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Dynamical polarization function and plasmons in monolayer XSe (X = In, Ga)
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By using the single-band and multiband effective Hamiltonian for monolayer XSe (X=In,Ga), we calculate
the density-density response function of monolayer XSe (X=In,Ga) and study its plasmon dispersion within
the random-phase approximation. At long wavelengths (q → 0), plasmon dispersion shows the local classical
behavior ω = ω0

√
q. Although, monolayer XSe (X=In,Ga) has a nonparabolic “Mexican hat” topmost valence

band dispersion which is so different from the parabolic band structure in two-dimensional electron gas,
the corresponding density dependence of the plasmon energy is still of the form ω0 ∝ √

n (n is the carrier
concentration) as in a conventional two-dimensional electron gas (2DEGs). However, the Fermi energy (|μ|)
dependence of the plasmon energy is of the form ω0 ∝ |μ|1/4, which is different from the conventional 2DEGs
(ω0 ∝ √|μ|).

DOI: 10.1103/PhysRevB.103.155429

I. INTRODUCTION

The dynamical dielectric function and collective density
oscillations (plasmons) of electron gas are of fundamental
interest from both an experimental and theoretical perspective.
Many theoretical [1–3] and experimental [4,5] studies of the
dielectric function of various two-dimensional (2D) systems
have been made in the past years. The 2D plasmon disper-
sion relation was first derived by Ritchie [6] and Ferrell [7],
who were treating the characteristic energy loss of electrons
in metal foils. In 1967, the response of a two-dimensional
electron gas (2DEG) to a longitudinal electric field of arbi-
trary wave vector (q) and frequency (ω) was calculated in the
self-consistent-field approximation by Stern [8]. In 1975, 2D
plasmons and electron-ripplon scattering in a sheet of elec-
trons on liquid helium was observed by Grimes and Adams
[9]. The 2D plasmons also have been experimentally observed
in different kinds of 2D systems such as a quantum well
[10,11] and metal film [12–16].

All these works indicate that the long-wavelength (q → 0)
plasmon dispersion shows the local classical behavior ω =
ω0

√
q, and the density dependence of the plasmon energy

ω0 ∝ n1/2, where n stands for carrier concentration. This sim-
ple relationship between the long-wavelength plasmon energy
and carrier concentration (ω0 ∝ n1/2) is a general rule for 2D
systems with parabolic band structure. Furthermore, the Fermi
energy (|μ|) dependence of the plasmon energy is of the form
ω0 ∝ √|μ| in 2DEGs.

Since the discovery of graphene in 2004, the linear band
structure and corresponding dielectric properties (polarizabil-
ity, plasmons, and screening) have attracted the attention of
many researchers [17]. In 2007, the dynamical dielectric func-
tion ε(ω, q) of 2D graphene at arbitrary wave vector q and
frequency ω is calculated in the framework of the random-
phase approximation (RPA) by Hwang and Das Sarma [18].
They conclude that at long wavelengths (q → 0), the plasmon

dispersion shows the local classical behavior ω = ω0
√

q, but
the density dependence of the plasmon energy (ω0 ∝ n1/4)
is different from the usual 2D electron system (ω0 ∝ n1/2)
[9]. In 2010, this special density dependence of the plasmon
energy was confirmed experimentally by Brar [19]. In spite of
the special dependence between plasmon energy and density,
the Fermi energy dependence of the plasma energy is of the
form ω0 ∝ √|μ|, which is the same as the form revealed in
conventional 2DEGs. Besides graphene, the dielectric proper-
ties and plasmon have also been studied in many monolayer
materials (such as silicene [20] and MoS2 [21]). However,
the density dependence of the plasmon energy in these 2D
materials (silicene [20] and MoS2 [21]) is all of the form
ω0 ∝ n1/2 as in 2DEGs, due to their parabolic band structure.

Recently, the metal monochalcogenide monolayers InSe
and GaSe have been successfully synthesized [22]. First-
principles calculations and experimental results reveal an
unusual nonparabolic topmost valence band (sometimes
called a “Mexican hat”) [23–25]. Therefore, the nonparabolic
valence band structure impact on optical and spin transport
properties has attracted the attention of many researchers
[26,27]. Here, we investigate the polarization function and
the plasmon spectrum in a monolayer XSe (X=In,Ga) by
using the k · p model Hamiltonian [28]. We show that the
location of the plasmon branch in (q, ω) space is strongly
dependent on the doping type and strength. In spite of the
nonparabolic Mexican hat topmost valence band in monolayer
XSe (X=In,Ga), the corresponding density dependence of the
plasmon energy is still of the form ω0 ∝ √

n (n represents hole
density) as in a 2DEG [8]. However, the Mexican hat topmost
valence band leads to a special dependence between the Fermi
energy |μ| and plasmon energy ω0, which is of the form
ω0 ∝ |μ|1/4. This breaks the law between the Fermi energy
and plasmon energy (ω0 ∝ √|μ|), which is correct in all 2D
systems (such as quantum well, graphene, monolayer MoS2,
and so on).
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The rest of this paper is organized as follows. In Sec. II, we
introduce the k · p Hamiltonian for monolayer XSe (X=In,Ga)
which can well describe the nonparabolic valence band disper-
sion. In Sec. III A, we adopt the single-band and multiband
k · p Hamiltonian to analytically and numerically calculate
the polarization function and plasmon dispersion for the hole-
doped monolayer XSe (X=In,Ga) base on the RPA method. In
Sec. III B, we calculate the polarization function and plasmon
for the monolayer InSe monolayer XSe (X=In,Ga) in the
electron-doping case. In Sec. IV, we discuss the possible ex-
perimental setup which can be used to observe the theoretical
results. The summary and final conclusions are in Sec. V.

II. THE MODEL

By adopting the standard invariant theory, the k · p Hamil-
tonian for the XSe (X = In,Ga) monolayer with the D3h point
group in the absence of spin-orbit coupling effects can be
written as [28]

Hk·p =diag
{
Ec

1 , E v
1 , E v

6 , E v
6 , Ec

4 , E v
5 , E v

5

}+diag{He−e, Ho−o},
(1)

where Ec
1 , . . . , E v

5 are band-edge energies, and

He−e =

⎡
⎢⎣

Fk2 bvc
11k2 ibvc

61kx ibvc
61ky

Mk2 ibvv
61kx ibvv

61ky

Ck2 + D(k2
y −k2

x ) −2Dkxky

Ck2 − D(k2
y − k2

x )

⎤
⎥⎦,

(2)

Ho−o =
⎡
⎣Gk2 ibvc

54kx ibvc
54ky

Ak2 + B(k2
y − k2

x ) −2Bkxky

Ak2 − B(k2
y − k2

x )

⎤
⎦.

(3)

In the above, we only keep the lowest-order contribution to
each matrix element, and only give the matrix elements in the
upper triangle since the k · p Hamiltonian is Hermitian. It is
worth noting that the coupling He−o = (Ho−e)† between the
even-parity and odd-parity states under the mirror reflection
vanishes to all orders of k. Therefore, we can safely decouple
the Hamiltonian into two parts: He−e and Ho−o. All the pa-
rameters in the Hamiltonian Hk·p have already been obtained
in Ref. [28].

Base on the above multiband k · p Hamiltonian, we dis-
play the numerically calculated InSe topmost valence band
structure in Fig. 1(a). Figure 1(b) displays the corresponding
density of states,

D(μ) =
∫

d2k

(2π )2
δ[μ − E (k)]. (4)

As we can see in Fig. 1(a), the Mexican hat band struc-
ture leads to two Fermi wave vectors kF1 and kF2 for the
hole-doping case. For the electron-doping case, the parabolic
electron band structure only has one Fermi wave vector kF

near the bottom of the conduction band, shown in the green in-
set of Fig. 1(b). More importantly, the red (blue) bands shown
in the green inset of Fig. 1(b) stands for even- (odd)-parity
bands. In the absence of spin-orbit coupling, we can separately
calculate the red and blue bands by using Hamiltonians He−e

and Ho−o.

FIG. 1. (a) Topmost valence band structure of monolayer InSe
obtained from the multiband k · p Hamiltonian (red solid line) and
single-band model (black dotted line). The two concentric rings (red
dashed) show the two Fermi circles that exist for a definite Fermi
energy (black horizontal line). (b) Density of states calculated from
the multiband k · p Hamiltonian. The peak is located at the upper
boundaries of the valence bands (top of the Mexican hat). The green
inset shows the whole band structure.

III. POLARIZATION FUNCTION: �(ω, q)

Many physical properties rely on the dynamical dielectric
function ε(ω, q). In the random-phase approximation (RPA),
the dielectric function ε(ω, q) is given by [20]

ε(ω, q) = 1 − V (q)�(ω, q). (5)

Here, V (q) = e2

2ε0εr q is the Fourier transform of the Coulomb

potential in two dimensions, V (r) = e2

4πε0εr r , ε0 the vacuum
permittivity, and εr = 5 the background dielectric constant
(comparable to the values in Refs. [29] and [30]). In this paper,
all the numerical results are calculated by εr = 5 unless the
εr have been redefined. Equation (5) contains the free polar-
izability given by a two-dimensional integral in momentum
space [21],

�(ω, q) =
∑

σ

∫
d2k

(2π )2
|〈 	σ (k) | 	σ ′ (k + q) 〉|2

× f [Eσ (k)] − f [Eσ ′ (k + q)]

ω − Eσ ′ (k + q) + Eσ (k) + i 0+ , (6)

where |	σ (k)〉 and Eσ (k) are the eigenstates and energies,
and σ and σ ′ denote the band indices. Here, we work at
zero temperature so that the Fermi functions f [Eσ (k)] can
be replaced by step functions. Notice that only the sum over
states with the same even or odd parity appears in Eq. (6), as
parity changing transitions are forbidden. Therefore, we only
adopt the even- (odd)-parity Hamiltonian given by Eq. (2)
[Eq. (3)] to calculate the eigenstates and energies in Eq. (6).

Practically, the imaginary part Im[�(ω, q)] of the polariza-
tion shown in Eq. (6) is calculated by using the Dirac identity
Im{1/(x ± i0)} = ∓πδ(x) [21]. After the imaginary part of
the polarization calculation, the real part of the polarization
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can be obtained with the help of the Kramers-Kronig relation,

Re�(ω, q) = 2

π
P

∫ ∞

0
dω′ ω

′Im�(ω′, q)

ω′2 − ω2
. (7)

Although the multiband Hamiltonians [Eqs. (2) and (3)]
can well describe the electronic structure, the analytical results
can only be obtained by using the single-band Hamiltonian,
which can be used to describe the electronic states near the
valence band maximum or conduction band minimum. Base
on the single-band model, the polarization function shown in
Eq. (6) can be simplified into a Lindhard model,

�(ω, q) =
∫

d2k

(2π )2

f [Eτ (k)] − f [Eτ (k + q)]

ω − Eτ (k + q) + Eτ (k) + i 0+ , (8)

where the Eτ (k) = Eh(k) or Eτ (k) = Ee(k) represent the
single-band model for the valence band or conduction band.

A. RPA results for hole-doping case

In order to describe the topmost nonparabolic valence
band, we develop a higher-order single-band model,

Eh(k) = h1k2 + h2k4 − ET , ET = − h2
1

4h2
, (9)

where h1 (h2) is positive (negative) and ET represent the
energy difference between the valence band maximum states
and the topmost valence state at the � point. For the Mexican
hat band structure [black dotted line shown in Fig. 1(a)],
h1 = 1.478 eV Å2, h2 = −7.219 eV Å4, and ET = 75.7 meV.
Here, we define the energy value corresponding to the valence
band maximum to be zero. As we can see, the nonparabolic
band structure calculated using Eq. (9) [dotted black line in
Fig. 1(a)] is in agreement with the band structure obtained
by diagonalizing the multiband Hamiltonian [red solid line in
Fig. 1(a)]. By using the single-band model shown in Eq. (9)
[Eh(k)], we can derive the long-wavelength polarizability
Re�(q → 0+, ω) and plasmon spectrum for the hole-doped
XSe (X = In, Ga) monolayer in the framework of the Lind-
hard model [Eq. (8)].

Under the long-wavelength limit q → 0+, the Lindhard
model shown in Eq. (8) can be simplified to

�(q → 0+, ω) = 1

4π2

∫
d2k

−q · ∇ f [Eh(k)]

ω − q · ∇Eh(k)

≈ − 1

4π2ω

∫
d2k

({
qx

∂ f [Eh(k)]

∂kx
+ qy

∂ f [Eh(k)]

∂ky

}

+ 2

ω
(qxkx + qyky)(h1 + 2h2k2)

{
qx

∂ f [Eh(k)]

∂kx
+ qy

∂ f [Eh(k)]

∂ky

})
. (10)

In above equation, we have∫
d2k . . .

∂ f [Eh(k)]

∂kx
=

∫
d2k . . .

∂ f [Eh(k)]

∂Eh(k)

∂Eh(k)

∂kx

= 2
∫

d2k . . . δ[μ − Eh(k)](h1 + 2h2k2)kx

= 2
∫ ∞

0
δ[μ − Eh(k)](h1 + 2h2k2)k2 . . . dk

∫ 2π

0
dθ . . . cos θ (11)

and ∫
d2k . . .

∂ f [Eh(k)]

∂ky
= 2

∫ ∞

0
δ[μ − Eh(k)](h1 + 2h2k2)k2 . . . dk

∫ 2π

0
dθ . . . sin θ, (12)

where, μ stands for the Fermi energy shown by the black
horizontal line in Fig. 1(a). By substituting Eqs. (11) and
(12) into Eq. (10), we obtain that the first term shown in
Eq. (10) equals zero,

∫
d2k{qx

∂ f [Eh (k)]
∂kx

+ qy
∂ f [Eh (k)]

∂ky
} = 0, and

the integrated results are

�(q → 0+, ω) = q2

4πω2

h1
√

4h2μ

−h2
. (13)

Here, −√
4h2μ/h2 = n is the hole concentration correspond-

ing to the Fermi energy μ, where μ is negative for the
hole-doping case.

Since the plasmon branch can be obtained by finding the
zeros of the dielectric function ε(ω, q) [shown in Eq. (5)], we
obtain the long-wavelength plasmon spectrum as

ω = ω0
√

q

=
√

e2

8πε0εr
2(ET |μ|)1/4√q =

√
e2

8πε0εr

√
h1

√
n
√

q.

(14)

It is worth noting that for the hole-doped monolayer XSe
(X = In, Ga), the long-wavelength plasmon spectrum still
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FIG. 2. Imaginary part of the polarization function, Im[�(ω, q)],
for different carrier concentrations: (a) [(d)] n = 8 × 1012 cm−2,
(b) [(e)] n = 32 × 1012 cm−2, and (c) [(f)] n = 56 × 1012 cm−2, in
hole-doped InSe [GaSe].

relies on the hole concentration as
√

n, which has the same
form as in 2DEGs or other parabolic band structure systems.
However, the dependence between the Fermi energy μ and
hole concentration n is of the form n ∝ √|μ|, which gives
rise to a special relation between the plasmon energy ω0 and
Fermi energy |μ| as the form ω0 ∝ |μ|1/4.

Next, we recalculate the polarization function and the
corresponding plasmon spectrum by adopting the RPA
equation (6) in which the needed eigenstates and eigenvalues
are obtained by numerically diagonalizing the multiband k · p
Hamiltonian shown in Eq. (2). We obtain the Im[�(ω, q)] for
the hole-doped InSe and GaSe monolayer, and display the re-
sults on the top and bottom rows in Fig. 2. The imaginary part
of the polarization function plays an important role in deter-
mining the behavior of the plasmons. As we can see in Fig. 2,
the imaginary part of polarization function Im[�(ω, q)] ==
0 in the white space. The white space in Fig. 2 corresponds to
values of q and ω for which there is no damping of a collec-
tive charge oscillation (undamped plasmon). And the yellow
region (Im[�(ω, q)] �= 0) in Fig. 2 corresponds to regions in
which collective oscillations are damped (damped plasmon).
Besides plasmons, the particle hole excitation spectrum is the
region in the (ω, q) plane where it is possible for a photon
with energy ω and momentum q to excite an electron-hole
pair. This ability for pair creation is embodied in the po-
larization, in the regions where it has a nonzero imaginary
part (Im[�(ω, q)] �= 0) (yellow regions shown in Fig. 2). It
is worth noting that in all the frames of Fig. 2, the imaginary
part of the polarization [Im�(ω, q)] can be divided into two
disjunct regions by the parabolic boundary (ω ∝ βq2). Mean-
while, the parabolic boundary (ω ∝ βq2) parameter β become
bigger as the hole concentration is increased.

While the imaginary part of the polarization determines the
damping of the plasmon, the real part of the dynamical polar-
ization comes in to determining the location of the plasmon
branch in (ω, q) space. Therefore, we plot the real part of the

FIG. 3. Real part of the polarization function, Re[�(ω, q)], for
different carrier concentrations: (a) [(d)] n = 8 × 1012 cm−2, (b) [(e)]
n = 32 × 1012 cm−2, and (c) [(f)] n = 56 × 1012 cm−2, in hole-
doped InSe [GaSe].

polarization function [Re�(ω, q)] for hole-doped InSe and
GaSe in Fig. 3, with hole concentrations chosen to correspond
with Fig. 2.

From an experimental perspective, plasmons appear as
resonance peaks in the momentum-resolved electron energy-
loss spectrum, which directly measures the loss function:
Imε−1(ω, q). Here, we obtain the exact loss function by nu-
merically integrating Eq. (6). The loss function for hole-doped
InSe and GaSe is shown in Fig. 4 for carrier concentra-
tions n = 0.8 × 1013 cm−2, n = 3.2 × 1013 cm−2, and n =
5.6 × 1013 cm−2 in Figs. 4(a)– 4(c) and 4(d)–4(f), respec-
tively. In all the panels, there is a dominant plasmon peak

FIG. 4. Energy-loss function, Imε−1(ω, q), for different carrier
concentrations: (a) [(d)] n = 8 × 1012 cm−2, (b) [(e)] n = 32 ×
1012 cm−2, and (c) [(f)] n = 56 × 1012 cm−2, in hole-doped InSe
[GaSe].
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TABLE I. Numerical fitting parameters ω0 in the formula ω =
ω0

√
q for a hole-doped InSe monolayer with three kinds of carrier

concentrations n under different environment dielectric constants εr .

n = 8 × 1012 cm−2 n = 32 × 1012 cm−2 n = 56 × 1012 cm−2

εr = 1 ω0 = 0.1986 ω0 = 0.4160 ω0 = 0.5278
εr = 2 ω0 = 0.1406 ω0 = 0.2941 ω0 = 0.3726
εr = 4 ω0 = 0.0999 ω0 = 0.2096 ω0 = 0.2633

in the Im�(ω, q) = 0 region, and it vanishes on entering the
Im�(ω, q) �= 0 region, which is shown in Fig. 2.

In order to reconfirm the dependence between the plasmon
energy and carrier density (ω0 ∝ √

n) revealed by Eq. (14), we
explore the long-wavelength plasmon spectrum of hole-doped
InSe based on the multiband Hamiltonian Hk·p shown in
Eq. (2). By using the numerical fitting method, we obtain the
plasmon energy ω0 under different carrier concentrations, as
shown in Table I, and the corresponding plasmon spectrum
is shown in Fig. 5. As we can see in Fig. 5, the hole-doped
long-wavelength plasmon spectrum (solid lines in Fig. 5) can
also be described using the conventional model ω = ω0

√
q,

where the constant ω0 is determined by environment dielectric
constant εr and carrier concentration n. When q < 0.1/Å, the
RPA numerical results (dotted lines in Fig. 5) are in good
agreement with the results (solid lines in Fig. 5) that are
calculated using the analytical formula ω = ω0

√
q. From the

parameters shown in Table I, we conclude that the plasmon
energy (ω0) in hole-doped InSe is of the form ω0 ∝ √

n/
√

εr ,
which is consistent with the result shown in Eq. (14).

B. RPA results for electron-doping case

Since the conduction bands are parabolic, we can
safely develop a single-band effective mass model Ee(k) =
(h̄2/m∗)k2 = λk2 to describe the electronic states near the
conduction band minimum. Here, the parameter λ can eas-
ily be obtained by fitting the dispersion calculated using the
single-band model with the electronic structure calculated by
diagonalizing the multiband model given by Eq. (3). Here, we

FIG. 5. Dotted lines show the hole-doped InSe plasmon spec-
trum calculated using the multiband Hk·p Hamiltonian [Eq. (2)]
for carrier concentrations (a) n = 0.8 × 1013 cm−2, (b) n = 3.2 ×
1013 cm−2, and (c) n = 5.6 × 1013 cm−2, by adopting different envi-
ronment dielectric constants εr = 1 (green lines), εr = 2 (red lines),
and εr = 4 (blue lines). The solid line is the numerical fitting results
by adopting equation ω = ω0

√
q.

FIG. 6. (a) Regions with different expressions for the polar-
ization function. At the borders, (k, ω) is the discontinuity of its
derivative (red solid line). (b) Energy-loss function (−Im[ε(ω, q)]−1)
for electron doping the InSe monolayer, calculated using the ana-
lytical formulas given by Eq. (17) and Eq. (18). The red dashed
(dotted) line stands for the undamped (damped) plasmon spectrum
calculated using Eq. (20). The black line is the boundary between the
B and D areas shown in (a), which can be described by the formula
ω = λq(q + 2kF ).

obtain the single-band parameter for the InSe (GaSe) mono-
layer: λ = 18.8 eV Å2 (λ = 20.8 eV Å2).

At first, we consider the imaginary part of Eq. (8),

Im[�(ω, q)] = −π

∫
d2k

(2π )2
{ f [Ee(k)] − f [Ee(k + q)]}

× δ[ω − Ee(k + q) + Ee(k)]. (15)

Arguments of these δ functions determine the single-particle
excitation (SPE) regions in the (k, ω) space. For an electron-
doping case, with the Fermi energy located at μ and the
Fermi wave vector kF = √

μ/λ [as shown in the green inset of
Fig. 1(b)], we can analytically obtain the SPE regions shown
in Fig. 6(a). The boundary between different regions can be
described by different equations as below:

A ∈ {ω < λq(2kF − q)},
B ∈ {ω>λq(2kF − q) ∩ ω<λq(q+2kF ) ∩ ω>λq(q−2kF )},
C ∈ {ω < λq(q − 2kF )},
D ∈ {ω > λq(q + 2kF )}. (16)

As we can see in Fig. 6(a), the imaginary part of the polariza-
tion function Im[�(ω, q)] == 0 in the white space (regions C
and D). Region B in Fig. 6(a) corresponds to regions in which
collective oscillations are damped.

After the tedious but straightforward integration of
Eq. (15), we obtain the imaginary part of the polarization
function as

Im[�(ω, q)] = 1

4πλq

[
M+

√
k2

F −
(

ω + λq2

2λq

)2

− M−

√
k2

F −
(

ω − λq2

2λq

)2
]
. (17)

By substituting this result [Eq. (17)] into Eq. (7), we can get
the real part of the polarization function as

Re[�(ω, q)] = − 1

4πλq

[
q − R+

√(
ω + λq2

2λq

)2

− k2
F
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− R−

√(
ω − λq2

2λq

)2

− k2
F

]
, (18)

where

A → {R+ = 0, R− = 0, M+ = 1, M− = 1},
B → {R+ = 1, R− = 0, M+ = 0, M− = 1},
C → {R+ = 1, R− = 1, M+ = 0, M− = 0},
D → {R+ = 1, R− = −1, M+ = 0, M− = 0}.

(19)

The plasmon branch can be obtained by finding the zeros of
the dielectric function ε(ω − iτ, q), where τ is the plasmon
decay rate. It is sufficient to get the plasmon dispersion by
solving q = e2/(2ε0εr )Re�(ω, q) in region D. Here, we ana-
lytically obtain the plasmon dispersion as

Region D: ωq =
(λq + α)

√
λq(λ2q4 + 2αλq3 + 4α2k2

F )

α
√

λq + 2α
,

Region B: ωq = λq[2
√

(λq2/α + q)2 + k2
F − q],

(20)

where α = e2/(8πε0εr ).
In the framework of RPA, the plasmon dispersion ωp(q)

can also be given by the poles of the loss function,
Im[ε(ω, q)]−1. This function is calculated using Eqs. (17) and
(18) for electron-doping strength n = 0.8 × 1013 cm−2 and
the calculation result is plotted in Fig. 6(b). It is worth noting
that the plasmon spectrum [red dashed line in Fig. 6(b)],
calculated using the analytical result shown in Eq. (20), is
in very good agreement with the poles of the loss function,
−Im[ε(ω, q)]−1 [blue dotted line in Fig. 6(b)]. For the damped
plasmon [dotted red line in Fig. 6(b)], the damping rate can be
calculated by

τ = Im[�(ω, q)]

∂Re[�(ω, q)]∂ω

=
2λq(λq2/α + q)

√
k2

F − [
√

(λq2/α + q)2 + k2
F − q]2

√
(λq2/α + q)2 + k2

F

.

(21)

The above analysis for the electron-doping case is based
on the single parabolic band model. When the Fermi energy is
located near the conduction band minimum, the results gener-
ated by the parabolic band model can describe the dielectric
properties very well. However, the electronic structure, which
is far away from the conduction band minimum, cannot be
described by the single parabolic band model very well.
Therefore, we recalculate the polarization function by using
the multiband Hamiltonian shown in Eq. (3).

We numerically calculate the imaginary part of the polar-
ization function shown in Fig. 7, where we plot the Im�(ω, q)
for the electron-doped InSe and GaSe monolayer on the top
and bottom rows. As we can see in Fig. 7, the imaginary part
of the polarization [Im�(ω, q)] can be divided into two dis-
junct regions where the intraband electron-hole pair formation
is impossible [Im�(ω, q) = 0] or possible [Im�(ω, q) �= 0]

FIG. 7. Imaginary part of the polarization function, Im[�(ω, q)],
for different carrier concentrations: (a) [(d)] n = 8 × 1012 cm−2,
(b) [(e)] n = 32 × 1012 cm−2, and (c) [(f)] n = 56 × 1012 cm−2, in
electron-doped InSe [GaSe].

by the line boundary. These numerical results for electron
doping are consistent with the analytical results obtained by
using the single-band parabolic model where the boundary
[ω ∝ q(q + 2kF ) shown in Fig. 6(a)] approaches the linear
relation ω ∝ 2kF q for small q. As the electron concentration
is increased from n = 8 × 1012 cm−2 [Figs. 7(a) and 7(d)] to
n = 56 × 1012 cm−2 [Figs. 7(c) and 7(f)], the slope of the
linear boundary increases. This is because the higher electron
concentration tunes up the Fermi energy, which leads to a
bigger Fermi wave vector kF in the formula (ω ∝ 2kF q).

Re�(ω, q) is plotted in Fig. 8 with the electron concen-
tration chosen to correspond to Fig. 7. As we can see in
Fig. 8, the real part of the polarization [Re�(ω, q)] can be
divided into different regions, as shown in Fig. 7, and the

FIG. 8. Real part of the polarization function, Re[�(ω, q)], for
different carrier concentrations: (a) [(d)] n = 8 × 1012 cm−2, (b) [(e)]
n = 32 × 1012 cm−2, and (c) [(f)] n = 56 × 1012 cm−2, in electron-
doped InSe [GaSe].
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FIG. 9. Energy-loss function, Im[ε−1(ω, q)], for different car-
rier concentrations: (a) [(d)] n = 8 × 1012 cm−2, (b) [(e)] n = 32 ×
1012 cm−2, and (c) [(f)] n = 56 × 1012 cm−2, in electron-doped
InSe [GaSe].

real part of the polarization [Re�(ω, q)] plotted in Fig. 8
is equal to a constant in a small ω region. These numerical
results can by explained by the analytical results [Eq. (18)],
where Re�(ω, q) = −1/(4πλ) in region A: ω < λq(2kF −
q). As the electron concentration is increased from n =
8 × 1012 cm−2 [Figs. 8(a) and 8(d)] to n = 56 × 1012 cm−2

[Figs. 8(c) and 8(f)], the constant Re�(ω, q) region becomes
bigger. This is because the higher electron concentration tunes
up the Fermi energy, which leads to a bigger Fermi wave
vector kF in the formula [ω < λq(2kF − q)]. It is worth noting
that in Figs. 7 and 8, the GaSe imaginary [Im�(ω, q)] and real
[Re�(ω, q)] parts of the polarization have similar character-
istics as the InSe results.

Next, we also obtain the energy-loss function by using
the multiband Hamiltonian shown in Eq. (3). The energy-
loss function for electron-doped InSe and GaSe is shown
in Fig. 9 for carrier concentrations n = 0.8 × 1013 cm−2,
n = 3.2 × 1013 cm−2, n = 5.6 × 1013 cm−2 in Figs. 9(a)–
9(c) and Figs. 9(d)– 9(f), respectively. In all the panels,
there is a dominant plasmon peak in the region Im�(ω, q) =
0, and it vanishes on entering the intraband particle hole
continuum, whose boundary is also doping dependent, as
shown in Fig. 7. Since the structure of the valence bands
is quite different compared to the conduction bands, the
plasmon dispersions (energy-loss resonance peak) for the
electron-doping case (shown in Fig. 9) clearly differ from the
hole-doping case shown in Fig. 4, where ω is energetically
higher in the electron-doped XSe (X = In, Ga) under the same
doping strength (n).

From Fig. 9, one can furthermore see that the long-
wavelength plasmon energy in electron-doped XSe (X = In,
Ga) is of the form ω ∝ √

n
√

q, which is the same as the
form in 2DEGs. This can be understood from the long-
wavelength behavior of Eq. (20). Under the long-wavelength
limit (q → 0), Eq. (20) can be simplified to ω ∝ ω0

√
q ∝

(
√

λ
√

n/
√

εr )
√

q ∝ (
√

μ/
√

εr )
√

q. Here, μ stands for Fermi

FIG. 10. (a) Diagram of an infrared nanoimaging experiment.
The red triangle displays the incident infrared light. Concentric yel-
low circles illustrate plasmon waves launched by the illuminated
atomic force microscope (AFM) tip. (b) The gate bias setup. Both the
metalized tip and InSe monolayer are at the ground (GND) potential.

energy with the zero Fermi energy located at the conduction
band minimum and n represents the electron concentration.
Therefore, the plasmon energy ω0 relies on

√
n for the

electron-doped monolayer XSe (X = In, Ga).

IV. EXPERIMENT SETUP DISCUSSION

Plasmons in 2D materials can be accessed by a variety of
direct and indirect methods, including optical measurements,
electron energy-loss spectroscopy (EELS), inelastic light scat-
tering, angle-resolved photoemission spectroscopy (ARPES),
and scanning tunneling spectroscopy [4,31,32]. Here, we in-
troduce an experimental method which can be used to observe
the dependence between the Fermi energy and the plasmon
wavelength.

One can use the scattering-type scanning near-field op-
tical microscope (scattering-type SNOM) to experimentally
excite a plasmon wave by illuminating the sharp tip of an
atomic force microscope (AFM) with a focused infrared beam
[Fig. 10(a)]. The momenta imparted by the tip extend up
to a few times 1/a, where a < 25 nm is the curvature ra-
dius of the tip, thus spanning the typical range of infrared
plasmon momenta in the InSe monolayer. As we can see in
Fig. 10(a), illuminated by focused infrared light, the AFM
tip launches plasmon waves (yellow concentric circles) prop-
agating radially outward from the tip. The left boundary
shown in Fig. 10(a) acts as reflectors of the plasmon waves,
directing them back to the tip. Therefore, complex patterns
of interference between the launched and reflected plasmons
should form inside InSe. As the tip is scanned towards the left
boundary along the blue arrow in Fig. 10(a), it registers these
plasmon formed standing-wave oscillations with periodicity
given by λ/2, where λ is the plasmon wavelength.

The above phenomena can be readily manipulated with
gate voltage, which changes both the carrier concentration
and Fermi energy in 2D materials. In graphene, gating with
a solid electrolyte allowed carrier concentrations as large as
1014 cm−2 to be achieved, which increases the Fermi energy
into 1 eV, such that the plasmon wavelength can be tuned into
infrared [33]. In the InSe monolayer, the carrier concentration
and Fermi energy can also be tuned as in graphene. The
corresponding experiment setup is shown in Fig. 10(b).
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V. CONCLUSION

We have investigated the dynamical dielectric function
in monolayer InSe and GaSe. We find that although the
monolayer XSe (X=In,Ga) has a nonparabolic “Mexican hat”
topmost valence band dispersion which is so different from
the parabolic band structure in 2DEGs, the corresponding

density dependence of the plasmon energy is still of the
form ω0 ∝ √

n (n is the carrier concentration) as in 2DEGs.
However, the Mexican hat topmost valence band leads to
a special dependence between Fermi energy |μ| and carrier
concentration n as the form n ∝ √|μ|. Therefore, the depen-
dence between the Fermi energy |μ| and plasmon energy ω0

is of the form ω0 ∝ |μ|1/4 for the hole-doped monolayer XSe
(X = In, Ga).
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