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Wigner wave packets: Transmission, reflection, and tunneling
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A numerical solution to the time evolution equation of the Wigner distribution function (WDF) with an
accuracy necessary to simulate the passage of a wave packet past a barrier is developed, where quantum effects
require high accuracy and fine discretization. A wave packet incident on a barrier, a portion of which tunnels
through, demonstrates behavior that can define various characteristic transmission and reflection delay (TARD)
times useful in the simulation of electron emission. A model for the TARD times is proposed that relies only
on the asymptotic maxima of the position ρ(x, t ) and wave number ρ(k, t ) densities given by the WDF and
applied to a ballistic trajectory model for the (faster) transmitted and (slower) reflected parts. The dependence
of the TARD times on barrier width, symmetry, and abruptness is analyzed. For symmetrical barriers with
characteristics similar to field emission barrier heights and widths, TARD times are on the order of a fraction
of a femtosecond. The TARD times for when tunneling predominates are contrasted to tunneling times in the
literature. Use of the TARD times in simulations of field emission in nanogap devices or to model ultrashort
pulses generated under rapidly changing conditions for electron sources are proposed.
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I. INTRODUCTION

Processes associated with the field emission of electrons
operate on disparate length scales that span many orders of
magnitude [1–3]. Tunneling is exquisitely sensitive to the bar-
rier shape [4–6], which in turn depends on microscale surface
curvature [7–12], emitter shape [13–15], surface roughness
[16–22], and nearest-neighbor (shielding) effects in arrays
[23–25]. Simulating emission using, for example, particle-
in-cell or molecular dynamics codes is already challenging
because of the difficulty in reconciling particle transport
with tunneling (wave) behavior [17,26–28]. Recent develop-
ments in nanogap emitters [29–32], thin insulators [33,34],
and ultrafast emission [32,35–40] introduce further signifi-
cant complications because the emission processes may be
characterized by timescales [41] approaching tunneling time
estimates [42–47]. However, a consensus on what the tunnel-
ing time is has not converged [47–54], making the assignment
of a characteristic emission delay time difficult for simulation.
Transmission and reflection delay (TARD) and tunneling time
estimates are necessary if tunneling estimates [55–62] are to
be simulated when space charge and transit time across the
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anode-cathode gap with the barrier is present. In such a sce-
nario, for example, an electron deemed eligible for emission
at time t determined from a Poisson process [41] may not be
released until time t + τ , where τ accounts for the TARD time
with the barrier considered herein. The TARD time is related
to, but not identical with, what is conventionally referred to
as a tunneling time, with various candidates proposed in the
literature [52,53,63,64]).

Importantly for simulation purposes, Zimmerman et al.
[53] concluded that “...tunneling is unlikely to be an instan-
taneous process” (emphasis added) which speaks to a sim-
ulation need and supports measurements suggesting a finite
tunneling time [47,52,65]. The atomistic processes (tunneling
from nanoscale emission sites over timescales comparable
to the ratio of Planck’s constant with a Rydberg energy, or
4π h̄/m(α f sc)2 = 0.304 fs) and phenomena affect the overall
macroscale processes such as space charge [30,41,66], and un-
derstanding their relation is important for being able to predict
overall cathode performance in the ultrafast and ultrasmall
limits. Such conditions are not accurately modeled using
conventional one-dimensional emission models such as the
static Fowler-Nordheim equation [67–69] for predicting emis-
sion dynamics for well-understood reasons [9,10,25,41,70].
Simulation of thermal-field emission, in which tunneling
is accompanied by over-the-barrier processes, introduces
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additional complications, but ones that must be considered
to simulate emitters that become hot during their operation
[3,71]. Atomistic phenomena, then, render purely steady-
state approaches to modeling current emission inaccurate in
nanogap devices and ultrafast conditions.

Initial efforts by us to model quantum mechanical tunnel-
ing dynamics on the atomistic level was begun by exploring
a trajectory-based Wigner distribution function (WDF) ap-
proach [61,62], which was intended to provide a means for
allowing microscale processes to be captured in simulations
of electron emission in nanodevices. The WDF is a quan-
tum distribution [72,73] but, by virtue of its analogy with
a classical transport equation, it has analogs to a classical
distribution of particles, and therefore is potentially useful to
describing purely quantum mechanical behaviors such as res-
onant tunneling [56,74–79] or providing a link to Monte Carlo
[80–82]. The exact models provided both analytic trajectories
and time-dependent behavior in addition to describing intrigu-
ing quantum carpets [83] for a weighting of states modeled
after a thermal distribution. Changes in the eigenstates associ-
ated with a step potential lead to trajectories whose tunneling
behavior was examined. An exploration of the trajectory in-
terpretation, however, is made difficult because there are few
analytically solvable cases on which to test the methods. In
our previous work, exact models for closed boundary condi-
tions exhibited rapidly oscillating behavior that complicated
a trajectory analysis. Although such rapid oscillations can
be alleviated by, for example, invoking a Husimi distribution
[73,84], doing so does not provide correct estimates of charge
and current density.

Another trajectory approach for mitigating the problem of
rapidly oscillating behavior was presented by Donoso and
Martens [85]. This approach involves entangled classical tra-
jectories for cases of smoothly varying potentials in which the
state of the system evolves adiabatically. It is based on the
hydrodynamic formulation of quantum mechanics originally
proposed by Bohm [86,87] as a way of enabling a more
efficient solution of the tunneling problem without sacrificing
realism in the calculation [88–90]. The full Wigner function
is represented by a smoothed Gaussian distribution function
in this approach, which averages over the negative regions
of the Wigner function, thereby eliminating problematic in-
terference oscillations. Using this approximate methodology,
Donoso and Martens were able to obtain good, qualitative
agreement with the full quantum mechanical calculation for
both the tunneling probability and the tunneling time as a
function of initial mean ensemble energy. While both of these
quantities were systematically overestimated by a few percent,
the calculation was shown to be numerically stable, correctly
reproduced the long-time growth of the tunneling probability,
and resulted in an increase in computational speed by as much
as an order of magnitude for the system considered. Lastly,
Heim et al. [91], examined analogous phase space trajectories
using a Wigner function for a parabolic barrier (for which
the integral containing V (x, k − k′) simplifies as discussed
in Sec. II D) for energy eigenstates and show how the Kem-
ble form of the transmission probability [Eq. (C1)] naturally
follows.

In contrast to the exact closed boundary models of our
prior work, open boundary conditions are required to con-

sider current flow for electron emission models but require
numerical approaches to the time evolution behavior for even
simple barriers (compare to exact solutions to Schrödinger’s
equation (SE) [46] or alternate numerical methods [54,92]).
Present methods are intended to allow addressing emis-
sion processes with short spatial and temporal dependencies
[34,70,93] in a manner commensurate with the development
of the moments of a distribution model uniting the theoretical
description of the commonly used equations of electron emis-
sion, particularly thermal-field processes [94]. In contrast to
the closed boundary condition studies with a thermal distri-
bution, the present open boundary study focuses on Gaussian
wave packets: As shown by Kluksdahl et al. [75], although
thermal boundary conditions [56,74,95,96] and wave pack-
ets differ, predictions of processes associated with tunneling
(particularly resonant tunneling) are similar for both [95] and
therefore the wave packet studies may be profitably used to
introduce a computationally useful time parameter that would
enable including delays into the simulation of tunneling and
field emission even in the absence of a trajectory model. Even
so, numerical considerations limited the number of discretiza-
tion points in phase space in prior treatments to values far too
coarse for the demands of simulating TARD times here.

The organization of the paper is therefore as follows. First,
a far more capable methodology for time evolving the WDF
is developed that allows for accurate simulations capable
of resolving the fine features associated with WDF evolu-
tion, in particular, the highly oscillatory features associated
with quantum interference that are problematic for trajec-
tory approaches. Second, a method for uniquely specifying
a computationally useful TARD time that will aid in simula-
tions is given: Although static (and symmetric) barriers are
presently considered exclusively, the method in principle can
be employed to treat oscillating field emission barriers [37]
and interface barriers [97,98] (triangular or triangularlike) or
transient conditions [99] of great interest and which are briefly
discussed. Moreover, the capabilities enable the examination
of the speeding up of the tunneling wave packet, and that
examination is related to a simple δ-function barrier model.
Third, the properties of various potentials are considered,
from which Gaussian and parabolic barriers are focused upon
for their desirable characteristics. Lastly, simulations are un-
dertaken to describe the interference behavior and relate it to
analytical models, and then characterize the TARD times for
Gaussian and parabolic barriers and briefly compare them to
the semiclassical time of Büttiker and Landauer, and the dwell
time τd of Winful’s analysis [63] (Appendix D).

II. WIGNER WAVE PACKETS

A. Time-dependent formulation

The single particle one-dimensional WDF is obtained from
the density matrix ρ̂ by [72,100]

f (x, k) ≡ 1

π

∫ ∞

−∞
dy e2iky〈x − y|ρ̂|x + y〉, (1)

where x is the position coordinate and h̄k is the conjugate mo-
mentum coordinate, with notation and conventions following
Refs. [61,69] but, briefly, are (i) to use units of [eV, fs, nm],
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(ii) to absorb the unit charge q (the electron charge is −q) term
into V = qϕ and F = q|E |, where ϕ and E are the potential
and electric field, respectively, (iii) the units of V are [eV]
and of F are [eV/nm], so V and F are a potential energy
and force, respectively, and (iv) all other terms have their
usual representations and values (e.g., m for electron mass,
etc.). Quantum nonlocal features are made manifest in the kets
|x ± y〉 on which ρ̂ operates. The time evolution of the density
matrix ρ̂ is known to satisfy the relation [5,101,102]

ih̄∂t ρ̂ = [Ĥ, ρ̂], (2)

where Ĥ = h̄2k̂2/2m + V (x̂) is the Hamiltonian and the hat
notation is used to reinforce that it is an operator. Combining
Eqs. (1) and (2) shows that f satisfies [69]

∂t f (x, k, t ) = − h̄k

m
∂x f (x, k, t )

+
∫ ∞

−∞
V (x, k − k′) f (x, k′, t )dk′, (3)

V (x, k − k′) = − i

π h̄

∫ ∞

−∞
e2i(k−k′ )y

× {V (x + y) − V (x − y)}dy. (4)

Observe that Eq. (3) can be written in the Liouville form
ih̄∂t f = L̂ f , where L̂ is determined by that relation. Inte-
gration over all k recovers the continuity equation relating
number density ρ(x, t ) to current density J (x, t ) given by

∂tρ(x, t ) + ∂xJ (x, t ) = 0, (5)

where ρ(x, t ) and J (x, t ) are defined by

ρ(x, t ) = 1

2π

∫ ∞

−∞
f (x, k, t ) dk, (6)

J (x, t ) = 1

2π

∫ ∞

−∞

h̄k

m
f (x, k, t ) dk, (7)

which resemble their classical counterparts. As given, ρ and J
are number density and number current density. To make them
charge and conventional current density, a factor of q must be
included to account for electron charge (−q), as will be done
below when explicitly needed. Similarly, a momentum density
ρ(k, t ) is obtained by integration over x rather than k, resulting
in

ρ(k, t ) = 1

2π

∫ ∞

−∞
f (x, k, t ) dx. (8)

It is seen that number density is related to the zeroth moment
in k, and current density to the first moment, of the distribution
function. In terms of the Liouville operator L̂, Eq. (3) is [61]

f (x, k, t + 	t ) = exp(−iL̂	t/h̄) f (x, k, t ). (9)

Using the approximation e−2X̂ ≈ (1 + X̂ )−1(1 − X̂ ), then the
Cayley form [56]

[Î + irL̂] f (x, k, t + 	t ) = [Î − irL̂] f (x, k, t ) (10)

is useful for implementing a time-evolution matrix formula-
tion [56], and where Î is the identity operator and r = 	t/2h̄.
The form of Eq. (10) is similar to the Crank-Nicolson implicit
method for solving differential equations numerically [103]
and encountered in numerical solutions of SE [54].

B. Free Gaussian wave packet

The minimum uncertainty Gaussian wave packet at t = 0
is (up to an arbitrary phase factor eiϕ) given by [5,73,104,105]

〈x|ψ〉 =
(

2

πa2

)1/2

eikox−(x−xo)2/2a2
. (11)

When inserted into Eq. (1), then

〈x + y|ψ〉〈ψ |x − y〉 = e−2ikoy

πa2
exp

[
− (x − xo)2 + y2

a2

]
.

Inserting ρ̂ = |ψ〉〈ψ | into the integration in Eq. (1) results in

f (x, k, 0) = 2√
π h̄a

e−[(x−xo)/a]2−[a(k−ko)]2
. (12)

The initial state is f (x, k, 0) ≡ fo(x, k). For a free wave
packet, then V (x, k − k′) = 0, and so Eq. (3) entails [100]
(compare Fig. 1 of Ref. [106])

f (x, k, t ) = fo

(
x − h̄kt

m
, k

)
. (13)

Another measure is the rise in density and current density
at a particular point, chosen to be the origin (x = 0). For
the parameters chosen, the shape of J (0, t ) closely resembles
ρ(0, t ), and so consider instead the moment 〈k − ko〉 evaluated
for the distribution is f (0, k, t ), for which

〈k − ko〉
〈ko〉 ≡

∫ ∞
−∞(k − ko) f (x, k, t )dk∫ ∞

−∞ ko f (x, k, t )dk

= J (x, t ) − qvoρ(x, t )

qvoρ(x, t )
, (14)

where vo = h̄ko/m and the factor q for unit charge has been
explicitly included to make J a charge current density. It fol-
lows J (0, t ) > q(h̄ko/m)ρ(0, t ) for t < to, expected because
the head of the wave packet contains a greater proportion of
the higher momentum states. The rotation of the ellipse in
phase space corresponds to the spreading of the wave packet’s
wave function determined from SE [5,100] and shall be revis-
ited in Sec. IV A.

C. Interference

A simple model of free wave packet interference provides
an analytic model anticipating behavior shown by a wave
packet interacting with a potential barrier below, and is there-
fore treated explicitly. Let the wave function of Eq. (11) be
modified to describe two approaching wave packets, both
characterized by a center wave number ko. Introduce the term
ς = ±1, and define

〈x|ψς 〉 =
(

2

πa2

)1/2

eiςkox−(x−ςxo)2/2a2
(15)

It is seen that Eq. (11) corresponds to 〈x|ψ+〉. The mixed state
for two Gaussian wave packets is then, following Weinbub
and Ferry [107],

|ψ〉 = 1√
2
{|ψ+〉 + |ψ−〉}. (16)
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Now, |ψ〉〈ψ | is explicitly

2|ψ〉〈ψ | = {|ψ+〉〈ψ+|} + {|ψ−〉〈ψ−|}
+ {|ψ+〉〈ψ−|} + {|ψ−〉〈ψ+|}, (17)

with the first two (top) are direct terms and the last two
(bottom) are cross terms. The direct contribution to f (x, k)
is easily anticipated from Eq. (12) and is

fd (x, k) = f+(x, k) + f−(x, k),

f±(x, k) = 1√
π h̄a

e−[(x∓xo)/a]2−[a(k∓ko)]2
, (18)

and visualized as two noninteracting Gaussian wave packets,
one centered at (+xo) and moving to the right, and the second
at (−xo) and moving to the left (note that xo itself can be
separately positive or negative). The cross term can be shown
to be [108]

fc(x, k) = 2√
π h̄a

e−(x/a)2−(ak)2
cos (kox − kxo). (19)

It is centered at the origin of phase space and oscillates rapidly
when ko is large: Weinbub and Ferry [107] designated it as
the central entanglement term but in the present paper it will
instead be termed the central interference term because of
how entanglement differs from coherence, even though both
involve an interference term. The orientation of the ridges
is seen to be dictated by the argument of the cos term in
Eq. (19) when the time evolution of Eq. (13) is invoked:
the argument of that term is constant when k/x = ko/xo. In
contrast, the direct terms of Eqs. (18) are seen to correspond to
the wave packets as they move away from the origin: They do
not give negative contributions, in contrast to the cross term
as a consequence of the cosine term. The Wigner function
f (x, k) = fd (x, k) + fc(x, k) for various xo and ko, scaled by
a, is shown in Fig. 1. The clearly visible central interference
term concentrated near the origin anticipates features that
appear when a wave packet incident on a barrier separates into
transmitted and reflected portions.

Significantly, the central interference term is such that both
ρ(k) and ρ(x) are not appreciable near the origin because the
rapid oscillations of the central interference term average to
small values. For example, along x = 0, the contributions to
ρ(x) from the central interference term from Eq. (6) go as

1

2π

∫ ∞

−∞
fc(0, k) dk = 1

π h̄
e−(koa/2)2

, (20)

and therefore are exponentially small as koa increases, with an
analogous evaluation for ρ(k). Although the central interfer-
ence term will alter in the presence of a barrier, nevertheless,
it is expected that ρ(x) and ρ(k) will be dominated by the
transmitted and reflected portion of a wave packet incident on
a barrier.

D. Barriers

If V (x) is linear, that is, V (x) = −Fx, then V (x + y) −
V (x − y) = −2Fy. Similarly, if V (x) is quadratic, that is,
V (x) = (γ /2)x2, then V (x + y) − V (x − y) = 2γ xy. In either

FIG. 1. f (x, k) = fd (x, k) + fc(x, k) for a wave function of two
Gaussian wave packets traveling in opposite directions, evaluated
using the analytic Eqs. (18) and (19) for various xo and ko, evaluated
at t = 0 (left) and t (right). Only contours for f (x, k) > 0 are shown
with the jth contour of 10 at ( j/10) f+(xo, ko).

case, the integral in V (x, k) of Eq. (4) is proportional to

− i

2π h̄

∫ ∞

−∞
eikss ds = −1

h̄
∂kδ(k), (21)

where δ(k) is the Dirac delta function. As a result, the integral
term in Eq. (3) becomes, for the linear case, (F/h̄)∂k f (x, k, t ),
and for the quadratic case, F → −γ x. It is also seen that
Eq (4) can be written

∂t f (x, k, t ) = −ẋ ∂x f − k̇ ∂k f , (22)

where ẋ = h̄k/m and k̇ = −∂xV (x), which can then be used
to construct the classical trajectories for linear fields and har-
monic oscillators. In the linear case, it follows [69,100]

f (x, k, t ) = fo

(
x − h̄k

m
t + F

2m
t2, k − F

h̄
t

)
, (23)

for which the F = 0 case corresponds to a free wave packet.
Figure 1 evidences this behavior by sheering the ellipsoid
because the phase space points with higher k move faster to
the right (in the +x̂ direction): Were the initial condition el-
lipsoids to straddle the k = 0 boundary, all phase space points
for which k < 0 would likewise move leftward, unaffected by
the evolution of the k > 0 phase space points. This casual ob-
servation is behind the form of the optimal numerical scheme
leading to the time evolution of the wave packet even when
a barrier is present. The behavior of V (x, k), then, governs in
what manner quantum mechanics alters those trajectories in a
phase space approach, but the behavior of the free wave packet
suggests a useful scheme to solve Eq. (3).
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By far, the simplest barrier to consider is the δ-function
barrier of Eq. (A1), for which

Vd (x, k − k′) = −4λVo

π h̄
sin[2(k − k′)x] (24)

[compare Eq. (A7)], a form which allows an analytic solution
to f (x, k, t ) for closed boundary conditions [61,62]. Open
boundary conditions [48,76,109], however, require additional
considerations that make the time evolution simulations diffi-
cult, and therefore, numerical means are advantageous. For
an abrupt potential like Vd (x), however, ripples appear in
f (x, k, t ) for large values of k, particularly near regions where
V (x) undergoes abrupt changes in magnitude or slope that
cannot be ignored (e.g., Figs. 2 and 5 of Ref. [61]), and
which undermine finite difference methods applied to Eq. (3).
Abruptness is manifested as the extent of V (x, k) along the k
dimension, and for Vd (x), it does not diminish as do the other
potentials of Eqs. (A2)–(A5), thereby complicating its use in
numerical methods that consider only a portion of k space.
The next simplest form of a rectangular barrier also results in
highly oscillatory behavior for large k of f (x, k, t ) near the
boundaries of the barrier (e.g., Figs. 8 and 9 of Ref. [62]).
Of the simple candidates available, considered in Appendix
A, those potentials that do not exhibit large or discontinuous
changes in V (x) and ∂xV (x) (that is, they are not abrupt)
and are symmetrical most strongly reduce the behavior of
V (x, k − k′) that lead to large k behavior in f (x, k, t ) and
therefore complicate numerical accuracy. Consequently, at-
tention here is confined to the Gaussian Vg(x) and parabolic
Vp(x) potentials of Eqs. (A3) and (A4), as they are sufficiently
smooth in the sense of Fig. 24.

III. WIGNER TIME EVOLUTION

A. Explicit scheme

The numerical solution of the time-dependent WDF equa-
tion of Eq. (3) with open boundary conditions [56,76] using
a direct solution [110] proceeds by defining f (x, k, t ) at eq-
uispaced points in position (x → xi ), wave number (k → k j ),
and time (t → tn) via

xi = (2i − N − 1)	x/2, k j = (2 j − Nk − 1)	k/2,

tn = n 	t, (25)

using standard finite-difference methods [103]. The time
taken to evaluate f (x, k, t ) increases substantially as the
terms (Nx, Nk, Nt ) increase, as the size of the resulting L
operator (the discrete form of the Liouville operator L̂)
rapidly increases, and the matrix solution slows. Moreover,
the boundaries must be sufficiently far away that the incoming
distribution into the simulation region can be approximated,
usually by a thermal supply function derived from a Fermi-
Dirac distribution when simulating a resonant tunneling diode
(RTD) [56,61,111]. The problem is revisited here with the in-
tent to develop a far more rapid numerical solution capable of
sufficient accuracy to treat the wave-packet problem, enabling
the values of (Nx, Nk ) to be enlarged by an order of magnitude
but an iteration performed in a fraction of the time of previous
methods on which the present approach is based, e.g., a single
time step took 3.2 s for (Nx, Nk ) = (86, 72) on a mainframe

whereas the present approach takes 0.042 s per iteration for
(Nx, Nk ) = (512, 128) on a desktop [112].

The values of 	x and 	k are related by requirements
on how to treat the sin[2(k j − k j′ )xi] term in V (xi, k j − k j′ ).
Substitution of Eqs. (25) into the sin[2(k − k′)x] part gives

sin [2(k j − k j′ )xi] ≡ sin

[
2π

( j − j′)(i − 1)

Nx − 1

]
, (26)

if 	x = L/(Nx − 1), where L is the width of the simulation re-
gion, and 	k = 2π/L. This choice insures that V (±L/2, k j −
k j′ ) ≡ 0, that is, V (x, k − k′) vanishes on the boundaries x =
±L/2 and the choice of 	k enables the numerically advanta-
geous form of Eq. (26).

Next, define f (x, k, t ) and V (x, k − k′) on those points.
This shall be done by introducing indices on f and V such
that

f (x, k, t ) → f (xi, k j, tn) ≡ [
fn
i

]
j, (27)

V (x, k − k′) → [Vi] j, j′ . (28)

Integrations over k′ become summations over j′ for the mul-
tiplication of the Vi matrix with the fn

i vector. The derivatives
become, in the finite difference approach,

∂t f (x, k, t ) → fn+1
i − fn

i

	t
,

∂x f (x, k, t ) → ∓ 1

2	x

[
3fn

i − 4fn
i±1 + fn

i±2

]
, (29)

where the spatial derivative uses an upwind/downwind
second-order differencing scheme (SDS) [113]. The notation
will be that bold face quantities (e.g., M, fn

i ) are matrices
or vectors, and terms such as D are operators. In describing
the finite differencing scheme below, the introduction of a
difference operator that acts on the i index by

D( f n
i, j ) = 1

2

[
3 f n

i, j − 4 f n
i±1, j + f n

i±2, j

]
, (30)

where (+) is used for k j < 0 and (−) is used for k j > 0.
Introduce the matrix α defined by

[α] j j′ = h̄|k j |	t

4m	x
δ j, j′ ≡ α jδ j, j′ , (31)

where δ j j′ is the Kronecker delta function. Using a simple
explicit Euler scheme for the time derivative, then the vectors
fn+1
i are straightforwardly deduced from fn

i by the equation

fn+1
i − fn

i = −α · [3fn
i − 4fn

i±1 + fn
i±2

] + Vi · fn
i .

This equation can be rewritten as

fn+1
i = [I − 2αD + Vi] · fn

i , (32)

where I is the identity matrix. Such an explicit scheme is
accurate to order O(	t ).

B. Implicit scheme

To improve the accuracy to order O(	t2), all instances of
fn
i on the right-hand side of Eq. (32) can be replaced by the

average (fn+1
i + fn

i )/2, resulting in an implicit matrix equation
cast in the form of Eq. (10) and solvable using matrix solution
techniques based on LU decomposition [56]. The presence
of Vi requires the inversion of matrices of size Nk × Nk for
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Nx × Nt times. The form of the SDS differential operator,
however, makes possible an alternate approach that spares
the requirements for such an investment of computational
time and resources. It makes use of the formulation used
to solve for fn+1

i using an implicit scheme for a free wave
packet.

For the free case, the implicit matrix equation when Vo = 0
is

[I + αD] · fn+1
i = [I − αD] · fn

i ≡ bi, (33)

because D acts in a manner dependent on the jth element
within fn

i , it is profitable to represent fn
i as the combination

of two vectors of size Nk/2 corresponding to regions where
k j < 0 (leading to terms with an l subscript) and where k j > 0
(leading to terms with a u subscript) so

bi ≡
[

li
ui

]
. (34)

Next, because M = I + (3/2)α only has diagonal entries, then
it, too, can be separated into parts as can α/2, or

I + 3

2
α = M =

[
Ml 0
0 Mu

]
;

α

2
=

[
L 0
0 U

]
, (35)

where 0 is the (Nk/2) × (Nk/2) zero matrix, and L and U
also only have diagonal entries [114]. As a result, Eq. (33)
becomes two separate matrix equations

Ml · l∗i = li + L · [4l∗i−1 − l∗i−2],

Mu · u∗
i = ui + U · [4u∗

i+1 − u∗
i+2], (36)

where the action of D is explicitly shown. Importantly, both
li and ui are evaluated sequentially and rapidly: Because
[M−1] j, j = 1/[M] j, j′ = δ j, j′/(1 + 3α j/2), no costly matrix
inversions are required. All l∗i and u∗

i in Eqs. (36) which have
indices i < 1 or i > Nx, respectively, are set to zero vectors
because there are no incident contributions from the bound-
aries (in contrast to simulations of RTDs [113], where they
are conventionally set to a thermal supply function, although
doing so may not be accurate [61]). Finally,

fn+1
i =

[
l∗i
u∗

i

]
(37)

in the free wave packet (Vo = 0) case. By virtue of the cho-
sen structure of the (∓	x ∂x → D) differential operator of
Eq. (30), the solution represented by Eq. (37) for the free
propagation case (Vo = 0) can be computed with the speed of
the explicit scheme associated with Eq. (32), and the solution
of l∗i is independent of u∗

i (they can be evaluated separately).
This is a consequence of the ability to separate the larger
matrix equation into noninteracting upward and downward
elimination schemes (as shown in Fig. 2) enabled by the
upwind/downwind SDS differential operator, and reflects that
the positive and negative k regions of f (x, k, t ) in Eq. (13)
evolve without any interaction when Vo = 0. The diagonal
nature of M insures that no time-consuming matrix inversions
are required. Retaining that speed advantage requires that a
means to bypass those matrix inversions when Vo �= 0, which
links l∗i and u∗

i , must be developed.

L-4L

-4U

-4UU

-4Lo L

-4L

U

-4U

i i+1 i+2i-1i-2

i +
 1

i
i -

 1

Ml

Mu

Ml

Mu

Ml

Mu

li-1

li

li+1

ui-1

ui

ui+1

Downward Elimination

U

-4U

-4U

U

Mu

-4U Mu

Mu

ui-1

ui

ui+1

Upward Elimination

li+1

L

-4L

Ml -4L L

-4L

Ml

Ml

li-1

li

FIG. 2. Reorganization of the matrix equations for fn
i into two

smaller matrix equations with entries entirely above or below the di-
agonal. Size of each box is (Nk/2) × (Nk/2). Center diagonal boxes
for ith row and ( j = i) column designated by thicker black borders.
An l subscript and L matrix refer to k j < 0; a u subscript and U
matrix to k j > 0. L, U and M have only nonzero diagonal elements.

The inclusion of a barrier (Vo > 0) is accomplished by first
solving Eq. (32) for the predictor f∗

i . The correction then in-
corporates f∗

i in a modified potential term that is now included
with the bi vector. That is,

f∗
i = [I − 2αD + Vi] · fn

i ,

bi = [I − αD] · fn
i + 1

2 Vi · (
f∗
i + fn

i

)
, (38)

where the solution of fn+1
i unfolds according to Eqs. (36)

and (37). Although iterations along the lines of higher or-
der Runge-Kutta methods [115] could be used to improve
the corrector (thereby enabling larger time steps), here, one
prediction and one correction are employed and smaller time
steps are used as a matter of simplicity.

A close consideration of Eqs. (38) reveals that an additional
approximation may be made that substantially increases the
speed of simulations. The presence of sin[2(k j − k j′ )xi] in
Vi means that far enough away from the potential barrier,
the contribution of Vi · (f∗

i + fn
i ) to bi becomes negligible,

reflecting that the rapid oscillations of V (x, k − k′) caused by
sin[2(k − k′)x] makes

∫
V (x, k − k′) f (x, k′, t )dk′ negligible.

Because the Vi matrix is the only term connecting the k > 0
region of phase space to the k < 0 region, the structure shown
in Fig. 2 entails that the iterative solutions of Eqs. (36) need
not be extended all the way to the boundaries when L is large,
as is required to ensure that 	k is small. As a result, until the
presence of the barrier impacts f (x, k, t ), the free propagation
equations of Eq. (33) can be used. However, because the
numerical solution of Eq. (38) already provides a substantial
computational savings, utilization of this approximation is not
done herein.
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C. Density and current density

The evaluation of density proceeds straightforwardly from
Eq. (6) and is

ρ(x, t ) → ρn
i = 	k

2π

Nk∑
j=1

f n
i, j, (39)

with an analogous equation holding for ρ(k, t ) → ρn
j , for

which the summation is over i and 	k is replaced by 	x. By
virtue of the j-dependent operator D of Eq. (30), the current
density J (x, t ) is different. For steady-state conditions, the
continuity equation ∂tρ + ∂xJ = 0 becomes, in discrete form,

ρn+1
i − ρn

i = 0 = − 	t

	x

Nk∑
j=1

h̄k j

m
D

(
f n
i, j

)
. (40)

Because D acts on f n
i, j differently depending on whether k j ≶

0 (which is the same as 2 j ≶ Nk + 1), the summation over j
separates into two summations depending on the sign of k j . In
those summations, reordering Eq. (30) gives [56,77]

2D
(

f n
i, j

) = (
3 f n

i, j − f n
i±1, j

) − (
3 f n

i±1, j − f n
i±2, j

)
. (41)

Defining 	x∂xJi = Ji+ 1
2
− Ji− 1

2
therefore identifies [116]

J∓
p =

∑
k j≶0

∓2α j
(
3 f n

p± 1
2 , j − f n

p± 3
2 , j

)
,

Jn
p = J+

p + J−
p , (42)

where p = i ± 1
2 , the form of which insures that ∂xJ (x) = 0

under steady-state conditions. Importantly, because α j > 0
for all j, a (∓) is attached to it to account for the be-
havior of k j . Such a construction is demanded by how the
upwind/downwind SDS scheme for D is defined in Eq. (30).

IV. WAVE-PACKET TUNNELING

A. Free propagation

To form a baseline comparison, the numerical time evo-
lution scheme of Eq. (33) is first applied to the free wave
packet so as to demonstrate stability and accuracy, but more
importantly to demonstrate how the simulations are to be rep-
resented. The parameters of the simulation are given in Table I
but for Vo = 0. Significantly, observe that the present formu-
lation is not beholden to requirements imposed by fast Fourier
transform (FFT) methods because V (x, k − k′) is rendered
analytically. This has two consequences: (i) the incentive to
make Nx comparable in size to Nk is no longer necessary, and
so Nx is increased substantially to allow the boundaries to be
pushed further out, to increase L and thereby decrease 	k,
and to improve computational speed and accuracy of the SDS
approach, and (ii) using FFTs on V (x, k − k′) led to Eq. (33)
being considered for every value of i from 1 to Nx in past
studies, but the present method can begin and end at any value
of i for which f (x, k, t ) is appreciably nonzero, and so in prin-
ciple much of the numerical evaluations near x ≈ ±L/2 need
not be undertaken even when a barrier is present, resulting
in a further substantial reduction in the numerical investment.
The advantages of the second consequence, however, are not
employed here.

TABLE I. Default parameters for the simulation of free wave
packets and wave packets incident on barriers, grouped according
to phase space, wave packet, and barrier parameters.

Term Symbol Value Unit

Number of time increments Nt 64 −
Time increment 	t 0.05 fs
Simulation region L 14 nm
Number of length units Nx 512 −
Length unit 	x L/(Nx − 1) nm
Wave-number units Nk 128 −
Wave-number increment 	k 2π/L 1/nm
Wave-packet parameter a 0.6 nm

Initial center position xo −1.6 nm
Initial center wave number ko 13.55 1/nm
Initial center energy h̄2k2

o/2m 7 eV

Barrier height Vo 8 eV
Barrier wave number kv 14.491 1/nm
V (x) parameter λ 0.5 nm

The results of a simulation of a free Gaussian wave packet,
cast in a manner that will be used for subsequent simulations,
are shown in Fig. 3. Small departures from oval contour
behavior are a consequence of the graphical interpolation
procedure applied to a relatively coarse grid in k space, which
is governed by the size of L. It is nevertheless seen that the
simulation is sufficiently accurate. At each time step, Eqs. (39)
and (42) are evaluated for ρ(x, t ) and J (x, t ), respectively. A
conventional plot of the former at various times would show
a spreading of the wave packet, but here, ρ(x, t ) is presented
as a contour plot such that the spreading of the wave packet
is shown by a widening of the contours for a given value of
the t axis, as in Fig. 4. The behavior of J (x, t ) is shown in
Fig. 5. Both figures show that the dashed white line along
which x(t ) = xo + h̄ko/m also tracks the maximum of J . Be-
low, these lines shall be called ballistic in the sense of free
propagation not subject to a barrier. As a result, the motion
of the maximum locations can serve to develop a TARD time
estimate.

FIG. 3. Simulation of the evolution of WDF for a Gaussian wave
packet described by the initial state Eq. (12) for Table I parame-
ters, except for Vo = 0. Initial (t = 0) is to the left of each figure,
final (t = Nt	t) is to the right. Left: Analytic contours of Eq. (13).
Right: Numerical solution of time-dependent WDF. Range of x :
−3.5 nm < x < 5.5 nm. Range of k : 10 nm−1 < k < 17 nm−1.
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FIG. 4. Time evolution of density ρ(x, t ) for a free wave packet
using Table I parameters. Vertical red line is at x = 0. Dashed white
(ballistic) line corresponds to x(t ) = xo + h̄kot/m.

B. Gaussian barrier

A Gaussian barrier specified by [see Eq. (A3)] Vg(x) =
Vo exp [−(x/λ)2] with the parameters of Table I is now in-
cluded: Vo is set to be 1 eV larger than h̄2k2

o/2m so what
emerges past the barrier contains contributions due to tunnel-
ing. A small portion of the wave packet does pass through
after 3.2 fs, as shown in Fig. 6: Compared to Fig. 3, now
the k < 0 region of phase space must be included to show
the reflected portion. After collision with the barrier, the
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FIG. 5. Simulation of the evolution of WDF for a Gaussian wave
packet described by the initial state Eq. (12) for Table I parameters.
Dashed white (ballistic) line corresponds to x(t ) = xo + h̄kot/m.

FIG. 6. Simulation of the evolution of WDF at t = 3.15 fs for
a wave packet described by the initial state Eq. (12) for Table I
parameters, but now with a Gaussian barrier described by Eq. (A3).
The ellipse on the upper right is the transmitted portion of the packet;
the deformed ellipse on the lower left is the reflected portion. The
center constitutes interference analogous to Fig. 1.

wave packet separates into transmitted and reflected portions,
mimicking the separating wave packets of Fig. 1 and the
persistent oscillations visible at the origin associated with
the central interference term fc(x, k) (compare Fig. 3(a) of
Ref. [84], although it is for a double barrier). At the resolution
considered herein, the oscillations appear to be hatching, but
when examined in closer detail in Fig. 7, they are seen to
replicate the behavior of the cos term in fc(x, t ) in Eq. (19).

FIG. 7. Close-up of the interference region of Fig. 6, but shown
in a gray color scheme to enhance the visibility of the ridges. Both
positive and negative regions of f (x, k, t ) are shown.

155427-8



WIGNER WAVE PACKETS: TRANSMISSION, … PHYSICAL REVIEW B 103, 155427 (2021)

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

x [nm]

ρ
/ρ

o
t = 1.0 fs

t = 1.5 fs

t = 2.0 fs

t = 2.5 fs

FIG. 8. Density ρ(x, t ) normalized to ρo = ρ(xo, 0) at four rep-
resentative times identified in the legend, using the parameters of
Table I.

Increasing Nx → 2000, Nk → 240, and L → 36 nm (param-
eters that would have defied consideration in the absence of
methods developed herein) allows them to be better resolved.
The orientation of the oscillations along diagonals in phase
space average out when evaluating either ρ(x, t ) or ρ(k, t ),
just as occurred in Sec. II C for the central interference term
fc(x, k). Significantly, the interference is seen to arise when
portions of the wave packet begin to separate into reflected
and transmitted portions, which occurs at the onset of the
barrier. These oscillations, analogs of which appear in exact
closed boundary Wigner function studies, complicate the def-
inition of a trajectory and associated tunneling time, but values
suggested in Ref. [62] are comparable to the present estimate.

As before, consider the time evolution of ρ(x, t ): its behav-
ior at select times is shown in Fig. 8, and compare to solutions
based on solving Schrödinger’s Eq. [(45), [117]]: The pile-up
prior to the barrier is the particle being said by Elberfeld and
Kleber to “wait” before tunneling. If the time slices are more
densely represented, then a top-down view of these lines can
be mapped as contours along axes of x and t . Figures 9–11
show ρ(x, t ), ρ(k, t ), and J (x, t ), respectively, as contours.
The minor wiggles along the lowest (blue) contour lines near
(x, t ) = (0, 2.7) in Fig. 9 are a consequence of the highly os-
cillatory WDF associated with the central interference region
concentrated near (x, k) = (0, 0) in Fig. 6: these wiggles are
a numerical artifact and disappear as 	x reduces. Reflected
and transmitted wave packets are visible in ρ(x, t ) and J (x, t )
by elements which move away from the red centerline at
(x = 0), and ρ(k, t ) by the convergence to transmitted (kt ) and
reflected (kr ) center momenta. The white dashed (ballistic)
lines in Figs. 9 and 11 are evaluated analogously to Fig. 4
but, for the transmitted and reflected lines, the procedure is
modified by finding the local maximum of the transmitted and
reflected peaks in Fig. 10, called kt and kr , respectively, and
then defining

xi(t ) = xo + h̄kot/m, xt (t ) = xt − h̄kt (tmax − t )/m,

xr (t ) = xr − h̄kr (tmax − t )/m (43)

-3 -2 -1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

0.5

1

1.5

2

FIG. 9. Time evolution of position density ρ(x, t ) as evaluated
using Eq. (39). The two horizontal black lines signify where xi(t )
crosses (x = 0) (lower at to = 1.0196 fs) and where the vertex from
which xt (t ) and xr (t ) diverge (higher at tr = 1.5657 fs), a separation
of 0.5461 fs for Table I parameters.

for the incident, transmitted, and reflected trajectories, re-
spectively, where tmax = (Nt − 1)	t , (xt , xr ) are the locations
of the transmitted and reflected maxima of ρ(x, tmax). We
find (ko, kr, kt ) = (13.5546,−13.1140, 14.8152) are the lo-
cations of the incident, reflected, and transmitted maxima of
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FIG. 10. Time evolution of momentum density ρ(k, t ) as
evaluated using Eq. (39), but for summations over i. The lo-
cations of the peaks of ρ(k, tmax) define kr = −13.1140 nm−1

and kt = 14.8152 nm−1. The vertical red lines are at k = ±ko =
±13.5546 nm−1 and at k = 0.
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FIG. 11. Time evolution of current density J (x, t ) = J+(x, t ) +
J−(x, t ) as evaluated using Eqs. (42). White dashed lines are as in
Fig. 9. Negative current (blue) moves to the left, positive (red) to the
right.

ρ(k, tmax), respectively, in units of [nm−1]. It is seen that
(kr, kt ) are slight departures from (−ko, ko). Further, xt (t ) and
xr (t ) diverge from approximately the same vertex: Letting ts
be such that xs(ts) = 0 for the subscripts s ∈ (i, r, t ), then tr =
1.5657 fs is at a later time than xi(t ) crosses the origin (x = 0)
at ti = 1.0196 fs. The behaviors of f (x, k, t ) at these times
are shown in Figs. 12 and 13. The peaks of ρ(k, t ) � 0 as
t → ±∞ are chosen because they are well-defined and their
locations asymptotically fixed. For the purposes of modeling
emission, a definition of the time between where xi(t ) crosses

FIG. 12. The distribution f (x, k, t ) at t = to (positive range
only), corresponding to the lower horizontal line of Fig. 9.

FIG. 13. The distribution f (x, k, t ) at t = tr (positive range
only), corresponding to the upper horizontal line of Fig. 9.

the origin and where xr (t ) and xt (t ) diverges from it, is found
by setting the left-hand side of Eq. (43) to 0 and solving for t ,
giving rise to the TARD times

τr = tr − ti, τt = tt − ti, (44)

where t j is such that x j (t j ) = 0 for j ∈ (i, r, t ).
That kt > ko is a consequence of tunneling is numerically

evident in the WDF approach, but it can be demonstrated us-
ing methods of the Schrödinger approach. Tunneling through
a barrier is associated with a tunneling probability D(k). In
the simple case of a δ function barrier [Eq. (A1)], for which
all incident waves experience tunneling,

D(k) = 4k2

4k2 + γ 2
, (45)

where γ = 4λmVo/h̄2, as is known [5] or can be shown
through a limiting procedure [61]. As a result, the transmitted
wave packet resulting from an incident Gaussian wave packet
is no longer strictly Gaussian itself, introducing complexity
in the identification of the dynamics of its peak with kt . The
current density [compare Eq. (7)]

J (x, t ) = q

2π

∫ ∞

−∞
(h̄k/m)D(k) fs(k) (46)

in a conventional formulation using a supply function fs(k)
[94] does show that the transmitted wave packet has sped up
(corresponding to kt > ko): If fs(k) = (a/

√
π ) exp[−a2(k −

ko)2] (intended to mimic Eq (11)), then for γ � ko [compare
Eq. (14)],

〈k〉 =
∫

kD(k) fs(k)dk∫
D(k) fs(k)dk

≈ ko

(
2a2k2

o + 3

2a2k2
o + 1

)
(47)

compared to the incident Gaussian (〈k〉inc = ko with D(k) =
1). For Table I parameters, 〈k〉trans/〈k〉inc = 1.015. Such a
result is expected because states with larger k have greater
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transmission [D(k) is monotonically increasing for the δ-
function barrier], an expectation that persists for barriers of
finite thickness, and which is clearly evident in SE simula-
tions (see, for example, Fig. 4 of Ref. [54]). This seeming
speedup of the transmitted wave packet in a tunneling barrier,
first suggested by Hartman [118], is behind the superluminal
claims in both tunneling calculations and experiments using
electromagnetic analogs of quantum tunneling [54].

Analogous to the Wigner approach studied here, time-
dependent simulations of wave packets composed of states
for which h̄2k2/2m < Vo for rectangular barriers [54,92,119]
such as Eq. (A2) show that the transmitted/reflected packets
produce non-Gaussian but peaked packets [even though the
less abrupt potentials of Eqs. (A4) and (A5) would soften
features in the transmitted and reflected features]. As shown
by Smith and Blaylock [54], FFT methods can then be used
to obtain ρ(k, t ) from ρ(x, t ), from which the momentum of
the peaks of the reflected and transmitted wave packets can
be found. This would allow the numerical solution of SE to
provide (ki, kr, kt ) to the TARD time approach of Eq. (43).

The present WDF method differs from the SE approach
in important respects: (i) Most importantly, finite difference
methods to solve SE do not unambiguously resolve the po-
tential barrier V (x) [albeit a much greater issue for abrupt
potentials such as Vr (x) and Vt (x) of Appendix A than for
Gaussian potentials such as Vg(x)] compared to the exact
methods behind Eqs. (A7) and (A8). (ii) Boundary condi-
tions in the SE approach are comparatively difficult because
the finite difference methods must apply to the full wave
function ψ (x, t ) and so its boundaries at each end must
be known, whereas the entering boundaries of the WDF
are specified and the exiting boundaries open (for example,
to minimize systematic error, the simulation region consid-
ered by Smith and Blaylock [54] was large enough that the
wave packet remained “very nearly zero at the boundaries
for the entirety of the simulation,” meaning that the range
of the simulation was well beyond where the wave packet
propagated—by requiring boundary conditions ψ (±L, t ) =
0, they are, in effect, closed). (iii) The relation f (x, k, t +
δt ) = f (x − h̄kδt/m, k, t ) [compare Eq. (23)] can be used
in WDF simulations when the influence of V (x, k − k′) sub-
sides, allowing broad wave packets with a narrow momentum
spread to be considered, whereas (for computational reasons)
narrow wave packets with wide momentum spread are more
advantageous in the SE approach. (iv) Identifying the peaks
of the reflected and transmitted packets requires additional
computational complexity (e.g., FFT methods) compared to
the straightforward WDF approach and do not necessarily
identify the velocity of the peaks of ρ(x, t ) with the values
of (ki, kr, kt ) from ρ(k, t ); and (v) the trajectory interpretation
for the Schrödinger approach (Bohm trajectories) are of a
very different kind than the Wigner trajectories that are well-
suited to the emission models relying on packets but more
importantly on distributions [61,62]. Some of these distinc-
tions address constraints placed on the numerical evaluation
of ψ (x, t ) in the SE approach, e.g., the six constraints on
simulation parameters discussed by Goldberg et al. [92].

Final considerations with respect to peak identification,
as well as how well finite difference methods in the SE
approach (with its approximations behind generating the ini-
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FIG. 14. Evaluation of reflection TARD time τr (λ) for Table I
parameters but with different λ (Table I value for λ is a yellow
dot labeled default for a Gaussian barrier) for both parabolic and
Gaussian barriers.

tial wave packet) perform, are in progress and will be reported
separately [120]. Therefore, for computational, physical, and
utilization reasons, the WDF approach identifies kt and kr un-
ambiguously and is therefore better suited to return (ki, kr, kt )
in Eq. (43) on which the TARD time model here is based.
When the energy and spread of the packet is sufficiently low,
the TARD time acquires a tunneling time characteristic that is
examined.

C. TARD time

The magnitude of the reflection delay time τr of Eqs. (44)
will equal the transmission delay time τt if the ballistic re-
flected and transmitted lines converge to a common vertex at
x = 0. τr is the separation of the two horizontal black lines
in Figs. 9–11, and numerically equal to τr = 0.5461 fs for
the parameters of the simulation given in Table I. It includes
both transport over the barrier (h̄2k2/2m > Vo, or fly over)
and transport under the barrier (h̄2k2/2m � Vo, or tunneling).
Such a definition is reliant on utilizing the probabilistic nature
of ρ(x, t ) needed when deciding if an electron has passed a
barrier or has been reflected by it, and therefore hearkens to
the Bohmian trajectory approach [53]. For all parameters held
the same except for the barrier now specified by 0.1 � λ �
0.7 nm, then τr varies as shown in Fig. 14, where the default
case is the yellow dot. As the barrier thins (λ decreases), more
of the transmitted current is due to tunneling. Estimates of
τr depend on both the choice of xo (because of the extent of
the initial Gaussian packet) and the abruptness of the barrier
governed by ∂xV (x) (the interference effects extend further
from the origin).

We note that the apparent discontinuity (white space) along
the transmitted ridge between the black horizontal lines of
Fig. 10 is only a consequence of how the 16 contour lines
are selected (equispaced in height with the smallest at 1/17 =
0.0588): A ridge is present but is too small in height to be
discerned for the lowest contour level, but is revealed for
contours at heights less than 0.035. Because kr < −ko and
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kt > ko, it is seen that the transmitted wave packet is traveling
slightly faster, and the reflected wave packet slightly slower,
than the initial wave packet, a circumstance that must be
accommodated by how the delay time is defined. This is not
unexpected [119]: The transmitted wave packet is composed
of contributions that have a higher transmission probabil-
ity, which increases with k. Significantly, observe that the
horizontal black lines approximately demarcate half the sep-
aration where the peak of ρ(k, t ) begins to first decline and
then separate into two distinct peaks in Fig. 10.

Accounting for how long an electron takes to pass an
emission barrier is difficult for theory, simulations, and ex-
periments on ultrafast processes associated with emission and
transmission [32,37,43,46,56,121]. A method to incorporate
delays associated with electrons passing a barrier (particularly
if tunneling), as occur in field and photoemission studies using
quantum mechanical, Monte Carlo, or particle-based meth-
ods [17,20,70,93,122–125], may profitably use the notion of
TARD time introduced here, as it accounts for changes in
overall number and current density in a manner that respects
their time evolution for a wave packet but which does not
run afoul of interference oscillations associated with Wigner
trajectories.

A feature that was well-hidden for the Gaussian barrier
(and will only be slightly better revealed for the parabolic
barrier of Sec. IV D) is the nature of the intersection of the
reflected and transmitted dashed white (ballistic) lines. When
these lines cross at the origin (x = 0) (that is, appear to
originate together from a vertex), the TARD times are equal
in magnitude, or |τr | = |τt |. The barriers simulated herein
are symmetrical and reveal finite TARD times, in contrast
to arguments using different definitions of tunneling time or
suggesting vanishing tunneling times for symmetrical barriers
when delay is entirely due to tunneling (considered below).
The present distinction will therefore capture probabilistic
emission times in a manner usable by particle simulation
codes in a way that the other definitions will not.

The contribution of leakage to the transmitted packet is
indicated by what portion of the initial packet has k > kv ≡√

2mVo/h̄ (see Fig. 3), and successfully passes the barrier.
From Eq. (12), it is seen that f (x, k, 0) separates into a product
of an x-dependent term with a k-dependent term, the latter of
which behaves as fs(k) = exp[−a2(k − ko)2]. If D(k) is the
transmission probability [Eq. (C1)] as a function of k, then the
portion of D(k) fs(k) for k > kv is a measure of the nontunnel-
ing contribution [126]. For ko = 13.5546 (nm−1) (Eo = 7 eV)
as in Table I, then the portion of D(k) fs(k) for k > kv , or
leakage, is shown as the shaded gray region in Fig. 15(a),
and is clearly significant: It is found that the leakage contri-
bution dominates (>50%) for Eo > 6 eV. When the barrier is
thinned to λ = 0.16 nm, and ko is reduced to 10.868 (nm−1)
(Eo = 4.5 eV), as in Fig. 15(b), the leakage is so small as to
not be visible (�1%)

The analysis of TARD times when tunneling dominates can
then be investigated using the smaller ko and λ parameters.
For resolution of details, the tunneling calculations require
much larger values of Nt , Nx: Below, they shall be set equal to
Nx = 210 = 1024 and Nt comparable. A close-up of the wave
packet evolution for Eo = 4.5 eV is shown in Fig. 16, with
the contours adjusted so as to starkly bring out the tunneling

FIG. 15. Transmission probability for a parabolic barrier D(E )
(green), Ratio fs(E ) = f (xo, k, 0)/ f (xo, ko, 0) (blue), and product
D(E ) fs(E )/D(Eo) fs(Eo) (red) for the cases Vo = 8 eV (or kv =
14.49 nm−1) and (top) λ = 0.5 nm and Eo = h̄2k2

o/2m = 7 eV (or
ko = 13.55 nm−1) and (bottom) λ = 0.16 nm and Eo = 4.5 eV (or
ko = 10.87 nm−1). The gray shaded region represents leakage, for
which E (k) = h̄2k2/2m is larger than Vo = h̄2k2

v/2m but is not easily
visible for the lower figure.

portion. Because the incident energy is lower, the wave packet
is started further away from the center of the Gaussian barrier
at xo = 2.5 nm, so a free wave packet would pass the center
(x = 0) line at approximately 2 fs later. Several features are
immediately noticeable. First, the gap between the horizontal
lines representing where [xi(t ), xr (t ), xt (t )] cross the origin
x = 0 have become much closer. Second, xr (t ) and xt (t ) no
longer appear to originate from a single vertex: the transmitted
ballistic line initiates slightly to the right of the origin. To
explore the smaller TARD times associated with tunneling,
evaluations were done for Eo spanning a range from tunneling
dominated (Eo < 6 eV) to leakage dominated (Eo � 6 eV),
and shown in Fig. 17. It is seen that τr decreases as the
tunneling contribution shown in Fig. 15 increases.

Observe that lower energy wave packets are reflected
sooner than higher energy packets precisely because their
penetration of the barrier is less, leading to a reflection delay
that occurs because particles with higher energy penetrate a
greater distance into the barrier before being turned back com-
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FIG. 16. Time evolution of position density ρ(x, t ) as evalu-
ated using Eq. (39) but now for ko = 10.8679 nm−1 (Eo = 4.5 eV),
xo = −2.5 nm, and λ = 0.16 nm for a Gaussian barrier. The contour
lines are 2.5% the levels shown in Fig. 9 and a smaller field of
view is chosen. Dashed white lines replaced by solid white lines for
visibility. The two horizontal black lines are now separated by 0.046
fs. Thin white vertical line marks the center of V (x).

pared to lower energy particles, and such a delay presumably
contributes to the separation between where the incident and
reflected ballistic lines pass the origin (x = 0) in Figs. 9 and
10. By comparison, a classical particle would reflect instan-
taneously, such that there would be no separation between
the ballistic incident and reflected lines, both crossing where
the particle strikes the barrier. Because lower energy incident

4 5 6 7 8 9
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τ r
[f
s]
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FIG. 17. TARD time τr as the initial center energy of the wave
packet Eo = h̄2k2

o/2m changes for a Gaussian barrier with Vo = 8 eV
and λ = 0.16 nm. All simulations used Nt = 512 and Nx = 1024.
Numerical noise is a consequence of using fitting procedures to find
(ko, kr, kt ) and [xr (tmax), xt (tmax)]. Eo > Vo in the gray region, and
leakage dominates in the green region (7.3 eV � Eo � Vo).

wave packets are more completely reflected, the expectation
then becomes that the ballistic incident and reflected lines
form a vertex, with a separation now appearing between xr (t )
and xt (t ) (they no longer form a vertex at x = 0).

The xo(t ) line, if extended, would be above the xt (t ) line
in Fig. 16. That circumstance mimics Fig. 4 of Ref. [54] and,
just as they discuss, it is not an indication of “superluminal”
transport. Whereas τr = tr − ti → 0 as Eo decreases, the sep-
aration τt ≡ tt − ti, where xi(ti) = 0 and xt (tt ) = 0, remains
finite and is the TARD time due to tunneling, to borrow the
parlance of Büttiker and Landauer [43]. From Eq. (43) and
the simulation leading to Fig. 16, for xo = −2.5 nm, xt =
2.8196 nm, ko = 10.8679 nm−1, kt = 11.578 nm−1, tmax =
(Nt − 1)(4 fs)/Nt = 3.9961 fs for Nt = Nx = 210, then

τt ≡ tt − ti = −mxt

h̄kt
+ mxo

h̄ko
+ tmax = −0.094567 fs. (48)

Finding the behavior of τt in the tunneling-only limit re-
quires greater accuracy because of interference of the reflected
components of the wave packet associated with more abrupt
barriers, and therefore significantly larger Nt and Nx for the
simulation. Comparisons to simulations based on solving SE
for when tunneling is exponentially small shall be reported
separately [120]. Observe that the negative value associated
with Eq. (48) is an artifact of the arbitrary identification of
τt with trajectories that cross the t axis (vertical): Were the
crossing along the x axis evaluated instead, and a time differ-
ence created by the ratio of that separation with the incident
velocity, then a positive time metric would result that may
result in a preferred time parameter. The interpretation will be
taken up separately. Here, it is important to emphasize that the
sign should not be associated with superluminal or noncausal
behavior; rather, the emitted wave packet is constructed of
higher velocity components analogous to the discussion sur-
rounding Eq. (47) or as in Fig. 4 of Ref. [54].

The timescales associated with Fig. 17 in the evolution of
ρ(x, t ) determined herein for Gaussian wave packets from the
Wigner function approach (compare also Ref. [127]) closely
match those determined by Petersen and Pollak [128,129]
for Gaussian wave packets similar to Eq. (11) (e.g., compare
Fig. 9 here with Fig. 2(a) of Ref. [129]), but τ (λ) > 0 here.
In their study, Petersen and Pollak argue that the tunneling
time for both symmetric barriers (such as the Gaussian barrier
here) and asymmetric barriers vanishes. They use a definition
of τa reliant on the size of 1/a2 in Eq. (11), which is � in
their notation. It is based on a definition of τ which compares
the time it takes the Gaussian wave function centered at t = 0
at a position −xi to the left of the barrier to reach positions
±L, L � xi. Extrapolating to large a, they find that it takes
longer to reach −L than +L, with a time difference τa which
depends on the width of the wave packet. They explain this by
noting that the transmitted wave contains more of the higher
components of the momentum in the original wave packet
(similar to the arguments of Ref. [54]). They find that τa → 0
as a → ∞. The time τa is clearly not the time the transmitted
particle spends inside the barrier.

In contrast, here, the TARD times (τr, τt ) are explicitly
related to the center momenta of the incident, reflected, and
transmitted packets. Such a formulation is closer to the view
discussed by Landsman and Keller [52] when they say “...the
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FIG. 18. Density ρ(x, t ) normalized to ρo = ρ(xo, 0) at four rep-
resentative times identified in the legend, using the parameters of
Table I, but now for ko = 10.8679 (Eo = 4.5 eV) and λ = 0.16 nm
so the transmitted portion is predominantly due to tunneling. Shaded
region is the barrier.

time it takes an electron to tunnel is a probabilistic, rather than
a deterministic process” (emphasis added). Because ρ(x, t )
represents the probability of a measurement finding an elec-
tron at x, delays associated with its behavior therefore account
for time-dependent behavior associated with tunneling. They
will therefore be useful in simulations that rely on particlelike
behavior (e.g., beam optics codes, molecular dynamics, or
Monte Carlo simulations [17,27,28]) for the description of
nanogap and/or ultrashort conditions. That is, in field emis-
sion simulations, electrons are localized as they emerge from
the barrier, and are most often treated as point particles; there-
fore, a particle code is better served by the ballistic trajectories
and the TARD times they give rise to (although a phase
space trajectory representation is desirable [62]), particularly
if the applied field rapidly oscillates [35,37,130] or internal
processes that affect emission result in a delay in the arrival
time of the electron to the surface [93].

D. Parabolic barrier

The TARD times change as a consequence of barrier
shape. A rapid demonstration is afforded by considering the
parabolic barrier Vp(x) = Vo[1 − (x/λ)2] (Eq. (A4)) but oth-
erwise using the parameters of Table I. For brevity, only the
evaluations of ρ(x, t ) and J (x, t ) are reproduced, and shown in
Fig. 19. Compared to the delay time associated with Fig. 10,
the time separation between the horizontal lines in Fig. 19 is
now 0.3693 fs and is a consequence of the narrower extent
of the parabolic barrier compared to the Gaussian barrier.
Conversely, where the figures are similar is a consequence of
the parabolic barrier parameters being chosen to closely match
the Gaussian barrier at its apex. Although the parabolic barrier
has a more abrupt onset than a Gaussian barrier and therefore
causes Vp(x, k − k′) to span further in k space, the sensitivity
to the location of xo for the evaluation of τr is reduced. It
was found, however, that by choosing parameters for which
tunneling dominates, as in Figs. 16 and 18 for a parabolic

FIG. 19. The simulation for (top) density ρ(k, t ) and (bot-
tom)current density J (x, t ) for Table I parameters (compare Figs. 10
and 11, respectively), for the parabolic barrier (represented as the red
curve in the lower figure). The delay time has been shortened (closer
spacing of the horizontal lines), which is now 0.3693 fs.

barrier, Fig. 20 results. Lastly, when Eo � 7.25 eV in Fig. 17,
both τr and τt are nonzero, so none of the ballistic (white)
lines diverge from a common vertex along x = 0 for those
conditions. Both τr and τt are required to model where the
reflected and transmitted wave packets are at later times. In
simulations of electron emission, the probability of whether
an electron is launched, when it is launched, and with what
velocity it departs are therefore derived from ρ(x, t ), τt and
kt . The effects of abruptness on the transmitted and incident
packets, and the development and application of that emission
model, shall be examined separately [120].
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FIG. 20. Time evolution of position density ρ(x, t ) as evaluated
using Eq. (39) but now for ko = 10.8679 nm−1 (Eo = 4.5 eV), xo =
−2.5 nm, and λ = 0.16 nm for a parabolic barrier (compare Fig. 16).
The two horizontal black lines are now overlapping. The thin white
vertical line marks the center of the Gaussian V (x).

E. Comparisons to other times

The Büttiker-Landauer semiclassical time τsc [43] is com-
monly invoked to describe tunneling (See Refs. [52] and [131]
for its relation to Bohmian and Larmour times). τsc is defined
by [43]

τsc =
∫ x+

x−

dx

v(x)
. (49)

The terms x± are defined by V (x±) − E = 0, V (x) is the
barrier profile, E is the energy, and v(x) = √

2|V (x) − E |/m
for a given E (the absolute value is used by Büttiker and
Landauer to make τsc real-valued for Eo both below and above
Vo: here, only Eo < Vo is considered). As is evident from its
definition, τsc is defined for a single energy (for which, as
Büttiker and Landauer confirm, the incident current density
is simply j = qh̄k/m as follows from ψinc(x) ∝ eikx), which
already renders it different from the TARD times for wave
packets composed of many wave-number components. Using
shape factor methods of Appendix C [132] for evaluating the
Gamow factor, where L(E ) = x+(E ) − x−(E ) and κ (E ) =√

2m(Vo − E )/h̄, and Vo is the maximum height of the barrier,
the semiclassical time becomes

τsc(E ) = u(E )
mL(E )

h̄κ (E )
, (50)

where κ (E ) = √
k2
v − k2, E = h̄2k2/2m, and Vo = h̄2k2

v/2m.
The rectangular, triangular, and parabolic barriers are spe-
cial cases of a class of potentials that have constant shape
factor terms [6,132], e.g., for the rectangular barrier of
Eq. (A2), σ (E ) = u(E ) = 1, whereas for the parabolic barrier
of Eq. (A4), 2σ (E ) = u(E ) = π/2 [compare Eq. (C6)]. More
complex potentials, such as Gaussian and image charge barri-
ers, have energy-dependent shape factors for which the energy

dependence can be taken as weak [70]. Restricting attention
for now to the parabolic barrier Vp(x) of Eq. (A4), it is found

x±[E (k)] = ± λ

kv

√
k2
v − k2,

L[E (k)] = 2λ

kv

√
k2
v − k2. (51)

Therefore, for the parabolic barrier Vp(x), the semiclassical
time is

τsc(parabolic) = πmλ

h̄kv

= πλ

√
m

2Vo
(52)

and is therefore independent of E (k): In contrast, barriers
for which u(E ) is not constant (such as Gaussian barriers)
exhibit an energy dependent τsc(E ). For the parameters of
Fig. 1, where Vo = 8 eV and λ = 0.16 nm, τsc(parabolic) ≡
τp = 0.29964 fs. The ratio of τp with τt is therefore τt/τp =
0.31560, or the TARD time due to tunneling is about a third
of the semiclassical time.

The dwell time (Appendix D) is the difference between the
time a wave packet spends in the region of a barrier with
the time it would have spent in the same region when the
barrier is absent. In the treatment by Winful [63,64], the wave
function in the barrier is evanescent, not propagating, and
therefore exponentially declines with a decay constant of κ (E )
that behaves as a skin depth. By analogy, then, energy in the
form of |ψ (x)|2 is stored in the barrier governed by that skin
depth, and so a substantial increase in L will not appreciably
alter how much is stored. In his analogy, transmitted electrons
correspond to leaking of the stored energy in the forward di-
rection, with reflection being the leaking in the back direction.
The time associated with that leaking is τd .

Although there is not an equivalence between the TARD
times (τr, τt ) and the dwell time (τd ) of Winful [63], it is
seen that they bear some relation (e.g., τr → 0 when the
ballistic incident trajectory overlaps the transmitted trajectory,
which is equivalent to Fig. 4, as does τd by definition). The
rectangular barrier of Winful is such that L = 2λ here, for
which the Gamow factor is θ = 2κL = 4κλ. Consequently,
Eq. (20) of Winful for τd is generalized to Eq. (D1) here,
where τv ≡ h̄/Vo = 0.0823 fs for Vo = 8 eV. For sufficiently
large θ , then sech(θ/2) � 1, and so Eq. (D1) with Nb → 0
becomes

τd ≈ τv

(
k

κ

)
tanh

(
θ

2

)
(53)

and is shown in Fig. 21. In this limit, τi(θ ) is simply related
to τd (θ ) by k2τi ≈ κ2τd as per Eq. (D2). The equation is
extended to parabolic barriers here through the replacement
θ → 4σκλ, where σ is the shape factor of the parabolic bar-
rier (Appendix C). Now, where the barriers are purposely thin
to encourage a visible transmitted wave packet, the largeness
of θ is governed by Eo rather than λ (as in Appendix D).

The behavior of τr from Figs. 14 and 17 are now com-
pared to the dwell time τd for barrier widths specified by
the parameter λ. A direct comparison as a function of λ is
shown in Fig. 22 for Gaussian and parabolic V (x), where the
asymptotic lines use θp only [Eq. (C7)] for simplicity, because
the difference to lines using θg is small, as demonstrated in
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FIG. 21. The dwell time τd (θ ) [Eq. (D1)] in the ratio κτd/kτv ,
for the parameters Vo = 8 eV and E as shown (lines). Circles (◦)
correspond to Eq. (53) and overlap the E/Vo = 1/2 line for which
k = κ .

the discussion following Eq. (C10). For Fig. 23 [Gaussian
V (x) only], the Gaussian Gamow factor θg is approximated
by Eq. (C10) over the range of interest for Vo = 8 eV and
λ = 0.16 nm. The comparison is only to show shared trends,
as the reflection TARD time τr differs from the dwell time τd .
The green region of Fig. 17 corresponds to the green region
of Fig. 23 for which θg(E ) < 0.6373, and that region contains
a significant contribution to emission due to leakage. It is in
keeping with the observation by Winful that “...propagating
above-barrier components begin to dominate....”

V. SUMMARY

Approaches to introducing quantum effects into simula-
tions of electron emission that otherwise treat electrons as
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FIG. 22. The reflection TARD time τr (λ) of Fig. 14 for parabolic
and Gaussian barriers. Lines use only θ = θp of Eq. (C7) as σg is
within 2.4% of σp = π/4.

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

θg(k)

κ
τ r

/k
τ v

TARD τr

Delay τd

tanh(θ/2)
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FIG. 23. The TARD time τr of Fig. 17 compared to the dwell
time τd (θ ) [Eq. (D1)], both in the ratio κτ/kτv , as a function of
the Gamow factor θg(k) [Eq. (C10)] for Vo = 8 eV and λ = 0.16 nm.
Leakage dominates in the green range.

pointlike particles have sought to use trajectory concepts
made possible by the WDF, which acts like a phase space
probability function even though it exhibits negative values
as a consequence of quantum mechanical effects. For wave
packets that separate into transmitted and reflected compo-
nents, the negative regions are associated with oscillatory
regions and correspond to effects of interference. Past stud-
ies of WDFs for closed boundary conditions show similar
rapid oscillations near barriers, the magnitudes of which
depend on the abruptness and height of the barrier. Such
oscillations are problematic for a trajectory interpretation
but are an unavoidable artifact of quantum effects, interfer-
ence, and wave reflection for static conditions, with their
behavior for dynamic conditions being presently unaddressed.
Time-dependent Wigner wave-packet studies were therefore
investigated herein to develop a tunneling time model that
would allow such processes to be modeled even in dynamic
circumstances.

In the present study, an accurate and fast means of numer-
ically evaluating the time evolution of a WDF was developed
that, in addition to being substantially more rapid than prior
versions, allows using finite difference methods with a far
greater number of points characterizing f n

i j . The large num-
ber of phase space points allowed for the determination of
f (x, k, t ) using second-order accurate schemes in both posi-
tion x and time t (the discretization of wave number k is fixed
by the length of the simulation region). The high accuracy is
required to numerically resolve the central interference region
(so named to correspond to the central entanglement region
in the work of Weinbub and Ferry [107]) after the wave
packet interacts with the barrier and separates into a trans-
mitted and reflected portion. The central interference region
is shown to be similar to the central interference term that
arises analytically from two Gaussian wave packets traveling
in opposite directions. Although the focus was on Gaussian
and parabolic barriers, analytic representations for other bar-
riers (delta function, rectangular, triangular, double barrier for
resonant tunneling) were developed, for which the numerical
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techniques developed herein are applicable, although only the
parabolic and Gaussian barriers were considered explicitly
because they exhibit a desirable smoothness.

Simple analytic barriers allowed for similarly simple
Vc(x, k − k′) functions in the WDF time-evolution equation
[Eq. (4)] to be considered, a development that allowed for
a substantial increase in execution speed in addition to the
hybrid predictor-corrector and implicit methods used. Never-
theless, as also shown, more complex potentials (e.g., biased
RTDs, Fowler-Nordheim, or triangularlike asymmetric bar-
riers) can be built up through the addition of the simple
components, thereby retaining the advantage of the rapid
analytical methods without having to resort to fast Fourier
transform (FFT) techniques characterizing earlier studies. Al-
though not pursued herein, the structure of the time evolution
approach in Eqs. (38) may allow for only a subsection of the
simulation region to be considered, thereby enabling further
significant reductions in execution time.

Based on the behavior of the transmitted and reflected wave
packets and and their dependence on barrier height, width,
symmetry, and abruptness, TARD times were introduced that
relied only on knowing the asymptotic locations of peaks
(xo, xr, xt ) of the position density ρ(x, t ) and (ko, kr, kt ) of the
momentum density ρ(k, t ), which serve to define the times
(to, tr ) by setting the left-hand side of Eq. (43) to 0 and then
defining the tunneling time via τr = tr − to and τt = tt − to al-
though we observe that in the case when tunneling dominates,
the definition of τt may merit revisiting to address its sign.
When developed for force-free motion away from the barrier,
it is suggested that the method can be applied to when the
wave packets are being accelerated in a linear field because
for up to constant fields, the WDF satisfies Eq. (23), although
such an assertion remains to be demonstrated.

The TARD times provide a natural approach to introduce
delays associated with quantum mechanical effects for either
static or dynamically changing barriers. As a result, a means
to include these effects in simulations of nanogaps and/or
changes in the barrier occurring over fs (or smaller) timescales
is possible without relying on an instantaneous application of
a current density equation (e.g., the Fowler-Nordheim equa-
tion) that presupposes static barriers under the assumption
that the tunneling is instantaneous. In trajectory simulations
where spurious oscillations at the barrier become problematic,
we may explore the entangled classical trajectory approach of
Donoso and Martens to obtain the average behavior of the
ensemble, including approximate tunneling probability and
tunneling time.

Future work will be in several directions. First, complica-
tions due to the influence of resonances [see Eq. (B1)] will
be considered. Second, comparisons to and modifications by
Schrödinger-based approaches will enable the examination of
deep tunneling contributions where the transmitted packet is
exponentially small. Third, demonstrating the utility of the
tunneling time definition in emission simulations that are gen-
erally reliant on a particle model (due to the large number
of emission events characteristic of operation) will be con-
sidered. Lastly, the present analysis will be extended to build
on the long-established analogy between quantum mechanics
and electromagnetic wave propagation [64] to devise a series
of microwave experiments for the purpose of investigating

extensions of the present study. The cm wavelength scale in
the microwave regime enables effects presented in this paper
to be examined at the macroscopic scale.
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APPENDIX A: DELTA-FUNCTION SEQUENCES

The V (x) barriers (and by extension, wells) give analytical
V (x, k − k′) from Eq. (4), for which ones of relevance here
are δ function (Vd ), rectangular (Vr), parabolic (Vp), Gaussian
(Vg), and triangular (Vt ), defined by

Vd (x) = 2Voλδ(x), (A1)

Vr (x) = Vo �(λ2 − x2), (A2)

Vg(x) = Vo exp[−(x/λ)2], (A3)

Vp(x) = Vo[1 − (x/λ)2]�(λ2 − x2), (A4)

Vt (x) = Vo[1 − (x/λ)]�(x)�(λ − x), (A5)

where �(x) is the Heaviside step function and δ(x) is the
Dirac δ function (compare Eq. (10) of Ref. [61]). In the case
of Eq. (A1), it is quickly found that

Vd (x, k) = −4λVo

π h̄
sin(2kx). (A6)

The other cases are chosen to emphasize distinctions associ-
ated with continuous behavior such that V (x + ε) = V (x − ε)
as ε → 0, abrupt behavior such that ∂xV (x + ε) �= ∂xV (x −
ε), and symmetric behavior such that V (+|x|) = V (−|x|).
Specifically, (i) cases (r, t ) are discontinuous whereas cases
(p, g) are continuous, (ii) cases (r, p, t ) are abrupt whereas
case (g) is smooth, and (iii) cases (r, p, g) are symmetric
whereas case (t ) is asymmetric. It can be shown that the sym-
metric cases result in Vc(x, k) given by [for c ∈ (d, r, p, g)]

Vs(x, k)

VoNc
= −ηc(2kλ) sin(2kx), (A7)

where k − k′ → k for notational simplicity, whereas the anti-
symmetric case contains an additional term such that

Vt (x, k)

VoNt
= ηt (2kλ) sin(2kx) − η′

t (2kλ) cos(2kx), (A8)

where the (t ) subscript is used directly as it is the
only asymmetric case considered, although the right trian-
gle barrier can be made symmetrical by the replacement
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FIG. 24. The ηc(ϕ) functions of Eqs. (A7) and (A8). Discontinu-
ity and abruptness result in a greater range over which variation is
visible. Legend refers to the cases of Eq. (A10).

Vt (x) → [Vt (x) + Vt (−x)]/2, or isosceles barrier. The right
triangle barrier is, however, of greater importance given its
relation to the Fowler-Nordheim barrier of field emission
[67,69]. Explicit evaluation of Eq. (4) gives

Nr = 4λ

π h̄
; Np = 8λ

3π h̄
; Ng = 2λ√

π h̄
; Nt = 2λ

π h̄
, (A9)

ηr (ϕ) = sin ϕ

ϕ
; ηg = e−ϕ2/4,

ηp(ϕ) = 3

ϕ2
(sin ϕ − ϕ cos ϕ),

ηt (ϕ) = 1 − cos ϕ

ϕ2
; η′

t (ϕ) = ϕ − sin ϕ

ϕ2
. (A10)

The behavior is shown in Fig. 24. Observe that for the sym-
metric cases, the relation

Nch̄

4λ

∫ ∞

−∞
ηc(ϕ)dϕ = 1 (A11)

holds, so the Nch̄ηc(2kλ)/(4λ) are seen to be δ-function se-
quences (analytic representations of the Dirac δ function)
[133] in the limit that λ → 0. The rapidity with which
Vc(x, k) decreases with increasing k greatly affects oscilla-
tions in f (x, k, t ) for large ±|k|, which also depends on Nc,
e.g., Vr (x, k)/VoNr diminishes with increasing ϕ = 2kλ but
Vd (x, k)/VoNr does not, showing starkly the effects of the most
abrupt barrier. Therefore, the Gaussian barrier is the most ad-
vantageous as it most rapidly diminishes with ϕ, followed by
the parabolic barrier, whereas the triangular and rectangular
barriers are more susceptible to the incursion of numerical
noise for large |k| in time evolution simulations using present
methods.

APPENDIX B: RESONANT TUNNELING BARRIER

The associated V (x, k) to successively more complex bar-
riers can be constructed from the components of Eq. (A2). An
example of importance to past WDF simulations is the super-

−3 −2 −1 0 1 2 3

−0.5

0

0.5

1

ϕ/2π

h
c(

ϕ
)

1 Barrier

2 Barriers

FIG. 25. V (x, k) for a single barrier (Vr (x) of Eq. (A2)) compared
to a double barrier separated by a well of width w = W − 2λ (Vrtd (x)
of Eq. (B1) with 2λ = 3W/8).

lattice barriers examined by Tsu and Esaki [134] for which the
double barrier instance figures prominently in the treatment
of RTDs [56,74,95,96]. The single barrier is replaced by two
barriers centered at ±W/2, resulting in

VRTD(x) = Vr

(
x − W

2

)
+ Vr

(
x + W

2

)
, (B1)

where W − 2λ is the width of the well region, to which a
bias potential may be added, although that complication is not
considered here. Explicit evaluation shows that

VRTD(x, k) = −4Vo
cos(kW ) sin(2kλ) sin(2kx)

π h̄k
, (B2)

which differs from Vr (x, k) by a factor of 2 cos(kW ). The
effects of the additional factor are shown in Fig. 25.

Finally, RTDs are often subject to a potential drop that can
be represented as the inclusion of an additional bias term Vb(x)
that linearly varies between (−W/2 − λ < x < W/2 + λ) and
constant at 0 for x < −W/2 − λ but at −	V for x > W/2 +
λ. The resulting Vb(x, k − k′) is then also analytic and can be
evaluated using the techniques introduced in the consideration
of Eqs. (21) and (A5).

APPENDIX C: GAUSSIAN SHAPE FACTORS

A commonly used approximation to the tunneling proba-
bility D[E (k)] for thermal and field emission [135] uses the
Kemble approximation,

D[E (k)] = 1

1 + eθ[E (k)]
, (C1)

and is exact for a parabolic barrier [136] and very good for
barriers such as Vp(x) [6]. The Gamow factor in it is given by

θ (E ) ≡ 2
√

2m

h̄

∫ x+(E )

x−(E )

√
V (x) − E dx, (C2)
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where x± are such that V (x±) − E = 0. The shape factor
method [70,132] expresses the Gamow factor as

θ (E ) ≡ 2σ (E )κ (E )L(E ), (C3)

where κ (E ) ≡ √
2m(Vo − E )/h̄ = √

k2
v − k2 is the maximum

height of the integrand, L(E ) = x+(E ) − x−(E ) is the width
of the integration region, and σ (E ) accounts for the proportion
of the integration area κ (E )L(E ) that is occupied by the inte-
grand. For the rectangular barrier, the shape factor σr (E ) ≡ 1,
such that θo(E ) ≡ 2κ (E )L and L is the width of the barrier
because a rectangular barrier is of constant height and width.
For general barriers, σ (E ) and the companion u(E ) are [132]

σ (E ) = 1

L(E )

∫ x+(E )

x−(E )

[
V (x) − E

Vo − E

]1/2

dx, (C4)

u(E ) = 1

L(E )

∫ x+(E )

x−(E )

[
Vo − E

V (x) − E

]1/2

dx. (C5)

As a result, for V (x) = Vp(x) of Eq. (A4), x±(E ) =
±λ

√
1 − (E/Vo) and so

σp =
∫ 1

0

√
1 − s2 ds = π

4
,

up = 1

2

∫ 1

0

ds√
s(1 − s)

= π

2
, (C6)

θp(k) =
(

πλ

kv

)(
k2
v − k2) = π

4
θo[E (k)] (C7)

for the parabolic barrier [132], both of which are constant.
Observe that no restriction appears on E to keep it below Vo:
in fact, extending E past Vo provides a good account of D(E >

Vo) for parabolic barriers [6].
The Gaussian barrier for V (x) = Vg(x) of Eq. (A3) pro-

ceeds analogously. A form more amenable to numerical
integration uses x±(E ) = λ

√
η(E ) where η(E ) ≡ ln(Vo/E ) =

2 ln(kv/k) results in

σg[η(E )] =
∫ π/2

0

[
eη cos2 s − 1

eη − 1

]1/2

cos s ds. (C8)

Limiting cases are σg(0) = π/4 and σg(η � 1) ≈ √
π/2η.

The variation of σg(η) with η is well fit by a quadratic equation
with coefficients anticipated from finite difference approxima-
tions to derivatives, giving

σg(η) ≈ A + Bη + Cη2, (C9)

where

A = σg(0) = 0.78540,

B = 1
2 [−3σg(0) + 4σg(1) − σg(2)] = −0.050396,

C = 1
2 [σg(0) − 2σg(1) + σg(2)] = −0.0011621,

and σg(1) = 0.73384 and σg(2) = 0.67996, an approximation
for which the error is <0.04% for E > Vo/8. Consequently, a
useful approximation is

θg(E ) = 4λ
√

η σg(η) κ (E ), (C10)

where σg(η) is approximated by Eq. (C9). It follows θg/θp <

[ηeη/(eη − 1)]1/2 ≈ 1 + (η/4)[1 + (η/24)]

APPENDIX D: DWELL TIME AND HARTMAN EFFECT

Hartman [118] considered the tunneling of a wave packet
through a metal-insulator-metal (MIM) structure, modeled as
a rectangular barrier equivalent to Eq. (A2). He found that
that for sufficiently thick barriers (kvλ � 1 in the present
notation), tunneling is dominated by contributions smaller
than but near to the top of the barrier (D[E (k)] sharply
peaked near k � kv in the present notation). He further found
that the “transmission time” (his δt3) converges to (k2

v/kκ )τv

(in the present notation where τv ≡ h̄/Vo) in the same thick
barrier limit—that is, it is independent of the width of the
barrier, an effect subsequently designated the Hartman effect
[54,63,64,137].

Winful compactly summarizes the Hartman effect in
Ref. [63] as the saturation of τg (the group delay) with in-
creasing λ, where he disentangles the role of self-interference
of the reflected wave so as to find

τg = τd + τi,

with τd being the dwell time and τi being the self-interference
delay with the latter given by τi = −(h̄/k)�(r)∂E k, where
�(r) is the imaginary part of the reflection coefficient r(k)
(cf. Eqs. (9) and (10) of Ref. [63]), e.g., for an incident plane
wave of eikx, the reflected plane wave is of the form r(k)e−ikx.
Following Ref. [6], introduce θ ≡ 2κL = 4κλ. In terms of θ ,
Winful’s Eqs. (16) and (17) of Ref. [63] are

τd

τv

=
(

kk2
v

2κ

)
Na + Nb

Do
, (D1)

τi

τv

=
(

κk2
v

2k

)
Na

Do
, (D2)

where the numerator (Na, Nb) and denominator (Do) terms are
given by

Na = 2k2
v tanh(θ/2), Nb = (κ2 − k2)θ sech2(θ/2),

Do = k4
v − (κ2 − k2)2 tanh2(θ/2). (D3)

0 0.2 0.4 0.6 0.8 1
0

2

4

6

k/kv

τ
/τ

v

τd(4)

τd(8)

τi(∞)

τi(4)

τi(8)

τi(∞)

τg(∞)

FIG. 26. Delay τd (θ ) [Eq. (D1)] and self-interference τi(θ )
[Eq. (D2)] for a rectangular barrier with Vo = 8 eV and θ = 4 (◦,�)
and 8 (×, +). The asymptotic forms of Eq. (D4) are the red, blue,
and green lines for [τd (∞), τi(∞), τg(∞)], respectively.
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The behavior of tanh(θ/2) and sech(θ/2) alone govern the
width dependence of τd and τi. The λ → ∞ limit corresponds
to the θ → ∞ limit, for which Na → 2k2

v , Nb → 0, and Do →
k4
v , resulting in

τd

τv

→ k

κ
,

τi

τv

→ κ

k
,

τg

τv

→ k

κ
+ κ

k
= k2

v

kκ
, (D4)

and is equivalent to Eq. (19) of Winful, although a better
approximation for large but finite θ is to retain Na/Do as in
Eq. (53). If saturation is said to occur for tanh(θ/2) > 1 − δ,
then θ � ln[(2/δ) − 1], or θ � 6 for δ = 0.005. The behav-
ior of Eqs. (D1) and (D2) is compared to the asymptotic
limit of Eq. (D4) in Fig. 26 for values of θ that bracket
θ = 6.
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