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Determining the optimum thickness for high harmonic generation
from nanoscale thin films: An ab initio computational study
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We theoretically investigate high harmonic generation (HHG) from silicon thin films with thicknesses from a
few atomic layers to a few hundreds of nanometers, to determine the most efficient thickness for producing
intense HHG in the reflected and transmitted pulses. For this purpose, we employ a few theoretical and
computational methods. The most sophisticated method is the ab initio time-dependent density functional theory
coupled with the Maxwell equations in a common spatial resolution. This enables us to explore such effects
as the surface electronic structure and light propagation, as well as electronic motion in the energy band in
a unified manner. We also utilize a multiscale method that is applicable to thicker films. Two-dimensional
approximation is introduced to obtain an intuitive understanding of the thickness dependence of HHG. From
these ab initio calculations, we find that the HHG signals are the strongest in films with thicknesses of 2–15 nm,
which is determined by the bulk conductivity of silicon. We also find that the HHG signals in the reflected and
transmitted pulses are identical in such thin films. In films whose thicknesses are comparable to the wavelength
in the medium, the intensity of HHG signals in the reflected (transmitted) pulse is found to correlate with the
magnitude of the electric field at the front (back) surface of the thin film.

DOI: 10.1103/PhysRevB.103.155426

I. INTRODUCTION

Following progress in high harmonic generation (HHG) in
atoms and molecules that enabled the production of attosec-
ond pulses [1–4], HHG in bulk crystals has attracted great
interest during the last decade [5,6]. Experimental studies
have achieved HHG in thin films of various materials and
laser pulses [7–17]. These are extended to monatomic two-
dimensional (2D) layers, such as graphene [18,19], and to
metasurfaces, periodic 2D structures composed of nanoscale
objects [20]. HHG from bulk crystals is expected to be very
intense compared with those from atoms in the gas phase
because of the high atomic density. This indicates that the
HHG from solids is favorable in applications to develop, for
example, compact devices of XUV light sources.

Theoretical studies in the past mostly focused on elec-
tronic motion induced by a pulsed electric field prepared
in advance [21]. For sufficiently thick films, it is legitimate
to consider electronic motion in an infinitely periodic crys-
talline system in three dimensions induced by a spatially
uniform electric field. Calculations employing theories of
varying complexity, such as one-dimensional model [22–25],
time-dependent Schrödinger equation [26,27], density ma-
trix models [28–30], Floquet theory [31,32], and ab initio
descriptions such as the time-dependent density functional
theory (TDDFT) [33–36], have been developed. Theories to
describe HHG from monatomic layers and bulk surfaces have
also been developed [37,38]. Using these theories, electronic
motion in the wave-number (k) space based on the energy
band picture has been investigated and classified as inter- and
intraband motions [29]. It has been clarified that there are rich

manifestations of the crystalline structure of HHG through
the band structure, selection rules, and dependence on the
polarization direction [12,13,39].

To investigate HHG in bulk materials, the propagation ef-
fect is also important. The light-propagation effect on HHG
has been considered already in the case of atomic gases [40].
However, the effect should be significant primarily in bulk
solids, owing to their high atomic density. The propagation
effect in HHG from thin films has been investigated recently.
Experimentally, HHG in reflected and transmitted pulses has
been measured and compared for films of several differ-
ent thicknesses [41,42]. Theoretically, multiscale calculations
coupling a coarse-graining electronic motion with light propa-
gation have been conducted [28,36,43–45]. It has been shown
that the light propagation works to produce a clear HHG
spectrum, even when the spectrum is unclear in the unit-cell
calculation [36]. It has also been shown that the HHG in the
transmitted pulse decreases by several orders of magnitude
when emitted from thin films of micrometer thickness [45].

Although there has been progress on the propagation ef-
fect, as described above, we consider that even the following
basic questions have not yet been answered: (1) At what film
thickness is HHG emitted with the maximum intensity? (2)
What are the differences and similarities between HHGs in
reflected and transmitted pulses? The principal purpose of this
paper is to answer these questions unambiguously.

We theoretically describe HHG in Si thin films of various
thicknesses, from a few atomic layers to a few hundreds
of nanometers, that are comparable to the wavelength of
the incident pulse in the medium. We utilize a few the-
oretical and computational frameworks based on ab initio
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TABLE I. Methods that will be used to describe HHG and their effectiveness to take account of various effects.

Theory Single-scale Maxwell-TDDFT Multiscale Maxwell-TDDFT 2D approximation Single unit-cell
Treatment of EM fields Microscopic Macroscopic 2D macroscopic None

Bulk electronic structure Yes Yes Yes Yes
Surface electronic structure Yes No No No
Light propagation Yes Yes No No
Conduction Yes Yes Yes No

TDDFT [46,47] coupled with the Maxwell equations. In the
most sophisticated method, we simultaneously solve the time-
dependent Kohn-Sham (TDKS) equation for the electronic
motion in TDDFT and the Maxwell equations for electromag-
netic fields with a common spatial resolution. We call this
the single-scale Maxwell-TDDFT method [48]. The method is
applicable to films with thicknesses of less than a few tens of
nanometers because of its high computational cost. For thicker
films, we utilize a multiscale Maxwell-TDDFT method, in
which a microscopic TDKS equation is coupled with the
macroscopic Maxwell equations with a coarse-graining ap-
proximation [49]. A 2D approximation [48] is also introduced
to obtain an intuitive understanding of the thickness depen-
dence of HHG. Calculations using these methods provide a
unified understanding on the HHG in nanoscale thin films.

This paper is organized as follows: Sec. II describes the
theoretical and computational methods based on TDDFT. In
Sec. III, the calculation results are presented. The thickness
dependence of HHG, as well as the relation between HHGs
in reflected and transmitted pulses, are discussed. Finally, a
conclusion is presented in Sec. IV.

II. THEORETICAL METHODS

A. Problem setup and method summary

We consider irradiation of a freestanding thin film of thick-
ness d in a vacuum by an ultrashort light pulse of a linearly
polarized plane wave at normal incidence. As a prototypical
material, we selected Si thin films of various thickness, from
a few atomic layers to a few hundreds of nanometers. We
assume that the thin film is infinitely periodic and macro-
scopically isotropic in 2D. The propagation and polarization
directions of the incident light are taken to be along the z and x
axes, respectively. We assume that the reflected and transmit-
ted pulses contain only a component in the x direction, owing
to symmetry.

We express the asymptotic form of the vector potential
in the following way using the x component of the vector
potential A(z, t ):

A(z, t ) =
{

A(i)(t − z/c) + A(r)(t + z/c) (z → −∞),
A(t)(t − z/c) (z → +∞),

(1)

where A(i)(t ), A(r)(t ), and A(t)(t ) are the incident, reflected,
and transmitted fields, respectively. The x component of the
electric field, E (t ), is related to the vector potential by E (t ) =
−(1/c)dA(t )/dt . The reflected and transmitted electric fields,
E (r)(t ) and E (t)(t ), contain the high-order harmonics gener-
ated by the nonlinear light-matter interaction in the film.

To calculate the HHG spectrum from a thin film theoreti-
cally, it has been commonly considered electronic motion in a
unit cell of crystalline solids induced by an applied electric
field whose time profile is prepared in advance. There are,
however, a number of effects that should be considered fur-
ther. We investigate the following three effects in this paper.
First is an effect of the surface electronic structure, that is,
a change of the electron band structure at the surfaces from
that of the bulk system. The other two effects are related
to the difference between the incident electric field E (i)(t )
and the electric field that actually acts on electrons in the thin
film. We consider two effects that cause this difference. One
is the effect of the light propagation. A strong incident laser
pulse is modulated during the propagation due to nonlinear
light-matter interactions, and HHG pulses that are generated
inside the thin film also suffer from strong modulation and
absorption during propagation before they exit the medium at
the surfaces. The other is the effect of the conductivity of the
thin film. Even when the thin film is so thin that the electric
field inside the thin film can be regarded as uniform at the
macroscopic scale, the electric field inside the film is different
from that of the incident pulse due to the conductivity. Specif-
ically, the current that flows in the film causes reflection from
the film, and the electric field inside the medium is equal to
the sum of the incident and reflected electric fields, not the
incident field alone.

For a theoretical and computational description of HHG
from a thin film, we utilize four ab initio approaches based
on TDDFT [46,47], which are summarized in Table I and
explained in the following sections. The simplest approach
is the single unit-cell method, in which we solve the TDKS
equation for electronic motion in a unit cell of the crystalline
solid. In this description, the electric field of the incident
pulse is used as an applied field. The most extensive and
sophisticated approach is the single-scale Maxwell-TDDFT
method [48], in which we solve the Maxwell equations for the
electromagnetic fields and the TDKS equation for the elec-
tronic motion simultaneously using a common spatial grid.
Here, all three effects mentioned above are included. In the
multiscale Maxwell-TDDFT method [49], macroscopic light
propagation and microscopic electronic motion are coupled
using a coarse-graining approximation. In the practical calcu-
lation, the Maxwell equations and TDKS equation are solved
simultaneously using different spatial grids. While the effect
of the surface electronic structure is not included, this method
can describe HHG from thick films that cannot be accessed
by the single-scale Maxwell-TDDFT method. Finally, the 2D
approximation [48] is introduced as an approximation to the
multiscale Maxwell-TDDFT method, treating the thin film
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as infinitely thin in macroscopic scale. This method will be
useful to understand the thickness dependence of the HHG.

B. Single unit-cell method

First, we consider a method describing the electronic mo-
tion in a unit cell of a crystalline solid under a spatially
uniform electric field [50,51]. This method describes elec-
tronic motion based on the energy-band picture, and has been
utilized extensively to describe phenomena related to non-
linear and ultrafast dynamics of electrons such as nonlinear
susceptibilities [52], nonlinear energy transfer [53], attosec-
ond dynamics [54–56], and HHG from various solids [33–36].
Within the dipole approximation, the electron dynamics
are described using the Bloch orbital of the bulk system,
ubulk

nk (r, t ), where the wave vector k runs over the three-
dimensional (3D) Brillouin zone of the unit cell. The TDKS
equation for the Bloch orbitals ubulk

nk (r, t ) is written as

ih̄
∂ubulk

nk (r, t )

∂t
=

{
1

2m

(
−ih̄∇ + h̄k + e

c
x̂A(i)(t )

)2

− eφ(r, t ) + δV̂ion + Vxc(r, t )

}
ubulk

nk (r, t ).

(2)

Here, we use the vector potential of the incident pulse, A(i)(t ),
as the applied electric field. The electric scalar potential
φ(r, t ) includes the Hartree potential from the electrons and
the local part of the ionic potential. δV̂ion and Vxc(r, t ) are
the nonlocal part of the ionic pseudopotential [57] and the
exchange-correlation potential [58], respectively. All of the
calculations within this paper are performed within the adi-
abatic local-density approximation [59]. For simplicity of
implementations, we ignore the exchange-correlation term in
the vector potential, Axc(t ), which should exist in a rigorous
treatment of the exchange-correlation effects of infinite peri-
odic systems [47,60].

The electric current density averaged over the unit cell is
calculated as follows:

J(t ) = − e

m

∫
�

dr
�

occ∑
nk

ubulk∗
nk (r, t )

×
(
−ih̄∇ + h̄k + e

c
x̂A(i)(t )

)
ubulk

nk (r, t ) + δJ(t ),

(3)

where � is the volume of the unit cell and the index n runs
over the occupied band in the ground state. δJ(t ) is the current
density from the nonlocal part of the pseudopotential [50].

δJ(t ) = − e

m

∫
dr
�

occ∑
nk

ubulk∗
nk (r, t )e−i[k+(e/c)x̂A(i) (t )]r

× [r, δV̂ion]

ih̄
ei[k+(e/c)x̂A(i) (t )]rubulk

nk (r, t ). (4)

In practice, the current contains only the x component, parallel
to the polarization direction of the incident pulse. We later dis-
cuss how to relate this current density with the HHG spectrum
from a thin film of thickness d .

C. Single-scale Maxwell-TDDFT method

We next consider two theoretical methods that are capable
of describing the electronic motion and light propagation si-
multaneously. The first is the single-scale Maxwell-TDDFT
method, in which the electromagnetic fields are treated mi-
croscopically. In the next section, we will present the second
method, the multiscale Maxwell-TDDFT method, in which
the electromagnetic fields are treated macroscopically.

The single-scale Maxwell-TDDFT method [48] can fully
account for the effects of the light propagation, conduction,
and surface electronic structure. In this method, the Maxwell
equations for electromagnetic fields and the TDKS equation
for electronic motion are solved simultaneously in the time
domain using a common spatial grid. In the present case, we
consider an atomic configuration that is infinitely periodic in
the xy plane and isolated in the z direction. The electronic
motion is described using the Bloch orbital in the slab ap-
proximation, uslab

nk (r, t ), where k is the 2D crystal wave vector.
This satisfies the following TDKS equation:

ih̄
∂uslab

nk (r, t )

∂t
=

{
1

2m

(
−ih̄∇ + h̄k + e

c
A(r, t )

)2

− eφ(r, t ) + δVion(r) + Vxc(r, t )

}
uslab

nk (r, t ).

(5)

The vector potential A(r, t ) and the scalar potential φ(r, t ) are
2D periodic and satisfy the Maxwell equations in the Coulomb
gauge:(

1

c2

∂2

∂t2
− ∇2

)
A(r, t ) + 1

c

∂

∂t
∇φ(r, t ) = 4π

c
j(r, t ), (6)

∇2φ(r, t ) = −4πρ(r, t ). (7)

The vector potential A(r, t ) is smoothly connected to the
asymptotic field of Eq. (1) at planes that are sufficiently
separated from the medium. The scalar potential is chosen
to be periodic in the z direction as well as in the x and y
directions. As mentioned above, all the dynamic variables,
Bloch orbitals, and scalar and vector potentials are calculated
using a common spatial grid without coarse-graining. In this
sense, both the vector and scalar potentials are treated micro-
scopically in this approach.

The charge density ρ(r, t ) and the electric current density
j(r, t ) are derived from the Bloch orbitals, as follows:

ρ(r, t ) = ρion(r) − e
occ∑
nk

∣∣uslab
nk (r, t )

∣∣2
, (8)

j(r, t ) = − e

m
Re

occ∑
nk

uslab∗
nk (r, t )

×
(
−ih̄∇ + h̄k + e

c
A(r, t )

)
uslab

nk (r, t ), (9)

where ρion(r) is the charge density of the ion cores. In this
method, we ignore the current from the nonlocal part of the
pseudopotential [48].

Because the Bloch orbitals {uslab
nk (r, t )} are defined in the

calculation box that includes the entire film as well as the
vacuum region, the size of the computation rapidly grows as

155426-3



SHUNSUKE YAMADA AND KAZUHIRO YABANA PHYSICAL REVIEW B 103, 155426 (2021)

the thickness of the film increases. In terms of the computa-
tional cost, applications of the single-scale Maxwell-TDDFT
method is limited to thin films of thickness less than several
tens of nanometers.

D. Multiscale Maxwell-TDDFT method

In the multiscale Maxwell-TDDFT method [49], macro-
scopic light propagation and microscopic electronic motion
are coupled using a coarse-graining approximation. The light
propagation is described using the following macroscopic
wave equation:

(
1

c2

∂2

∂t2
− ∂2

∂Z2

)
AZ (t ) = 4π

c
JZ (t ), (10)

where Z is the macroscopic coordinate. This wave equation is
solved using a one-dimensional grid. At each grid point of Z , a
bulk system with 3D periodicity is considered. The electronic
motion at each grid point of Z is described using 3D-periodic
Bloch orbitals, ubulk

nk,Z (r, t ), which satisfy the TDKS equation:

ih̄
∂ubulk

nk,Z (r, t )

∂t

=
{

1

2m

(
−i∇ + h̄k + e

c
x̂AZ (t )

)2
− eφZ (r, t )

+δVion(r) + Vxc,Z(r, t )

}
ubulk

nk,Z (r, t ). (11)

From the Bloch orbitals, the averaged electric current density
JZ (t ) is calculated in the same manner as Eq. (3), but replacing
A(i)(t ) with AZ (t ).

At the beginning of the calculation, the Bloch orbitals at
each grid point Z , ubulk

nk,Z (r, t ), are set to the ground state.
The vector potential AZ (t ) is set to include only the incident
pulse in the vacuum region. By solving Eqs. (10) and (11)
simultaneously, we can evolve both AZ (t ) and ubulk

nk,Z (r, t ) si-
multaneously. We note that microscopic electronic systems at
different Z positions interact only through the vector potential
AZ (t ). When the light pulse is sufficiently weak and thus
the perturbation approximation is applicable, the multiscale
Maxwell-TDDFT method results in the ordinary macroscopic
electromagnetism with the constitutive relation given by the
dielectric function in the linear response TDDFT [49]. The
multiscale Maxwell-TDDFT method has been successfully
applied to investigate a number of extremely nonlinear and
ultrafast phenomena including attosecond science [61,62],
saturable absorption [63], coherent phonon generation and
detection [64,65], and initial stage of nonthermal laser
processing [66].

In the multiscale Maxwell-TDDFT method, the effect of
the light propagation can be taken into account while the
effect of the surface electronic structure cannot. In compen-
sation for the surface effect, the multiscale Maxwell-TDDFT
method can be applied to thick films for which the single-
scale Maxwell-TDDFT method is not capable. As we will
show later, results of the multiscale Maxwell-TDDFT method
coincide reasonably with those of the single-scale Maxwell-
TDDFT method when the surface effect is not significant.

E. 2D approximation

For sufficiently thin films, we may assume that the macro-
scopic electric field is spatially uniform inside the thin film.
We call this the 2D approximation. This approximation is
useful to identify and distinguish the conductive effect from
the propagation effect, and to understand the thickness depen-
dence of the HHG. The 2D approximation can be derived from
the multiscale Maxwell-TDDFT method, as described below.
Alternatively, it can also be derived from the single-scale
Maxwell-TDDFT method, as explained in Ref. [48].

We consider a film that is sufficiently thick to justify
neglecting the effect of the surface electronic structure and
sufficiently thin to regard the macroscopic electric field as
spatially uniform in the film. In the next section, we see that
there are thickness regions in which both assumptions are
fulfilled simultaneously. Under these assumptions, the current
density in Eq. (10) may be treated as

JZ (t ) � δ(Z )J (t )d, (12)

where d is the thickness of the film and J (t ) is the current
density averaged over the unit cell. By inserting this current
density into Eq. (10), we have

(
1

c2

∂2

∂t2
− ∂2

∂Z2

)
AZ (t ) = 4π

c
δ(Z )J (t )d. (13)

This equation [67] should be solved with the asymptotic form
of the vector potential of Eq. (1). In practice, the vector poten-
tial of Eq. (1) is the solution of Eq. (13), except at Z = 0.
The reflected and transmitted fields are determined by the
connection conditions at Z = 0. From the continuity of the
vector potential at Z = 0, we have

A(i)(t ) + A(r)(t ) = A(t)(t ). (14)

By integrating Eq. (13) once over Z , we obtain

dA(t)

dt
= dA(i)

dt
+ 2πdJ[A(t)](t ) (15)

at Z = 0, where we denote the current density as J[A(t)](t ) to
indicate that this is the current density caused by the vector
potential AZ=0(t ) = A(t)(t ). This is the basic equation of the
2D approximation.

We note that this 2D approximation is equivalent to a
specific case of the multiscale Maxwell-TDDFT method. If
we take only a single grid point in the macroscopic coordinate
Z for the medium and choose the grid spacing to be equal to d ,
the calculation using the multiscale Maxwell-TDDFT method
coincides with the above 2D approximation.

From the 2D approximation, we obtain several useful un-
derstandings regarding the HHG from very thin films. The
continuity equation (14) indicates that the HHG spectra of the
reflected and transmitted pulses are equal. Equation (15) indi-
cates that the current density that creates HHG is produced by
the transmitted pulse A(t)(t ), not the incident pulse of A(i)(t ),
and the transmitted pulse itself is modulated by the current
density. Even in very thin films such as monatomic layered
films, the transmitted (and simultaneously, the reflected) fields
are modulated by the current that flows in the film. This
modulation significantly affects the HHG spectrum, as shown
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in the next section. We call this effect the conductive effect, as
it is related to the electric current flowing in the thin film.

F. High harmonic generation spectrum

In the single-scale and multiscale Maxwell-TDDFT meth-
ods, we directly obtain the vector potentials of the reflected
and the transmitted pulses. In the 2D approximation, we ob-
tain the vector potentials of the transmitted pulse by Eq. (15).
The vector potential of the reflected pulse is obtained by using
the relation Eq. (14). From the vector potentials, we obtain the
respective electric fields by taking the time derivative.

For the single unit-cell method, we will use the following
expression for the reflected and transmitted electric fields.

E (r)(t ) = E (t)(t ) − E (i)(t ) = −2πd

c
J[A(i)](t ). (16)

This relation is derived if we replace A(t) with A(i) in J[A(t)](t )
of Eq. (15).

We evaluate the HHG spectra via the square of the
Fourier-transformed electric field |E (r,t)(ω)|2, where E (r,t)(ω)
is defined by

E (r,t)(ω) =
∫ t0+T

t0

dt eiωt E (r,t)(t ) f
( t − t0

T

)
. (17)

Here, f (x) ≡ 1 − 3x2 + 2x3 is a smoothing function [68] and
t0 is the initial time. For the reflection pulse, t0 is set to the
initial time of the incident pulse. For the transmitted pulse, the
time delay by transmission is added to t0 for thick films. When
we discuss the thickness dependence of HHG, we introduce
the strength of the nth-order harmonics, as follows:

I (r,t)
n =

∫ (n+1/2)ω0

(n−1/2)ω0

dω|E (r,t)(ω)|2, (18)

where ω0 is the fundamental frequency.

G. Numerical detail

For numerical calculations, we utilize the open-source soft-
ware SALMON (Scalable Ab initio Light-Matter simulator for
Optics and Nanoscience) [69,70] developed by our group. In
this code, electronic orbitals as well as electromagnetic fields
are expressed using a uniform 3D spatial grid. The time evo-
lution of the electron orbitals is carried out using the Taylor
expansion method [71].

In the single unit-cell method, we use the conventional
cubic unit cell for the diamond structure, which contains eight
Si atoms with the side length of a = 0.543 nm. To express the
Bloch orbitals, a spatial grid of 163 points is used. The 3D
Brillouin zone is sampled by a 243 k-point grid. The time step
is set to 2.5 × 10−3 fs.

The same unit cell is also used in the 2D approximation
and multiscale Maxwell-TDDFT method. In the multiscale
Maxwell-TDDFT method, a uniform 1D grid is also intro-
duced to describe the wave equation of Eq. (10), with the grid
spacing less than or equal to 6.25 nm.

In the single-scale Maxwell-TDDFT method, the 2D-
periodic box of the size of a × a × (d + 4a) is used where
the size along the z axis contains the vacuum region of 4a
in the slab approximation. The atomic positions of Si atoms

are set at those positions in the bulk crystalline system, and
the dangling bonds at the surfaces are terminated by hydrogen
atoms. A uniform 3D spatial grid is used with the same grid
spacing as that in the cubic unit cell. The 2D Brillouin zone
of the single-scale Maxwell-TDDFT method is sampled by a
24 × 24 k-point grid. We have carefully examined the con-
vergence of the calculations with respect to discretizations in
spatial, k-space, and time variables.

III. RESULTS AND DISCUSSION

A. HHG in reflected and transmitted pulses

We employ the following time profile for the incident
pulse:

A(i)(t ) = −cE0

ω0
sin ω0t cos6

(πt

T

)
,

(
−T

2
< t <

T

2

)
,

(19)

where E0 is the maximum amplitude of the electric field, ω0

is the average frequency, and T is the pulse duration. In the
following calculations, we set h̄ω0 = 1.5 eV and T = 30 fs.
We note that the band gap of bulk Si is 2.58 eV in the local
density approximation.

For a typical case, Fig. 1 shows snapshots of the incident
pulse [Eq. (19)] and the transmitted and the reflected pulses
in the calculation using the single-scale Maxwell-TDDFT
method for a film of thickness d = 10a (5.43 nm). The max-
imum amplitude E0 of the incident pulse is set to provide
the peak intensity of I = 5 × 1012 W/cm2. In Fig. 1(a), the
electronic density at the ground state in a plane that includes
Si atoms is shown. In Fig. 1(b), the incident pulse is prepared
to the left of the thin film located at z = 0. Figure 1(c) shows
the pulses at a sufficient time after interaction (red solid line).
The reflected (transmitted) pulse is seen in the left (right)
to the film. For comparison, we also plot a weak-pulse case
(I = 109 W/cm2) scaled up by a factor of

√
5000 (blue dashed

line). The insets show spectra for the respective pulses of the
strong-pulse case. In the weak-pulse case, the field amplitudes
of reflection and transmission are consistent with expected
values from the refractive index of Si. In the beginning of the
pulses (the left end for the reflection and the right end for the
transmission), the strong and the scaled weak pulses coincide
accurately. They gradually differ by nonlinear interaction in
the strong-pulse case. While the difference of the two looks
not very large, the spectra of the strong-pulse case (insets)
clearly show that the reflected and the transmitted pulses
include HHG signals. It qualitatively resembles the measured
HHG spectra of Si films such as Fig. 6(a) in Ref. [72].

We first discuss thin films with thicknesses less than a
few tens of nanometers. For such films, it is possible to
achieve calculations using the single-scale Maxwell-TDDFT
method. Figure 2 shows the HHG spectra included in the
reflected (RHHG) and transmitted (THHG) pulses. The left
panels [Figs. 2(a)–2(d)] show the spectra for the incident
pulse with a peak intensity of I = 1 × 1012 W/cm2, and the
right panels [Figs. 2(e)–2(h)] show those for a peak inten-
sity of 5 × 1012 W/cm2. Panels (a) and (e) show results for
the film of thickness d = a (0.543 nm), (b) and (f) for 10a
(5.43 nm), (c) and (g) for 30a (16.29 nm), and (d) and (h) for
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incident

reflected

incident spectra

x

z
yincident pulse

 5  7  9

 5  7  9

RHHG

 5  7  9

THHG

FIG. 1. Typical calculation using the single-scale Maxwell-
TDDFT method for a Si thin film of thickness d = 10a (5.43 nm).
(a) Electron density in the ground state in a plane containing Si
atoms. (b) Initial pulse set to the left of the thin film located at
z = 0. The peak intensity of the pulse is set at I = 5 × 1012 W/cm2 at
t = 0. (c) Reflected and transmitted pulses at t = 31.25 fs. The insets
show the corresponding HHG spectra. For comparison, we also plot
a weak-pulse case (I = 109 W/cm2) scaled up by a factor of

√
5000

(blue dashed line).

50a (27.15 nm). The red solid line (blue dashed line) shows
RHHG (THHG) using the single-scale Maxwell-TDDFT
method, and the black dotted line shows HHG using the
2D approximation [Eq. (15)]. In the 2D approximation, the
HHG spectra in the reflected and transmitted pulses coincide,
except for the component of the fundamental frequency ω0.
The orange dash-dotted line shows the HHG spectrum using
the single unit-cell method. We note that a comprehensive
discussion on intrinsic mechanisms of Si HHG such as the
intra- and interband contributions has already been provided
by Ref. [35] using the single unit-cell method.

First, we focus on the extremely thin case of d = a
(0.543 nm) [Figs. 2(a) and 2(e)]. This is a film composed of
two atomic layers. Although fabrication of such thin material
composed of Si is not easy, HHG of such thin materi-
als is highly concerned, as measurements and calculations
have been reported for a number of 2D materials such as
graphene and transition metal dichalcogenides [14,18,19,73].
Here the RHHG and the THHG spectra using the single-scale
Maxwell-TDDFT method coincide accurately, as expected

from the argument in the 2D approximation [Eq. (14)]. How-
ever, the HHG spectrum by the 2D approximation (black
dotted line) does not coincide accurately with that using the
single-scale Maxwell-TDDFT method. This indicates the sig-
nificance of the effect of the surface electronic structure that
is not included in the 2D approximation. We note that the
validity of the relation of Eq. (14) does not suffer by the sur-
face electronic structure, as it can be derived directly from the
single-scale Maxwell-TDDFT method [48]. The result of the
single unit-cell method (orange dash-dotted line) coincides
with the 2D approximation, indicating that the conductive
effect in the film is not important in such extremely thin
film.

The above observations hold also at the film of thickness
d = 10a (5.43 nm) [Figs. 2(b) and 2(f)], except that the dis-
crepancy between spectra using the 2D approximation and
the single unit-cell method becomes apparent. It implies that
the effect of the conductivity in the thin film, use of A(t), not
the incident pulse A(i), to evaluate the current in the right-hand
side of Eq. (15), increases as the film thickness increases,
because the effect is proportional to d .

In the case of d = 30a (16.29 nm) [Figs. 2(c) and 2(g)], the
results using the single-scale Maxwell-TDDFT method and
those using the 2D approximation agree reasonably with each
other. This indicates that neither the surface electronic struc-
ture nor the propagation effect is significant at this thickness.
Only the conductive effect is important. By closely observing
the difference between the RHHG and THHG spectra, the
latter is slightly greater than the former. This indicates that
the propagation effect starts to appear.

In the case of d = 50a (27.15 nm) [Figs. 2(d) and 2(h)],
it is clear that, in the single-scale Maxwell-TDDFT method,
the THHG is greater than the RHHG due to the propaga-
tion effect. Now the calculation using the single unit-cell
method greatly differs from the others, despite that the 2D
approximation still reasonably reproduces the results using
the single-scale Maxwell-TDDFT method. In more detail, the
spectrum of the 2D approximation is closer to the THHG in
the single-scale Maxwell-TDDFT method than the RHHG.
The high-order part of the spectrum shown in Fig. 2(d)
[and partially Fig. 2(c)] looks noisy, presumably because the
driving field is too weak (I = 1 × 1012 W/cm2) to produce
high-order signals at this thickness.

Overall, the 2D approximation is a reasonable approxi-
mation to the single-scale Maxwell-TDDFT method in this
thickness region. This indicates that the surface electronic
structure and the propagation effects are not significant. The
large difference between the results using the 2D approxi-
mation and those using the single unit-cell method indicates
that the conductive effect is significant, even in these very
thin films.

By comparing the different thicknesses, especially
Figs. 2(e) and 2(f)–2(h), we realize that the HHG spectrum is
unclear in films of thickness d = a (0.543 nm) and becomes
clearer as the thickness increases. This trend is common
in both spectra using the single-scale Maxwell-TDDFT
method and the 2D approximation. It implies that the
conductive effect, the current in the thin film that appears
in the right-hand side of Eq. (15), contributes to produce a
cleaner HHG signal. This is consistent with the observation
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FIG. 2. HHG spectra in the reflected pulse (RHHG) and the transmitted pulse (THHG). Left panels [(a)–(d)] show the spectra for a pulse
with the peak intensity of I = 1 × 1012 W/cm2 and right panels [(e)–(h)] for a pulse of I = 5 × 1012 W/cm2. Top panels [(a),(e)] show
the spectra for the film thickness of d = a (0.543 nm), second panels [(b),(f)] for d = 10a (5.43 nm), third panels [(c),(g)] for d = 30a
(16.29 nm), and bottom panels [(d),(h)] for d = 50a (27.15 nm). The red solid (blue dashed) line for the RHHG (THHG) using the single-scale
Maxwell-TDDFT method, blue dotted line using the 2D approximation, and orange dash-dotted line using the single unit-cell method.

in Ref. [36] where both the conductive and the propagation
effects are included.

B. Thickness dependence

Figure 3 shows the thickness dependence of the intensity
of HHG in the reflected pulse using Eq. (18). The peak in-
tensity of the incident pulses is set at I = 1 × 1012 W/cm2

in Figs. 3(a)–3(d) and at 5 × 1012 W/cm2 in Figs. 3(e)–3(h).
Intensities of harmonic order of third [(a),(e)], fifth [(b),(f)],
seventh [(c),(g)], and ninth [(d),(h)] are shown. The red
solid line (blue dashed line) corresponds to the single-scale
Maxwell-TDDFT method (2D approximation).

As seen from Fig. 3, the thickness dependence of HHG
intensities using the 2D approximation (blue dashed line)
shows qualitative agreement with those using the single-scale
Maxwell-TDDFT method (red solid line). In both calcula-
tions, the HHG intensity is maximum around thicknesses of
d = 2–15 nm, irrespective of the order of the HHG. The
appearance of the maximum at these thicknesses can be under-
stood as a consequence of the conductive effect, as described
below, extending the formalism of the 2D approximation.

By taking the Fourier transform of Eq. (15), we obtain

−iωA(t)(ω) = −iωA(i)(ω) + 2πdJ[A(t)](ω). (20)

We decompose the current density into linear and nonlinear
components as J[A(t)](ω) = JL[A(t)](ω) + JNL[A(t)](ω) and
use the constitutive relation for the linear part,

JL[A(t)](ω) = σ (ω)E (t)(ω) = iω

c
σ (ω)A(t)(ω), (21)

where σ (ω) is the conductivity of the bulk medium. Combin-
ing the above equations, we obtain(

1 + 2πd

c
σ (ω)

)
A(t)(ω) = A(i)(ω) + 2π id

ω
JNL[A(t)](ω).

(22)

We also decompose the transmitted vector potential into linear
and nonlinear components [48], A(t)(ω) = A(t)

L (ω) + A(t)
NL(ω),

where the linear vector potential is given by

A(t)
L (ω) =

(
1 + 2πd

c
σ (ω)

)−1

A(i)(ω). (23)

The nonlinear term A(t)
NL satisfies the following relation:

A(t)
NL(ω) = 2π id

ω

(
1 + 2πd

c
σ (ω)

)−1

JNL
[
A(t)

L + A(t)
NL

]
(ω).

(24)
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FIG. 3. Thickness dependence of HHG intensities included in the reflected pulse is shown from third [(a),(e)], fifth [(b),(f)], seventh
[(c),(g)], and ninth [(d),(h)] orders. Left panels [(a)–(d)] for the incident pulse of the peak intensity at I = 1 × 1012 W/cm2, and right panels
[(e)–(h)] at I = 5 × 1012 W/cm2. Results using the single-scale Maxwell-TDDFT method are shown by red solid lines, and results using 2D
approximation are shown by blue-dashed lines.

We note that the nonlinear component of the reflected pulse is
also given by Eq. (24). So far, no approximations have been
made besides the 2D approximation. Here, we assume that the
nonlinear component A(t)

NL is rather small and can be ignored
to evaluate the nonlinear current density in the right-hand side
of Eq. (24). Then, we have

A(t)
NL(ω) � 2π id

ω

(
1 + 2πd

c
σ (ω)

)−1

JNL
[
A(t)

L

]
(ω). (25)

To investigate how the HHG intensity included in the
above A(t)

NL(ω) depends on d , we introduce two further as-
sumptions. First, we assume that the incident pulse A(i)(t )
has a well-defined frequency, which we denote as ω0. Sec-
ond, the nth-order nonlinear current density is proportional to
An, where A is the amplitude of the vector potential. Then,
from Eq. (23), the d dependence of the nth-order term in
JNL[A(t)

L ](ω) is given by [1 + 2πσ (ω0) d/c]−n. Then, from
Eq. (25), the nth-order term of A(t)

NL(ω = nω0) is proportional
to the following factor:

A(t)
NL(nω0) ∝ d(

1 + 2πσ (nω0 )
c d

)(
1 + 2πσ (ω0 )

c d
)n . (26)

From this d dependence, we expect that the intensity of the
HHG of each order shows a maximum as a function of d , and
the peak position is determined by the bulk conductivity.

The conductivity at the frequency of the HHG, σ (nω0),
depends on the order n and becomes small at high orders,
n 
 1. For simplicity, we consider the d dependence caused
by the conductivity at the fundamental frequency, σ (ω0). We
expect the peak of HHG appears at the thickness

d ∼ c

2π
√

n − 1|σ (ω0)| , (27)

where we used σ (ω0) as a pure imaginary number at the fre-
quency h̄ω0 = 1.5 eV. The value c/(2π |σ (ω0)|) � 19.2 nm is
derived from the conductivity of Si at the frequency ω0. This
explains the appearance of the peak around d = 2–15 nm.

C. Propagation effect

As the film thickness increases, the computational cost of
the single-scale Maxwell-TDDFT method rapidly increases.
Therefore, the use of the multiscale Maxwell-TDDFT method
is appropriate and necessary. To confirm the accuracy of the
multiscale method, we compare the two methods in Fig. 4 for
RHHG and THHG emitted from a film of thickness d = 50a
(27.19 nm) and the incident pulse with maximum intensity
I = 5 × 1012 W/cm2, which are the same conditions as those
in Fig. 2(h). Because the spectra using two methods coin-
cide accurately with each other, we may conclude that the
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FIG. 4. HHG spectra of d = 50a (27.19 nm) film included in the
reflected (a) and the transmitted (b) pulses are shown. Red solid lines
show the results using the single-scale Maxwell-TDDFT method,
whereas the blue dashed lines show those using the multiscale
Maxwell-TDDFT method.

multiscale Maxwell-TDDFT method, which ignores the effect
of the surface electronic structure, is reliable for films of this
thickness and greater.

We note that, as mentioned in Sec. II C, the multiscale
Maxwell-TDDFT method is identical to the 2D approxima-
tion for very thin films where the macroscopic electric field
may be regarded as uniform inside the thin film. As discussed
in Fig. 2, the 2D approximation was a good approximation for
films of thickness less than d = 50a (27.19 nm). In summary,
we expect the multiscale Maxwell-TDDFT method to be re-
liable for thin films of any thickness as long as the surface
electronic structure is not important.

Figures 5(a)–5(d) show the thickness dependence of the
third- to ninth-order harmonics included in the reflected and
transmitted pulses for the incident pulse with a peak inten-
sity of I = 5 × 1012 W/cm2. Results using the single-scale
Maxwell-TDDFT method are shown for thickness d � 50a
(27.19 nm). The RHHG shown here are the same as those
in Figs. 3(e)–3(h). The results using the multiscale Maxwell-
TDDFT method are shown for thickness d � 30a (16.29 nm).

Figure 5(e) shows the square of the maximum electric field
amplitude in time, Emax = maxt |E (t )|, at the front surface
and the back surface of the film. When using the single-
scale Maxwell-TDDFT method, an average over the surface
is taken. Figure 5(f) shows |t |2 and |1 + r|2, where t and r
are the amplitude of transmission and reflection coefficients
in ordinary electromagnetism:

r = r0(1 − e2iφ )

1 − r2
0e2iφ

, t =
(
1 − r2

0

)
eiφ

1 − r2
0e2iφ

, (28)

where r0 = (1 − n)/(1 + n) and φ = 2πnd/λ. The index of
refraction n of Si and the wavelength λ is evaluated at the
frequency ω0. T = |t |2 is equal to the transmittance and is
equal to the square of the electric field at the back surface,
while |1 + r|2 is equal to the square of the electric field at the
front surface.
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FIG. 5. (a)–(d) Thickness dependence of the intensities of the
reflected (solid lines with crosses) and the transmitted (dashed lines
with squares) HHG, from third (a) to ninth (d) order. Red lines
and symbols are calculated using the single-scale Maxwell-TDDFT
method, and blue lines and symbols using the multiscale Maxwell-
TDDFT method. (e) Maximum intensities of the electric fields
averaged over the 2D area of the front (back) surface are shown
by red lines with symbols (blue lines with symbols). (f) Intensities
of electric fields in ordinary electromagnetism at the front (back)
surface are shown by dashed (solid) lines.

Because the frequency ω0 is below the direct band gap of
Si, |t |2 and |1 + r|2 become unity when 2πnd is equal to the
wavelength and its integer multiples. As seen from Fig. 5(e),
however, the magnitude of the electric field at the back surface
decreases monotonically as the film thickness increases in the
Maxwell-TDDFT calculations. The magnitude of the electric
field at the front surface shows more oscillatory behavior,
with a clear minimum at πd = λ. However, the magnitude
is smaller at πd = 2λ than at the zero-thickness limit. These
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decreases originate the nonlinear propagation effect included
in both the single-scale and multiscale Maxwell-TDDFT
methods. In any case, the magnitude of the electric field at
neither the front nor the back surface exceeds the magnitude
of the electric field at the zero-thickness limit.

The intensities of RHHG and THHG coincide with each
other when the film is sufficiently thin. As discussed previ-
ously, they are well understood by Eq. (14) and start to deviate
at a distance of 10–20 nm. As seen from Fig. 5, except the
d < 20 nm region, the thickness dependence of RHHG
(THHG) is correlated faithfully with the maximum electric
field at the front (back) surface. This indicates that the magni-
tude of the RHHG and the THHG is determined simply by the
intensity of its driving electric field at the respective surfaces.
Because the magnitude of the electric field at the front or back
surface does not exceed those at the zero-thickness limit, the
maximum of the intensity of the HHG signals also appears
around d ∼ 10 nm as seen in Fig. 3.

IV. CONCLUSION

We have developed a few theoretical and computational
methods based on first-principles TDDFT and investigated
HHG from thin films of crystalline solids with thicknesses
from a few atomic layers to a few hundreds of nanometers.
Using these methods, it is possible to investigate effects of
(1) surface electronic structure, (2) conductivity of the film,
and (3) light propagation of fundamental and high-harmonic
fields, as well as (4) the effect of electronic motion in the bulk
energy band.

Among the methods used herein, the most sophisticated
method is the single-scale Maxwell-TDDFT method, which
considers all four effects mentioned above. It can be applied to
thin films with thicknesses less than a few tens of nanometers.
For thicker films, the multiscale Maxwell-TDDFT method, in
which a coarse-graining approximation is introduced, is appli-
cable. It can treat the effects except for the surface electronic

structure. To achieve insight into the thickness dependence of
the HHG, the 2D approximation is useful. We applied these
methods to thin films of crystalline silicon as a prototype
material, and obtained the following conclusions.

For thin films with thicknesses less than a few tens of
nanometers, the HHG spectra of reflected and transmitted
pulses are almost identical. This could be understood from the
2D approximation. In extremely thin films, the HHG intensity
increases as the thickness of the film increases. However,
the intensity soon saturates and reaches its maximum at a
thickness of around 2–15 nm. The saturation of the intensity
originates from the current that flows in the thin film and can
be described using the bulk linear conductivity of the medium.
This conductive effect also creates a clean HHG spectrum.

As the thickness increases beyond a few tens of nanome-
ters, it is found that the intensity of the reflected (transmitted)
HHG strongly correlates with the intensity of the electric field
at the front (back) surface of the thin film. By reflecting the
interference effect in pulse propagation, we find an enhance-
ment in the reflected HHG when the film thickness is equal
to integer or half-integer multiples of the fundamental wave-
length in the medium, λ/n, where n is the index of refraction.
However, the transmitted HHG monotonically decreases as
the thickness increases, owing to the nonlinear propagation
of the fundamental wave.
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