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Quantum Monte Carlo simulation of BEC-impurity tunneling
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Polaron tunneling is a prominent example of a problem characterized by different energy scales, for which
the standard quantum Monte Carlo methods face a slowdown problem. We propose a quantum-tunneling
Monte Carlo (QTMC) method which is free from this issue and can be used for a wide range of tunneling
phenomena. We apply it to study an impurity interacting with a one-dimensional Bose-Einstein condensate and
simultaneously trapped in an external double-well potential. Our scheme works for an arbitrary coupling between
the particle and condensate and, at the same time, allows for an account of tunneling effects. We discover two
distinct quasiparticle peaks associated, respectively, with the phonon-assisted tunneling and the self-trapping of
the impurity, which are in a crossover regime for the system modeled. We observe and analyze changes in the
weights and spectral positions of the peaks (or, equally, effective masses of the quasiparticles) when the coupling
strength is increased. Possible experimental realizations using cold atoms are discussed.
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I. INTRODUCTION

The dynamics of a single mobile impurity interacting with
a reservoir is one of the fundamental problems in condensed
matter physics. The corresponding model, the so-called po-
laron model, was introduced to describe the coupling between
electrons and lattice phonons in a dielectric crystal [1]. Nowa-
days, the polaronic effects have been extensively studied for
impurities in Bose-Einstein condensates (BECs) [2–5], where
a tunable interaction between impurities and host atoms via
the Feshbach resonance goes beyond the parameter range
relevant for solids [6]. However, theoretical techniques based
on perturbation theory [7,8] and variational approaches [9–13]
result in different predictions at the strong interaction even for
the one dimensional polarons [14]. Nevertheless, this model
became a sound benchmark for various many-body techniques
[6,15] with an unprecedented opportunity for their experi-
mental testing [16–19]. The transport of impurities interacting
with a many-body environment has been also investigated in
optical lattices [20–24]. Apart from that, progress in this area
is also important for a deeper understanding of the physics
of neutral atoms in optical traps [25,26] and quantum dots
[27,28], especially in the context of quantum information
theory.

Generally, the incoherent tunneling effect [29,30] with a
nonlinear coupling is hard to study with analytical and nu-
merical approaches. A tunneling particle interacting with a
bath has at least two different energy scales—a barrier height
(related to the tunneling energy splitting) and the interaction
strength. Path-integral quantum Monte Carlo (QMC) methods
can be applied to this problem since they are commonly used
to study quantum impurity models [31,32]. Moreover, the
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QMC studies of tunneling processes have gained an increased
interest in the field of adiabatic quantum computing [33,34].
However, the straightforward application of the QMC algo-
rithm for the simulation of tunneling is limited by its high
computational complexity [35–38]. This slowdown problem
is related to a complex energy landscape for the Feynman path
integral.

In this paper, we propose a special modification of the
path-integral QMC method for incoherent impurity tunneling
and apply it to the polaron problem. We investigate tunneling
of a single impurity immersed in a one-dimensional BEC and
trapped in a double-well potential. Our method is based on
splitting the path-integral computation into two independent
parts. The first one corresponds to the process of tunnel-
ing through a double-well barrier, which can be efficiently
estimated, and the second one corresponds to a retarded inter-
action with the bath. We consider a particle in a double-well
potential in a numerically exact way, and BEC excitations
are determined by integrating out the bosonic modes. The
method relies on the assumption that the typical energy of
the BEC-impurity interaction is comparable with the tunnel
splitting, but much smaller than the barrier height. By per-
forming an analytical continuation of the computed impurity’s
correlation functions, we calculate the density of states for
different interaction strengths in the low-temperature limit.
Moreover, we identify emergent peaks in the density of states
as quasiparticle peaks and estimate their effective mass. Using
the proposed QMC method, we discover the crossover in the
BEC-impurity system from phonon-assisted tunneling [39,40]
at a weak coupling to self-trapping in a strong interaction case
[41].

The paper is organized as follows. In Sec. II we discuss
the general formalism as well as the model and the pro-
posed method. Section III contains details of the proposed
QMC scheme for the BEC-polaron tunneling in the case of
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a two-mode bath, a comparison with the exact diagonalization
method, and results for a model with the continuous spectrum
of the bath. We provide conclusions in Sec. IV.

II. MODEL AND METHOD

A. Fröhlich-Bogoliubov model

We use the Fröhlich Hamiltonian, which describes the
impurity in a Bose-Einstein condensate in the Bogoliubov
approximation [2,3,9],

ĤFB = p̂2

2mI
+

∑
k �=0

h̄ωkb̂†
kb̂k +

∑
k �=0

(
Vke−ikx̂ b̂−k + H.c.

)
,

Vk = aIB
√

n0√
2πM

[
(ξk)2

2 + (ξk)2

]1/4

ωk = ck

[
1 + (ξk)2

2

]1/2

, (1)

where p̂ and x̂ are momentum and position operators of the
impurity atom with mass mI , b̂†

k is the creation operator of
the Bogoliubov excitation with momentum k and frequency
ωk , Vk is the interaction strength of phonon modes with the
impurity atom, c and ξ are the speed of sound in BEC and its
healing length, respectively, aIB is the boson-impurity scatter-
ing length, n0 is the BEC density, and M−1 = m−1

B + m−1
I is

the reduced mass, where mB is the mass of a host atom.
To study the equilibrium properties of the polaron tunnel-

ing we consider the impurity in the double-well potential,

Ĥ = ĤFB + κ

(
− x̂2

2
+ x̂4

4

)
, (2)

where we set h̄, e, d to unity (e = c/ξ is the energy in the
polaronic units [11], and 2d is the distance between wells of
the double-well potential).

B. Quantum-tunneling Monte Carlo method

The Feynman path integral defines a transition amplitude
as a sum of all possible paths between given initial and
final configurations of a quantum system. The standard path-
integral quantum Monte Carlo method utilizes this idea in a
sampling of a large number of discrete trajectories in imag-
inary time [42]. On every step of the algorithm, the current
trajectory is changed according to the Metropolis condition
[43]. As more steps of the method are applied, the closer the
result becomes to the exact one.

For tunneling problems with multiple minima of the energy
landscape the standard QMC sampling of valuable trajecto-
ries leads to the exponential growth of computational time
[36–38,44]. In other words, the standard path-integral QMC
cannot reach any stable result in a reasonable amount of time.
The reason for the QMC scheme failure is that the tunneling
time is much larger than the timescale of the interaction. For
BEC, this gives h̄/κ � h̄M/aIB

√
n0, and as a consequence,

the calculation requires a very fine grid for the trajectories.
To overcome this problem, we proposed another algorithm—
the quantum-tunneling Monte Carlo method (QTMC). Our
approach separates the path-integral computation into two
parts. The impurity tunneling in a double-well contribution
is accounted for through a numerically exact calculation of its
propagator and the BEC excitations are integrated out in the

low-temperature limit, which results in the following retarded
action,

Z =
∫

D[x, b†, b]e−S[x,b†,b] =
∫

D[x]e−SI [x]e−SR[x],

e−SR[x] ≡
∫

D[b†, b]e−SB[x,b†,b], (3)

where SI [x] is the action of the impurity in a double-well
potential, SB[x] is the action related to the impurity in the
BEC, and SR[x] is the retarded polaronic action,

SR = − 2
∑
k �=0

V 2
k

∑
τ,τ ′

e−ik(x(τ )−x(τ ′ ))

× e−ωk [(τ−τ ′ )+β�(−(τ−τ ′ ))]

1 − e−ωkβ
δτδτ ′, (4)

where �(τ ) is the Heaviside step function, β is an inverse
temperature, and δτ is a time slice.

The action of the impurity SI [x] can be defined through
the Feynman propagator—the probability amplitude to find a
particle at the position x′ from x in the time interval δτ [45].
We exactly diagonalize the Hamiltonian for the particle in
the double-well potential and obtain the eigenfunctions and
eigenvalues φi, Ei to estimate the propagator via

K (x, x′, δτ ) =
∑

i

φ∗
i (x)φi(x

′)e−Eiδτ . (5)

We use the finite-difference method to compute the eigenfunc-
tions and eigenvalues φi, Ei.

Now we discuss the algorithm of the QTMC procedure
in more detail: (1) an explicit calculation of the propagator
of the noninteracting impurity K (x′, x, τ ) in a numerically
exact way; (2) a numerical evaluation of the retarded action
SR for different values of x(τ ) − x(τ ′); and (3) a Monte Carlo
sampling of the impurity’s trajectories using the calculated
propagator K (x′, x, τ ) and the retarded action SR.

Thus, we reduce the initial many-body problem to a single-
particle problem with the effective retarded action, which
includes correlations of all orders in a numerically exact way.
Our QTMC scheme samples the impurity trajectories in imag-
inary time with periodic boundary conditions on a coarse time
grid with the step δτ ∼ �E−1.

We apply the QTMC algorithm to find the correlation func-
tions 〈x0xτ 〉 of the impurity in the imaginary time. Using the
QTMC data, we obtain a density of states (DOS) on a real axis
through a Fourier transform [46,47],

〈x0xτ 〉 = 1

2π

∫ ∞

0

e−ωτ + e−ω(β−τ )

1 − e−ωβ
ρ(ω)dω. (6)

The integral (6) is restricted to the positive frequencies ω,
which is possible since 〈x0xτ 〉 = 〈x0xβ−τ 〉 [47].

We note that there are certain similarities between our
approach and the strategy used in Refs. [48–50] to simulate
hard-core interactions in quantum bosonic fluids. In these
works, the exact propagators for the single particle in a trap
are also used for the effective sampling of configurations.
However, we stress that Refs. [48–50] use the two-particle
approximation for the density matrix, whereas our approach
is formally numerically exact and preserves correlations at all
orders.
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C. Maximum entropy method

Generally, finding the analytical continuation ρ(ω) from
the imaginary-time Green’s function 〈x0xτ 〉 is an ill-
conditioned problem [51], i.e., the solution is highly sensitive
to noise of the input data. The maximum entropy method
(MaxEnt) is a widely used approach to extract the analytical
continuation ρ(ω) from the correlation functions 〈x0xτ 〉. The
main idea of the MaxEnt method is to minimize the cost
function 1

2χ − αS[ρ], where χ is the quadratic loss function
of 〈x0xτ 〉, S[ρ] is the Shannon entropy term, and α is a regu-
larization parameter [47]. The distribution that maximizes the
information entropy is the one that is statistically most favored
[52]. In other words, the less known about a target spectral
function ρ(ω), the higher is its Shannon entropy. The proper
initial guess for the distribution—the default model—helps to
reconstruct the unique analytical continuation. Thus, solving
the nonlinear optimization problem, we find a finite, smooth,
and positive spectral function ρ(ω) without overfitting the
correlation function’s noise [46].

III. RESULTS

Here, we present the numerical results for the system with
the parameters corresponding to a 39K tunneling impurity
in the 87Rb condensate. First, we benchmark the proposed
quantum-tunneling Monte Carlo algorithm on the model (2)
with the two resonance modes of the Bogoliubov excitations.
We solve this problem by the exact diagonalization (ED)
method and the QTMC scheme [with ten eigenfunctions φi

held in Eq. (5)] for the different coupling strengths or equiv-
alently the boson-impurity scattering lengths aIB (see Fig. 1).
The exact diagonalization algorithm provides the solution as
a set of delta-function peaks for this problem. In Fig. 1 these
peaks are slightly broadened for easier visualization. The
QTMC correlation functions 〈x0xτ 〉 were transformed into
the density of states by the MaxEnt method. This procedure
approximates the DOS by Gaussian peaks of a fixed width,
defined by the accuracy of QTMC calculations. Nevertheless,
significant features of the density of states, namely a peak
position and its amplitude, can be obtained without any re-
strictions on the boson-impurity scattering length aIB. We note
that the calculation time slightly grows with the coupling aIB

since it is necessary to use a finer time grid in the strong-
coupling regime.

For a free impurity in the double-well potential, we find
a single peak in the DOS, corresponding to the tunneling
splitting �E [Fig. 1(a)]. At the small coupling, this peak
splits into two [Fig. 1(b)]. As the interaction grows, the right
peak shifts to the higher frequencies and its amplitude de-
creases, while the left DOS peak grows higher and shifts to the
lower frequencies. Finally, the lower-energy peak dominates
for strong coupling, which might indicate a self-trapping of
the impurity [Fig. 1(c)]. There are slight differences in ρ(ω)
between the ED and QTMC peaks due to the finite accuracy
of the MaxEnt procedure (see Sec. II C for details). Also, our
scheme cannot resolve the smallest DOS peaks for the strong
coupling [Fig. 1(c)], but we believe that these peaks do not
significantly influence the impurity tunneling.
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FIG. 1. Correlation functions 〈x0xτ 〉 and spectral densities of
states ρ(ω) for a 39K impurity, which interacts with the two reso-
nance modes of Bogoliubov excitations (k = ±0.805, ωk = �E ∼
0.057) of the 87Rb condensate (the healing length ξ = 2.5) and
trapped in a double-well potential with κ = 10.24 for different values
of the scattering length: (a) aIB = 0.0, (b) aIB = 0.08, and (c) aIB =
0.34. Dotted and dashed lines correspond to the QTMC simulation
with 1010 steps, and solid lines are the exact diagonalization results,
β = 100.

Now let us discuss the QTMC results for the model (2)
of the 39K tunneling impurity with the continuous bosonic
spectrum of Bogoliubov excitations (the healing length ξ =
2.5, and the inverse temperature β = 100 corresponding to
T = 160 nK), which does not allow the ED treatment. Fig-
ure 2 shows the obtained spectral density of the states from
the QTMC data. The spectrum of the bosonic modes was
cut off at kmax = 1.5, which corresponds to the frequency cut
ω(kmax) = 3�E . We checked that the obtained results do not
depend on the specific choice of the cut. The DOS behavior is
qualitatively similar to that of the two-mode problem. There
is a single DOS peak for zero coupling, which is related to
the energy level splitting for the particle in a double-well
potential ω0 = �E (vertical line in Fig. 2). In other words, a
particle is tunneling from one well of the potential to another
for tunneling time t = π/�E . For a small interaction strength
(scattering length aIB < 0.04), the tunneling DOS peak shifts
to higher frequencies, and another small DOS peak appears.
The amplitude of the right DOS peak decreases with cou-
pling, but its position continues to move to higher frequencies,
which means the decreasing impurity tunneling time in the
presence of resonant phonons, i.e., phonon-assisted tunneling.
Simultaneously, the left DOS peak grows and shifts to lower
frequencies. For the scattering length aIB > 0.06, this peak
becomes a dominating feature of the DOS, i.e., the tunnel-
ing time grows (Fig. 2). It means that the impurity does not
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FIG. 2. Spectral densities of states ρ(ω) for a 39K tunneling im-
purity, which interacts with the continuous spectrum of Bogoliubov
excitations in the 87Rb condensate (the healing length ξ = 2.5), κ =
10.24, β = 100, 1010 QTMC steps. The vertical line corresponds to
the tunneling energy splitting for zero interaction aIB = 0.

transfer into another well of the potential or, in other words, it
is self-trapped in the strong interaction regime. This process is
interpreted as the formation of a heavy phonon cloud around
the particle at which a bound state of the impurity emerges.

For the obtained QTMC data, the MaxEnt method does not
signal any change in the widths of the DOS peaks. Since the
DOS peaks are narrow, we can interpret them as quasiparticle
peaks and define their effective masses as functions of scat-
tering length (Fig. 3). For a given double-well potential (with
κ = 10.24 in our case), we can employ the exact diagonal-
ization to obtain a dependence of the tunneling splitting �E
on a particle mass. This dependence can be used to estimate
an effective mass for each DOS peak. We see that for a
small interaction strength, which we refer to as a phonon-
assisted tunneling region, the effective mass decreases (circles
in Fig. 3). For large coupling, we observe an increase of the
effective mass, which indicates that the impurity is localized
in this regime (squares in Fig. 3). In the intermediate case,
there is a crossover region, where two DOS peaks have nearly
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FIG. 3. Effective mass corresponding to the quasiparticle peaks
of the density of states for a 39K tunneling impurity in the 87Rb
condensate (the healing length ξ = 2.5); circles represent the higher-
frequency peaks, squares the lower-frequency ones; solid (open)
marks are dominant (lesser) peaks; κ = 10.24, β = 100.

0 20 40 60 80 100
τ

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

x
(τ

)

0 20 40 60 80 100
τ

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

x
(τ

)

0 20 40 60 80 100
τ

−1.0

−0.5

0.0

0.5

1.0

1.5

x
(τ

)

(b)

(c)

(a)

FIG. 4. Impurity trajectories x(τ ) in imaginary time for different
values of interaction strength with the 87Rb condensate (the healing
length ξ = 2.5): (a) aIB = 0.01, (b) aIB = 0.05, and (c) aIB = 0.09;
dashed lines correspond to the minima of the double-well potential,
κ = 10.24, β = 100.

the same amplitude, and these two phenomena coexist. We
emphasize that the defined effective masses are not directly
related to the impurity effective mass in the BEC in the ab-
sence of the tunneling potential [32] and further investigation
is needed to elaborate on their connection.

In Fig. 4 we also show the sampled imaginary-time
trajectories for the different scattering lengths aIB. For a
small interaction strength, the impurity tunnels freely from
one well to another [Fig. 4(a)]. In the crossover region,
the impurity tunneling starts to lessen, which results in a
slightly asymmetric probability distribution [Fig. 4(b)]. For a
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strong coupling, the tunneling process is almost suppressed,
which indicates the self-trapping of the impurity in one of the
wells [Fig. 4(c)].

IV. CONCLUSIONS

In the present work we propose a special modification of
the quantum Monte Carlo method for the tunneling problems
(QTMC) in an external environment, which can simulate equi-
librium dynamics beyond perturbation theory. The QTMC
scheme enables us to investigate how the bosonic bath af-
fects tunneling without an exponential slowdown usual for
the standard QMC method. We apply this approach to study
the tunneling of the BEC impurity in one dimension in the
Fröhlich-Bogolubov approximation. The impurity’s correla-
tion functions were calculated by the QTMC scheme and
transformed into the density of states using the MaxEnt
procedure. We verified our method by employing exact diag-
onalization for the model bath with two resonance modes of
the bosonic field.

For the continuous bosonic spectrum, we found that
the BEC impurity undergoes a crossover between the

phonon-assisted tunneling at the weak coupling and self-
trapping for the strong interaction. Also, we found the
quasiparticle peaks in DOS and estimate their effective mass.
These phenomena might be observed in the recent experiment
realization [16,17] with an addition of two close harmonic op-
tical dipole traps for the impurity [53,54]. A spectral response
of the tunneling impurity in the BEC on radio-frequency
pulses might be used for the observation of the crossover
between the phonon-assisted tunneling and the self-trapping
regimes. Moreover, it was shown that the inhomogeneous
BEC could produce the effective double-well potential for
the impurity during quench dynamics [55,56]. These works
motivate a further study of the dynamical phenomena in the
explored BEC-impurity model and its extensions.

ACKNOWLEDGMENTS

The authors thank E. A. Polyakov for useful discus-
sions. A.S.P. acknowledges the support by Theoretical Physics
and Mathematics Advancement Foundation “BASIS” through
Grant No. 19-2-6-241-1. V.V.T. acknowledges the support by
Russian Science Foundation through Grant No. 19-71-10092.

[1] L. Landau and S. Pekar, Effective mass of a polaron, Zh. Eksp.
Teor. Fiz. 18, 419 (1948).

[2] F. M. Cucchietti and E. Timmermans, Strong-Coupling Po-
larons in Dilute Gas Bose-Einstein Condensates, Phys. Rev.
Lett. 96, 210401 (2006).

[3] K. Sacha and E. Timmermans, Self-localized impurities
embedded in a one-dimensional Bose-Einstein condensate
and their quantum fluctuations, Phys. Rev. A 73, 063604
(2006).

[4] J. Levinsen, M. M. Parish, and G. M. Bruun, Impurity in a
Bose-Einstein Condensate and the Efimov Effect, Phys. Rev.
Lett. 115, 125302 (2015).

[5] F. Grusdt and M. Fleischhauer, Tunable Polarons of Slow-Light
Polaritons in a Two-Dimensional Bose-Einstein Condensate,
Phys. Rev. Lett. 116, 053602 (2016).

[6] M. Drescher, M. Salmhofer, and T. Enss, Real-space dynamics
of attractive and repulsive polarons in Bose-Einstein conden-
sates, Phys. Rev. A 99, 023601 (2019).

[7] S. P. Rath and R. Schmidt, Field-theoretical study of the Bose
polaron, Phys. Rev. A 88, 053632 (2013).

[8] R. S. Christensen, J. Levinsen, and G. M. Bruun, Quasiparticle
Properties of a Mobile Impurity in a Bose-Einstein Condensate,
Phys. Rev. Lett. 115, 160401 (2015).

[9] J. Tempere, W. Casteels, M. K. Oberthaler, S. Knoop, E.
Timmermans, and J. T. Devreese, Feynman path-integral treat-
ment of the BEC-impurity polaron, Phys. Rev. B 80, 184504
(2009).

[10] W. Casteels, J. Tempere, and J. T. Devreese, Polaronic prop-
erties of an impurity in a Bose-Einstein condensate in reduced
dimensions, Phys. Rev. A 86, 043614 (2012).

[11] F. Grusdt, Y. E. Shchadilova, A. N. Rubtsov, and E. Demler,
Renormalization group approach to the fröhlich polaron model:
Application to impurity-BEC problem, Sci. Rep. 5, 12124
(2015).

[12] Y. E. Shchadilova, R. Schmidt, F. Grusdt, and E. Demler, Quan-
tum Dynamics of Ultracold Bose Polarons, Phys. Rev. Lett. 117,
113002 (2016).

[13] A. G. Volosniev and H.-W. Hammer, Analytical approach to
the Bose-polaron problem in one dimension, Phys. Rev. A 96,
031601(R) (2017).

[14] F. Grusdt, G. E. Astrakharchik, and E. Demler, Bose polarons
in ultracold atoms in one dimension: Beyond the Fröhlich
paradigm, New J. Phys. 19, 103035 (2017).

[15] S. I. Mistakidis, A. G. Volosniev, N. T. Zinner, and P.
Schmelcher, Effective approach to impurity dynamics in one-
dimensional trapped Bose gases, Phys. Rev. A 100, 013619
(2019).

[16] N. B. Jørgensen, L. Wacker, K. T. Skalmstang, M. M. Parish,
J. Levinsen, R. S. Christensen, G. M. Bruun, and J. J.
Arlt, Observation of Attractive and Repulsive Polarons in
a Bose-Einstein Condensate, Phys. Rev. Lett. 117, 055302
(2016).

[17] M.-G. Hu, M. J. Van de Graaff, D. Kedar, J. P. Corson, E. A.
Cornell, and D. S. Jin, Bose Polarons in the Strongly Interacting
Regime, Phys. Rev. Lett. 117, 055301 (2016).

[18] L. A. Pena Ardila and S. Giorgini, Bose polaron problem: Effect
of mass imbalance on binding energy, Phys. Rev. A 94, 063640
(2016).

[19] S. I. Mistakidis, G. C. Katsimiga, G. M. Koutentakis, T. Busch,
and P. Schmelcher, Pump-probe spectroscopy of bose polarons:
Dynamical formation and coherence, Phys. Rev. Research 2,
033380 (2020).

[20] M. Bruderer, A. Klein, S. R. Clark, and D. Jaksch, Transport
of strong-coupling polarons in optical lattices, New J. Phys. 10,
033015 (2008).

[21] Z. Cai, L. Wang, X. C. Xie, and Y. Wang, Interaction-induced
anomalous transport behavior in one-dimensional optical lat-
tices, Phys. Rev. A 81, 043602 (2010).

155406-5

https://doi.org/10.1103/PhysRevLett.96.210401
https://doi.org/10.1103/PhysRevA.73.063604
https://doi.org/10.1103/PhysRevLett.115.125302
https://doi.org/10.1103/PhysRevLett.116.053602
https://doi.org/10.1103/PhysRevA.99.023601
https://doi.org/10.1103/PhysRevA.88.053632
https://doi.org/10.1103/PhysRevLett.115.160401
https://doi.org/10.1103/PhysRevB.80.184504
https://doi.org/10.1103/PhysRevA.86.043614
https://doi.org/10.1038/srep12124
https://doi.org/10.1103/PhysRevLett.117.113002
https://doi.org/10.1103/PhysRevA.96.031601
https://doi.org/10.1088/1367-2630/aa8a2e
https://doi.org/10.1103/PhysRevA.100.013619
https://doi.org/10.1103/PhysRevLett.117.055302
https://doi.org/10.1103/PhysRevLett.117.055301
https://doi.org/10.1103/PhysRevA.94.063640
https://doi.org/10.1103/PhysRevResearch.2.033380
https://doi.org/10.1088/1367-2630/10/3/033015
https://doi.org/10.1103/PhysRevA.81.043602


POPOVA, TIUNOVA, AND RUBTSOV PHYSICAL REVIEW B 103, 155406 (2021)

[22] T. H. Johnson, S. R. Clark, M. Bruderer, and D. Jaksch, Im-
purity transport through a strongly interacting bosonic quantum
gas, Phys. Rev. A 84, 023617 (2011).

[23] F. Theel, K. Keiler, S. I. Mistakidis, and P. Schmelcher, Many-
body collisional dynamics of impurities injected into a double-
well trapped Bose-Einstein condensate, arXiv:2009.12147.

[24] S. Palzer, C. Zipkes, C. Sias, and M. Köhl, Quantum Transport
Through a Tonks-Girardeau Gas, Phys. Rev. Lett. 103, 150601
(2009).

[25] D. Frese, B. Ueberholz, S. Kuhr, W. Alt, D. Schrader, V. Gomer,
and D. Meschede, Single Atoms in an Optical Dipole Trap:
Towards a Deterministic Source of Cold Atoms, Phys. Rev. Lett.
85, 3777 (2000).

[26] H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran,
H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner et al.,
Probing many-body dynamics on a 51-atom quantum simulator,
Nature (London) 551, 579 (2017).

[27] T. Stauber, R. Zimmermann, and H. Castella, Electron-phonon
interaction in quantum dots: A solvable model, Phys. Rev. B 62,
7336 (2000).

[28] D. Loss and D. P. DiVincenzo, Quantum computation with
quantum dots, Phys. Rev. A 57, 120 (1998).

[29] U. Weiss, H. Grabert, P. Hänggi, and P. Riseborough, Inco-
herent tunneling in a double well, Phys. Rev. B 35, 9535
(1987).

[30] S. V. Isakov, G. Mazzola, V. N. Smelyanskiy, Z. Jiang, S. Boixo,
H. Neven, and M. Troyer, Understanding Quantum Tunneling
Through Quantum Monte Carlo Simulations, Phys. Rev. Lett.
117, 180402 (2016).

[31] F. Lingua, B. Capogrosso-Sansone, A. Safavi-Naini, A. J.
Jahangiri, and V. Penna, Multiworm algorithm quantum Monte
Carlo, Phys. Scr. 93, 105402 (2018).

[32] L. A. Pena Ardila and S. Giorgini, Impurity in a Bose-Einstein
condensate: Study of the attractive and repulsive branch us-
ing quantum Monte Carlo methods, Phys. Rev. A 92, 033612
(2015).

[33] E. M. Inack and S. Pilati, Simulated quantum annealing of
double-well and multiwell potentials, Phys. Rev. E 92, 053304
(2015).

[34] L. Stella, G. E. Santoro, and E. Tosatti, Monte Carlo studies of
quantum and classical annealing on a double well, Phys. Rev. B
73, 144302 (2006).

[35] L. A. Pena Ardila, N. B. Jørgensen, T. Pohl, S. Giorgini,
G. M. Bruun, and J. J. Arlt, Analyzing a Bose po-
laron across resonant interactions, Phys. Rev. A 99, 063607
(2019).

[36] E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M.
Troyer, and P. Werner, Continuous-time Monte Carlo methods
for quantum impurity models, Rev. Mod. Phys. 83, 349 (2011).

[37] E. M. Inack, G. Giudici, T. Parolini, G. Santoro, and S. Pilati,
Understanding quantum tunneling using diffusion Monte Carlo
simulations, Phys. Rev. A 97, 032307 (2018).

[38] N. Nemec, Diffusion Monte Carlo: Exponential scaling of com-
putational cost for large systems, Phys. Rev. B 81, 035119
(2010).

[39] D. Y. Oberli, J. Shah, T. C. Damen, J. M. Kuo, J. E. Henry, J.
Lary, and S. M. Goodnick, Optical phonon-assisted tunneling
in double quantum well structures, Appl. Phys. Lett. 56, 1239
(1990).

[40] V. Vargas-Calderón and H. Vinck-Posada, Light emission prop-
erties in a double quantum dot molecule immersed in a cavity:
Phonon-assisted tunneling, Phys. Lett. A 384, 126076 (2020).

[41] A. E. Myasnikova, Band structure in autolocalization and bipo-
laron models of high-temperature superconductivity, Phys. Rev.
B 52, 10457 (1995).

[42] M. J. E. Westbroek, P. R. King, D. D. Vvedensky, and S.
Dürr, User’s guide to Monte Carlo methods for evaluating path
integrals, Am. J. Phys. 86, 293 (2018).

[43] N. Metropolis and S. Ulam, The Monte Carlo method, J. Am.
Stat. Assoc. 44, 335 (1949).

[44] T. Parolini, E. M. Inack, G. Giudici, and S. Pilati, Tunneling in
projective quantum Monte Carlo simulations with guiding wave
functions, Phys. Rev. B 100, 214303 (2019).

[45] R. P. Feynman, A. R. Hibbs, and D. F. Styer, Quantum Mechan-
ics and Path Integrals (Courier Corporation, North Chelmsford,
MA, 2010).

[46] R. Levy, J. P. F. LeBlanc, and E. Gull, Implementation of the
maximum entropy method for analytic continuation, Comput.
Phys. Commun. 215, 149 (2017).

[47] M. Jarrell and J. E. Gubernatis, Bayesian inference and the
analytic continuation of imaginary-time quantum Monte Carlo
data, Phys. Rep. 269, 133 (1996).

[48] S. Pilati, K. Sakkos, J. Boronat, J. Casulleras, and S. Giorgini,
Equation of state of an interacting Bose gas at finite temper-
ature: A path-integral Monte Carlo study, Phys. Rev. A 74,
043621 (2006).

[49] D. M. Ceperley, Path integrals in the theory of condensed he-
lium, Rev. Mod. Phys. 67, 279 (1995).

[50] W. Krauth, Quantum Monte Carlo Calculations for a Large
Number of Bosons in a Harmonic Trap, Phys. Rev. Lett. 77,
3695 (1996).

[51] H. Yoon, J.-H. Sim, and M. J. Han, Analytic continuation via
domain knowledge free machine learning, Phys. Rev. B 98,
245101 (2018).

[52] L. R. Mead and N. Papanicolaou, Maximum entropy in the
problem of moments, J. Math. Phys. 25, 2404 (1984).

[53] N. Spethmann, F. Kindermann, S. John, C. Weber, D.
Meschede, and A. Widera, Dynamics of Single Neutral Impu-
rity Atoms Immersed in an Ultracold Gas, Phys. Rev. Lett. 109,
235301 (2012).

[54] J. Catani, G. Lamporesi, D. Naik, M. Gring, M. Inguscio, F.
Minardi, A. Kantian, and T. Giamarchi, Quantum dynamics of
impurities in a one-dimensional Bose gas, Phys. Rev. A 85,
023623 (2012).

[55] S. I. Mistakidis, G. M. Koutentakis, G. C. Katsimiga, T. Busch,
and P. Schmelcher, Many-body quantum dynamics and induced
correlations of Bose polarons, New J. Phys. 22, 043007 (2020).

[56] S. I. Mistakidis, G. C. Katsimiga, G. M. Koutentakis, T. Busch,
and P. Schmelcher, Quench Dynamics and Orthogonality Catas-
trophe of Bose Polarons, Phys. Rev. Lett. 122, 183001 (2019).

155406-6

https://doi.org/10.1103/PhysRevA.84.023617
http://arxiv.org/abs/arXiv:2009.12147
https://doi.org/10.1103/PhysRevLett.103.150601
https://doi.org/10.1103/PhysRevLett.85.3777
https://doi.org/10.1038/nature24622
https://doi.org/10.1103/PhysRevB.62.7336
https://doi.org/10.1103/PhysRevA.57.120
https://doi.org/10.1103/PhysRevB.35.9535
https://doi.org/10.1103/PhysRevLett.117.180402
https://doi.org/10.1088/1402-4896/aadd7a
https://doi.org/10.1103/PhysRevA.92.033612
https://doi.org/10.1103/PhysRevE.92.053304
https://doi.org/10.1103/PhysRevB.73.144302
https://doi.org/10.1103/PhysRevA.99.063607
https://doi.org/10.1103/RevModPhys.83.349
https://doi.org/10.1103/PhysRevA.97.032307
https://doi.org/10.1103/PhysRevB.81.035119
https://doi.org/10.1063/1.102525
https://doi.org/10.1016/j.physleta.2019.126076
https://doi.org/10.1103/PhysRevB.52.10457
https://doi.org/10.1119/1.5024926
https://doi.org/10.1080/01621459.1949.10483310
https://doi.org/10.1103/PhysRevB.100.214303
https://doi.org/10.1016/j.cpc.2017.01.018
https://doi.org/10.1016/0370-1573(95)00074-7
https://doi.org/10.1103/PhysRevA.74.043621
https://doi.org/10.1103/RevModPhys.67.279
https://doi.org/10.1103/PhysRevLett.77.3695
https://doi.org/10.1103/PhysRevB.98.245101
https://doi.org/10.1063/1.526446
https://doi.org/10.1103/PhysRevLett.109.235301
https://doi.org/10.1103/PhysRevA.85.023623
https://doi.org/10.1088/1367-2630/ab7599
https://doi.org/10.1103/PhysRevLett.122.183001

