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Plasmonic modes at inclined edges of anisotropic two-dimensional materials
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Confined modes at the edge arbitrarily inclined with respect to optical axes of nonmagnetic anisotropic 2D
materials are considered. By developing the exact Wiener-Hopf and approximated Fetter methods we studied
edge modes dispersions, field and charge density distributions. The 2D layer is described by the Lorentz-type
conductivities in one or both directions, which is realistic for natural anisotropic 2D materials and resonant
hyperbolic metasurfaces. We demonstrate that, due to anisotropy, the edge mode exists only at wave vectors
exceeding the nonzero threshold value if the edge is tilted with respect to the direction of the resonant
conductivity. The dominating contribution to field and charge density spatial profiles is provided by evanescent
2D waves, which are confined both in space near the 2D layer and along the layer near its edge. The degree
of field confinement along the layer is determined by wave vector or frequency mismatch between the edge
mode and continuum of freely propagating 2D modes. Our analysis is suitable for various types of polaritons
(plasmon, phonon, exciton polaritons, etc.) at large enough wave vectors. Thanks to superior field confinement
in all directions perpendicular to the edge these modes look promising for modern plasmonics and sensorics.

DOI: 10.1103/PhysRevB.103.155402

I. INTRODUCTION

Light trapping and manipulation at the nanoscale, below
the diffraction limit, are the key techniques of nanophoton-
ics opening the way to local amplification of the electric
field. The resulting enhanced light-matter interaction gives
rise to enhanced emission and absorption probabilities, high
optical sensitivity, large photonic forces, and strong nonlinear-
ities [1]. Numerous applications of strong light confinement
include biosensing, super-resolution imaging, nanofocusing,
nanoscale heat transfer, surface-enhanced Raman scattering,
modification of the spontaneous emission rate of quantum
emitters, and optical manipulation and trapping of nanopar-
ticles. Realization of these phenomena and techniques is
feasible by using excitation of confined light-matter hybrid
modes (plasmon, phonon, exciton, magnon polaritons, etc.) at
interfaces separating media with permittivities or/and perme-
abilities of opposite signs [2,3]. The negative permittivity is
provided by the charge redistribution and corresponding local
currents caused by various physical mechanisms, e.g., coher-
ent oscillations of free carriers for plasmon polaritons (PPs)
or ionic charge oscillations for phonon polaritons (PhPs).
Polaritonic modes consisting of collective oscillations of po-
larization charges in matter, coupled with electromagnetic
(EM) waves, in the nonretarded limit can be called in a broad
sense “plasmonic” modes.

*oleg.v.kotov@yandex.ru
†lozovik@isan.troitsk.ru

Traditionally, PPs are excited in noble-metal structures,
where local or surface PPs are intrinsically bound to a 2D
metal-dielectric interface [4,5]. The recent rise of atomically
thin 2D materials [6] hosting different types of polaritons
opens up new opportunities in design of polaritonic systems
with stronger light confinement, higher transparency, and dy-
namic tunability compared to conventional plasmonic films.
By stacking 2D layers in van der Waals (vdW) heterostruc-
tures [7,8], one can engineer artificial thin films with an
unusual combination of polaritons. Besides, the emergence
of layered 2D materials led to great progress in phonon po-
laritonics [9,10] realized in thin films of polar materials such
as hexagonal boron nitride (hBN) [11–14] or molybdenum
trioxide (MoO3) [15–17]. These polaritonic platforms have at
least two advantages over conventional metal films or even
graphene. First, while in graphene due to the linear elec-
tron spectra the field confinement is ultimately limited by
Landau damping, in such materials with quadratic spectrum
the Landau damping region is shifted to much larger wave
vectors, and polaritons confinement is limited only by the
intrinsic material loss [18,19]. Second, as optical phonons
exhibit much longer lifetimes than free carriers, especially in
isotopically pure hBN [20], the optical losses of PhPs are sig-
nificantly lower than for PPs. Thus isotopically enriched polar
vdW films may become the best “plasmonic” materials which
provide both ultrastrong field confinement and large propaga-
tion length of surface waves, thus overcoming the traditional
tradeoff between these properties. However, PhPs allow us
to work in the mid-IR or lower frequencies, whereas exciton
polaritons in thin semiconductors (e.g., MoSe2 [21]), while
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retaining strong confinement and large propagation lengths,
can be excited in the visible range.

Thanks to the inherent anisotropy, many vdW materials
exhibit hyperbolic regime, when they behave as a dielectric
along one direction and as a metal along the orthogonal one
[22,23]. Hyperbolic behavior results in the unique optical
phenomena, such as negative refraction [24–26], strong en-
hancement of spontaneous emission [27,28], super-Planckian
thermal emission [29], enhanced superlensing effects [30–32],
polaritons self-collimation [33–35], and spin control [36]. A
broad class of natural hyperbolic materials covers very wide
spectral range [37–40]. For instance, polar crystals (hBN,
MoO3, etc.) possess hyperbolicity in the mid-IR and THz
owing to strong phonon resonances, while black phosphorus
(BP) [41,42] and tetradymites Bi2Se3, Bi2Te3 [43] depend-
ing on thickness can show hyperbolic regime in UV, visible,
near-IR, or mid-IR, which originates from highly anisotropic
interband electronic transitions. The majority of vdW mate-
rials exhibit only the out-of-plane hyperbolicity, but still the
in-plane one was predicted in thin BP [41,42] and experimen-
tally measured in MoO3 [15,16]. However, so far to obtain
the in-plane hyperbolicity in the visible or microwave ranges
it is better to use artificial thin hyperbolic materials (meta-
surfaces) composed of planar anisotropic arrays of metallic
subwavelength scatters [44–49]. Although hyperbolic behav-
ior may occur in BP monolayer in the visible range, it has
a too low figure of merit [42], while silver-grating [50,51]
or gold-nanodisks metasurfaces [52,53] provide pronounced
hyperbolic PPs in the visible range.

The research of polaritonic modes in 2D materials or
metasurfaces has given a new impetus to the topic of edge po-
laritonic modes [54–62]. These 1D modes are interesting due
to their superior field confinement in all directions perpendic-
ular to the edge, even stronger than for 2D modes propagating
along the layer [56,58]. Historically, the most-studied edge
modes are edge magnetoplasmons (EMPs) [63–75], first the-
oretically described in the nonretarded limit at the boundary
of a conducting isotropic 2D layer half plane placed in per-
pendicular magnetic field [63,64]. In Ref. [64] Volkov and
Mikhailov obtained the exact solution of integro-differential
equation for the electrostatic potential of EMPs by means of
Wiener-Hopf method, which allows to write EMPs dispersion
equation in explicit form. The simplified approach allowing
us to find the mode frequencies in an algebraic way was
proposed by Fetter in Ref. [63]. This approximation provides
qualitatively correct EMPs dispersions, however with incor-
rect behavior of the field and charge density in close vicinity
to the edge. In recent papers on edge EM modes both the
Fetter approximation [74,76–78] and the Wiener-Hopf exact
method [55,74,75,79,80] have been applied. The effect of
EM field retardation in the edge plasmon-polaritons problem
was taken into account generalizing the Fetter approach [78],
as well as the Wiener-Hopf method [80]. Recent interest to
2D anisotropic (hyperbolic) materials gave rise to the devel-
opment of both techniques for the anisotropic case [77,79].
However, in these works the results are given only for the edge
parallel to the anisotropy axis and for the Drude conductivities
in both directions.

Drude-type conductivities are not suitable for most realis-
tic implementations of 2D anisotropic materials. Anisotropic

metasurfaces composed of 2D array of scatters (e.g., metal
nanodisk array) or natural polar materials with in-plane
anisotropy (e.g., MoO3) possess Lorentz-type optical re-
sponses in both in-plane directions. Metasurfaces based on 1D
metallic array (e.g., graphene ribbon arrays) or natural materi-
als with in-plane anisotropy of interband electronic transitions
(e.g., phosphorene) have Drude-type response in one direction
and resonantlike in the orthogonal one.

In this paper we consider plasmonic modes localized at
the edge which is arbitrarily inclined to the anisotropy axis
of a nonmagnetic 2D layer with anisotropic conductivity. We
assume the resonant (Lorentz-type) conductivities in one or
both directions of the layer. To analyze the edge modes in a
time-reversal symmetric anisotropic material, we apply both
exact Wiener-Hopf and approximated Fetter methods, which
were initially developed for isotropic systems in magnetic
field. We obtain and compare the corresponding exact and
approximated solutions for the edge modes dispersions, as
well as for the field and density distributions. We show that
the edge modes exist only in the inductive elliptic region of
the spectrum, where the conductivities in both directions have
positive imaginary parts.

We demonstrate that a resonant behavior of the conduc-
tivity in one of the directions and a nonzero tilt of the edge
with respect to this direction result in existence of the edge
modes only at wave vectors exceeding a nonzero threshold.
By comparing with the exact Wiener-Hopf solution we con-
firm the validity of the Fetter approximation but also reveal
its limitations. The Fetter approximation in this case pro-
vides redshifted edge mode dispersions and incorrect values
of the threshold wave vector. Yet we find it very important
and remarkable that the simple Fetter approximation remains
quite good in the anisotropic case giving qualitatively correct
results. We demonstrate that the degree of edge mode field
confinement along the 2D layer to the edge is determined by
wave vector or frequency mismatch between the edge and
2D modes. Our results can be applied to a wide class of
anisotropic 2D nonmagnetic materials and to various types of
polaritons (plasmon, phonon, exciton polaritons, etc.) at large
enough wave vectors.

The paper is organized as follows. In Sec. II we describe
the theoretical approach to calculate dispersions of edge as
well as 2D waves; the Fetter approximated approach is also
described. In Sec. III we demonstrate and analyze the re-
sults of numerical calculations of mode dispersions, field and
density profiles, and field localization lengths. Section IV is
devoted to discussion and conclusions, and Appendices A–C
provide details of calculations.

II. THEORY

A. Edge modes

We consider the 2D layer with optical response described
by the Lorentz-type conductivities [52]

σ⊥,‖(ω) = cA⊥,‖
4π

iω

ω2 − �2
⊥,‖ + iωγ

(1)

along mutually perpendicular ⊥ and ‖ axes. Here c is the
light velocity, and A⊥,‖ count for the spectral weights of two
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FIG. 1. The (⊥, ‖) optical axes of the anisotropic 2D layer and
the (x, y) axes, where the 2D layer half plane is located in the region
x � 0, and edge modes propagate along the y axis; α is the angle
between the y and ‖ axes. 2D modes are not confined to the edge and
can freely propagate in different directions k along the half plane.

resonances with frequencies �⊥,‖, where �‖ > �⊥. For our
approach, it is essential that the conductivity σ‖(ω) with the
higher resonant frequency has the resonant Lorentz-type form.
The other conductivity σ⊥(ω) can be of the Lorentz or Drude
(�⊥ = 0) type.

For simplicity of the following theoretical analysis, we
assume equal decay rates γ for both resonances. As will be
shown below, when EM field retardation is neglected, the
equations for the modes include only the ratios σαβ (ω)/iω,
so due to (1) the complex frequency ω enters these equations
only in combinations like ω2 − �2

⊥,‖ + iωγ = ω̃2 − �2
⊥,‖ +

γ 2/4, where ω = ω̃ − iγ /2 is the complex frequency of de-
caying modes having the real part ω̃. Therefore the damping
γ simply adds −iγ /2 to resulting ω of the modes and renor-
malizes resonance frequencies �⊥,‖ → (�2

⊥,‖ − γ 2/4)1/2. In
the following calculations we will assume ω to be real, bearing
in mind that the total complex frequency is obtained after the
substitution ω → ω − iγ /2 and that �⊥,‖ are already renor-
malized by the damping.

With this convention the conductivities (1) become purely
imaginary. At ω < �⊥ there is a capacitive elliptic regime
(Im σ⊥ < 0, Im σ‖ < 0), at �⊥ < ω < �‖ the behavior is
hyperbolic (Im σ⊥ > 0, Im σ‖ < 0), and for ω > �‖ the 2D
layer demonstrates the inductive elliptic regime (Im σ⊥ > 0,
Im σ‖ > 0).

We consider the half plane of the 2D layer occupying the
x � 0, z = 0 region, where the axes (x, y) shown in Fig. 1 are
rotated on the angle α with respect to the layer optical axes
(⊥, ‖). In the rotated coordinate system, the components of
the conductivity tensor are

σxx = σ⊥ cos2 α + σ‖ sin2 α,

σyy = σ⊥ sin2 α + σ‖ cos2 α,

σxy = σyx = (σ⊥ − σ‖) sin α cos α. (2)

Assuming that the edge mode propagates along the y axis
with the wave vector q > 0 and frequency ω, we can combine

the continuity equation ∂ρ/∂t + div j = 0 and the Ohm’s law
jα = σαβEβ = −σαβ∇βϕ for the 2D charge density ρ at the
2D layer and for electric field potential ϕ(x) ≡ ϕ(x, z = 0)
at the layer, both being proportional to ei(qy−ωt ). Calculating
div j, we need to take into account that, due to the abrupt
edge, σαβ ∝ �(x), where �(x) is the unit step function. The
resulting equation, which is valid at x � 0, z = 0, is

iωρ(x) = −δ(x)(σxx∂x + iqσxy)ϕ(x) − iq(σxy + σyx )ϕ′(x)

− (
σxx∂

2
x − q2σyy

)
ϕ(x). (3)

Another basic relation is the Poisson equation εb∇2ϕ =
−4πρδ(z), which can be applied when the EM field retarda-
tion is neglected. After transforming it into the integral form,
we get [63,64]

ϕ(x) = 4π

εb

∫ ∞

0
dx′ L(x − x′)ρ(x′), (4)

where εb is the background dielectric constant of a three-
dimensional medium surrounding the 2D layer. The kernel

L(x) =
∫

dk

2π

eikx

2
√

k2 + q2
= 1

2π
K0(q|x|), (5)

where K0 is the modified Bessel function of the second king,
describes the field created by a string with the charge density
proportional to eiqy.

Equations (3)–(5) are the basic equations which should be
solved in order to obtain dispersion and other characteristics
(field and charge density distributions) of the edge mode.
The Wiener-Hopf method was applied in Ref. [64] to the
problem of such a kind in the case of edge magnetoplasmons,
when σxy = −σyx. We apply the same method to anisotropic
2D layer with time reversal symmetry, when σxy = σyx, as
described in Appendix A. The resulting dispersion equation
for edge modes is∫

dk

k2σxx − kq(σxy + σyx ) + q2σyy
ln {−ε(k)} = 0, (6)

ε(k) = 1 − 2π

iεbω

k2σxx − kq(σxy + σyx ) + q2σyy√
k2 + q2

. (7)

In terms of σ⊥,‖ it has the form∫
dk

σ⊥k2
⊥ + σ‖k2

‖
ln {−ε(k)} = 0, (8)

ε(k) = 1 − 2π

iεbω

σ⊥k2
⊥ + σ‖k2

‖√
k2 + q2

, (9)

where

k⊥ = −k cos α + q sin α, k‖ = k sin α + q cos α. (10)

For a proper choice of the logarithm branch in ln{−ε(k)} an
infinitesimal positive real part can be added to σ ’s in these
equations.

The solution ωe(q) of the edge mode dispersion equation
is monotonously increasing and exists only in the inductive
elliptic region, when Im σ⊥ > 0 and Im σ‖ > 0 [for Eq. (1)
at ω > �‖], and at wave vectors exceeding the threshold one
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(see Appendix A)

q0 = iεb�‖
2πσ⊥(�‖)

| sin α|. (11)

Generally, this formula is applicable at the points ω of the
complex frequency plane where one of the conductivities (σ‖)
tends to infinity, while the other one (σ⊥) remains finite. With
the Lorentz-type expressions (1) for both conductivities we
obtain

q0 = 2εb

cA⊥
(�2

‖ − �2
⊥)| sin α|. (12)

Note that we assume q > 0 in our calculations. For the
backpropagating edge mode with q < 0, the solutions ϕ(x),
ρ(x) of Eqs. (3)–(5) become complex conjugated with respect
to those for q > 0.

B. 2D modes

The dielectric function ε(k) characterizes the degree of
weakening of the external field plane wave ei(−kx+qy−ωt ) due
to the 2D layer response at z = 0 [the sign at kx is negative
due to the Fourier transform convention in (A1)]. Therefore
the equation

ε(k) = 0 (13)

provides the dispersion of TM-polarized 2D modes, i.e., the
modes which propagate along the uniform 2D layer with the
wave vector k = −kex + qey (see Fig. 1) and have the field

confined to the 2D layer in space as e−
√

k2+q2|z|. These modes
were studied in detail in Ref. [52] with taking into account the
retardation of EM field. In the (⊥, ‖) coordinate system [see
Eqs. (9) and (10)], the dispersion equation for these modes at
q 
 ω/c is

2π

iεbω

σ⊥k2
⊥ + σ‖k2

‖√
k2
⊥ + k2

‖
= 1. (14)

It can be solved analytically as a biquadratic equation re-
sulting in two positive solutions ω2D

± , which correspond to
hyperbolic modes at �⊥ < ω2D

− < �‖ and elliptic modes at
ω2D

+ > �‖. We expect that the retardation [52] is significant
only at q → 0 near the light cone.

C. Fetter approximation

Another method frequently used to solve the problem
(3)–(5) of edge modes is the Fetter approach [63] (see Ap-
pendix B) where the nonlocal integral Eq. (4) is approximated
by the differential local one. In this case, the general disper-
sion equation for arbitrary σαβ tensor takes the form(

4πqσxx

iεbω
− 1

)(
4πqσyy

iεbω
− 2

)

−
(

4πqσxy

iεbω
− i

√
2

)(
4πqσyx

iεbω
+ i

√
2

)
= 0. (15)

Specifically for time-reversal symmetric anisotropic 2D layer,
the dispersion equation in terms of σ⊥,‖ [see (2)] is

4πq

iεbω
σ⊥σ‖ − σ⊥(1 + cos2 α) − σ‖(1 + sin2 α) = 0. (16)

Equations (6)–(9) and Eqs. (15) and (16) being, respectively,
the exact and approximate relations for the edge modes dis-
persions are the main analytical result of the paper, which can
be used for any 2D material described by conductivity tensor
with σxy = σyx. Using (1), we obtain the explicit formula for
edge mode dispersion in the Fetter approximation:

ωF
e (q) =

√√√√√ cq
εb

+ �2
⊥

1+sin2 α
A⊥

+ �2
‖

1+cos2 α
A‖

1+sin2 α
A⊥

+ 1+cos2 α
A‖

. (17)

However, as shown in Appendix B, a physically meaningful
solution for the mode confined to the edge exists only in the
frequency region ω > �‖, which corresponds to wave vectors
q exceeding the threshold one

qF
0 = εb(�2

‖ − �2
⊥)

2cA⊥
(3 − cos 2α). (18)

The conclusion about existence of the edge modes only in
the inductive elliptic region (Im σ⊥ > 0, Im σ‖ > 0) is the
same for exact Wiener-Hopf and approximated Fetter so-
lution, however the respective values (12) and (18) of the
threshold wave vector differ, especially near α = 0, π (see the
inset in Fig. 4 below).

D. Isotropic surface

In the particular case of isotropic surface with the
Lorentz-type response, �⊥ = �‖ ≡ �, A⊥ = A‖ ≡ A, the ex-
act Wiener-Hopf solution of the dispersion Eq. (6) is greatly
simplified:

ωe,i =
√

cAq

εbη0
+ �2, (19)

where η0 ≈ 2.4344 is the solution of equation∫
dξ

ξ 2 + 1
ln

{
η0

√
ξ 2 + 1

2
− 1

}
= 0. (20)

Dispersion in the Fetter approximation (17) in the isotropic
case,

ωF
e,i =

√
cAq

3εb
+ �2, (21)

differs from (19) quantitatively by replacing η0 with 3.
For 2D modes, only the elliptic solution of (14) exists in

the isotropic case:

ω2D
+,i =

√
cAq

2εb
+ �2. (22)

Note that these results are valid for the Drude-type conduc-
tivity as well, if we take � = 0. In this case the edge mode
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FIG. 2. Dispersions ω2D
± and isofrequency contours of 2D hyper-

bolic (ω2D
− , lower surface) and elliptic (ω2D

+ , upper surface) modes
propagating along a uniform 2D layer. Wave vectors k⊥,‖ are in
the units of k0 = εb�

2
⊥/cA, frequencies are in the units of �⊥. Hy-

bridization of hyperbolic and elliptic modes at two points {k⊥, k‖} =
{±16k0, 0} is seen.

becomes gapless with a square-root dispersion, as shown in
Ref. [64].

III. CALCULATION RESULTS

A. Dispersions of edge and 2D modes

Hereafter, similarly to Ref. [52], we assume equal spec-
tral weights A⊥ = A‖ ≡ A of both resonances �⊥,‖ and the
anisotropy parameter �‖/�⊥ = 3. All wave vectors will be
shown in the units of k0 = εb�

2
⊥/cA.

Dispersion of 2D modes, which propagate along uniform
surface, are found from Eq. (14) and shown in Fig. 2. The
hyperbolic ω2D

− and elliptic ω2D
+ waves hybridize [52] at the

points k⊥ = ±2εb(�2
‖ − �2

⊥)/cA⊥, k‖ = 0. The hyperbolic
modes exist in the range �⊥ < ω2D

− < �‖ and are canal-
ized at |k| → ∞ in the directions {k⊥, k‖} ∝ {±[(ω2D

− )2 −
�2

⊥]1/2,±[�2
‖ − (ω2D

− )2]1/2}. The dispersion of the ellip-
tic mode ω2D

+ starts from the straight line connecting the
hybridization points at ω2D

+ = �‖ and then isofrequency con-
tours, going through ∞-like nonconvex shape, eventually
become elliptic in the high-frequency limit.

Edge mode dispersions found using the Wiener-Hopf
method from Eq. (6) at different angles of the half-infinite
2D layer cutting 0 � α � π/2 are shown in Fig. 3. The edge
mode wave vector along the y axis in the (⊥, ‖) coordinates is
{k⊥, k‖} = {q sin α, q cos α}. This picture is mirror symmetric
for negative values of k⊥ and k‖. As we see, the edge modes
indeed start from, generally, nonzero wave vector (12). This
is a signature of 2D layer anisotropy, because in the isotropic
case the edge mode (19) always starts from q = 0.

It is useful to compare the dispersion of the edge mode ωe

vs its wave vector q along the edge (or y axis) and continuum
of 2D mode dispersions ω2D

± with the same wave vector q
along the edge (y axis) and different wave vectors components

FIG. 3. Upper surface: dispersion and isofrequency contours of
elliptic 2D mode propagating along the uniform 2D layer. Bottom
surface: the set of 1D dispersions of edge modes ωe(q, α) with the
wave vectors q = [k2

⊥ + k2
‖ ]1/2 along the y axis and different angles

α between the wave vector and the ‖ axis. Thus at each (k⊥, k‖)
two surfaces show frequencies of 2D elliptic and 1D edge modes
propagating with the same wave vectors in the same direction. Insets
show examples of 2D and edge mode dispersions taken at some
directions of the k wave vector (for 2D mode) or edge (for edge
mode).

−∞ < k < ∞ perpendicularly to the edge (along the x axis).
Examples for several 2D layer cutting angles α are shown
in Fig. 4. We see that, first, the edge mode dispersion starts
from the threshold wave vector (12), which coincides with
the y-axis projection of the hyperbolic and elliptic 2D modes
hybridization point. Second, the edge mode at any q and α

lies below the elliptic 2D mode continuum. It means the edge
mode is stable and cannot decay into the elliptic 2D ones
with conservation of q and ω. The Fetter approximation (17)
provides slightly lower edge mode frequency than the exact
one and the threshold wave vector (18) with the incorrect
angle dependence (see the comparison in the inset of Fig. 4).

B. Field and density distributions

The Wiener-Hopf method allows us to calculate spatial
profiles of electric potential ϕ(x, z) and charge density ρ(x)
explicitly in terms of inverse Fourier transform integrals over
complex plane of wave vectors, as shown in Appendix C.
These integrals are naturally divided into two contributions
[see (C2) and (C5)]. The first one comes from the integration
along the cut at the imaginary axis and decays on moving
away from the edge at z = 0 faster than the exponent e−q|x|.
The second one, present only at x � 0, comes from residues
in the poles ki in the lower complex half-plane k and has

the form ϕ(x, z) ∝ e−ikix−
√

k2
i +q2|z|, ρ(x) ∝ e−ikix of decaying

oscillations for each ki. Here ki are the roots of the equation

ε(ki )|ω=ωe (q) = 0 (23)
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FIG. 4. Dispersions of edge mode (solid lines) starting at the
threshold wave vector q0 at four different directions α of the edge.
Thin lines show continua of dispersions of elliptic (ω/�⊥ � 3) and
hyperbolic (1 � ω/�⊥ � 3) 2D modes with different x projections
of the wave vector k but with the same y projection q of k as that of
the edge mode. Dashed lines show the edge mode dispersions in the
Fetter approximation (17). Inset shows the α angle dependencies of
the exact threshold wave vector q0 (solid line) and its counterpart qF

0

(dotted line) obtained in the Fetter approximation.

with Im ki < 0, where ε(k) is given by (7). It means that −ki

are the complex wave vectors along the x axis which are
needed for a 2D mode to equate both its frequency ω = ωe(q)
and the y component of wave vector q to those of the edge
mode. Nonzero Im ki are required to achieve this equality
because at any real ki the frequencies ωe and ω2D

+ do not match
at the same q, as seen in Fig. 4.

The 2D mode with the wave vector {kx, ky} = {−ki, q} is
evanescent in the positive x direction and can be considered as
a lower-dimensional counterpart of conventional evanescent
modes ∝e−κ|z| confined to the 2D plane in 3D space. These
modes can be called doubly evanescent, because their field is
confined both to the z = 0 plane and to the x = 0 edge of the
surface. Equation (23) for these modes can have, depending
on q and α, two or four solutions ki coming in complex conju-
gated pairs, so we expect the presence of 1 or 2 evanescent 2D
modes with Im ki < 0. Both edge mode frequency and spatial
distribution of field and density change smoothly on transition
between the regimes of two and four solutions of Eq. (23).

The peculiar feature of the anisotropic 2D layer is that
ki have generally nonzero real parts (except the cases of
α = 0, π/2) which makes the field and charge density of the
evanescent 2D mode ∝ei(−kix+qy) both decaying and oscillat-
ing along the surface, i.e., having the wave front −Re(ki )x +
qy = const inclined with respect to the x axis in the (x, y)
plane, see the example in Fig. 1. As noted also in Ref. [77], the
qualitatively similar feature arises in the Fetter approximation,
where ϕ, ρ ∝ e−kFx+iqy at x > 0, and −ikF is the complex
wave vector with Im (−ikF) < 0 (see Appendix B), which,
however, does not correspond exactly to evanescent 2D wave.

FIG. 5. Analysis of edge mode field and density distributions
at α = π/36, q = 7.14k0, ωe = 3.3�⊥. (a) Wave vector mismatch
between the edge mode having the frequency ωe and wave vector
q along the edge (circle), and elliptic 2D modes with the same
frequency at different wave vector directions [solid line shows isofre-
quency contour ω2D

+ (k) = ωe]. Square and star show the real parts
of the complex wave vectors {kx, ky} = {−ki, q} of two evanescent
2D modes reaching the edge mode frequency owing to nonzero
Im ki. Dashed and dash-dotted curves show isofrequency contours
ω2D

+ (k) = const �= ωe of nonevanescent 2D modes passing through
these wave vectors and having not wave vector but frequency mis-
matches with the edge mode. (b) Spatial profile of the amplitude
|ϕ| of the edge mode field in the (x, z) plane in the units of the
peak value ϕ0 ≡ ϕ(x = 0, z = 0). (c),(d) Real and imaginary parts
of the potential ϕ(x) (solid lines) and their decomposition into the
rapidly decaying part (dashed lines) and two oscillating parts (dotted
and dash-dotted lines); the latter ones correspond to evanescent 2D
waves. (e),(f) The same as (c),(d) but for the charge density ρ(x) in
the units of ρ0 = ϕ0qεb/4π .

In Fig. 5 we show the potential and density distributions
at small nonzero α when Eq. (23) has four solutions and two
evanescent 2D waves are present. Figure 5(a) demonstrates
formation of the evanescent waves in the wave vector plane.
According to the dispersions picture (see Fig. 4), all elliptic
2D modes have lower y-axis wave vectors q than the edge
mode with the same frequency, so in Fig. 5(a) the 2D mode
isofrequency contour ω2D

+ = ωe cannot cross the line ky = q
at any real k = −kx. This q-wave vector mismatch along the y
axis can be surmounted when the x-axis wave vector kx = −ki

becomes complex. Its real part Re ki can be considered as the
point in the k plane, which is pictorially the “closest” to the
isofrequency contour ω2D

+ = ωe. The anisotropic and some-
times nonconvex shape of this contour allows the existence
of two “closest” points thus leading to the existence of two
evanescent 2D modes at once [square and star in Fig. 5(a)].

On the other hand, we can consider not wave vector but
frequency mismatch between the edge mode and all elliptic
2D modes with the same y-axis wave vector q, demonstrated
by Fig. 4. The nonzero imaginary part of an evanescent wave
vector ki allows us to surmount this mismatch, which is shown
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FIG. 6. The same as Fig. 5 but at α = π/3, q = 30.5k0, ωe =
4�⊥. At these parameters, only one evanescent 2D mode exists,
while field confinement near the edge is moderate.

in Fig. 5(a) as differences between solid, dotted, and dash-
dotted isofrequency lines.

The spatial potential distribution in Fig. 5(b) shows that the
edge mode field is well confined near the surface edge since
the wave vector (or frequency) mismatch is relatively large.
Decomposition of the field and charge density into the cut
and pole (evanescent 2D wave) contributions in Figs. 5(c)–
5(f) shows that the cut contribution is indeed very rapidly
decreasing.

It is remarkable that ϕ(x) is linear at x → +0 but behaves
as

√−x at x → −0, i.e., the electric field strength diverges
as E ∝ (−x)−1/2 in the free-space direction near the sharp
edge of the surface [see the asymptotic expressions (C6) and
(C7)]. Charge density ρ(x) behaves as x−1/2 at x → +0 [see
Eq. (C8)]. Similar features were noted in the case of edge
magnetoplasmons [64]. Note that the Fetter approximation
(B2) and (B3) provides qualitatively different asymptotics of
the field and density near the edge: The former turns out to
be linear in x from both sides of x = 0, and the latter has
δ-functional and linear parts.

Another case, where only one evanescent 2D mode exists,
is shown in Fig. 6. The edge mode confinement in this case is
moderate. Figure 7 shows what happens at the same α but
at lower wave vector q, where (see the panel α = π/3 of
Fig. 4) the continuum of 2D modes comes much closer to the
edge mode dispersion. Since the wave vector (or frequency)
mismatch significantly reduces, as seen in Fig. 7(a), the edge
mode confinement drops dramatically, and spatial decay of
field and density along the surface becomes very slow, as seen
in Figs. 7(b)–7(f).

Although the field of the edge mode does not take a sim-
ple exponentially decaying form upon moving away from
the edge, we can still characterize the degree of the field
confinement near the edge by the localization lengths lin (on
top of the 2D layer) and lout (in the outer space). They are
defined, respectively, as the distances measured in the positive

FIG. 7. The same as Fig. 6 but at α = π/3, q = 15k0, ωe =
3.08�⊥. The wave vector and frequency mismatches between the
edge and 2D modes are very small, so the field confinement near the
edge is very weak.

(negative) x direction from the edge where amplitude of the
potential drops e times with respect to the peak value at
the edge: |ϕ(lin )| = |ϕ(−lout )| = ϕ0/e. Localization lengths in
both directions are shown in Fig. 8 for different edge mode
wave vectors q and edge directions α. Field localization in
empty space [Fig. 8(b)] is by about one order of magnitude
stronger than along the 2D layer [Fig. 8(a)]. In the vicinity of
the threshold wave vector q0, the field delocalizes at x > 0 be-
cause the edge mode becomes almost indistinguishable from
the freely propagating elliptic 2D mode.

Note that near the threshold lin and lout depend on α differ-
ently: The former one is larger near α = π/2, while the latter
one is larger near α = 0. It can be attributed to the difference
of the conductivities σ⊥,‖: While σ‖ → ∞ at ω → �‖ near
the threshold, σ⊥ remains finite. Consequently, at α ≈ 0 the
currents perpendicular to the edge, which are responsible for
charge density oscillations and thus for edge mode formation,

FIG. 8. Edge mode field localization lengths (a) lin and (b) lout

defined as the distances from the edge measured, respectively, inside
(x > 0) and outside (x < 0) the 2D layer, where |ϕ| decays e times:
|ϕ(lin )| = |ϕ(−lout )| = ϕ0/e. The (k⊥, k‖) plane spans different edge
mode wave vectors q = [k2

⊥ + k2
‖ ]1/2 exceeding the threshold q0 and

edge directions α = arctan(k⊥/k‖).
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FIG. 9. Dispersions and field distribution in the isotropic case,
when �‖ = �⊥ ≡ �, at q = 30k0, ωe = 3.65�, k0 = εb�

2/cA.
(a) Dispersion of the edge mode (solid line) and its approximation
in the Fetter approach (dashed line); thin lines show the continuum
of 2D modes with the same wave vector q along the edge and
different perpendicular wave vectors k. (b) Spatial distribution of the
amplitude |ϕ| of the edge mode field in the (x, z) plane. (c) The real
potential ϕ(x) (solid line) and its decomposition into the rapidly de-
caying (dashed line) and oscillating (dotted line) parts; the latter one
corresponds to purely decaying evanescent 2D wave. (d) The same
as (c) but for the charge density ρ(x) in the units of ρ0 = ϕ0qεb/4π .

flow presumably along the ⊥ axis, where the conductivity is
smaller, so the charge density oscillations are better confined
to the edge. At α ≈ π/2 these currents flow presumably along
the ‖ axis, where the conductivity is high, so the charge
density is broadly distributed along the 2D layer.

Finally, we compare our results for anisotropic 2D layer to
those for isotropic surface, considered in Sec. II D. Dispersion
curves, shown in Fig. 9(a), start at q = 0 without the thresh-
old. They are qualitatively similar to those in Fig. 4 at α = 0.
The field profile in Fig. 9(b) is qualitatively similar to that in
the anisotropic case, while ϕ(x, z) and ρ(x) are everywhere
in phase [Figs. 9(c) and 9(d)]. It means that the evanescent
2D wave field is purely decaying without oscillations in the
x direction and the edge mode wave fronts in the (x, y)
plane are always perpendicular to the edge in the isotropic
case.

IV. DISCUSSION AND CONCLUSION

We analyzed the modes of plasmonic type (i.e., accom-
panied by charge density oscillations) propagating along the
edge, which is arbitrary inclined with respect to the optical
axes of a 2D layer with time-reversal symmetric anisotropic
conductivity. We assumed the Lorentz-type conductivities
with different resonance frequencies �‖ > �⊥, so the hyper-
bolic behavior occurs at �⊥ < ω < �‖. Our results can be
easily generalized to the case of Drude conductivity along
one of the axes �⊥ = 0 (Drude-Lorentz type of hyperbolic
material in terms of Ref. [40]).

The integrodifferential equations describing coupled dy-
namics of electric field and charge density in the half-plane
geometry were solved both exactly using the Wiener-Hopf
method and approximately using the Fetter approach. We

neglected EM field retardation that is expected to be justified
far enough from the light cone, when q 
 ω/c. Edge mode
dispersions as well as spatial profiles of electric potential and
charge density were calculated numerically and analyzed at
different angles α between the edge directions and the optical
axis ‖.

We show that the edge modes exist only in the induc-
tive elliptic frequency region, where both conductivities σ⊥,‖
have positive imaginary parts (in contrast to edge magneto-
plasmons, which exist below the cyclotron frequency). Edge
mode frequencies lie between the boundary ω = �‖ of the
elliptic region and the continuum of 2D waves, which freely
propagate along the surface and have the same projection
of wave vector on the edge. The edge mode dispersions
monotonously increase and cross ω = �‖ at the threshold
wave vector q0 ∝ (�2

‖ − �2
⊥)| sin α|, which coincides with

the point of hybridization of elliptic and hyperbolic 2D modes.
Thus the anisotropy of 2D layer makes the edge mode existing
only at wave vectors q exceeding this threshold, which is
absent in the case of isotropic surface.

Spatial profiles of electric field and charge density oscilla-
tions corresponding to the edge mode can be naturally divided
into two parts (the similar field decomposition was noted in
Ref. [81]). The first part is always strongly confined to the
edge, and the second part corresponds to evanescent 2D waves
with complex wave vector projections perpendicular to the
edge. Oscillations of these evanescent waves in a combination
with their propagation along the edge lead to inclination of
the edge mode wave fronts with respect to the edge. Near
the threshold wave vector, these evanescent waves become
weakly localized and almost indistinguishable from the freely
propagating 2D waves, because the edge mode dispersion
approaches the continuum. Depending on q and α, there exist
one or two evanescent 2D waves (the latter case is specific for
anisotropic surface), which can be explained by considering
wave vector or frequency mismatch between edge and 2D
modes.

Degree of confinement of edge mode field near the edge
was analyzed. The field is shown to be always highly confined
towards the empty space. Confinement along the 2D layer
weakens at small wave vectors when the edge mode dispersion
comes close to the continuum of elliptic 2D modes, because
in this case the evanescent 2D modes contributing to the edge
mode field become weakly decaying on departing from the
edge. Remarkably, due to the anisotropy of conductivities, at
α ≈ 0 the field confinement can remain strong even at small
wave vectors.

The approximated Fetter approach provides a qualitatively
correct picture for the edge mode dispersion with slightly
redshifted frequencies. The frequency region of existence of
edge modes, Im σ⊥ > 0, Im σ‖ > 0, is also correctly predicted
in this approach. However the angular dependence of the
threshold wave vector qF

0 ∝ (�2
‖ − �2

⊥)(3 − cos 2α) is differ-
ent from the exact one. Charge density distribution, obtained
in this approach, has a δ-functional singularity on the edge,
which is replaced by a softer x−1/2 singularity in exact so-
lution. Besides, the Fetter approach reproduces a qualitative
picture of evanescent 2D waves and accompanying inclined
wave fronts of edge modes, as discussed in detail in Ref. [77],
although with quantitatively incorrect wave vectors.
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Our results for the Lorentz-Lorentz type of anisotropic
conductivity tensor can be applied to a wide class of hy-
perbolic layers (e.g., metal nanodisk metasurfaces or natural
polar materials such as MoO3) and to various types of po-
laritons (plasmon, phonon, exciton polaritons, etc.) at large
enough wave vectors. Moreover, the predicted existence of the
threshold wave vector should take place in a more general case
where conductivity in one direction has the resonant Lorentz-
type form and conductivity in the perpendicular direction is
arbitrary and smoothly varying near the resonance. This sce-
nario is realized, e.g., in metal strip metasurfaces or in such
natural 2D materials as phosphorene. In contrast, where both
conductivities vary smoothly in the elliptic region of spectrum
(e.g., hyperbolic layer of Drude-Drude type [40]), the edge
mode dispersion should be dependent on edge direction α

and always starting at q = 0 without the threshold. It is also
of interest to extend our analysis on the case of 2D layers
with arbitrary conductivity tensor, not necessarily respecting
time reversal symmetry, or to the case of 1D interface of two
surfaces with different conductivities. General mathematical
approach to such analysis was presented in the recent paper
[80]. Notice that the considered modes are of plasmonic type
and have TM polarization in the 2D layer plane. The extension
of our approach accounting for EM field retardation would
allow us to study TE or hybrid TM-TE edge modes.

The superior field confinement in all directions perpendic-
ular to the edge makes the considered modes quite promising
for various applications. Large field gradients near the edges
can be applied for optical manipulation and trapping of
nanoparticles. In natural 2D materials edge modes can be
also of interest due to strong dependence of edge properties
on its atomic-scale details. Namely zigzag-terminated edges
of MoS2 monolayers have metallic and ferromagnetic nature,
while armchair edges display semiconducting and nonmag-
netic behavior [82,83]. Metallic edges are chemically active,
so they exhibit high electro- and photocatalytic activity [84],
as well as high gas sensitivity [85]. Besides, due to symmetry
breaking at the edges, they are also promising for nonlinear
optical applications, such as enhanced second harmonic gen-
eration [86].

Special attention should be paid to robust directional prop-
agation of the edge modes in a wide variety of both magnetic
and nonmagnetic materials. The former are materials where
time reversal symmetry can be broken by external magnetic
field, giving regular Hall effect, or by a nontrivial Berry cur-
vature of the electronic band structure, resulting in anomalous
Hall effect. Quantum Hall systems host gapless unidirectional
(nonreciprocal) edge magnetoplasmons [63–75]. Anomalous
Hall systems with the spin-induced [87,88] or valley-induced
[89,90] Berry curvature support similar chiral edge plasmons.
In ferromagnetic materials the Berry curvature is generated
by strong spin-orbit interaction and has opposite signs for
carriers with spins parallel or antiparallel to the magnetization.
By analogy in gapped graphene or transition metal dichalco-
genides, the Berry curvature induced by circularly polarized
light has opposite signs in different electron valleys.

Nonmagnetic materials with preserved time reversal sym-
metry can also support unidirectional edge EM modes owing
to the photonic spin-orbit coupling (photonic counterpart of
quantum spin Hall effect), where the role of (pseudo)spin is

played by the orbital angular momentum of light in systems
with nontrivial topology of photonic band structure [91–93].
Edge EM modes in such systems have the advantage of be-
ing topologically protected against defects that do not couple
modes with opposite pseudospins [94,95]. Additionally, the
effect of spin-momentum coupling can be used for unidirec-
tional excitation of edge modes in an arbitrary 2D system
by means of a circularly polarized dipole [77]. The ordinary
reciprocal edge modes, such as those studied in this paper,
can be excited and detected with different methods [96] used
for any evanescent plasmonic waves, e.g., scanning near-field
optical microscopy [97] or electron energy-loss spectroscopy
[59,60]. Numerical simulations of edge mode excitation by
dipole emitters located near the edge would allow us to esti-
mate and optimize its efficiency.
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APPENDIX A: WIENER-HOPF SOLUTION FOR
EDGE MODES

The method [64,98] starts from dividing the potential
ϕ(x, z) = ϕ+(x, z) + ϕ−(x, z) into the components ϕ± which
are nonzero at, respectively, x � 0 and x � 0. After the
Fourier transform

�±(ξ ) =
∫

dx eiξqxϕ±(x) (A1)

we obtain the functions �±(ξ ), which are analytical, respec-
tively, in the upper and lower half planes of the complex ξ .
The variable ξ has the meaning of x projection of the field
wave vector in the units of q with the minus sign. Similar
transform Q+(ξ ) = ∫ ∞

0 dx eiξqxρ(x) for the charge density
allows us to rewrite Eq. (3) after integration by parts as

iωQ+(ξ ) = q2{ξ 2σxx − ξ (σxy + σyx ) + σyy}�+(ξ )

− iq(ξσxx − σyx )ϕ0, (A2)

where ϕ0 ≡ ϕ(x = 0).
The Poisson Eq. (4) with taking into account (5) after the

Fourier transform becomes

�+(ξ ) + �−(ξ ) = 2π

εbq

Q+(ξ )√
ξ 2 + 1

. (A3)

Substituting (A2) into (A3), we obtain

ε(ξ )�+(ξ ) + �−(ξ ) = − i(ξηxx − ηyx )

2q
√

ξ 2 + 1
ϕ0, (A4)

where the 2D dielectric function

ε(ξ ) = 1 − ξ 2ηxx − ξ (ηxy + ηyx ) + ηyy

2
√

ξ 2 + 1
(A5)

and dimensionless conductivities

ηαβ = 4πqσαβ

iεbω
(A6)

are introduced.
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FIG. 10. Branch cuts (thick hatched lines), poles of �+(ξ )
(crosses), and other relevant points on a complex plane of ξ in the
four-root case. Initial (dotted lines) and deformed (solid lines) inte-
gration contours used to calculate ϕ±(x) are shown in, respectively,
lower and upper half planes. In the two-root case the points τ3,4 are
absent.

At this point we assume that the conductivity tensor in
(A6) has anisotropic time-reversal symmetric form (2). The
general case was considered in the recent paper Ref. [80].
Let us define the roots ξ1,2 of ξ 2ηxx − ξ (ηxy + ηyx ) + ηyy = 0,
equal to

ξ1,2 = (η⊥ − η‖) sin α cos α ± i
√

η‖η⊥
η

, (A7)

where

η ≡ ηxx = η⊥ cos2 α + η‖ sin2 α, (A8)

and

η⊥,‖ = 4πqσ⊥,‖
iεbω

= cq

εb

A⊥,‖
ω2 − �2

⊥,‖
(A9)

[we take the conductivities (1) at γ = 0, as explained in the
beginning of Sec. II A]. Thus (A5) takes the form

ε(ξ ) = 1 − η(ξ − ξ1)(ξ − ξ2)

2
√

ξ 2 + 1
. (A10)

The key step in the Wiener-Hopf method consists of kernel
decomposition of the kind [98]

ε(ξ ) = F+(ξ )/F−(ξ ), (A11)

where the functions F±(ξ ) are analytical, respectively, in the
upper and lower half planes. This process is facilitated by
finding the complex roots τi of ε(ξ ) = 0. Depending on the
parameters of the problem, we can have either two (τ1,2) or
four (τ1...4) roots, coming in complex conjugated pairs {τ1, τ2}
and {τ3, τ4} (if present). We denote by τ1,3 (τ2,4) the roots
with positive (negative) imaginary parts, see Fig. 10. It is
convenient to define

F+(ξ ) =
√

η

2

ξ − τ2√
1 − iξ

G+(ξ ), (A12)

F−(ξ ) = −
√

2

η

√
1 + iξ

ξ − τ1
G−(ξ ) (A13)

in the two-root case and

F+(ξ ) =
√

η

2

(ξ − τ2)(ξ − τ4)√
1 − iξ (ξ + i|ξ1|)

G+(ξ ), (A14)

F−(ξ ) = −
√

2

η

√
1 + iξ (ξ − i|ξ1|)

(ξ − τ1)(ξ − τ3)
G−(ξ ) (A15)

in the four-root case. The prefactors here are responsible
for zeros and poles of F±(ξ ), while the remaining functions
G±(ξ ) have only branch cuts along the imaginary axis, re-
spectively, (−i,−i∞) and (i, i∞), and quickly tend to 1 at
|ξ | → ∞. This allows us to deform the integration contours
for these functions, which are initially defined at real argu-
ments as [98]

G±(ξ ) = exp

{
1

2π i

∫ +∞

−∞

dξ ′

ξ ′ − ξ ∓ iδ
ln G(ξ ′)

}
, (A16)

from the real axis to these cuts (similarly to what is shown in
Fig. 10 but without going around the poles τ2,4). As a result,
we obtain the analytical continuation of (A16) to complex
arguments ξ , valid in both two- and four-root cases:

G±(ξ ) = exp

{
1

π

∫ ∞

1

du

iξ ∓ u
arctan

2
√

u2 − 1

η(u ∓ iξ1)(u ∓ iξ2)

}
.

(A17)
The functions (A17) can be quickly calculated numerically.
Substituting (A11) into (A4) and using (A10), we obtain

F+(ξ )�+(ξ ) + F−(ξ )�−(ξ )

= iϕ0

q

(
ξ − ηyx

η

)
F+(ξ ) − F−(ξ )

(ξ − ξ1)(ξ − ξ2)
. (A18)

The next step is to decompose the right-hand side of (A18)
into a sum P+(ξ ) + P−(ξ ) of functions P±, which are analyti-
cal in, respectively, upper and lower half planes. For real ξ this
decomposition can be performed analogously to (A16). The
integrals over ξ ′ can be reduced to residues in the poles ξ ± iδ
and ξ1,2, if we take into account that ξ1 (ξ2) has a positive
(negative) imaginary part and close the integration contour by
infinitely large half circle in the upper (lower) half plane for
the terms of the integrand containing F+ (F−):

P±(ξ ) = ± iϕ0

2q

{
F±(ξ ) − F+(ξ1)

ξ − ξ1
+ F±(ξ ) − F−(ξ2)

ξ − ξ2

}
.

(A19)
According to these formulas, both P+(ξ ) and P−(ξ ) tend to
zero at |ξ | → 0, so the Liouville theorem [98] states that
the “+” and “−” parts of Eq. (A18), which can be rewrit-
ten as F+(ξ )�+(ξ ) + F−(ξ )�−(ξ ) = P+(ξ ) + P−(ξ ), should
both be equal to zero at any ξ . This allows us to find �±(ξ ) =
P±(ξ )/F±(ξ ) as

�±(ξ ) = ± iϕ0

2q

{
1

ξ − ξ1

[
1 − F+(ξ1)

F±(ξ )

]

+ 1

ξ − ξ2

[
1 − F−(ξ2)

F±(ξ )

]}
. (A20)

The Fourier transform inverse to Eq. (A1) allows us to ob-
tain the asymptotics of ϕ(x) at x → ±0. From the asymptotics
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of (A20) at |ξ | → ∞ with taking into account (A12)–(A15)
and (A17),

�+(ξ ) = iϕ0

qξ
+ iϕ0C√

2ηq(−iξ )3/2
+ O(ξ−2), (A21)

�−(ξ ) = − iϕ0

qξ
− iϕ0

√
ηC

2
√

2q
√

iξ
+ O(ξ−3/2), (A22)

where C = F+(ξ1) + F−(ξ2), we can obtain asymptotics of
ϕ±:

ϕ+(x) = ϕ0

{
1 + i

√
2qx

πη
C + O(x)

}
, (A23)

ϕ−(x) = ϕ0

{
1 − i

2

√
η

2πqx
C + O(

√
x)

}
. (A24)

When C = 0, both potentials (A23) and (A24) correctly tend
to ϕ0 at x → 0. This matching condition provides the edge
mode dispersion equation:

F+(ξ1) + F−(ξ2) = 0. (A25)

With (A11)–(A16), it can be rewritten as

cosh

{
ξ1 − ξ2

4π i

∫
dξ

(ξ − ξ1)(ξ − ξ2)
ln ε(ξ )

}
= 0. (A26)

Taking into account that cosh z = 0 at z = π i(n + 1/2) and
that −π < Im ln ε(k) < π , we get∫

dξ

(ξ − ξ1)(ξ − ξ2)
ln {−ε(ξ )} = 0. (A27)

Using (A5) and (A6), we obtain the final dispersion Eqs. (6)
and (7).

A numerical solution for the edge mode dispersion ωe(q)
of (A27) exists only in the inductive elliptic range, where
η⊥,‖ > 0 and ξ1,2 in (A7) are complex conjugated. Given
the monotonous increase of ωe(q), there exists the threshold
wave vector q0 where ωe → �‖. In this limit, accord-
ing to (A7)–(A9), η‖ → ∞, η ≈ η‖ sin2 α, ξ1,2 ≈ − cot α ±
i
√

η⊥/η‖/ sin2 α, and the integral (A27) is dominated by close
vicinity of ξ = Re ξ1,2, so after the change of variable ξ =
Re ξ1 + u Im ξ1 it takes the asymptotic form∫

du

u2 + 1
ln{a(u2 + 1) − 1}, (A28)

where a = η⊥(�‖)/2| sin α| = cA⊥q/2εb(�2
‖ − �2

⊥)| sin α|.
This integral vanishes at a = 1, and the threshold wave vector
(11) and (12) is obtained from this condition.

APPENDIX B: EDGE MODES IN THE FETTER
APPROXIMATION

The simplified method to solve Eqs. (3) and (4), which was
proposed by Fetter in Ref. [63], is frequently applied for the
problems of edge modes [74,76–78]. This method consists
of approximating the nonlocal integral Eq. (4) by the local

differential one:

(
∂2

x − 2q2)ϕ(x) = −4πq

εb
ρ(x)�(x). (B1)

The solution of Eqs. (3) and (B1) is:

ϕ(x) = ϕ0{e−kFx�(x) + e
√

2qx�(−x)}, (B2)

ρ(x) = ϕ0εb(kF + √
2q)

4πq
{δ(x) − (kF −

√
2q)e−kFx}, (B3)

where

kF = q

√
2 + iηxy

ηxx − 1
(B4)

is the inverse edge mode localization length [we use notations
(A6)]. These functions satisfy Eq. (3) when the condition

(ηxx − 1)(ηyy − 2) − (ηxy − i
√

2)(ηyx + i
√

2) = 0 (B5)

is met. It gives the dispersion Eq. (15). In order for the formal
solution (17) of the dispersion equation to be physical, kF

should have a positive real part. Using (17), it can be shown
that Re kF > 0 only at sufficiently large wave vectors when
ω > �‖ and q > qF

0 , where the threshold wave vector qF
0 is

given by Eq. (18).

APPENDIX C: CALCULATION OF FIELD AND DENSITY
DISTRIBUTIONS

According to the Maxwell equations in the nonretarded
limit q 
 ω/c, each harmonic ϕ(x) = ei(−kx+qy) of the po-
tential on the 2D layer plane corresponds to evanescent field

ϕ(x, z) = ei(−kx+qy)−
√

k2+q2|z| in space. Therefore to obtain the
spatial potential distributions ϕ±(x, z) at, respectively, x � 0
and x � 0 we need to carry out the inverse Fourier transform

ϕ±(x, z) =
∫

q dξ

2π
e−iξqx−

√
ξ 2+1q|z|�±(ξ ) (C1)

with �±(ξ ) given by (A20). It is convenient to deform, as
shown in Fig. 10, the integration contours for ϕ± from the real
axis to the lower (upper) complex half planes down to the cuts
(∓i,∓∞) and use (A11), (A25). In the “+” case we need to
take into account the presence of the poles τ j , where j = 2
and j = 2, 4 in the two- and four-root cases (see Appendix A)
of the function �+(ξ ) in the lower half plane originating from
the zeros of (A12) or (A14). Residues in these poles contribute

to ϕ+(x, z) as the waves e−iτ j qx−
√

τ 2
j +1q|z|, which exponentially

decay at x → +∞. These terms correspond to evanescent 2D
waves with the complex wave vectors ki = qτi considered
in Sec. III B. The remaining contribution to ϕ+(x, z) from
the cut integration over 0 � u < ∞ decays faster than the
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exponent e−qx:

ϕ+(x, z) = ϕ0F+(ξ1) Im ξ1

{∑
j

−ie−iτ j qx−
√

τ 2
j +1q|z|

ε′(τ j )F−(τ j )(τ j − ξ1)(τ j − ξ2)
+ η

2π

∫ ∞

1

du e−uqx

F−(−iu)
{
u2 − 1 + 1

4η2(iu + ξ1)2(iu + ξ2)2
}

×
[√

u2 − 1 cos(
√

u2 − 1q|z|) − η

2
(iu + ξ1)(iu + ξ2) sin(

√
u2 − 1q|z|)

]}
. (C2)

Here j = 2 and j = 2, 4 for, respectively, the two- and four-root cases. In calculating ϕ−(x, z) the poles do not appear, since
(A13) and (A15) have poles at τ1 or τ1,3 in the upper half plane, so �−(ξ ) in (A20) has no poles at these points. Physically this
corresponds to the absence of evanescent 2D waves in the empty space. The only remaining cut integration gives:

ϕ−(x, z) = ϕ0F+(ξ1) Im ξ1
η

2π

∫ ∞

1

du euqx cos(
√

u2 − 1q|z|)
F+(iu)

√
u2 − 1

. (C3)

The density distribution ρ(x) can be obtained by the inverse Fourier transform ρ(x) = ∫
(q dξ/2π )e−iqxξ Q+(ξ ), where Q+(ξ ) is

found from (A2) or (A3) by taking into account the dispersion Eq. (A25):

Q+(ξ ) = ϕ0εbη F+(ξ1) Im ξ1

4πF+(ξ )
. (C4)

By deforming the integration contour into the lower complex half plane (Fig. 10), taking into account the residues at poles τ j ,
and using (A11), we obtain

ρ(x) = ϕ0qεbηF+(ξ1) Im ξ1

4π

{∑
j

−ie−iqxτ j

ε′(τ j )F−(τ j )
+ η

2π

∫ ∞

1

du e−uqx
√

u2 − 1(iu + ξ1)(iu + ξ2)

F−(−iu)
{
u2 − 1 + 1

4η2(iu + ξ1)2(iu + ξ2)2
}
}

, (C5)

where j = 2 and j = 2, 4 for, respectively, the two- and four-root cases. Similarly to (C2), we obtain the density distribution as
a sum of the decaying oscillating terms e−iqxτ j originating from the poles and the rapidly decaying term coming from the cut
integration.

From decompositions of (A20) at |ξ | → ∞, which are more accurate versions of (A21) and (A22), we can obtain the
following asymptotics of ϕ±(x) at x → 0:

ϕ+(x) = ϕ0

{
1 − ix Re ξ1 + 8iF+(ξ1) Im ξ1

3
√

2πη
x3/2 + O(x2)

}
, (C6)

ϕ−(x) = ϕ0

{
1 − i

√
2η

π
F−(ξ2) Im ξ1

√−x + O(x)

}
. (C7)

Similar expansion for charge density (C4) and (C5) yields

ρ(x) = −i

√
ηq

x

ϕ0εbF+(ξ1) Im ξ1

(2π )3/2
+ O(1). (C8)
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