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Recently, the linear and nonlinear planar Hall effect (PHE) on the topological insulators (TIs) surface has been
extensively studied in experiments. To explain this phenomenon, various microscopic mechanisms are proposed
theoretically, and one has to employ different mechanisms to separately understand the linear and nonlinear
PHE even for the same system. Here, we study the planar magnetic resistance effect in TI thin film and find
that a peculiar anisotropic scattering and a spin valve structure with respect to the PHE can be caused by the
tilt and shift of Dirac cones, respectively, which are induced by the combination of spin-momentum locking of
surface states and an in-plane magnetic field. The tilt and shift effects can act as the origin of both the linear
and nonlinear PHE by distorting the spin texture of surface states or forming the spin polarization. These two
mechanisms interplay and dominate, respectively, in strong coupling (thin TI) and decoupling (thick TI) between
bottom and top surfaces. For thick TI film, we show that both the linear and nonlinear PHEs induced by the tilt
effect can recover the results observed in recent experiments. Our theory provides a perspective to understand
the origin of both linear and nonlinear PHE observed in recent experiments.
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I. INTRODUCTION

Planar Hall effect (PHE), manifesting itself as a detectable
transverse voltage in response to a magnetic field applied in
the plane of the sample and electric current, received great
attention. It is very different from the ordinary Hall effect
which, arising from the Lorentz force experienced by cur-
rent carriers, requires the magnetic field to be perpendicular
to both the electric current direction and the sample plane.
The PHE is usually observed in ferromagnetic systems [1–3].
Interestingly, the PHE has also been verified experimentally in
quite a few nonmagnetic topological materials, such as Weyl
semimetals [4–8] and three-dimensional topological insula-
tors (TIs) [9–11]. For these nonmagnetic materials, how to
understand the origin of PHE is challenging. In Dirac and
Weyl semimetals, recent theories [12–14] addressed that PHE
is contributed by the chiral anomaly. The combination of
the PHE with the negative longitudinal magnetoresistance is
proposed to be a key transport signature of the chiral anomaly
[15,16].

While the PHE phenomenon in Dirac/Weyl semimetals
was well understood with the chiral anomaly, the origin of
the PHE in TIs still remains unclear theoretically [17]. TIs
are composed of fully insulating bulk states and metallic
topological surface states [18–20]. One of the most fascinat-
ing properties in topological material is the spin-momentum
locking of the helical topological surface states [21–25].
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Experimentally, it has been confirmed that the linear [10,26–
28] and nonlinear PHE [29–32] originates from surface
states of TIs, but their microscopic mechanisms remain
puzzled. Various mechanisms have been proposed for this
phenomenon. For example, for the linear PHE, Taskin et al.
employed a model of magnetic impurities to explain their
experimental results [26], even though the Bi2−xSbxTe3

TI sample is in fact doped with nonmagnetic impurities.
Akzyanov et al. [33] took the effect of hexagonal warping
of TI surface states into account and obtained the transverse
conductivity with 2π/3 oscillation period, different from the
experimentally observed π period. Nandy et al. [34] addressed
that the nontrivial Berry phase and magnetic moments of
bulk states may act as an origin of planar Hall response, but
obviously it cannot be applicable to the above experiments
with respect to TI surface states [11]. Very recently, our group
found that the PHE can arise from the deformed dispersion of
Dirac cones by an in-plane magnetic field, irrelevant to the
magnetic nature of the scatterers [17]. For nonlinear PHE,
He et al. ascribed it to the conversion of a nonequilibrium
spin current into a charge current [29,30] and Dyrdal et al.
to the spin-momentum-locking inhomogeneities [35]. Yasuda
et al. regarded the asymmetric magnon scattering as a pos-
sible origin of nonlinear PHE in magnetic TIs [31,32]. Very
recently, Yu et al. [36] theoretically found a nonlinear planar
Nernst effect in nonmagnetic topological insulators, where the
Nernst current is quadratically proportional to the temperature
gradient and linearly proportional to the in-plane magnetic
field.

In this paper, we study the origin of both the linear and
nonlinear PHE on a TI surface. In our previous work [17],

2469-9950/2021/103(15)/155415(7) 155415-1 ©2021 American Physical Society

https://orcid.org/0000-0002-5927-2831
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.103.155415&domain=pdf&date_stamp=2021-04-16
https://doi.org/10.1103/PhysRevB.103.155415


RAO, ZHOU, WU, DUAN, DENG, AND WANG PHYSICAL REVIEW B 103, 155415 (2021)

we find that the tilt of the Dirac cone can lead to the linear
PHE for a single TI surface. In this paper, we extend the
discussions to the nonlinear PHE and find that for thick TI
film where top-bottom surfaces are uncoupled, the tilt effect
not only causes the linear PHE but also the nonliear PHE, with
the B and θB dependence being in good agreement with recent
experiments for linear PHE [10,26–28] and nonlinear PHE
[29,30]. Usually, one has to employ different mechanisms to
separately understand the linear and nonlinear PHE even for
the same system. For example, in recent experiments [29,30],
the nonlinear magnetic resistance is attributed to the warping
effect but it fails to explain the linear PHE [33]. Furthermore,
we extend our discussions to the thin film with hybridization
between the top and bottom helical surface states [37], which
is experimentally adopted to reduce the disturb from bulk
conductivity. We find that relative shift between the cones of
the top and bottom surfaces, induced by an applied in-plane
magnetic field, also can act as an origin of the linear PHE,
which dominates in the strong coupling between top-bottom
surfaces. For thin TI film with strong coupling, the contri-
butions from two surfaces have opposite sign with the same
amplitude and compensate each other owing to the opposite
spin texture and the odd function of B. Nevertheless, the
nonlinear PHE also can emerge if one exerts a dual-gate
voltage to generate different chemical potentials between two
surfaces, where two mechanisms would compete with each
other, exhibiting rich dependence on the angle and magnitude
of the magnetic field.

II. MODEL AND PHE MECHANISMS

Considering a TI thin film subjected to an external in-plane
magnetic field B = B[cos(θB), sin(θB)], the disturbed helical
surface states can be described by a low-energy Hamiltonian
HTI = ∑

k c†
khT I (k)ck with

hTI = ε0(k) + τz h̄vF (k × σ )z + τxσ0� + τ0(B · σ ). (1)

Here, c†
k = (c†

k↑, c†
k↓) is the creation operator of electrons with

wave vector k = k[cos(θk ), sin(θk )], vF represents the Fermi
velocity, and σ and τ are the Pauli matrices, acting on the
electron spin space and the top and bottom surfaces, respec-
tively. � describes the hybridization strength between top and
bottom surface states as the thickness of the film is compa-
rable to the “penetration depth” of the surface states into the
bulk [38]. It typically happens at a thickness of five to ten
quintuple layers [39,40]. The higher-order term ε0(k) = Dk2

in TIs can stem from the asymmetry between the electron and
hole bands [41–43]. Diagonalizing the Hamiltonian of Eq. (1),
the resulting dispersion reads as ( h̄vF = 1)

εs
ζ = ε0(k) + s

√
B2 + k2 + �2 + 2ζα, (2)

where α = [(k × B)2
z + B2�2]1/2, s = ± denotes the conduc-

tion and valence bands, respectively, and ζ = ±1 describes
the splitting of bands induced by �. The corresponding eigen-

states ψ s
ζ (k) can also be solved as

ψ s
ζ (k) =

√
α + ζ (k × B)z

2�
√

α/sεζ

⎛
⎜⎜⎝

[ζα − (k × B)z]/(sεζ BeiθB )
[α − sζ (k × B)z]/(α + ζβ )

ζ�Be−iθB/(α + ζβ )
�/sεζ

⎞
⎟⎟⎠,

(3)
with β = B2 + ik · B and εζ = [B2 + k2 + �2 + 2ζα]1/2.

With respect to the PHE, we would concentrate on the
influence of an in-plane magnetic field B. It is noted that
B has two effects: (i) leads to the tilt of the Dirac cone;
(ii) shifts the positions of the two Dirac cones to opposite
direction, i.e., (0, 0) → ±B[−sin(θB), cos(θB)] for top and
bottom surfaces, respectively. In order to clarify the former,
we expand the Hamiltonian (� = 0) of Eq. (1) around the
shifted Dirac point ±B[−sin(θB), cos(θB)] in momentum k.
When defining the momentum k′ measuring from the shifted
Dirac point, the Zeeman term is canceled but accompanied
by a term ±2τzDB(k′

y cos θB − k′
x sin θB). Obviously, this term

tilts the pristine upright Dirac cone due to the broken Lorentz
invariance.

Both effects of the in-plane magnetic field are expected
to cause the PHE. Before carrying out the numerical calcu-
lations, we understand the origin of the PHE physically. (i)
Tilt effect. To clarify it, we choose two disconnected Dirac
cones with � = 0 where the shift effect plays no effect. The
in-plane magnetic field tilts the Dirac cone, which deforms
the circular Fermi surface to an elliptic one, as shown in
Fig. 1(a). As a result, the spins of states |k〉 and | − k〉
along the field direction (y axis) are no longer antiparallel
[Fig. 1(b)], lifting the prohibition of spin-flip backscattering,
while in the direction perpendicular to B, the backscatter-
ing is still prohibited. This is confirmed by calculating the
momentum-dependent spin texture s(k) = 〈ψ+

− (k)|σ |ψ+
− (k)〉

and the dependence of k̂ · ŝ = k · s/(|k||s|) on θk (the angle of
k) is plotted in Fig. 1(c). Obviously, the nonzero value implies
that the spin-momentum locking is violated, especially along
the field direction θk = (n + 1/2)π , but it remains zero in
the direction perpendicular to B. The anisotropic spin texture
results in the PHE.

(ii) Shift effect. When an in-plane magnetic field is ap-
plied, two Dirac cones would shift in the opposite direction,
perpendicular to B as shown in Fig. 1(d). Partly overlapping
between two Dirac cones leads to a net spin polarization par-
allel to the magnetic field as indicated in the right of Fig. 1(e).
We calculate the net spin polarization S = ∫

s(k)dk with the
Fermi energy εF located in the valence band and plot the
result in Fig. 1(f) (indicated by the bold red arrow). As a
consequence, there forms a spin valve structure between the
current-induced spin (indicated by red thin solid arrow) of
Dirac electrons due to the spin-momentum locking and the
net spin S. When the current direction is perpendicular to B,
the electron spin is always antiparallel to S, whose antiparallel
spin valve prohibits the electron back transport through inter-
surface coupling [low resistivity (LR) states of Fig. 1(e)] and
decreases the resistivity but has less influence for the current
following along the B direction [high resistivity (HR) states
of Fig. 1(e)]. Naturally, this anisotropy of spin transport can
in turn lead to the transverse PHE.
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FIG. 1. Dirac cones of top and bottom surfaces in TI thin films
with (a) tilt effect and (d) shift effect induced by the in-plane mag-
netic field B. Schematic pictures of (b) electron scattering with tilt
effect and (e) spin valve structure with shift effect. Both cases exhibit
a high resistivity state when the incident direction of electrons are
parallel to the B. The red and black solid arrows stand for the spin
and incident directions of Dirac electrons, respectively. HR (LR)
stands for high (low) resistivity states. (c) θk -dependent spin texture
k̂ · ŝ with D = 0.2, � = 0, and B = 0.3. (f) B-dependent net spin
polarization |S| with � = 0.01 and D = 0. In (c) and (f), finite Fermi
energy εF = −0.12 (h̄vF = 1) is set.

For the convenience of analysis, in the following cal-
culation, we employ the quasiclassical Boltzmann transport
equation to calculate the electronic contribution to the planar
Hall conductivity (PHC) and anisotropic magnetic conduc-
tivity (AMC). In the steady state, the Boltzmann transport
equation [44] is expressed as

−eEx

h̄

∂ fk

∂kx
= − fk − feq

γ (k)
, (4)

where we use the relaxation time approximation γ (k) = γ

for simplicity. feq is the equilibrium Fermi-Dirac distribution
function in the absence of external fields. When an exter-
nal electric field E = Exx̂ is applied along the x direction,
the resulting distribution function fk is shifted and it can
be expanded in the electric field Ex as fk = feq + δ f (1)

k +
δ f (2)

k + · · · .

III. LINEAR PHE

In reality, the tilt and shift coexist simultaneously and in-
terplay with each other. Up to the first order term of Ex, from
Eq. (4) we obtain

δ f (1)
k = eγ

h̄
Ex

∂ feq

∂kx
, (5)

and the current density can be calculated via Je,i =
−e

∫
d2k

(2π )2 viδ f (1)
k , where vi is the group velocity along the i

FIG. 2. The dependence of the PHC amplitude σ1 on the mag-
netic field strength B with (a) only tilt effect and (b) only shift
effect. The dependence of (c) the PHR ρ (1)

yx and (d) AMR ρ (1)
xx on

B, where θB = π/4. The angular θB dependence of (e) PHR ρ (1)
yx and

(f) AMR ρ (1)
xx , where B = 0.3. In all panels, other parameters are set

as εF = −0.12 and h̄vF = 1, and we denote ρ0 = 2πh/e2γ .

direction. Thus, the conductivity tensor can be obtained as

σ
(1)
ix = −e2γ

h̄

∫
d2k

(2π )2 vivx
∂ feq

∂ε
. (6)

For convenience, we rotate the coordinate system of
(k‖ , k⊥)T = R̂(kx, ky)T and (v‖ , v⊥)T = R̂(vx, vy)T with T
the transpose and the rotation matrix R̂ given by R̂ =
( cos(θB ) sin(θB )
− sin(θB ) cos(θB )) where ‖ (⊥) is parallel and perpendicular to

B. We arrive at the expression for the conductivity tensors (see
the Supplementary Material [45])

σ (1)
yx = σ1 cos (θB) sin (θB),

σ (1)
xx = σ0 + σ1 cos2 (θB),

(7)

with

σ1 = −e2γ

h̄

∫
d2k

(2π )2 (v2
‖ − v2

⊥)
∂ feq

∂ε
,

σ0 = −e2γ

h̄

∫
d2k

(2π )2 v2
⊥

∂ feq

∂ε
. (8)

In the above equations, we have dropped the integral with
respect to v‖v⊥, which vanishes due to v‖ = (2D − s/εζ )k‖,
the odd function of k‖.

We plot the dependence of the PHC amplitude σ1 on the
magnetic field strength B in Fig. 2(a) for different D with
� = 0 and in Fig. 2(b) for different � with D = 0. Both
figures show the finite PHC. In Fig. 2(a), with the increase of

155415-3



RAO, ZHOU, WU, DUAN, DENG, AND WANG PHYSICAL REVIEW B 103, 155415 (2021)

B, the tilt effect of the Dirac cone becomes prominent and the
anisotropy of scattering enhances the PHC, whose amplitude
is σ1 ∝ B2 (see analytical results in Supplemental Material
[45]), in agreement with the recent experiment [10,26,28].
With only the shift effect as in Fig. 2(b), the PHC increases
first and then decreases to zero, nonmonotonously dependent
on B. This nonmonotonous behavior stems from the net spin
polarization S in Fig. 1(f). The peak of the PHC amplitude σ1

is approximately located at B = � + εF . The size of the Fermi
surface will increase with B until a critical value B = � + εF

where two circular Fermi surfaces are just separated. It is
emphasized that in the regime of vanished S, the transport
becomes isotropic and so the PHE vanishes, which implies the
existence of S is decisive for the formation of PHE. According
to Eq. (7), the nonzero σ1 would cause the PHC σ (1)

xy and the
AMC σ (1)

xx , along with oscillations following the typical angu-
lar dependence of sin(θB) cos(θB) and cos2(θB), respectively.
Different from the conventional Hall effect which satisfies
the antisymmetry property, the PHC σ (1)

xy is symmetric with
respect to the magnetic field.

In a realistic system, both mechanisms coexist. In Figs. 2(c)
and 2(d), we plot the dependence of the planar Hall resistivity
(PHR) ρ (1)

xy and anisotropic magnetic resistivity (AMR) ρ (1)
xx

on B, which can be obtained with ρ
(1)
ix = σ

(1)
ix /(σ (1)2

xx + σ (1)2
yx ).

For comparison, the case with only tilt or with only shift is
also shown. It is found that the two effects would compete
with each other, respectively dominating in the different re-
gion of the magnetic field strength B. We fix the parameter
D and tune the coupling strength �, which characterizes the
change of TI thickness. For thick TI with � = 0, ρ (1)

xy in-
creases proportional to B2, which dominates for large B and
becomes unsaturated. With the reduced thickness or increas-
ing �, while the ρ (1)

xy in large B remains almost unchanged, in
the region of low B there emerges a peak. The emerging peak
of the PHE is ascribed to the contribution from shift effect and
reflected in the net spin polarization S [Fig. 1(f)]. A similar
scenario exists for AMR ρ (1)

xx as well. The nonmonotonous
behavior has been reported experimentally in TI thin film [27].
Besides, we find that ρ (1)

yx and ρ (1)
xx oscillate with a period of π

as a function of θB, as illustrated in Figs. 2(e) and 2(f). The os-
cillating behavior has recently been observed experimentally
[26,27,29]. These PHEs emerge either from the tilt-distorted
Fermi surface or from the shift-induced net spin by in-plane
magnetic field, whose mechanisms are new, different from the
previous theories [46,47], where the spin flip originates from
scattering off magnetic impurities.

IV. NONLINEAR PHE

When the proposed tilt and shift mechanisms can be ap-
plied to explain the linear PHE, we tend to explore their
roles in nonlinear PHE observed in recent experiments [29,30]
since both the linear and nonlinear PHEs are detected in a
similar TI system. Since the PHE appears only when the Fermi
level lies in the conduction (valence) band above (below) the
Dirac point, the contribution from the Berry curvature can be
ignored. Expanding the nonequilibrium distribution function
in Eq. (4) up to the second order of Ex, one obtains

δ f (2)
k = eγ

h̄
Ex

∂ f (1)
k

∂kx
, (9)

and the corresponding longitudinal and transversal conductiv-
ities read (see Supplemental Material [45])

σ
(2)
ix = e3γ 2Ex

(2π )2h̄2

∫
d2k

∂vi

∂kx
vx

∂ feq

∂ε
. (10)

At low temperatures, the presence of the function ∂ feq/∂ε

guarantees that only states on the Fermi surface will contribute
to the integral. Compared with linear conductivity of Eq. (6),
the main change is that vi is replaced with ∂vi/∂kx. Notice
that this replacement is not trivial since it can change the
even-odd function of the integrand, which is critical for the
appearance of finite σ

(2)
ix . For example, for the linear case,

the integral in Eq. (8) with respect to the crossed term v‖v⊥
vanishes due to the odd function of k‖. By contrast, in the
nonlinear conductivity of Eq. (10), the crossed term ∂v⊥

∂k‖
v‖

does not vanish but plays a determined role in the integral
over k. This implies that Eq. (10) has different physics from
Eq. (6).

With the conductivities from Eqs. (6) and (10), we can
calculate the corresponding PHR ρyx and AMR ρxx using
[29,30]

ρxx = ẑ · (E × J)/|J|2,
ρyx = E · J/|J|2. (11)

Here, E = (Ex, 0) and J = J(1) + J(2) + · · · is the total cur-
rent density with the superscripts (1) and (2) denoting for
linear and nonlinear contributions, respectively.

A. The nonlinear PHE contributed by only tilt effect

First, we consider the case with only tilt effect (D �= 0,
� = 0), corresponding to the experiment setup with thick TI
[29,30]. In this situation, the transversal conductivity σ (2)

yx is
contributed to by a single surface. As before, we rotate the
original coordinate system (kx, ky) to be a new one (k‖, k⊥)
using the matrix R̂, and the partial differential ∂vi/∂kx can be
rewritten as

∂vi

∂kx
= ∂vi

∂k‖
cos (θB) − ∂vi

∂k⊥
sin (θB). (12)

Inserting it into Eq. (10) and performing the integrating over
k, only the terms related to ∂v⊥

∂k‖
v‖ and ( ∂v⊥

∂k⊥
− ∂v‖

∂k‖
)v⊥ survive

since the other terms are the odd functions of k‖. Thus, at low
temperatures, σ (2)

yx can be simplified as

σ (2)
yx = − e3γ 2Ex

(2π )2h̄2

∫
dk cos(θB)δ(ε− − εF )

×
[
∂v⊥
∂k‖

v‖ cos(2θB) +
(

∂v⊥
∂k⊥

− ∂v‖
∂k‖

)
v⊥ sin2(θB)

]
.

(13)

With Eq. (11), we can calculate ρ (2)
yx and ρ (2)

xx and present
the corresponding numerical results in Fig. 3. In Figs. 3(a) and
3(b), we depict the dependence on the magnetic field direction
θB of nonlinear PHR ρ (2)

yx and nonlinear AMR ρ (2)
xx . The most

prominent characteristic is that ρ (2)
yx behaves as cos(θB) and

ρ (2)
xx as sin(θB), both of which oscillate with a period of 2π .

This is greatly distinguished from the linear case shown in
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FIG. 3. The dependence of the nonlinear PHR on (a),(b) the
angular θB and (c),(d) the field strength B for a single TI surface
(� = 0) for different tilt parameters D. Other parameters are set as
εF = −0.2, (a),(b) B = 0.45 and (c),(d) θB = 5π/4.

Fig. 2, where the magnetic resistivity exhibits a period of π .
At the same time, for low magnetic field B, both ρ (2)

yx and
AMR ρ (2)

xx are proportional to B, rather than to B2 in the linear
case. These results recover the bilinear behavior as observed
in recent experiments [29,30], where the authors attributed
the bilinear magnetoelectric resistivity to the warping effect.
Notice the warping effect cannot explain the linear PHE since
it only leads to the transverse conductivity with 2π/3 os-
cillation period [33], thus the linear and nonlinear PHEs in
experiments [29,48] are attributed to different mechanisms.
Instead, we here find that both the linear and nonlinear PHEs
can be attributed to the same mechanism, the field-induced tilt
of the Dirac cone.

In order to see it more clearly, we further derivate the
analytic expressions. Expanding the integrand of Eq. (10) to
the leading order of B and setting εF < 0, we can express σ (2)

yx
as (see Supplemental Material [45])

σ (2)
yx ≈ −e3γ 2ExB cos (θB)

(2π )2h̄2

∫
dk

∂v⊥
∂k‖

v‖

[
dδ(ε− − εF )

dB

]
B=0

,

= e3γ 2DEx

4π h̄2(1 + 4εF D)
B cos (θB). (14)

From the above equation, we find that the nonzero σ (2)
yx is

completely determined by the Delta function δ(ε− − εF ) or
the parity of the energy band ε−, due to the even function
∂v⊥
∂k‖

v‖ of k. In the presence of the tilt effect, nonzero σ (2)
yx

appears, which is induced by the broken parity of the energy
ε−, i.e., ε−(k) �= ε−(−k). Similar to the calculation process
of σ (2)

yx , one can obtain the longitudinal conductivity σ (2)
xx ,

which is given by

σ (2)
xx ≈ − e3γ 2DExCx

4π h̄2(1 + 4DεF )3/2 B sin (θB), (15)

with Cx = 4 + 16εF D + (15 + 48εF D)
√

1 + 4DεF . Substi-
tuting the result of σ

(1)
ix and σ

(2)
ix into Eq. (11) and remaining

up to the first order of Ex and B, one can obtain the nonlinear

PHR ρ (2)
yx and the nonlinear AMR ρ (2)

xx

ρ (2)
yx ∝ ExDB cos (θB),

ρ (2)
xx ∝ ExDB sin (θB). (16)

These analytical expressions agree well with the numerical
results presented in Fig. 3.

B. The nonlinear PHE contributed by coexistence
of tilt and shift effects

Above discussions are suitable only for the thick film as
in experiments [29,30]. For the thin TI film, the coupling
(� �= 0) is included in addition. For this situation with D �= 0
and � �= 0, using the rotational matrix R̂, the nonlinear con-
ductivity σ (2)

yx in Eq. (10) can be expressed as

σ (2)
yx = e3γ 2Ex

(2π )2h̄2

∫
dk

∂ feq

∂ε

[
v‖∂v⊥/∂k‖

sec(θB)
− v⊥∂v⊥/∂k‖

csc(θB)

]

× cos(2θB)

+ e3γ 2Ex

(2π )2h̄2

∫
dk

∂ feq

∂ε

(
∂v‖
∂k‖

− ∂v⊥
∂k⊥

)
v‖

sin(2θB)

2 sec(θB)

− e3γ 2Ex

(2π )2h̄2

∫
dk

∂ feq

∂ε

(
∂v‖
∂k‖

− ∂v⊥
∂k⊥

)
v⊥

sin(2θB)

2 csc(θB)
.

(17)

Note that all the terms with respect to the velocity in Eq. (17)
are the odd function of k‖ or k⊥ (see Supplemental Material
[45]), and thus nonlinear response is tightly related to the par-
ity of ∂ feq

∂ε
, i.e, the parity of the energy band εs

ζ . For symmetric
Fermi energy between the top and bottom surfaces, one can
find that εs

ζ is the even function of k, i.e., εs
ζ (k) = εs

ζ (−k),
which would contribute a vanished nonlinear conductivity.
Physically, the opposite spin textures in top and bottom sur-
faces have an opposite response to B since the nonlinear
PHR and AMR are the odd function of B. Consequently, the
contributions from top and bottom surfaces have opposite sign
with the same amplitude and compensate each other once two
surfaces are coupled in TI thin films.

To observe the nonlinear effect in thin TI film, one can
apply a dual-gate voltage to control the chemical potential
V τz of the top and bottom surfaces independently, which is
extensively adopted in experiments [26,49,50]. Thus, the par-
ity of the energy band εs

ζ is destroyed, i.e., εs
ζ (−k) �= ±εs

ζ (k),
leading to nonzero magnetic resistivity. As a result, the finite
nonlinear ρ (2)

yx and ρ (2)
xx appear. In Figs. 4(a) and 4(b), we

illustrate the angular dependence of the nonlinear PHR ρ (2)
yx

and nonlineaer AMR ρ (2)
xx , respectively, for different values

of D and �. For the thin TI film with asymmetric chemical
potential, both the tilt and shift effects attribute to nonlin-
ear response. In Fig. 4, for thin TI film with asymmetric
chemical potential with � = 0, the nonlinear resistivity be-
haves as the case of a single surface in Fig. 3. Once the
coupling is included, the complex angular dependence con-
tributed by the shift effect competes with the tilt effect, leading
to neither cosine nor sine function. Even so, the total curve
still remains a 2π -periodic oscillation. For this scenario, as far
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FIG. 4. The angular dependence of the nonlinear (a) PHR ρ (2)
yx

and (b) AMR ρ (2)
xx for different values of D and �. Other parameters

are fixed as εF = −0.2, B = 0.45, and V = 0.15.

as we know, there is no experimental report, which is expected
to be tested in further experiments.

V. REMARKS AND CONCLUSION

The tilt effect is not limited to the electron-hole anisotropy
but also arises for any high-order momentum terms kn. As
an in-plane magnetic field is exerted, kn can be expanded

around the shifted Dirac point (k − B)n. As a result, a term
k · B is always generated, which tilts the linear Dirac cone
h̄vF (k × σ )z. Thus, the tilt effect exists extensively.

We have explored both the linear and nonlinear planar
magnetic resistance effect when an in-plane magnetic field
B is applied in TI thin films with hybridization between the
opposite helical surfaces. We find that PHE can emerge on the
TI surfaces even in the absence of magnetic impurities. We
proposed two mechanisms related to the PHE: tilt and the rela-
tive shift effect of Dirac cones, induced by an applied in-plane
magnetic field. The former generates the anisotropic backscat-
tering due to the distorting spin texture of surface states and
the latter is due to the nonzero net spin polarization. We find
that for thick TI film where top-bottom surfaces are uncou-
pled, the tilt effect not only causes the linear PHE but also the
nonliear PHE, with the B and θB dependence being in good
agreement with recent experiments for linear PHE [10,26–28]
and nonlinear PHE [29,30]. Notice that in recent experiments
[29,30], the nonlinear magnetic resistance is attributed to the
warping effect but it fails to explain the linear PHE [33]. Here,
we attribute both the nonlinear and linear response to the same
tilt mechanism. For thin TI film with strong coupling between
top-bottom surfaces, the contributions from two surfaces have
opposite sign with the same amplitude and compensate each
other owing to the opposite spin texture and the odd function
of B. Nevertheless, this compensation can be lifted if we exert
a dual-gate voltage to generate different chemical potentials
between two surfaces. As a consequence, the nonlinear PHE
emerge and two mechanisms would compete with each other.
This in turn leads to a complex angular dependence but still
remaining a 2π -periodic oscillation, which is expected to be
verified in further experiments.
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