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Quantum network approach to spin interferometry driven by Abelian and non-Abelian fields
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We present a theory of conducting quantum networks that accounts for Abelian and non-Abelian fields acting
on spin carriers. We apply this approach to model the conductance of mesoscopic spin interferometers of different
geometry (such as squares and rings), reproducing recent experimental findings in nanostructured InAsGa
quantum wells subject to Rashba spin-orbit and Zeeman fields (as, e.g., the manipulation of Aharonov-Casher
interference patterns by geometric means). Moreover, by introducing an additional field-texture engineering, we
manage to single out a previously unnoticed spin-phase suppression mechanism. We notice that our approach
can also be used for the study of complex networks and the spectral properties of closed systems.
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I. INTRODUCTION

Within the development of mesoscopic physics, coherent
spin transport in quantum electronics has attracted a great
deal of attention along the past decades [1]. This interest
runs from the study of fundamental spin-based phenomena,
such as weak antilocalization [2] and geometric/topological
spin phases [3,4], to proposals for spintronic applications,
such as spin field-effect transistors [5–7], spin filtering [8],
spin qubits [9,10], and, more recently, spin-based platforms
for topological quantum computing [11]. Additionally, the
understanding of quantum phenomena associated to coher-
ent transport can pave the way to enhance and improve the
sensibility of nanometer-sized devices [12]. A common in-
gredient here is the role played by Abelian and non-Abelian
phases produced by the carriers’ spin dynamics under the
action of magnetic textures originating from either (i) purely
magnetic sources, such as micromagnetic arrays leading to
inhomogeneous Zeeman coupling [13–16], (ii) purely electric
sources, leading to spin-orbit interaction such as Rashba or
Dresselhaus coupling [17,18], or (iii) hybrid sources, combin-
ing magnetic and spin-orbit fields [19,20].

Most experimental implementations are performed by us-
ing materials with strong Rashba spin-orbit coupling (RSOC)
such as InAlAs/InGaAs heterostructures, which allow for the
electrical control of the RSOC strength via top gates. The
recent transport experiments with mesoscopic interferome-
ters performed by Nitta’s group [19–22] showed evidence
of electronic wave-function manipulation through both the
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charge and the spin degrees-of-freedom. The charge degree-
of-freedom responds to magnetic fluxes whereas the spin
reacts to the RSOC (and to additional Zeeman fields). The
orbital coupling to magnetic fields gives rise to the Aharonov-
Bohm effect [23] and the spin coupling to electric fields is
responsible for the Aharonov-Casher effect [24] | the elec-
tromagnetic dual of the previous one. Experiments reporting
the observation of the Aharonov-Casher effect in mesoscopic
systems were carried out in HgTe heterostructures [25],
three-dimensional topological insulators [26], and Josephson
junction circuits [27], whereas the Aharonov-Bohm effect has
been extensively observed in metallic rings [28], p-type GaAs
heterostructures [29], and carbon nanotubes, [30] among oth-
ers.

The modeling of spin-dependent transport in mesoscopic
systems can demand significant numerical efforts. The most
popular technique has been the recursive construction of
Green’s functions from tight-binding Hamiltonians [31,32],
a very reliable method which sometimes turns out to be
expensive in computational terms. More recently, the devel-
opment of the open-source KWANT code [33], based on a
wave-function scattering approach, represented a major step
towards computational efficiency and stability with excellent
results. Alternatively, particular systems characterized by an
underlying network structure can be simulated by introducing
more specific techniques based on a quantum-graph approach
[17,34–41].

In this article, we apply the quantum-network approach
to model the transport properties of mesoscopic spin inter-
ferometers subject to generic magnetic fields and RSOC by
considering different geometries. The geometry of the inter-
ferometer is a key element since the carriers’ spin dynamics
and the corresponding spin-phase gathering are sensitive to it
[17,39–42]. Additionally, we propose a nontrivial extension of
the quantum-network approach by considering the presence of
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in-plane Zeeman fields. We treat those in a similar way as the
RSOC, however, they break time-reversal symmetry and, as a
consequence, the wave function describing each edge of the
quantum-network cannot be written in a compact form as in
the case of flux of a magnetic field [43] or a RSOC [39]. The
work is motivated by the experiments performed by Nitta’s
group [19–22] showing evidence of electronic spin manipula-
tion by geometric means in Aharonov-Casher interferometry.
These experiments were done by using two-dimensional ar-
rays of 40 × 40 ring and square interferometers, facilitating
the measurement of a self-averaged conductance: The pres-
ence of multiple but small imperfections in the individual
ring and square geometries lead to a universal signal that is
independent of those details. One experiment revealed the
manipulation of the geometric spin phase independently of
the dynamical spin phase in Rashba rings [20]. More re-
cently, topological spin-phase transitions in polygonal Rashba
circuits have been reported [22]. By employing a quantum-
network model, we reproduce the main results found in those
experimental settings. Our approach provides a full quantum
mechanical solution for the propagation of spin carriers inside
the polygonal structure. The main strengths of our approach
are the following: (i) we accounted for all possible propagat-
ing paths; (ii) there are no particular constraints imposed on
the scattering matrix at the injector and collector nodes.

Moreover, we take some steps forward and identify novel
interferometric characteristics by proposing a field-texture
engineering. This results in a physical situation similar to
the spin-helix effect arising in systems subjected to Rashba
and Dresselhaus spin-orbit couplings (SOCs) [44–46]. We
also cross-check the results of our quantum-network approach
by performing corresponding numerical simulations on tight-
binding models.

The paper is organized as follows. In Sec. II we take a
quantum-network approach to model a one-dimensional cir-
cular loop as a regular polygon with a large number of vertices
by following the method described in Ref. [41]. We gener-
alize the method by introducing additional in-plane Zeeman
fields beyond the perturbative approximation [20]. In Sec. III
we derive the conductance as a function of the RSOC and
Zeeman-field strengths and compare the obtained results to
the experimental data and perturbative methods. Furthermore,
we discover the occurrence of the transition line for which
the Zeeman and Rashba terms cancel each other out and we
study the effects on transport properties. We devote Sec. IV to
compare the results obtained by the quantum-network method
with those obtained by using a numerical tight-binding ap-
proach in the cases of clean and disordered systems. We
present a short summary in Sec. V where we analyze the
strengths of the quantum network approach. In the Appendix
we propose a technical derivation of one of the major analyti-
cal results of this work.

II. MODEL AND FORMALISM

We study the transport properties of ring-like structures by
employing the formalism of quantum networks. We focus on
regular polygons and approximate ring geometries as poly-
gons with a large number of edges—see Figs. 1(a) to 1(d). In
general terms, a metric network (or graph), is a collection of

FIG. 1. Sketch of the polygonal structures that we consider for
the quantum transport: (a) square, (b) hexagon, (c) octagon, (d) ring.
In panels (e) and (f) we show the square and the ring of the dis-
cretized tight-binding version that we use in Sec. IV. The inset shows
a zoom-in of the Y junction between the incoming lead and one of
the vertices of the square.

nodes (or vertices), connected by edges (or one-dimensional
intervals) of specified lengths [47]. In the graph terminol-
ogy, regular polygons are also known as 2-regular graphs
[38]. A quantum network is a metric graph equipped with
a Schrödinger operator [43,48]. The wave function of the
quantum network satisfies boundary conditions at the vertices,
which ensure the continuity (uniqueness) of the wave function
and the conservation of the probability current. The fulfillment
of these boundary conditions guarantees that the resulting
Schrödinger operator is Hermitian [35,36,43]. We note in
passing that this condition can be relaxed to account for
non-Hermiatian Hamiltonians with PT -symmetry [49]. The
continuity condition implies that the wave function assumes
a certain value at a vertex, regardless of the bond from which
it is approached. The concept of extended normal derivative
must be introduced to apply the second boundary condition,
whose definition might vary depending on the differential op-
erator, i.e., it depends on the presence of a magnetic field or a
SOC. To satisfy the current conservation condition, the sum of
the outgoing extended derivatives at each vertex must vanish
[35,38]. An extension for studying the n-particles quantum
statistics has been proposed in Ref. [50].

In the following subsections, we consider a quantum net-
work composed of single-mode quantum wires (QWs) subject
to RSOC and to magnetic fields. In each case, we de-
fine a different Schrödinger operator (Hamiltonian) and the
corresponding extended derivative. We start by introducing
different spin-dependent Hamiltonians for the QWs compos-
ing the quantum network. Each Hamiltonian will be solved by
using a spinorial plane-wave ansatz of the following form:

� = eikr

(
χA

χB

)
, (1)

where χA/B are the two components of the spinor, k is the
electronic momentum, and r is the local coordinate along
the QW.

A. Case of RSOC and magnetic flux

We start by considering a QW in the xy-plane that points
along the direction γ̂ = (cos γ , sin γ , 0). The QW is subject
to RSOC and a weak magnetic field perpendicular to the
xy-plane that interacts with the spin carriers only through
minimal coupling (i.e., no Zeeman coupling) [39,40]. The
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wire Hamiltonian reads

Ĥ = 1

2m∗ (p + eA)2 + h̄kR

m∗ [(p + eA) × ẑ] · σ , (2)

where kR is the coupling constant of the RSOC (in inverse-
length units), ẑ is the unit vector along the z-axis, σ is the
vector of the Pauli matrices describing the electron spin, and
m∗ is the electron effective mass. The RSOC strength kR is
related to the spin precession length LSO by LSO = π/kR. The
wave function of the QW, fulfilling the Dirichlet boundary
condition, can be written as a function of the values that the
wave function takes at its vertices α and β [39,40]:

�(r) = e−iϕ(r)e−i(γ̂×ẑ)·σkRr

sin(k�)
[sin k(� − r)�α

+ sin (kr)eiϕ(�)ei(γ̂×ẑ)·σkR��β], (3)

where � is the length of the QW, r is the local coordinate
along the QW measured from vertex α, and the momentum k
is related to the energy ε as k =

√
2mε/h̄2 + k2

R . The spinors
�α and �β are the values of the wave function at the vertices
α and β, respectively. In Eq. (3), we introduced a U(1) phase
factor e−iϕ(r) related to the magnetic field via the vector po-
tential A

ϕ(r) = 2π

φ0

∫ r

α

dr · A(r) , (4)

where φ0 = h/e is the flux quantum. This phase eventually
leads to the Aharonov-Bohm (AB) effect [12,23] in closed
loops. The expression in Eq. (4) is proportional to the circu-
lation of the vector potential between vertex α and point r
[37,43]. The second phase factor in Eq. (3) is a SU(2) phase
due to the RSOC. In closed loops it leads to the Aharonov-
Casher (AC) effect [24] (electromagnetic dual of the AB
effect) arising from the spin precession driven by the Rashba
field [39,40,51].

The probability current corresponding to Hamiltonian
(2) is

j = − i
h̄

2m∗
{
�† ∂�

∂r
− ∂�†

∂r
� + 2i

e

h̄
(γ̂ · A)�†�

+ 2ikR�†[(γ̂ × ẑ) · σ]�
}
. (5)

This expression hints that the probability current is not con-
served by the continuity of the derivative of the wave function.
However, the continuity of the extended derivative

∂

∂r
→ D = ∂

∂r
+ i

e

h̄
γ̂ · A + ikR(γ̂ × ẑ) · σ (6)

does ensure the conservation of the probability current.
Once the wave function of all QWs is written as in Eq. (3),

the conservation of probability current using the extended
derivative is imposed at the vertices. Solving the resulting
system of equations provides the value of the spinors at all
the vertices �α , and �(r) by extension.

B. Case of RSOC and Zeeman field

We now consider a QW subject to RSOC and to an
in-plane Zeeman field pointing in the direction α̂, where

FIG. 2. Energy spectrum as a function of momentum for kSO = 0
(left) and B = 0 (right). In the left panel, 
B is the pseudogap opened
by the Zeeman field at zero momentum. The four propagating states
at fixed energy are labeled by kf/b

± .

B = B(cos α, sin α, 0). The system Hamiltonian reads

Ĥ = p2

2m∗ + h̄kR

m∗ (p × z) · σ + μB · σ , (7)

with μ the Bohr magneton. Unlike the RSOC term, the Zee-
man term does not depend on momentum and thus it breaks
time-reversal symmetry.

Using the spinorial wave-function ansatz of Eq. (1), the
Hamiltonian can be cast into the following matrix:

Ĥ =
(

h̄2k2

2m∗ M∗

M h̄2k2

2m∗

)
, (8)

with M = (μB cos α + h̄2kRk
m sin γ ) + i(μB sin α − h̄2kRk

m
cos γ ). The matrix (8) has the following eigenvalues and
eigenvectors:

ε± = h̄2k2

2m∗ ± |M| , (9)

|v±〉 = 1√
2

(
e−iθ/2

±eiθ/2

)
, (10)

with θ the argument of M. The eigenvectors |v±〉 lie within
the xy-plane and remain constant along the wire. The energy
spectrum of the quantum wire is given by Eq. (9), and consists
of two energy bands due to the spin splitting induced by the
RSOC and Zeeman interactions. The energy bands for the
two limiting cases (kR = 0 and B = 0) are shown in Fig. 2.
It is common knowledge that the dispersion relation in the
presence of a Zeeman field is shifted vertically for opposite
spins, while the RSOC introduces a horizontal shift [51]. In
general, the interplay between both fields results in a more
complex spectrum.

The method described in this section is valid when the
Fermi energy EF lies above the pseudogap 
B = 2μ|B|,
namely, the splitting induced by the Zeeman field at k = 0.
In this situation, there are four available propagating states
for a given energy, two forward and two backward. We label
the momenta and arguments corresponding to the four states
as kf/b

± and θ
f/b
± , respectively. The superscript f/b indicates

forward/backward propagation and the subscript ± indicates
the energy band. A state with a defined propagation direction
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can be written as

�(r) = R̂eik̄r�(0) . (11)

Here we introduced the spin evolution matrix R̂ relating the
value of the wave function at point r to its initial value at r =
0. We find an analytic formula for the spin evolution matrix,
given by [see the Appendix for its derivation]

R̂ = 1

cos
(


θ
2

)
(

cos 
kr−
θ
2 ie−iθ̄ sin 
kr

2

ieiθ̄ sin 
kr
2 cos 
kr+
θ

2

)
. (12)

For the sake of simplicity, we suppressed here the super-
scripts f/b. Additionally, we introduced the elements k̄ =
k++k−

2 , 
k = k+ − k−, θ̄ = θ++θ−
2 , and 
θ = θ+ − θ−. Note

that, in general, these four quantities will be different for
states propagating forward or backward. Equation (12) is one
of the original results of this work since it allows for the
exact treatment of hybrid RSOC and Zeeman fields within the
quantum network method.

In general, the wave function of a QW will be a linear
combination of the available counterpropagating waves

�(r) = �f (r) + �b(r) (13a)

= R̂f
eik̄f r�f (0) + R̂b

eik̄br�b(0) . (13b)

The spinors �f (0) and �b(0) are unknown constants that
are fixed by applying the boundary conditions.

When the Zeeman field is zero, the forward and back-
ward elements satisfy the relations k̄b = −k̄f , 
kb = −
kf ,
θ̄b = θ̄ f + π , and 
θ f = 
θb = 0. After rearranging �f/b(0)
in terms of �(0) and �(�), the wave function can be
written as

�(r) = R̂(r)

sin(k�)
[sin k(� − r)�(0)

+ sin (kr)R̂−1
(�)�(�)] , (14)

where now the spin evolution matrix R̂ coincides with the
SU(2) phase factor in Eq. (3). When the RSOC is zero and we
have only the Zeeman term, which breaks time-reversal sym-
metry, we can still express the wave function with a structure
similar to Eq. (13b), with the spin rotation matrix that now
reads

R̂(r) = eiα̂·σ 
k
2 r . (15)

We note that a crossing of the energy band occurs when
the Zeeman field is perpendicular to the wire and its modulus
reaches to the critical value B = h̄2kkR

mμ
. Under this condition,

the effective magnetic field created by the RSOC cancels with
the in-plane magnetic field, so the only contribution to the
energy comes from the kinetic term. This situation is similar
to the spin-helix effect arising in systems with Rashba and
Dresselhaus SOCs of equal strength [44–46]. The effective
magnetic field due to the spin-fields vanishes for a certain
momentum, so the Hamiltonian becomes spin-independent
and an energy band crossing occurs. In this case, M = 0, so
the angles θ± for the two-fold degenerate solutions are not de-
fined. A careful analysis shows that the spin evolution matrix
is equal to the identity matrix. This comes as no surprise since
the SU(2) terms in the Hamiltonian cancel each other out.

Therefore, the spatial evolution of the state is simply given
by the dynamic phase factor eikr that arises from the kinetic
term.

Equations (12) and (13) are the key step to generalize the
quantum network method when an in-plane Zeeman field is
applied. Boundary conditions are then applied at the vertices
of the wire to obtain �f/b(0), and �(r) by extension. The
Zeeman term does not contribute any additional term to the
extended derivative, so it is given by Eq. (6) with A = 0.

C. Formalism for quantum transport

To study the transport properties of quantum networks, we
attach semi-infinite input and output leads to the vertices of
the network [37,39,41]. Each lead consists of a single-mode
QW with two spin channels [52]. The leads are not subjected
to any interaction, so they are characterized at zero tempera-
ture by a wave vector k and a Fermi energy EF = h̄2k2/2m. We
assume that the leads are connected to uncorrelated reservoirs,
so that there are no phase relationships among electrons in
different channels [53].

In a system with Nin (Nout) input (output) channels, if
an electron is injected through input channel σ with wave
number k, the wave function alongside the channels can be
written as

�in,σ ′ (r) = eikrδσ ′σ + rσ ′σ e−ikr, (16a)

�out,σ ′ (r) = tσ ′σ eikr, (16b)

where r is the position measured from the edge (negative for
input leads and positive for output leads). Here, rσ ′σ and tσ ′σ
are the channel-resolved reflection and transmission ampli-
tudes, respectively. The indices σ and σ ′ specify both the
lead and the spin state of the channel. We define the total
transmission and reflection coefficients of a channel σ ′ as
[16,51]

Tσ ′ =
∑

σ

|tσ ′σ |2 , (17a)

Rσ ′ =
∑

σ

|rσ ′σ |2 , (17b)

where the sum runs over the input channels. The total trans-
mission (reflection) is given by the sum of the transmission
(reflection) coefficients of the output (input) channels

T =
∑
σ ′

Tσ ′ =
∑
σσ ′

|tσ ′σ |2, (18a)

R =
∑
σ ′

Rσ ′ =
∑
σσ ′

|rσ ′σ |2. (18b)

The probability conservation (unitarity of the scattering
matrix) imposes that T + R = 1.

The zero-temperature conductance G based on the Lan-
dauer formula reads [32]

G = e2

h
Tr [tt†] = e2

h
T . (19)

It is clear from the previous expression that the conductance
is bounded by the number input channels, such that G �
Nine2/h.
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The derivatives of the wave function in the leads must
also be taken into account when imposing the conservation
of probability current. In an isolated quantum network, by
imposing the continuity of the wave function and the con-
servation of the probability current we obtain a set of linear
homogeneous equations where the variables are the values
of the wave function at the vertices. This allows us to study
the spectral properties of the quantum network via a secular
equation [38,43].

When adding the external leads, the energy of the system
is fixed by the Fermi energy of the leads EF. The transmis-
sion and reflection coefficients can be written in terms of
the values of the wave function at the contacts. Due to the
first term in the right-hand side of Eq. (16a), the set of equa-
tions becomes inhomogeneous, with a unique solution for T
and R.

If there is no Zeeman field, the wave function of the net-
work is described by the values it takes at the vertices �α [see
Eqs. (3)]. For each input (output) lead there are two reflection
(transmission) coefficients, one per spin channel. To satisfy
the single-valuedness of the wave function at the vertices
connected to external leads, one can write the reflection and
transmission coefficients of the leads as a function of �α .
The number of variables of the problem is then equal to the
number of vertices V . At each vertex the sum of the outgoing
extended derivatives must be equal to zero, so there are V
equations that impose the continuity of probability current.
These equations fix the values of �α , and consequently the
reflection/transmission coefficients.

Importantly, when the Zeeman field is finite, the wave
function is described by spinors �f

αβ (0) and �b
αβ (0), which

specify the wave function of a bond at one of its endpoints [see
Eq. (13)]. The subscripts indicate that the QW is connected to
vertices α and β. Together with the reflection/transmission
coefficients, there are 2N + Next unknown variables, where N
is the number of edges of the quantum network and Next is
the number of input/output leads. For a vertex α connected
to Nα edges, we can write Nα − 1 equations that impose the
single-valuedness of the wave function. The total number of
equations that verify the continuity of the wave function at the
edges of quantum network are 2N + Next − V . In addition, at
each vertex the sum of the outgoing extended derivatives must
be equal to zero. In total there are 2N + Next equations that
fix the values of the spinors and the transmission/reflection
coefficients.

For a generic vertex α, the continuity of the probability
current reads

∑
〈α,β〉

D�α,β (r)|r=0 = 0 , (20)

where the sum
∑

〈α,β〉 runs over all vertices β which are
connected to α.

Equation (20) can be expressed in terms of �f
αβ (0) and

�b
αβ (0) using Eq. (13b). In this case, the equation for the

internal vertices is

∑
δ∈{f,b}

∑
〈α,β〉

Mδ
α,β�δ

α,β (0) = 0 . (21)

In the case where the QW is subject to RSOC and a Zeeman
field

Mδ
α,β = ik̄δ + 
kδ

2
tan


θδ

2
σz

+ i

(

kδ

2

θ̂
δ

cos 
θδ

2

+ kR(γ̂ × ẑ)

)
· σ , (22)

where θ̂
δ = (cos θδ, sin θδ, 0).

Consider a quantum network with a single input and output
leads. If an electron with spin σ is injected along the input
lead, the equations for the external vertices read

∑
δ∈{f, b}
〈α, β〉

Mδ
α,β�δ

α,β (0) = ikχσ − ik
∑
σ ′

rσ ′σχσ ′, (23a)

∑
δ∈{f, b}
〈α, β〉

Mδ
α,β�δ

α,β (0) = −ik
∑
σ ′

tσ ′σχσ ′ . (23b)

The coefficients rσ ′σ and tσ ′σ can be expressed as a lin-
ear combination of �δ

αβ (0) by applying the continuity of the
wave function. Together with the equations that impose the
continuity of the wave function of the internal edges, we
obtain an inhomogeneous system of linear equations with 4N
variables (two per spinor): The inhomogeneous term arises
due to the first term on the rhs of Eq. (23a). The system can
be solved numerically to obtain the value of the spinor of each
bond at the local coordinate r = 0. Once �δ

αβ (0) are obtained,
it is straightforward to compute rσ ′σ and tσ ′σ . Furthermore,
Eq. (13b) provides the value of the wave function at any given
point. In the case where the Zeeman term is zero, the boundary
conditions for the leads reduce to the known cases in Refs.
[37,39,40]:

Mαα�α +
∑
〈α,β〉

Mαβ�β = 0 . (24)

III. RESULTS

In this section we study the transport properties of different
polygons using the formalism we introduced in the previous
section. We consider a series of regular polygons of constant
perimeter P with an even number of vertices. Each polygon
is connected to an input and an output field-free leads at op-
posite vertices | see Figs. 1(a) to 1(d). We evaluate the system
conductance from the transmission probability applying the
Landauer-Büttiker formalism [54] as dictated by Eq. (19).
Taking the number of edges to infinity, the series of regular
polygons converges to a circle, so we recover the conductance
for a ring. For the case in which only RSOC is present, it was
shown in Ref. [41] that this numerical procedure coincides
with the analytical results for rings [55].

To match the conditions present in mesoscopic transport
experiments, our numerical model must satisfy a series of
constraints. The first one is the so-called semiclassical limit
requiring the electronic wavelength to be much smaller than
the system’s size. This condition can be written in terms of the
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FIG. 3. Average conductance 〈G〉k in units of 2e2/h for various polygons: (a) square, (b) hexagon, (c) octagon, and (d) ring, subject to a
magnetic flux φ/φ0 and RSOC kRP/(2π ).

electronic wave number and the polygon’s perimeter as

k 	 2π

P
. (25)

This limit justifies the interpretation of the system’s con-
ductance in terms of carrier interference along classical-like
propagating paths [56]. Moreover, it has been observed that
slow carriers with smaller wave numbers are more prone to
decoherence [20].

The wave number is also constrained by the size of the
polygon’s edges. On the one hand, a polygonal geometry
results noticed by the carriers on the condition that their wave-
length is much smaller than the edges’ length, so that multiple
wavelengths fit in one edge. Otherwise, the electron would not
“see” the polygon’s vertices. On the other hand, in the specific
case of ring modeling, the requirement is just the opposite:
The wavelength must be much larger than the edges, instead,
so that each vertex is hardly noticed by the carriers and the
polygon can be interpreted as a ring

k 
 2πN

P
= 2π

L
, (26)

where N is the number of edges of the polygon used to
simulate the ring and L is the length of each edge. Clearly, the
larger the number of edges, the more fit the ring’s polygonal
model. Moreover, for similar reasons, the spin precession
length LSO should be much longer than edges as well [57].

A. Case of RSOC and magnetic flux

Let us begin by discussing the transport properties of
polygons subject to magnetic flux and RSOC. We present
in Fig. 3 the average conductance 〈G〉k for different poly-
gons. The average, performed over a small k-window around
the Fermi wave number kF of incoming carriers, smooths
out the energy-dependent oscillations of the conductance due
to Fabry-Pérot-like interference [39,55]. This reproduces the
situation found in low-(but-still-finite)-temperature transport
experiments. The simulations of ring geometries are carried
out by using polygons with 100 edges.

The results presented in Fig. 3 are a perfect example for
highlighting the difference between an Abelian and a non-
Abelian gauge field due to the orbital magnetic field and
the RSOC, respectively. The conductance shows periodic AB
oscillations, where the period is the flux quantum φ0 for all

the polygons. The maxima correspond to the constructive
quantum interference of the electrons traveling through dif-
ferent paths. For example, in the Rashba field-free limit, the
constructive interference occurs for integer multiples of the
flux quantum. The AB phase acquired by an electron when
moving around the polygon is 2πφ/φ0. Adding the contribu-
tions of all the possible paths gives rise to the interference
pattern. The phase acquired by a particle moving through
the shortest possible paths (clockwise and counterclockwise
paths) will have the same magnitude, but opposite sign. For
integer multiples of the flux quantum, the phase difference
between the two paths is an integer multiple of 2π resulting
in a constructive interference. However, the conductance is
not exactly 2e2/h. The longer paths will also contribute to
the transmission amplitude, each of which have a different
dynamical phase. On the other side, for half integer multiples
of the flux quantum, the contribution of the two opposite
paths to the transmission amplitude are in counterphase, so
the conductance drops to zero.

The RSOC modifies the phase acquired by the electrons
when traveling through the polygon; this leads to a shift of
the position of the conductance maxima with respect to the
magnetic flux. For instance, at kRP = 2π the conductance
maxima appear at half integer multiples of φ0 for all polygons,
while the conductance vanishes for integer multiples of the
flux quantum. The additional phase arises form the electron
spin precession around the effective magnetic field arising
from the RSOC, i.e., it acquires a non-Abelian SU(2) phase
resulting in the Aharonov-Casher effect [24]. The spin-phase
gathering is controlled by two different scales: The perimeter
and the edge lengths. This is reflected on the oscillations of the
conductance, which show broader and narrower maxima for
different values of kRP associated to two different frequencies
[41]. The periodicity of the broader maxima is related to the
edge lengths, where the period is Nπ . This period tends to
infinity as the number of edges tends to infinity, so the broad
maxima disappear for the ring, apart from the one located at
the origin.

The periodicity of the narrow maxima is related to the
length of the perimeter, therefore, it has a weaker dependence
on the number of edges of the polygon. The quasiperiod
ranges from 4π for the case of the square to 2π as the number
of edges and the RSOC strength increase. Oscillations of
period 2π are identified with the adiabatic limit: When the
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FIG. 4. Average conductance 〈G〉k in units of 2e2/h for α = 0 for various polygons: (a) square, (b) hexagon, (c) octagon, and (d) ring. The
dashed line corresponds to the critical line where BSO = B.

dimensionless RSOC tends to infinity, we obtain the adiabatic
limit in which the spin is aligned with the effective mag-
netic field during transport and Berry phases arise [41,55].
Adiabatic spin transport is never really achieved in polygons,
where vertices act as spin-scattering centers due to the abrupt
change of direction of the RSOC at the vertices of polygons.
The results of Figs. 3(a) and 3(d) show a qualitative agreement
with the experimental observations in ring [19,25,58] and
square structures [42]. Still, a full agreement of the magneto-
conductance periodicities require the introduction of disorder
since the experiments present a periodicity halving due to the
Altshuler-Aronov-Spivak (AAS) effect, a manifestation of the
AB effect in the presence of dominant time-reversed-paths in-
terference. [59] Such a periodicity halving will be reproduced
in Sec. III C by implementing a numerical model for disorder.

B. Case of RSOC and Zeeman field

In this section we study the interplay between Zeeman and
AC phases using the method described in Sec. II B. The quan-
tum wires of the network are subject to RSOC and an in-plane
Zeeman field, which breaks time-reversal symmetry. The av-
eraged conductance for different polygons is shown in Fig. 4.
The dashed line represents the critical line, the points where
the applied Zeeman field is equal in magnitude to the effective
magnetic field created by the RSOC, BSO = h̄2kkR

mμ
, which can

be obtained from direct comparison between the second and
third terms in Eq. (7). The dimensionless RSOC and Zee-
man couplings are given by kRP/(2π ) and mμBP/(2πkh̄2),
respectively.

For rings, Fig. 4(d), the AC oscillations shift to weaker
values of the SOC field as the applied Zeeman field increases.
These results are qualitatively consistent with the conductance
shift observed experimentally by Nagasawa et al. in InGaAs-
based quantum ring arrays, attributed to a geometric-phase
manipulation [20]. However, in the experiment the periodicity
of the magnetoresistance oscillations is halved due to the AAS
effect. We fully recover this halving by introducing disorder |
see Sec. III C.

The RSOC field BSO is radial to the ring, while the in-
plane Zeeman field is homogeneous. Both fields lie on the
xy plane, so the solid angle subtended by the magnetic field
in parameter space corresponding to the Berry phase depends
on whether the total magnetic field encircles the origin or not

[60]. For simplicity, the Zeeman field is applied along the
direction of the positive x-axis. For B < BSO, the solid angle
is � = 2π , corresponding to a Berry phase π . However, for
B > BSO the solid angle vanishes, so that the Berry phase is 0.

The topology of the field texture, which coincides with the
spin-eigenstate texture in the adiabatic limit, changes when
the critical line is traversed. The results in Fig. 4 show that the
effects of this transition manifest in the conductance oscilla-
tions even in a nonadiabatic regime—small kRP/(2π ).

Strongly nonadiabatic spin textures allow for a transition
of the topological properties of the spin eigenmodes when an
in-plane Zeeman field is applied. These properties are char-
acterized by the winding parity of the spin eigenmodes [22].
As it has been stated, for the ring this topological transition
occurs when the applied Zeeman field is equal to the effective
spin-orbit field. However, the AC oscillations for polygons
with a finite number of edges show a sign reversal for much
lower values of the Zeeman field.

Figure 4 shows the conductance for a Zeeman field direc-
tion α = 0. However, the conductance pattern shows a strong
dependence of α for intermediate values of B. While the ring
has a continuous rotational symmetry, polygons only remain
invariant under rotations of an integer multiple of 2π/N . In
addition, they have N symmetry planes, as well as inversion
symmetry. The input and output leads break the rotational
symmetry of polygons. Numerical calculations show that the
only remaining symmetry planes are the horizontal and ver-
tical planes. Therefore, the conductance will be the same for
angles α, α′ = −α, and α′′ = π − α. Introducing elastic dis-
order to the system removes these symmetry planes, although
the inversion center remains, so that the conductance is the
same for α and α′′′ = α + π .

The conductance of a square for two orientations of the
Zeeman field is shown in Fig. 5. For small values of the
Zeeman field strength, the RSOC field contributes the most
to the total magnetic field, so the oscillation pattern is almost
identical in both cases. In the small RSOC limit, the conduc-
tance is also very similar for both orientations: For kR = 0,
the total magnetic field is equal to the applied Zeeman field,
so it is homogeneous along the ring. The only effect on the
energy spectrum is the splitting of the energy bands into two
parabolas with opposite spin direction (see Fig. 2). The phase
acquired by the electrons following the two shortest possible
paths (the direct clockwise and counterclockwise paths) is the
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FIG. 5. Average conductance 〈G〉k of a square for a Zeeman field with an orientation of (a) α = 0 and (b) α = π/4. (c) Total magnetic field
in a square for direct clockwise and counterclockwise (first row) paths and time-reversed (second and third rows) paths when BSO = B and
α = π/4. The green arrows represents the Zeeman field, the purple ones the field associated to the RSOC, and the yellow ones the effective
field due to the combination of Zeeman and RSOC.

same, although the contribution of the longer paths results in
the interference effect that gives rise to the oscillatory effect.

The main difference between Figs. 5(a) and 5(b) is found
around the critical line, where the oscillations of the conduc-
tance for α = π/4 are smoothed, see Fig. 6(a). As explained
in Sec. II B, the energy bands of a wire become degen-
erate when the Zeeman and RSOC strength are the same
and the Zeeman field is perpendicular to one of the edges
of the polygon. The RSOC field is perpendicular to the mo-
tion of the electron, so in some edges, it cancels with the
applied Zeeman field. For α = π/4, the Zeeman field is per-
pendicular to two opposite edges of the square, as it can be
seen in Fig. 5(c). Therefore, electrons with any spin orienta-
tion propagating along these edges will not precess, and the
interference effect between the upper and lower paths will
be mitigated. In addition, the total magnetic field along the
remaining two edges is the same, so the phase acquired by
electrons following the direct clockwise and counterclockwise
paths is the same. Higher-order contributions, due to paths that
go several times around the polygons, are responsible for the
nonconstant conductance along the critical line.

The conductance along the critical line for several values
of α is shown in Fig. 6. For the square, as α approaches the
α = π/4 direction, the oscillations become less pronounced.

FIG. 6. Average conductance 〈G〉k as a function of the direction
of the Zeeman field α along the critical line for the square (a) without
disorder and (b) with disorder. The disorder is implemented so as
explained in Sec. III C. Disorder decreases the average conductance
due to the random value of the dynamical phase. The conductance
traces are vertically shifted of a constant 0.2 factor for clarity.

Moreover, the oscillations show a more regular pattern, with a
steadily increasing amplitude.

Similar effects of mitigation of the spin procession due to
RSCO are present in polygons with larger number of edges as
well. However, the oscillatory pattern for the corresponding
values of α do not resemble the regular pattern obtained for
the square. For a fixed perimeter P, as the number of edges of
the polygon increases, the length of the edges become smaller,
so the edge where the spin does not process has a smaller
contribution towards the interference.

C. Disordered case

In this section, we show how disorder affects the results
we presented in the previous sections. In general, disorder
is inevitable in nanostructures and we need to account for
its effects. Within the quantum network formalism, disorder
can be introduced in several ways, e.g., randomly distributed
pointlike scatterers, or more generally, the random elastic
scattering matrix along the edges. We implement disorder
following the scheme proposed in Refs. [37,39–41]: To simu-
late arbitrary shifts of the wave-function phase we implement
random fluctuation of the length of each edge while preserving
the orientation of the edges and keeping the perimeter P of the
polygon constant. We introduce therefore a length fluctuation
parameter δ�. These fluctuations account for the geometric
imperfections present in experiments with arrays of rings and
squares [19–22]. In the following we will focus on the case
kδ� ∼ 1, which can be reached in the semiclassical regime
without a sizable modification of the loops’ areas such that
the periodicity with respect to the magnetic flux is preserved
[37]. Moreover, we introduce an additional energy average as
done in the disorder-free case to boost numerical convergence.

Contrary to the standard Anderson-like disorder, this
model of elastic disorder in a single-loop quantum network
will not produce a wave-function localization, but will lead
to a reduction of the amplitude of oscillations of the average
conductance. We will show that one of the main effects of
disorder is to double the period of the oscillations of the
average conductance of the system, and to lift the complete
destructive interference [37,40,41]. The doubling of the period
of oscillations corresponds to the so-called AAS oscillations
[59] when considering the effect of the magnetic field or
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FIG. 7. Average conductance 〈G〉k,δ� as a function of the orbital magnetic field and of the RSOC in the presence of disorder for the cases of
the square (upper row) and of the ring (lower row) obtained with the quantum network method. The three columns refer to different strengths
of the length fluctuations: δ� = 5%, 10%, and 20%.

AAS-like oscillations when considering the RSOC [19,58].
The emergence of the AAS oscillations in quantum networks
with this type of disorder has previously been demonstrated
by analyzing the Fourier amplitude of the conductance versus
the magnetic flux in Ref. [37]. These results were in com-
plete agreement with the experimental finding presented in
Ref. [61]. Similar results were also presented in the presence
of RSOC in one- and two-dimensional disordered quantum
networks [39,40]. These quantum oscillations are dominated
by the time-reversed paths [20,22]. For the sake of simplicity,
in the following we present results for the case of disorder
only considering the polygonal structures that are experimen-
tally more relevant: The square and the ring—see Fig. 7 for
the case of AB and AC interference, and Fig. 8 for the case
of AC and Zeeman field. The results shown in Figs. 7 and 8 |
especially those for δ� = 20%, to be compared to Figs. 3 and
4, respectively | present a frequency doubling emerging from
semiclassical time-reversed paths interference, which agree
with the corresponding experimental findings for rings [19,20]
and squares [22,42]. Additionally, by following the devel-
opment of the interference pattern as the disorder strength
increases, we further notice from Figs. 7 and 8 that the ring
geometry appears to be less susceptible to show the frequency
doubling (i.e., relatively stronger disorder is required by rings
as compared to squares). This is likely due to the role played
by the square vertices as spin-carrier scatterers.

IV. VALIDATION OF THE QUANTUM NETWORK
METHOD WITHIN THE TIGHT-BINDING APPROACH

In this section we present results of a fully numerical
approach, using a tight-binding model. We use KWANT, a

PYTHON package facilitating tight-binding transport simula-
tions [33]. The typical system we run simulations on are
depicted in Figs. 1(e) and 1(f). We choose the units such that
h̄ = m∗ = e = 1. The Hamiltonian for a square lattice with
RSOC [62] is

HRSOC = iλ

2a

∑
i

(
c†

i σxci+ŷ − c†
i σyci+x̂

) + H.c., (27)

where λ is the RSOC strength, a is the lattice size, c†
i /ci are

the creation/annihilation operators, and σi, i ∈ {x, y, z} are
the Pauli matrices. The orbital magnetic field is implemented
via a Peierls substitution t −→ teiϕ . Following the notation of
the analytical section, the Hamiltonian for the Zeeman field is
written as

HZeeman = μ|B|
2a2

∑
i

c†
i ci(σx cos α + σy sin α). (28)

We stick to narrow systems here in order for the system to
contain only a small number of energy bands (few modes).
For calculating the average conductance we integrate over an
energy window containing several level spacings, provided
single-mode occupancy is observed. The results can be seen
in Fig. 9, where the left block gives the results for the case
including an orbital magnetic field and the right block is for
the case including a Zeeman field. We find good qualitative
agreement with the analytical results. Deviations from the
analytical results can come from multiple sources. In the
simulations we have to make a compromise between taking a
thin wire, which can host only few modes, and a thicker wire,
through which the electrons can move more easily without
scattering. The results presented here have been run for an
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FIG. 8. Average conductance 〈G〉k,δ� as a function of the in-plane Zeeman term and of the RSOC in the presence of disorder for the cases of
the square (upper row) and of the ring (lower row) obtained with the quantum network method. The three columns refer to different strengths
of the length fluctuations: δ� = 5%, 10%, and 20%.

approximate width W = 3a of the system (leads and edges),
giving P/W ≈ 60. In wider systems the amplitude of the con-
ductance oscillations is reduced, probably due to coupling to
higher modes.

For simulations with disorder we use Anderson-type disor-
der, meaning each lattice site i is subjected to an onsite energy
ε which is randomly chosen from an interval [−U0/2, U0/2].

The Anderson Hamiltonian can be written as

HAnderson = U0

2a2

∑
i

εic
†
i ci, (29)

where a is the lattice constant. In our comparison between dis-
ordered systems, one has to take into account that Anderson
disorder also results in localization of the wave function. One

FIG. 9. Summary of the tight-binding results for the average conductance as a function of the magnetic flux φ/φ0 and RSOC kRP(2π )−1

(left) and as a function of the RSOC kRP(2π )−1 and Zeeman momentum mμBP(2πkh̄2)−1 (right). Both cases are given for squares (upper
rows) and circles (lower rows), for clean (left columns) and disordered systems (right columns).
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can therefore not expect a direct correspondence between the
analytical and numerical results with respect to the magnitude
of the conductance. As can be observed in the right panels
of each block in Fig. 9, the conductance decreases substan-
tially because the disorder strength we used is strong, namely
U0 = 0.8t , which is 20% of 4t . Here we averaged over 100
disorder configurations. Despite the overall lowering of the
conductance, we do observe the same pattern as in the case
of the disordered quantum networks, which means that the
general behavior as a function of the external parameters is
the same. Moreover, the numerical results correctly reproduce
the results obtained in experiments [19,20,22,42]. For weaker
disorder strengths, the conductance sticks to higher values, but
the period doubling is not clearly observed.

V. CONCLUSION AND OUTLOOK

In this work, we presented a generalization of the quantum
network method to model one-dimensional networks subject
to hybrid field textures produced by the combined action of
out-of-plane and in-plane magnetic fields and Rashba spin-
orbit couplings. Contrary to previous studies [20], this method
does not rely on perturbation theory, so it is valid for systems
with high Zeeman fields. In addition, while other methods rely
on spin-related phases accumulated by the carriers between
input and output leads by following geometric paths with a
finite number of windings, this method calculates the exact
wave function of the electron along the edges. More specif-
ically, we studied the interplay of the non-Abelian phases
introduced by the Aharonov-Casher effect and the in-plane
Zeeman field in one-dimensional polygons, in addition to the
customary Abelian phase produced by the flux associated
to a perpendicular magnetic field. We considered polygonal
structures with an increasing number of vertices to simulate
a ring structure by sending to infinity the number of ver-
tices. We showed that in the case of the Rashba spin-orbit
coupling, there is a double dependence of the conductance
both on the perimeter of the system and the number of ver-
tices itself. In the case of the interplay between the two
non-Abelian phases due to the in-plane Zeeman field and the
Rashba spin-orbit coupling, our results for the conductance
are in agreement with the experimental observations [20,22].
Furthermore, we supported our quantum network approach
comparing our results with the ones obtained by a standard
tight-binding approach. The quantum network method can
also be used to obtain the spectrum and the eigenfunctions of
the isolated polygons via the corresponding secular equation
[38,43], which can be used to calculate the geometric and
dynamical phases. It is also an attractive technique to study
complex structures which can become computationally very
demanding within the tight-binding approach. The quantum
network method has been successfully employed for inves-
tigating the chaotic properties of complex networks, results
obtained are in full agreement with random matrix theory
[38]. The theory presented here offers an extension to this
line of research. Furthermore, the quantum network method
can be additionally extended to study spin transport on the
surface state of three-dimensional topological insulators so
to describe the Aharonov-Casher physics observed in Bi2Se3

square-ring interferometers [26].
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APPENDIX: DERIVATION OF THE SPIN
EVOLUTION MATRIX

In this Appendix we derive the spin evolution matrix de-
fined in Eq. (12), which relates the value of the wave function
at point r to its initial value at r = 0. For this purpose, we
expand the spin up/down states | ↑/↓〉 into the base formed
by the available states {|v±〉} [see Eq. (10)]. These states are
not orthogonal, but satisfy the relation

〈vα|vβ〉 = 1
2 (ei(θα−θβ )/2 + αβe−i(θα−θβ )/2) . (A1)

To expand a generic vector into a nonorthogonal basis
|u〉 = c+|v+〉 + c−|v−〉, we make use of the Gram matrix

M =
(〈v+|v+〉 〈v+|v−〉

〈v−|v+〉 〈v−|v−〉
)

. (A2)

Coefficients c± satisfy the relation

u = Mc , (A3)

where

u =
(〈v+|u〉

〈v−|u〉
)

, c =
(

c+
c−

)
. (A4)

Taking the inverse of the Gram matrix, we obtain the coef-
ficients c±. Spin up/down states can therefore be written as

|↑〉 = 1√
2 cos θ+−θ−

2

(eiθ−/2|v+〉 + eiθ+/2|v−〉), (A5a)

|↓〉 = 1√
2 cos θ+−θ−

2

(e−iθ−/2|v+〉 − e−iθ+/2|v−〉). (A5b)

Knowing that eigenvectors (10) acquire a dynamical phase
eikr when traveling a distance r, the propagation of the states
| ↑/↓〉 is given by

| f 〉↑ = eiθ−/2eik+r |v+〉 + eiθ+/2eik−r |v−〉√
2 cos θ+−θ−

2

, (A6a)

| f 〉↓ = e−iθ−/2eik+r |v+〉 − e−iθ+/2eik−r |v−〉√
2 cos θ+−θ−

2

. (A6b)

The states | f 〉↑/↓ can be expanded into their up and down
components through the transfer matrix

T̂ =
(〈↑| f 〉↑ 〈↓| f 〉↑

〈↑| f 〉↓ 〈↓| f 〉↓
)

, (A7)

where

T̂ = 1

cos 
θ
2

(
cos 
kr−
θ

2 ieiθ sin 
kr
2

ie−iθ sin 
kr
2 cos 
kr+
θ

2

)
eikr . (A8)

Here we introduced the parameters k = k++k−
2 , 
k = k+ −

k−, θ = θ++θ−
2 , and 
θ = θ+ − θ−. Note that in general these
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four quantities will be different for states propagating forward
or backward.

Let a wave function with a defined propagation direction at
r = 0 be given by

�(0) = χ↑|↑〉 + χ↓|↓〉 . (A9)

The spatial evolution of the state is then given by

�(r) = χ↑| f 〉↑ + χ↓| f 〉↓ . (A10)

Applying Eq. (A8) to Eq. (A10), we write the
value of the wave function as a spin-rotation of

�(0):

�(r) = R̂eikr�(0)

= 1

cos 
θ
2

(
cos 
kr−
θ

2 ie−iθ sin 
kr
2

ieiθ sin 
kr
2 cos 
kr+
θ

2

)
eikr�(0) ,

(A11)

where R̂ is the spin evolution matrix, which is equal to the
transpose of the transfer matrix excluding the eikr factor.
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