameters
are the same as in Fig. 12.

magnitude with respect to S-MSSLs, respectively. It is also
important to remark that in comparison with single magnetic
tunnel junctions the TMR of A-MSSLs is enhanced five times
and more than an order of magnitude for h = 0.6�so and h =
1.2�so, respectively. So, these results indicate that the struc-
tural asymmetry related to the width of barriers-wells could be

FIG. 14. (a) Total conductance as a function of �z for the mag-
netization configurations of A-MSSLs with h = 0.6�so. The solid
black, dashed blue, and dash-dotted red curves correspond to the
total conductance for PM, the total conductance for AM, and the
difference between the magnetization configurations, respectively.
(b) Same as (a), but for h = 1.2�so. In both cases the other super-
lattice parameters are the same as in the preceding figures.

155431-9



J. G. ROJAS-BRISEÑO et al. PHYSICAL REVIEW B 103, 155431 (2021)

FIG. 15. TMR as a function of �z for A-MSSLs. The solid
black and solid blue curves correspond to exchange field strengths
of (a) h = 0.6�so and (b) h = 1.2�so, respectively. The other super-
lattice parameters are the same as in the preceding figures.

a good option to improve the TMR response of MSSLs. Now,
the matter is to see whether it also works appropriately to
provide effective spin-valley polarization. In Fig. 16 we show
the spin-valley polarization as a function of �z for A-MSSLs.
Figures 16(a) and 16(b) correspond to the spin and valley
polarization for h = 0.6�so, while Figs. 16(c) and 16(d) cor-
respond to the spin and valley polarization for h = 1.2�so.
The solid black and solid blue curves correspond to PM and
AM, respectively. As in the case of S-MSSLs, the signif-
icant differentiation between the spin-valley components of
the conductance for PM gives rise to well-defined spin-valley
polarization. As we can see, the degree of spin-valley polar-
ization is low or practically zero at small on-site potential
energies. As the on-site potential energy increases, the spin-

FIG. 16. (a) Valley and (b) spin polarization as a function of �z

for A-MSSLs with h = 0.6�so. The solid black curves correspond to
PM, while the solid blue curves correspond to AM. (c) and (d) are
the same as (a) and (b), respectively, but for h = 1.2�so. In all cases
the superlattice parameters are the same as in the preceding figures.

valley polarization increases as well, reaching 100% positive
polarization after �z = 3.3�so (�z = 2.7�so) for h = 0.6�so

(h = 1.2�so). The spin-valley polarization also shows oscilla-
tions as a consequence of the periodic magnetic modulation.
In general, we can appreciate an effective improvement in
the spin-valley polarization owing to the structural asymmetry
associated with the width of barriers-wells. Specifically, the
flatness of the polarization regions is superior in A-MSSLs
compared with S-MSSLs. Moreover, the spin polarization
of A-MSSLs, in contrast to S-MSSLs, is 25% in the range
0.0�so < �z < 3.0�so for h = 0.6�so, increasing up to 50%
for h = 1.2�so in the range 0.0�so < �z < 2.5�so. In the
case of AM, the impact of the structural asymmetry of the
width of barriers-wells is remarkable. In fact, the structural
asymmetry creates on-site potential energy windows with
100% or almost 100% negative spin-valley polarization al-
ternating with narrow energy windows of a high degree of
(almost 100%) positive spin-valley polarization. This alternate
dynamic is reduced as the strength of the exchange field in-
creases. In particular, we find five alternate regions for h =
0.6�so and three regions for h = 1.2�so. These results are
quite interesting because in principle it is possible to have two
well-defined polarization states by fixing the on-site potential
energy and changing the magnetization configuration or by
fixing the magnetization configuration to AM and adjusting
the on-site potential energy. In the latter case, it is fundamental
to have a high degree of control in the tuning of �z due to the
narrowness of the positive polarization regions.

IV. CONCLUSIONS

In summary, we showed that the TMR and spin-valley
polarization in silicene can be improved by FMEs arranged in
periodic fashion. We have considered superlattices with two
FMEs and two free regions as the unit cell. The second FME
plays the role of soft region, allowing us to change from PM to
AM configuration by reversing its magnetization direction. A
metallic electrode along the superlattice structure and under-
neath FMEs is used to modulate the silicene on-site potential
(local band gap) through an applied perpendicular electric
field. We have used a low-energy effective Hamiltonian to
describe the charge carriers in silicene. The well-known trans-
fer matrix method and the Landauer-Büttiker formalism were
implemented to obtain the transmission and transport proper-
ties, respectively. We found that once the periodic modulation
is incorporated, the conductance oscillates and the AM com-
ponent of it diminishes significantly, resulting in an effective
improvement in the TMR. In particular, the magnetoresistance
can be enhanced five times with respect to single magnetic
barriers. In the case of spin-valley polarization it is necessary
to induce structural asymmetry in the superlattice to obtain
two well-defined polarization states with a high degree of
polarization. Moreover, we can switch the polarization states
by simply changing the magnetization configuration. The
structural asymmetry also induced a further enhancement of
the TMR, more than an order of magnitude with respect to
single magnetic junctions. Our findings indicate that MSSLs
can be useful for versatile devices with magnetoresistive and
spin-valley polarization capabilities. Finally, it is important
to remark that structural disorder [74,75], temperature [61],
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and noncollinear magnetization [76,77] effects could affect
the magnetoresistive response and the spin-valley polarization
of MSSLs; consequently, a thorough analysis of these effects
is needed.
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