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Quantum materials having Dirac fermions in conjunction with superconductivity is believed to be the
candidate material to realize exotic physics as well as advanced technology. Angle-resolved photoemission
spectroscopy (ARPES), a direct probe of the electronic structure, has been extensively used to study these
materials. However, experiments often exhibit conflicting results on dimensionality and momentum of the Dirac
fermions (e.g., Dirac states in BiPd, a novel noncentrosymmetric superconductor), which is crucial for the
determination of the symmetry, time-reversal invariant momenta, and other emerging properties. Employing
high-resolution ARPES at varied conditions, we demonstrated a methodology to identify the location of the
Dirac node accurately and discover that the deviation from two dimensionality of the Dirac states in BiPd
proposed earlier is not a material property. These results helped to reveal the topology of the anisotropy of
the Dirac states accurately. We have constructed a model Hamiltonian considering higher-order spin-orbit terms
and demonstrate that this model provides an excellent description of the observed anisotropy. Intriguing features
of the Dirac states in a noncentrosymmetric superconductor revealed in this study are expected to have significant
implications regarding the properties of topological superconductors.

DOI: 10.1103/PhysRevB.103.155401

I. INTRODUCTION

Recent times have seen the emergence of a new class of in-
sulating materials, which are topological in nature. While the
bulk of these materials is insulating, the surface harbours par-
tially filled (metallic) spin-split two-dimensional bands with
conelike structure (Dirac cone) arising due to the topological
nature of the bulk bands. Bi2Se3 is one of the most studied
materials in this category [1], where the surface states and
its evolution with impurities have been studied extensively
[2–4]. The pool of topological materials have been enriched
via discovery of Dirac fermions as the surface states in super-
conductors such as BiPd [5–7], β-PdBi2 [8], CuxBi2Se3 [9],
SrxBi2Se3 [10,11], etc. Among these topological materials,
BiPd grabbed much attention, as it stabilizes in noncen-
trosymmetric monoclinic structure (P21) known as α-BiPd,
and superconductivity appears below 3.8 K [12–14]. Above
483 K, it undergoes a polymorphic transition from α-BiPd to
orthorhombic β-BiPd (space group Cmc21).

Due to the absence of inversion symmetry, the (010) and
(01̄0) faces of BiPd are inequivalent, and the binding energy
at the Dirac nodes on respective faces are also different. In-
terestingly, the twinning in the samples allows photoemission
experiments to capture properties of both surfaces simultane-
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ously; while the Dirac bands on the (010) face appear clearly
in the experimental spectra, bands on the (01̄0) face are often
weak and appear in the immediate vicinity of the bulk states.
Benia et al. [5] pointed out that the Dirac states in BiPd
may not have topological origin, as these are found in density
functional calculations, both with and without spin-orbit (SO)
coupling. On the other hand, spin-resolved photoemission
measurements have confirmed the spin polarization of these
states, which is a signature of topological behavior [7]. It is of
note here that spin-polarized surface states are also observed
in systems with heavy elements due to strong Rashba cou-
pling.

Despite several studies, even the identification of the lo-
cation of a Dirac node and the dimensionality of the Dirac
states are outstanding issues. Thirupathaiah et al. [6] reported
this band to be found at � (Brillouin zone center). However,
Yaresko et al. have shown the Dirac states to be positioned
at S, a high-symmetry point at the surface Brillouin zone
boundary based on their detailed density functional theoretical
(DFT) calculations [15]. In addition to the conflicting results
regarding the location of the Dirac node, Thirupathaiah et al.
[6] proposed the three-dimensional nature of the Dirac states
depicted by an energy gap at the Dirac node varying with
kz, although the repetitive nature of the gap as a function
of kz was not observed. However, the DFT results charac-
terize Dirac states as two-dimensional surface states [5,7].
We carried out high-resolution angle-resolved photoemission
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FIG. 1. (a) Unit cell of BiPd in real space. (b) Bulk and (c) sur-
face Brillouin zones. ARPES data (d) along �′ − S − �′ and (e)
� − S − � vectors. The Dirac point is identified with an arrow, and
the k axis is shifted to make the S point zero.

spectroscopic (ARPES) measurements at carefully chosen ex-
perimental conditions and discover that the Dirac states are
truly two dimensional; the anomalies reported earlier arose
due to the sample alignment used in those experiments. Fur-
thermore, we find that the anisotropy in the dispersion of the
Dirac bands reported earlier [5,6] appears far away from the
Dirac node. We have constructed a model Hamiltonian con-
sidering higher-order spin-orbit terms, which provides a good
description of all the features of the Dirac bands observed
experimentally.

II. EXPERIMENT

High-quality single crystals of BiPd were grown using
a modified Bridgman method. The crystal structure of the
sample was determined via analysis of the powder x-ray
diffraction pattern, and good crystallinity has been ensured
employing Laue diffraction experiments. The lattice parame-
ters found in the study correspond to the monoclinic structure
as reported elsewhere [12]. Magnetization measurements
exhibit a superconducting transition at 3.8 K. ARPES mea-
surements were performed at Diamond Light Source, United
Kingdom, and Elettra, Italy. At the Diamond Light Source,
experiments were carried out at the I05 beamline [16] at a
temperature of 10 K, base pressure of 5 × 10−11 Torr, and
energy resolution of 5 meV. Measurements at Elettra were
done at the VUV beamline at a temperature of 25 K, base
pressure of 6 × 10−11 Torr, and energy resolution of 10 meV.

III. RESULTS AND DISCUSSION

The crystal unit cell of BiPd is shown in Fig. 1(a), ex-
hibiting a noncentrosymmetric structure. In Figs. 1(b) and
1(c), we show the bulk Brillouin zone (BZ) and its projection
on the surface, respectively. The axis system is defined by
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FIG. 2. (a)(i)–(iii) ARPES data collected along � − S − � di-
rection and (b)(i)–(iii) the corresponding energy distribution curves
(EDCs) after normalizing the sample position using 74-eV photon
energy. (c)(i)–(iii) A similar second set of ARPES data collected after
sample normalization using 35-eV photon energy and (d)(i)–(iii)
corresponding EDCs. Blue lines mark the EDCs passing through the
Dirac node. The energy gaps derived at the Dirac node at the S point
from (e) the first and (f) the second set of the spectra. Black lines
superimposed over the data points represent the estimated energy
gaps considering the � − S vector makes an azimuthal angle θ1 and
tilt angle θ2, as shown in the Appendix.

aligning kx along the �-S direction and ky along the �-S′ direc-
tion. Photoemission spectra along two directions are shown in
Figs. 1(d) and 1(e), with the Dirac point appearing at 0.66-eV
binding energy shown using an arrow. The analysis of the
data as discussed in Fig. 2 suggests that the Dirac point is
positioned at the S point in the surface Brillouin zone, which
is about 0.73 Å−1 away from the � point; in the figure, the
k axis is shifted to make it zero at the Dirac node. While
the bands along �′ − S − �′ exhibit spin splitting varying
monotonically with momentum, the momentum dependence
of the spin splitting along � − S − � is nonlinear; it increases
to a maximum near a momentum of 0.1 Å−1 away from S
and then decreases, revealing strong anisotropy of the Dirac
fermionic bands as discussed earlier [5,6].

To investigate the dimensionality of the Dirac states, we
acquired spectra at various photon energies, which helps to
decide the surface or bulk nature of the bands. In Figs. 2(a)(i)–
2(a)(iii), we show a set of spectra along with corresponding
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energy distribution curves (EDCs) in Figs. 2(b)(i)–2(b)(iii).
The second set of spectra is displayed in Figs. 2(c)(i)–2(c)(iii)
with corresponding EDCs in Figs. 2(d)(i)–2(d)(iii). Pieces cut
from the same single crystal were used to obtain these two sets
of spectra. A close inspection reveals interesting differences
between the two sets. In the first set (the sample position
optimized using 74-eV photon energy), as the photon energy
is lowered, the Dirac cone becomes more asymmetric and the
bands do not cross each other. The energy gap at the Dirac
node was derived by fitting two peaks in the EDC [blue curves
in Figs. 2(b)] across the node. The gap increases as the probing
energy is lowered. The second set of the spectra were collected
after optimizing the sample position at 35-eV photon energy,
and the Dirac node could be captured just by optimization
of the sample alignment. Curiously, the second set exhibits
an opposite trend of the gap at the Dirac node; the energy
gap continuously increases with the increase in photon energy
across 74 eV, as manifested clearly in the EDCs [blue curves
in Figs. 2(d)]. In this case, the dispersion of the Dirac bands
remains symmetric over the energy range studied. In Figs. 2(e)
and 2(f), we show the derived energy gaps of the first and
second sets, respectively, exhibiting an opposite trend. We
note here that the Dirac bands shown in Figs. 1(d) and 1(e)
collected at 55-eV photon energy after optimizing the sample
position also show a distinct Dirac node. All these results
suggest that the k point at the Dirac node may be different
from the � point; the change in photon energy moves the k
point away from the Dirac node.

In order to probe this further, we consider that the � − S
vector makes an azimuthal angle, θ1, with the vertical axis
and tilt angle, θ2; here the photoemission plane is a horizontal
plane as shown in the Appendix. Clearly, the presence of finite
θ1 will manifest as an asymmetry in the cone structure as the
probed k vector does not pass through the Dirac node. This ar-
gument is verified from the values of θ1 obtained from fittings
in Figs. 2(e) and 2(f); the first set of spectra [see Fig. 2(a)]
exhibit strong asymmetry and could be captured with a higher
value of θ1 compared to the second set shown in Fig. 2(b).
Derived values of θ2 are also listed in the figures. Excellent
representation of the experimental results establishes that the
gap at the Dirac node is not the property of the material but
arises due to the sample alignment and that the Dirac node is
not located at �. A zero gap within the experimental error can
be obtained for both sets of data at all probing energies once
the fitted curve is subtracted from the measured gap. This is
manifested in the experimental data; the sample realignment
at different photon energies leads to reduction of the energy
gap to zero. For example, the data in Figs. 1(d) and 1(e) exhibit
a distinct Dirac node for photon energy of 55 eV, although the
spectra collected using the other setup for the same photon
energy show a nonzero gap. This is in addition to the data
in Figs. 2(a)(iii) and 2(c)(i) for 74 and 35 eV, respectively.
This establishes the finite momentum at the Dirac node and
two-dimensional nature of the Dirac states, as there is no
observable variation of the bands with the photon energy.

Identification of the correct momentum and dimensionality
of the Dirac node is important, as the symmetry of the states
depends on the momentum of the Dirac states, and dimen-
sionality provides the behavior of the states. For the ease of
presentation and/or calculations, sometimes, a nonprimitive
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FIG. 3. (a) EDCs passing through the Dirac node are plotted
for multiple photon energies ranging from 25 to 100 eV. DC1 and
DC2 are the Dirac cones on 010 and 01̄0 surfaces, respectively.
DC1 exhibits splitting into two peaks where the alignment of the
sample is away from the S point due to the change in photon energy.
SS1–SS5 label the surface states at higher binding energies. (b) A
representative spectrum at 35 eV shows all the observed surface
states of BiPd.

unit cell is used to derive the electronic structure of a system.
Such consideration introduces additional folding of the energy
bands, and one needs to unfold them to identify their momen-
tum as discussed earlier [15]. On the experimental front, the
way to identify the correct momentum and dimensionality of
the eigenstates is to map the Fermi surface at multiple photon
energies, presumably at photon energies corresponding to a
nonequivalent k point, and then take the correct cut. The
experimental data and ensuing analysis presented here pro-
vide the momentum and dimensionality of the Dirac fermions
consistent with the theoretical results [15].

Besides the widely discussed Dirac states, we discover a
few more two-dimensional states lying at higher binding ener-
gies. In Fig. 3(a) we show the EDCs at various photon energies
taken across the Dirac node. DC1 is the Dirac state under
investigation. DC2 is the Dirac cone on the (01̄0) surface [5].
In addition, a few other states labeled SS1–SS5 are seen to
be positioned at fixed binding energies even as the photon
energy is varied over a large range. Since these bands are
not observed in the theoretical results [15] for the bulk band
structure, we attribute these two-dimensional states as surface
states. Understanding of the nature of these bands requires
further theoretical studies, including various surface effects.

We now address the issue of anisotropy of the Dirac bands;
such anisotropy has also been reported in other materials.
For example, Bi2Te3 [17,18] and Bi2Se3 [19,20] are two
prominent cases of this class. There are other cases, too,
such as Ru2Sn3 [21], β-Bi4I4 [22], β-HgS [23], β-Ag2Te
[24], Au film grown on Ag(111) [25], Ag film grown on Au
(111) [25], etc. Anisotropy in these systems is attributed to
the symmetries at the surfaces. In Figs. 4(a)–4(d) we show
the constant-energy contours of BiPd taken across the Dirac
states. Energy positions of the contours are shown using
schematics in Figs. 4(e) and 4(f) with dashed lines. Each
constant-energy map consists of two contours. Green and
red colors are used to identify the contours with the energy
bands above and below the Dirac point. The shape of all
the contours exhibits the twofold rotational symmetry of the
crystal belonging to a C2 point group. Interestingly, the inner
contour near the nodal point is isotropic (cut A, B, and C) and
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FIG. 4. Constant-energy contours in the x-y plane at binding en-
ergies (a) 0.7 eV, (b) 0.68 eV, (c) 0.65 eV, and (d) 0.623 eV obtained
from the ARPES data at 55-eV photon energy, as shown in Fig. 1.
The binding energy positions of the contours are labeled A, B, C, and
D and are shown schematically in (e) along the k vector �′ − S − �′

and (f) along the k vector � − S − �. Green and red colors identify
the contours derived from the green- and red-colored energy bands.
The Cartesian coordinate system is shown in (d); (x, kx) lies along
� − S − �.

gradually evolves into a twofold symmetric curve far away
from the nodal point. At the top of the Dirac cone, the contour
evolves into two disjoint segments (cut D). Further, we notice
that the top and bottom portions of the outer contour (green)
are missing in all the cuts including D. This scenario is consis-
tent with the observation in Fig. 1(d) where the surface bands
merge with the bulk band along �′ − S − �′, resulting in an
incomplete contour. The twofold rotational symmetry implies
that electrons are subject to the effects of crystal potential.
Benia et al. argued that a twofold rotational symmetry in the
Rashba coupling strength at the surface is responsible for this
anisotropic band dispersion [5]. However, it is difficult to cap-
ture the nonparabolic dispersion along � − S − � [Fig. 1(e)]
as well as the contour shapes shown in Fig. 4 using this
scenario. Moreover, a C2 symmetric Rashba coupling, which
is first order in momentum (kx, ky), will produce twofold sym-
metric contours near the node, unlike the circular contours
seen here.

Experimentally observed dispersions of the Dirac bands
along two orthogonal directions are shown in Fig. 5(a). It is
evident in the figure that although the dispersions are different
far away from the node they are very similar near the node,
as found in the constant-energy contours of Fig. 4. Such a
behavior suggests importance of higher-order spin-orbit terms
[26,27]. Considering the C2 point group of the material and
time-reversal symmetry, we derive the Hamiltonian up to the
third-order term in momentum. The choice of the axes are
shown in Fig. 1, where the x axis lies along the � − S − �

direction. A model Hamiltonian with the S point as the refer-
ence point is constructed as follows:

H = A(�k)σx + B(�k)σy + C(�k)σz + D(�k)I2×2, (1)

where σx, σy, and σz are Pauli matrices and I2×2 is a 2 ×
2 identity matrix. A, B,C, and D are functions of lattice

FIG. 5. (a) Dispersion along �
′ − S − �

′
(blue open circles) and

� − S − � (green open triangles) derived from EDCs. Solid and
dashed lines represent the fits based on the eigenvalue equation
(1). (b) Spin splitting along � − S − � (green open triangles) and
�′ − S − �′ (blue open circles). Solid and dashed lines represent the
fits based on the eigenvalue equation (1).

momenta, kx and ky, with the following forms:

A(�k) = c1kx + c2ky + c3kxk2
y + c4kyk2

x + c5k3
x + c6k3

y

B(�k) = c7kx + c8ky + c9kxk2
y + c10kyk2

x + c11k3
x + c12k3

y

C(�k) = 0

D(�k) = E0 + c13k2
x + c14k2

y + c15kxky.

Clearly, for small k values, contributions from higher-order
terms become insignificant and one can get essentially an
isotropic description from the above Hamiltonian. By fitting
the band dispersions along various k directions, one can es-
timate the parameters adequately to derive the band structure
[28]. We discuss a typical case below.

Band dispersion and spin splitting extracted from EDCs
from the spectrum at 55 eV are shown by symbols in Figs. 5(a)
and 5(b), respectively. Spin splitting along the S − �′ di-
rection is represented by open circles, and along the S − �

direction, it is open triangles. The spin splitting along S −
�′ varies almost linearly with momentum, as expected for
Rashba split parabolic bands. Along S − �, away from the
S point, the bands deviate from the expected parabolic dis-
persion. The splitting varies linearly with momentum close to
the S point, and at large momentum the effect of higher order
takes over. Fitting of all the curves is done using expressions
derived from Eq. (1) and in each case, good quality of fitting
is achieved for the momentum region away from the influence
of bulk bands.

To confirm that the obtained description reproduces the
experimental results shown in Fig. 4, we simulated the
constant-energy maps using the above description. In Fig. 6
we show the contours at binding energies similar to those
shown in Fig. 4. Note that since the size of the model Hamil-
tonian is 2×2, it describes only the spin-split Dirac-like states
and does not capture the merger of the Dirac states with
the bulk bands along the S − �′ direction. Hence it provides
closed contours, as expected for surface states in a scenario
where merging to the bulk bands is absent. The shapes of
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FIG. 6. Contours simulated at (a) 0.7 eV, (b) 0.68 eV, (c) 0.65 eV,
and (d) 0.623 eV binding energies using the Hamiltonian in Eq. (1).
Parameters used for the simulations are listed in [28]. Colors (red or
green) of contours are in accordance with Fig. 4.

the contours provide an excellent description of the exper-
imentally observed scenario around the S point. Note here
that spin-orbit coupling in the solid can have contributions
[= − eh̄

(2mc)2 σ (E (r) × p), where E (r) is the electric field] in
addition to the atomic values. This is more so in a material
having no center of symmetry, as reported earlier [29]. Thus
the origin of the above behavior may be attributed to the strong
spin-orbit coupling in this noncentrosymmetric solid, BiPd.

It has been shown that higher-order spin-orbit coupling
gives rise to out-of-plane spin polarization in systems such
as Bi2Se3 [26,30], Bi2Te3 [18,26], β-Ag2Te [24], etc. The
surface states in BiPd will, however, not possess an out-of-
plane spin component. The spin-splitting term containing σz,
which leads to the out-of-plane spin polarization, is absent in
the Hamiltonian [see Eq. (1)] owing to the C2 symmetry of the
system. Hence the spin polarization of the states will lie in the
kx-ky plane [31].

IV. CONCLUSIONS

In summary, we studied the Dirac states in a noncen-
trosymmetric superconductor, BiPd. The high quality of the
sample and high resolution of the ARPES technique em-
ployed in this study helped to reveal subtle features in the
electronic structure. Our experimental results helped to iden-
tify the momentum of the Dirac node and establish the
two-dimensional character of the Dirac states, resolving the
outstanding disputes on these two issues. This study brings
out the importance of deriving correct experimental geome-
try to reveal experimental results related to the properties of
materials, in particular, the cases where the point of interest is
not the center of the Brillouin zone (� point). This is crucial
for the identification of the symmetry properties, time-reversal
invariant momenta, and their implications in various other

exoticities of the material. In addition, we discover several
other surface states at binding energies higher than the Dirac
point, revealing the complexity of the system. Since the
Rashba term alone cannot adequately capture the experimen-
tal results, we constructed a model Hamiltonian including
spin-orbit coupling terms of higher order in momentum. Our
model provides an excellent description of the anisotropy
of the Dirac states. The necessity of the higher-order terms
reveals the importance of the absence of inversion symmetry
in the electronic properties of such systems.
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APPENDIX

The experimental geometry involving the sample orien-
tation and the photoemission plane is discussed below. The
angle θ1 is defined as the azimuthal angle made by the vector,
� − S, with the analyzer slit; the analyzer slit is aligned along
the y direction. The tilt angle θ2 is the angle between the
analyzer and the sample-surface-normal. Depending on the
magnitudes of θ1 and θ2, different trends of the energy gap
at the Dirac node is expected as a function of probing photon
energy.

FIG. 7. Schematics of the experimental geometry. (a) The ge-
ometry used in the present study where θ1 and θ2 are in-plane
(azimuthal) and out-of-plane (polar) angles, respectively. (b) A spe-
cial case where the in-plane angle, θ1 = 90◦. The angle β is the
emission angle of photoelectrons corresponding to the Dirac node
with respect to the sample surface-normal. Conic sections in the
lower panel show the expected band dispersions in the spectra for
different values of β with respect to θ2 due to the change in photon
energy keeping the sample orientation unchanged.
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As an example, we consider a less complex scenario in
Fig. 7(b); θ1 = 90o and θ2 �= 0. Here the �′ − S − �′ vec-
tor lies along the slit (probed k vector). If the Dirac node
is located at a finite momentum along the � − S direction,
corresponding electrons will emerge at an angle β with respect
to the sample-normal. The magnitude of β depends on the
photon energy used for experiments; with the increase of the
photon energy, β will reduce. For sufficiently low photon
energy, β will be larger than θ2. It becomes equal to θ2 at some
photon energy and then becomes smaller at higher photon
energies. The lower panel of Fig. 7(b) depicts the schematics
of the acquired dispersion using a conic section. The vertical
plane is the plane of constant momentum along � − S, which

lies parallel to the analyzer slit. Intersection of this vertical
plane and the cone determines the shape of the dispersion
(red curves) as seen in the spectra. When β �= θ2, instead
of a cone the Dirac state manifests itself as two hyperbolas
separated by an energy gap. An ideal cone with a Dirac node is
imaged at a particular photon energy when the corresponding
β becomes equal to θ2. Earlier ARPES results can be captured
excellently well using this description. As a representative
case, we analyzed the ARPES data of Thirupathaiah et al. [6],
exhibiting identical behavior for θ2 = 9.6o and θ1 = 90o. If θ1

is different from 0o or 90o, the cuts on the Dirac cone will not
produce hyperbolas symmetrically aligned with respect to the
vertical axis. This is the scenario in Figs. 2(a) and 2(b).
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