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Origin of the ν = 1/2 fractional quantum Hall effect in wide quantum wells
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The nature of the fractional quantum Hall effect at ν = 1/2, observed in wide quantum wells almost three
decades ago, is still under debate. Previous studies have investigated it using the variational Monte Carlo method,
which assumes that the transverse wave function and the gap between the symmetric and antisymmetric subbands
obtained in a local density approximation at zero magnetic field remain valid even at high perpendicular magnetic
fields; this method also ignores the effect of Landau level mixing. We develop in this work a three-dimensional
fixed-phase diffusion Monte Carlo method, which gives, in a single framework, the total energies of various
candidate states in a finite width quantum well, including Landau level mixing, directly in a large magnetic field.
This method can be applied to one-component states and also to two-component states in the limit where the
symmetric and antisymmetric bands are nearly degenerate. Our three-dimensional fixed-phase diffusion Monte
Carlo calculations find that the one-component composite-fermion Fermi sea and the one-component Pfaffian
states are very close in energy for a range of quantum-well widths and densities, suggesting that the observed
1/2 fractional quantum Hall state in wide quantum wells is likely to be the one-component Pfaffian state. We
hope that this will motivate further experimental studies of this state.
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I. INTRODUCTION

The field of the fractional quantum Hall effect [1] (FQHE)
has been the birthplace for a web of spectacular phenomena,
exotic emergent particles, and nontrivial states, all arising as a
result of the interaction between electrons. The FQHE is a rare
example of a strongly correlated state for which we not only
have a qualitative understanding of a large part of the promi-
nent phenomenology, but we have also achieved a detailed
microscopic description that is quantitatively accurate [2,3].
Nonetheless, the origin of a few experimentally observed
states remains unsettled. This article aims to report on our
theoretical investigations of one such state, namely the FQHE
state at filling factor ν = 1/2 observed in wide quantum wells
(WQWs) [4–14], the origin of which has been a topic of
debate ever since its discovery. There are two motivations for
our study. First, this observation is in stark contrast to the state
at half-filling in narrow quantum wells, which is established
to be a Fermi sea of composite fermions (CFs) [2,3,15]. The
FQHE thus arises due to changes in the interaction arising
from finite quantum-well width, and thus it constitutes an
important challenge for our quantitative understanding of the
FQHE. Second, the physical origin of the observed state can
be potentially very interesting.

A promising two-component state is the Halperin (3,3,1)
state [16], which can be relevant because a very WQW be-
haves as a two-component system. [There is little doubt that
the 1/2 FQHE observed in real double-layer systems [17] is
the two-component Halperin (3,3,1) state [18]. Our focus in
this article is on WQWs, not double-layer systems.] However,
another promising candidate is the one-component Pfaffian

state, which is a paired state of composite fermions [19,20].
This state is believed to be responsible for the FQHE at
ν = 5/2 [21], and one can ask if the changes in the interelec-
tron interaction due to finite width may stabilize this state at
ν = 1/2 as well. The Halperin (3,3,1) state supports Abelian
quasiparticles, whereas the Pfaffian is believed to support
non-Abelian quasiparticles. The latter has motivated many
interesting theoretical and experimental studies of the 5/2
FQHE. If the 1/2 state in WQWs turns out to be the Pfaffian
state, that would provide another venue where non-Abelian
quasiparticles may be investigated.

While the 1/2 FQHE in WQWs has often been interpreted
in terms of the (3,3,1) state, arguments can also be given in
favor of a one-component state. We provide here a summary
of experimental results and their implications for the nature of
the state:

(i) In a double-layer system, which consists of two layers
separated by a distance d , the situation is relatively clear
[18,22–29]. For zero-layer separation, the two-component
system of spin-polarized electrons is formally equivalent to
a single-layer system of spinful electrons with zero Zee-
man splitting. Here the state is a layer singlet Fermi sea
of composite fermions [22,30,31]. In variational calcula-
tions [18,24,25] this state survives in the range d/lB � 1.
The (3,3,1) state is predicted to occur for layer separations
1 � d/lB � 3 [18,24], in general agreement with experi-
ments. For layer separations d/lB � 3, two uncoupled CF
Fermi seas (CFFSs) are formed one in each layer, with
composite fermions now binding four vortices [18,24]. In
contrast, the 1/2 FQHE in WQWs is seen when the width
is approximately 2.6 − 8 lB [4–6,8–13,32–34]. Although not
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conclusive, this points against the two-component (3,3,1)
state.

(ii) For quantum-well widths and densities where the 1/2
FQHE is observed in WQWs, the behavior of FQHE states
surrounding it is often consistent with single-layer physics. In
particular, states along the standard Jain sequences n/(2n ± 1)
[35] are observed. Recently, Mueed et al. [36] directly mea-
sured, from commensurability oscillations, the Fermi wave
vector of composite fermions in the vicinity of filling factor
1/2, and they found that the Fermi sea is a one-component
state. The fact that the states in the immediate vicinity of
ν = 1/2 are one-component states makes it plausible that
the ν = 1/2 FQHE also has a one-component origin. If not,
it would be important to understand what is special about
ν = 1/2 that makes a two-component state favorable here.

(iii) A phase diagram has been constructed as a function
of the filling factor and �SAS, the gap between the symmetric
and antisymmetric subbands [34]. The island of the 1/2 FQHE
state straddles the boundary where many nearby FQHE states
make a transition from a one-component state to an insulator,
presumably a double-layer crystal. However, the 1/2 FQHE
island is contiguous, i.e., it is either all one component or two
components.

(iv) The effect of asymmetry in the charge distribution is
complex but worth mentioning here. An early work on an
80-nm-wide QW by Suen et al. [5,6] reported a monotonic
decrease in the strength of the FQHE at ν = 1/2 as the charge
distribution is made asymmetric, with the FQHE state disap-
pearing at approximately 10% imbalance. This may arise from
either the two-component nature or complicated changes in
the effective interaction. Subsequently, Shabani et al. [8,9]
found that in a 55 nm quantum well, an asymmetry of the
charge distribution favors the FQHE at 1/2. This suggests a
one-component nature of the FQHE here. Numerical studies
also show that in such asymmetric quantum wells around
certain widths, the one-component Pfaffian wave function has
a large overlap with the ground state, although the (3,3,1) state
is also competitive [11,37,38].

We next briefly review the theoretical studies of the 1/2
FQHE in WQWs and also provide a summary of the main re-
sults arising from the present study. In particular, we indicate
how the theoretical phase diagram is sensitive to the various
assumptions that go into the calculation.

The problem has been addressed by exact diagonalization
(ED) [23,29,38–40]. ED can often deal with only very small
systems and is thus not likely to capture the thermodynamic
behavior. This is especially the case for WQWs, for which
the width may become comparable to the available lateral
dimension of the system. The energy orderings of states are
often seen to change as the system size increases.

This issue has also been investigated using the varia-
tional Monte Carlo (VMC) method [18,37,41–44]. During the
course of this work, we have determined the phase diagram
of ν = 1/2 in a WQW using the VMC method, shown in
Fig. 1. The (3,3,1) state is stabilized in a part of the phase
diagram that agrees qualitatively with experiments. The phase
boundary between one-component CFFS and the (3,3,1) state
is consistent with earlier calculations [44].

However, the VMC calculations make the following as-
sumptions. (i) The effect of finite width is incorporated

FIG. 1. The phase diagram of states at ν = 1/2 obtained by the
VMC method as a function of the quantum-well width W and the
carrier density. The transverse wave function is assumed to have
the form obtained from the LDA at zero magnetic field. Both one-
component and two-component states are included. The following
states are seen to occur: the one-component CFFS state (red), the
(3,3,1) state (green), and the state with two uncoupled 1/4 CFFSs,
labeled 1/4 + 1/4 CFFS (yellow). The region where experiments
find an incompressible state [9] is indicated by light dashed lines.
For a given width, the uncertainty of the calculated transition den-
sities is approximately 1 × 1010 cm−2. The overall phase boundary
is obtained by smoothly joining the transition points at W = 50, 60,
70, and 80 nm. The subband gap determined by the LDA is used to
to determine the total energies of the two-component states.

through a transverse wave function for electrons, which
modifies the interactions between them [see Eq. (18)]. The
transverse wave function is evaluated in the local density
approximation (LDA) at zero magnetic field [45], and it is
assumed that it remains unaltered at a strong perpendicular
magnetic field. Given that the nature of the transverse wave
function depends on the state that the electrons form in two
dimensions (for example, at zero magnetic field the LDA as-
sumes a Fermi sea state of electrons), one may wonder to what
extent this assumption is valid. (ii) The phase boundary be-
tween the one- and two-component states depends sensitively
on �SAS, i.e., the gap between the symmetric and antisym-
metric subbands. One uncritically uses its value obtained at
zero magnetic fields. However, this gap is typically very large
compared to the Coulomb energy differences between the
competing states, and even a few percent change in �SAS can
substantially shift the phase boundaries.

The VMC calculation also does not incorporate the effect
of Landau level mixing (LLM) directly. We have further in-
vestigated the role of LLM within the VMC method through
a two-dimensional (2D) fixed-phase diffusion Monte Carlo
(DMC) method developed by Ortiz, Ceperley, and Martin
[46,47], which itself is a generalization of the standard DMC
method [48] to find ground states in the presence of broken
time-reversal symmetry. In this method, we allow for LLM
for electrons interacting with the effective interaction derived
from the LDA at zero magnetic field. We refer to this as
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FIG. 2. The phase diagram of states as a function of the quantum-
well width W and the carrier density obtained from a 2D DMC
calculation, which incorporates finite width corrections by using an
LDA interaction derived at zero magnetic field. This figure shows
how the phase diagram in Fig. 1 changes upon Landau level mixing.
The region where experiments find an incompressible state [9] is in-
dicated by light dashed gray lines. For a given width, the uncertainty
of the calculated transition densities is about 2 × 1010 cm−2.

“2D-DMC.” We find that, at this level of approximation, the
phase diagram is substantially altered and neither the (3,3,1)
nor the Pfaffian state is stabilized for a significant range of
parameters (see Fig. 2). However, a conceptual difficulty with
this method is an uncontrolled double-counting, because mix-
ing with higher bands has already been incorporated through
the modification of the transverse wave function, which, in
a sense, is akin to LLM at a finite magnetic field. (At finite
magnetic fields, it is LLM that leads to a modification of the
form of the transverse wave function.) This study nonetheless
shows the importance of LLM, indicating that the results from
neither VMC nor 2D-DMC are fully reliable.

The primary motivation of our work is to develop a tech-
nique that circumvents some of the above issues and treats
finite width and LLM effects directly at a large magnetic field.
Specifically, we use a three-dimensional (3D) version of the
fixed-phase DMC method, referred to below as “3D-DMC,”
or simply as “DMC.” The most important advantage of the
3D-DMC method is that it directly gives the ground-state
energy (as well as the form of the transverse wave function)
at a high magnetic field, automatically including the effects
of finite width and LLM. No reference is made to zero mag-
netic field in our calculation. Of course, this method also
makes an approximation, namely the choice of fixed phase,
and all of our conclusions are subject to the validity of our
choice of the phase. (We use the accurate lowest Landau level
wave functions to fix the phase, which has been found to
give good agreement with experiments in the past [49–51].)
There are other practical difficulties with our method. One
is that the required computation time does not allow treat-
ment of very large systems; we have studied systems with
up to about 25 particles. The second is that it does not al-
low treatment of two-component states with nonzero �SAS.

FIG. 3. The phase diagram of states determined by 3D-DMC as
a function of the quantum-well width W and the carrier density.
Here both finite width and Landau level mixing are included in a
DMC calculation directly in the presence of a magnetic field. The
red region is the single-component CFFS state, and the yellow region
marks the 1/4 + 1/4 CFFS state. In the purple region, the energies
of the single-component CFFS and the single-component Pfaffian
states are equal within numerical uncertainty. The uncertainty of the
transition density from the one-component state to the 1/4 + 1/4
CFFS at each width is approximately 5 × 1010 cm−2. The region
where experiments find an incompressible state [9] is indicated by
light dashed gray lines.

For two-component states, we assume that �SAS = 0, i.e.,
the wave function strictly vanishes at the center. This should
be a decent approximation for sufficiently large widths and
densities where �SAS is small.

The phase diagram obtained from 3D-DMC calculations
is shown in Fig. 3. The light purple region shows the part of
the phase diagram where the energies of the one-component
CFFS and the one-component Pfaffian states are so close
that we cannot distinguish between them within numerical
uncertainty [although both of these energies are lower than
the energy of the two-component (3,3,1) state]. Given that
experiments show an incompressible state here, we believe
that the one-component Pfaffian state is the most likely pos-
sibility. Nonetheless, in light of the approximations made in
the calculation, a definitive confirmation can come only from
experiments, and we hope that our study will motivate further
experimental studies of this state.

We have also studied several other candidate wave func-
tions at ν = 1/2, but we found them not to be relevant for
the issue at hand. Additionally, our 3D-DMC study yields the
form of the transverse wave function directly in the presence
of a high perpendicular magnetic field. Here, the double-
layer nature of the ground state for large widths or densities
arises due to LLM. We find that, surprisingly, the form of the
transverse wave function of the lowest symmetric band is not
particularly sensitive to the nature of the 2D state; we find
very similar forms for ν = 1, 1/3, and 1/5, as discussed later.
Furthermore, also surprisingly, we find that the transverse
wave function obtained from our 3D-DMC is also close to that
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obtained from the LDA at zero magnetic field. Nonetheless,
our phase diagram with the 3D-DMC method is very different
from that obtained from VMC.

A recent work [52] has concluded that switching on tun-
neling in a bilayer favors the Pfaffian state. The model for the
quantum well considered in Ref. [52] is different from ours.

The plan of our paper is as follows. In Sec. II, we briefly
review the fundamentals of the FQHE on a torus and give
explicit forms of wave functions that are involved in our cal-
culation. In Sec. III, we report our VMC studies on the topic.
We next introduce the general principles of the DMC method
in Sec. IV. After that, we present our 2D-DMC and 3D-DMC
investigations individually. We discuss our results in the end,
and more technical details can be found in the Appendixes.

All calculations are performed in the torus geometry, ex-
cept those presented in Appendix A. Throughout this work,
we assume parameters appropriate for GaAs, with dielectric
constant ε = 12.6 and band mass m = 0.067me, where me is
the electron mass in vacuum. The magnetic length is denoted
lB = √

h̄c/eB, where B is the magnetic field.

II. RELEVANT STATES AT HALF-FILLING

We shall include in our study several different states at
filling factor ν = 1/2, which we now list. We primarily use
the torus geometry for our study, because the CFFS can be
constructed on a torus with an explicit wave-vector configu-
ration. (On the sphere one must approach the CFFS by taking
the limit n → ∞ for Jain states at ν = n

2n+1 [31,53,54], which
requires going to very large systems that are not accessible
to DMC.) We also give the VMC results in the spherical
geometry in Appendix A for comparison. We start this section
by reviewing some basics of the FQHE on a torus [55–59].

A. Basics of FQHE on a torus

We start by formulating the single-particle orbitals, and
we use them to construct the many-body wave functions. We
map a torus to a parallelogram with quasiperiodic boundary
conditions in the complex plane. The two edges of the paral-
lelogram are given by L and Lτ in the complex plane, where
τ is a complex number representing the modular parameter of
the torus. We will take L to be real. (We also use the symbol τ,
with a different font, for the imaginary time in the introduction
of the DMC algorithm; this should not cause any confusion,
given that the two appear in very different contexts.) The loca-
tion z = (x, y) of a particle in the complex plane is represented
by the complex number z = x + iy. Later when we include the
transverse dimension, the displacement vector in 3D space is
labeled by r = (x, y,w). To make the quasiperiodic boundary
conditions in the L and Lτ directions compatible, the number
of flux quanta through the torus, Nφ = BL2Im[τ ]/φ0, must be
an integer, where φ0 = hc/e is a single flux quantum. We will
work with the symmetric gauge A = (B/2)(y,−x, 0), which
corresponds to a uniform magnetic field B = −Bẑ perpendic-
ular to the surface of the torus. For simplicity, we choose a
square torus with τ = i. The magnetic translation operator is
given by

t (ξ) = e
− i

2l2B
ẑ·(ξ×z)

T (ξ), (1)

where T (ξ) is the usual translation operator. The single-
particle orbitals are imposed with the quasiperiodic boundary
conditions:

t (L)ψ (z) = eiφ1ψ (z),

t (Lτ )ψ (z) = eiφτ ψ (z),
(2)

where the phases φ1 and φτ are the periodic boundary phases
which define the Hilbert space. We have chosen φ1 = φτ =
0 because for our purpose, the calculation of the energy is
independent of the choice of these phases.

In general, the single-particle orbitals in the lowest Landau
level (LLL) in a symmetric gauge can be written as [55,59]

ψ (n)(z) = e
z2−|z|2

4l2B f (n)(z), (3)

where f (z) satisfies

T (L) f (z)

f (z)
= f (z + L)

f (z)
= 1,

T (Lτ ) f (z)

f (z)
= f (z + Lτ )

f (z)
= e−iπNφ (2z/L+τ ).

(4)

The solutions to Eq. (4) are given by [59]

f (n)(z) = eik(n)z
Nφ∏

s=1

θ
(
z/L − w(n)

s

∣∣τ)
,

k(n) = −πNφ + 2πn

L
,

w(n)
s = 1

2πNφ

[−πNφ (2 − τ ) − 2πnτ + π + 2π (s − 1)],

(5)

where θ (z|τ ) is the odd Jacobi theta function [60] (see Ap-
pendix B for its definition and properties). Here we have
n = 0, 1, 2, . . . , Nφ − 1; w(n)

s L give the positions of zeros; and
k(n) is a real number labeling the eigenvalues of magnetic
translation t (L/Nφ ):

t (L/Nφ )ψ (k)(z, z̄) = e
ı 2πk

Nφ ψ (k)(z, z̄). (6)

Starting from single-particle wave functions, one can con-
struct many-body wave functions that preserve the quasiperi-
odic boundary conditions. In general, the many-body wave
function at filling p/q, where p and q are coprimes, has a
q-fold center-of-mass (CM) degeneracy [57]. The Laughlin
wave function at ν = 1/m is given by [57–59]



(n)
1/m({zi}) = e

∑
i

z2
i −|zi |2

4l2B F (n)
1
m

(Z )
∏
i< j

[
θ

(
zi − z j

L

∣∣∣∣τ
)]m

, (7)

where F (n)
1
m

(Z ) describes the CM part with Z = ∑N
i=1 zi:

F (n)
1
m

(Z ) = eiK (n)Z
m∏

s=1

θ
(
Z/L − W (n)

s

∣∣τ)
,

K (n) = (−πNφ + 2πn)/L,

W (n)
s = Nφτ − Nφ − 2nτ − (m − 1) + 2(s − 1)

2m
, (8)
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where n = 0, 1, 2, . . . , m − 1 labels the m-fold CM degener-
acy [58,59]. In the special case m = 1, Eq. (7) gives the wave
function 
1 for filled LLL. For the filled LLL wave function,
we drop the superscript n for F1(Z ), since n can take only one
value, n = 0.

The Jain state at ν = s
2ps+1 is constructed as


 s
2ps+1

= PLLL
s

2
1 , (9)

where 
s stands for the wave function of electrons filling
the lowest s LLs, 
2

1 attaches 2p vortices to each electron to
composite-fermionize it, and PLLL projects the wave function
into the LLL. This form is valid for both the spherical and
the torus geometries. On a torus, the wave function in Eq. (9)
does not have a well-defined CM momentum, but 2ps + 1
degenerate CM eigenstates can be constructed as discussed by
Pu et al. [55]. Reference [55] also shows how LLL projection
can be conveniently accomplished for the Jain states in the
torus geometry.

B. One-component CFFS state

An important state involved for our purposes is the one-
component CFFS. As mentioned above, this state thrives in
narrow quantum wells. The construction of the CFFS wave
function at ν = 1/2p in torus geometry is accomplished by
attaching 2p flux quanta to an electron Fermi sea state and
projecting it into the LLL [53,61–64]:


CFFS,1/2p({zi}) = PLLL
FS

2p
1 , (10)

where 
FS = det[eikn·ri ] stands for the Fermi sea wave func-
tion. It can be projected into the LLL to produce


CFFS,1/2p({zi}) = e

∑
i z2

i −|zi |2
4l2B F1

(
Z + i�2

BK
)2p

× det
[
Gkn (zm)

][∏
i< j

θ

(
zi − z j

L

∣∣∣∣i
)]2p−2

,

(11)

where

Gkn (zm) = e− knl2B
4 (kn+2k̄n )e

i
2 (k̄n+kn )zm

×
∏

j, j �=m

θ

(
zm + 2piknl2

B − z j

L

∣∣∣∣i
)

. (12)

Here kn stand for the magnetic momenta occupied by the
CFFS, with the CM momentum given by K = ∑

n kn. The
empirical rule is that the configuration of kn’s that produces
the ground state is as compact as possible, i.e., it minimizes∑

n (kn − K/N )2. More details can be found in Refs. [53,64–
66].

C. Pfaffian state

Three distinct Pfaffian wave functions on the torus are
given by [67,68]


Pf, 1/2({zi}) = Pf(Mi j )F
2

1 (Z )
∏
i< j

θ2

(
zi − z j

L

∣∣∣∣i
)

e

∑
i z2

i −|zi |2
4l2B .

(13)

Here Pf(Mi j ) is the Pfaffian of the matrix Mi j = θa(
zi−z j

L |i)
θ1(

zi−z j
L |i) ,

and the choices a = 2, 3, 4 produce three distinct Pfaffian
wave functions. The definition of θa(z|τ ) can be found in
Appendix B. These three states are degenerate for a three-
body Hamiltonian for which the Pfaffian state is exact, and
they are believed to become degenerate for Coulomb interac-
tion in the thermodynamic limit [69]. Our calculations also
show that the energy difference between them is negligi-
ble, because (i) for VMC calculation the difference is much
smaller than the difference between the Pfaffian state and the
CFFS, and (ii) for DMC calculation the energy differences are
smaller than the statistical uncertainty (see Appendix C). Due
to these reasons and the limit of our computational resources,
we choose a = 2 below.

D. Uncoupled 1/4 + 1/4 two-component CFFS state

In the limit of very wide quantum wells, we expect the sys-
tem to form two uncoupled 1/4 CFFSs, which is referred to as
1/4 + 1/4 CFFS. The wave function of this two-component
state is the product of the two 1/4 CFFSs defined in Eq. (11):


CFFS, 1/4+1/4 = 
CFFS, 1/4({zi})
CFFS, 1/4({z[ j]}), (14)

where i = 1, 2, . . . , Ne/2 denote the electrons belonging
to the first layer, and [ j] ≡ Ne/2 + j = Ne/2 + 1, Ne/2 +
2, . . . , Ne denote the electrons belonging to the second layer.

E. The pseudospin singlet CFFS states

We also consider the pseudospin singlet CFFS states,
which are compressible, and they are constructed by attaching
flux quanta to the pseudospin-singlet Fermi sea wave function.
Here the term “pseudospin” refers to the layer index. The
pseudospin-singlet CFFS state has interlayer correlations, in
contrast to the 1/4 + 1/4 CFFS state. One can write its wave
function by simply replacing in Eq. (11) the determinant in
the wave function of the pseudospin-polarized 1/2 CFFS by
the product of determinants of the two pseudospins [70]:

det [Gkn (zm)] → det [Gkn (zi )] det [Gkl (z[ j] )], (15)

where i = 1, 2, . . . , Ne/2 and [ j] = Ne/2 + 1, Ne/2 +
2, . . . , Ne denote the electrons belonging to two pseudospin
components. The Jastrow factor remains the same as in
Eq. (11), which includes both intralayer and interlayer
correlations. To make sure that the state is a singlet, one also
needs to make the momentum distribution identical for both
pseudospins.

F. The Halperin (3,3,1) state

The Halperin (3,3,1) state reads


(3,3,1)({zi})

= e

∑
i z2

i −|zi |2
4l2B F(3,3,1)(Z )

∏
1�i< j�Ne/2

θ3

(
zi − z j

L

∣∣∣∣i
)

×
∏

Ne/2<[i]<[ j]�Ne

θ3

(
z[i] − z[ j]

L

∣∣∣∣i
) ∏

1 � i � Ne/2,

Ne/2 < [ j] � Ne

θ

(
zi − z[ j]

L

∣∣∣∣i
)

.

(16)
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FIG. 4. The transverse density profile for the lowest (red) and the
first excited (blue) subband in the quantum well of width W = 80 nm
calculated by the LDA.

Here

F(3,3,1)(Z ) = F (0)
1
2

(ZL )F (0)
1
2

(ZR)F1(Z ), (17)

where ZL = ∑Ne/2
i=1 zi, ZR = ∑Ne

[ j]=Ne/2+1 z[ j], and Z = ZL + ZR

(here L and R denote the left and right layers).

III. VMC CALCULATION OF THE PHASE DIAGRAM

We shall model the confinement potential as a quantum
well with infinite depth and a width of W . In some circum-
stances the finite depth is also considered, but in general this
does not cause any significant difference because the GaAs
quantum wells we discuss in this article (and also those in
experiments) are generally very deep. The problem is modeled
via a VMC calculation, which includes an effective two-
dimensional interaction, defined as follows:

Veff(r) = e2

ε

∫
dw1

∫
dw2

|ψ (w1)|2|ψ (w2)|2√
|r|2 + (w1 − w2)2

. (18)

Here ψ (w) is the transverse wave function, w is the trans-
verse coordinate, and r is a two-dimensional vector. In the
simplest approximation, the subband wave functions are taken
as the single-particle solutions of a quantum-well problem,

ψS (w) =
√

2
W cos ( πw

W ) and ψA(w) =
√

2
W sin ( 2πw

W ), where S
and A refer to symmetric and antisymmetric. In this approx-
imation, the subband gap is �SAS = 3π2

2
h̄2

mW 2 , where m is the
band mass of the electron. A better approximation for ψ (w)
is obtained by the LDA at zero magnetic field, where one
assumes a Fermi liquid state in the 2D plane [45,71]. In this
and the next section that introduces the 2D fixed-phase DMC,
we use the LDA form for ψ (w). We denote the lowest two
subbands as ψS and ψA, in which S represents the symmetric
subband and A represents the antisymmetric subband. The
typical LDA density profiles of the lowest two subbands are
shown in Fig. 4. Before going further, let us discuss how the
occupation of the subbands changes as one tunes the subband

FIG. 5. The density profiles of the left (blue) and right (red) bases
in the quantum well of W = 80 nm calculated by the LDA.

gap. When �SAS is much larger than the Fermi energy, as is
the case for either very small W or small densities, only the
lowest subband is occupied. In the limit when the lowest two
bands are approximately degenerate (�SAS ≈ 0), which hap-
pens at large W or at large densities, two-component states are
possible, where the two components are linear combinations
of the two subbands. Because the system tends to form two
layers at large widths, we choose the left-right bases as (Fig. 5)

ψL = 1√
2

(ψS + ψA),

ψR = 1√
2

(ψS − ψA). (19)

More generally, we can choose ψθ = 1√
2
(ψS + eiθψA) and

ψ ′
θ = 1√

2
(ψS − e−iθψA). However, because the systems be-

comes a bilayer for sufficiently wide quantum wells or large
densities, we expect that θ = 0 will produce the lowest
energy.

Similarly to Eq. (18), we define the effective interac-
tions as follows. For one-component states, only the lowest
symmetric subband is used for defining the effective interac-
tions, whereas for two-component states both the intracompo-
nent and intercomponent interactions are needed:

VSS(r) = e2

ε

∫
dw1

∫
dw2

ρS(w1)ρS(w2)√
|r|2 + (w1 − w2)2

,

VLL(r) = e2

ε

∫
dw1

∫
dw2

ρL(w1)ρL(w2)√
|r|2 + (w1 − w2)2

,

VRR(r) = e2

ε

∫
dw1

∫
dw2

ρR(w1)ρR(w2)√
|r|2 + (w1 − w2)2

,

VLR(r) = e2

ε

∫
dw1

∫
dw2

ρL(w1)ρR(w2)√
|r|2 + (w1 − w2)2

. (20)

The densities are defined as ρS = |ψS|2 and ρL,R = |ψL,R|2.
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FIG. 6. Subband gap �SAS calculated in the LDA for various
quantum-well widths as a function of the density.

We mention here two caveats. First of all, we consider
states for which either only the lowest subband is occupied,
or the two lowest subbands are equally occupied. All of our
trial wave functions, namely the single-component CFFS,
the single component-Pfaffian, the pseudospin-singlet CFFS,
the uncoupled 1/4 + 1/4 CFFS, and the (3,3,1), satisfy this
requirement. In principle, we can also consider a partially po-
larized CFFS, which will have an unequal occupation of two
subbands, but we have not done so (because it significantly
enhances the calculational difficulty). All other states consid-
ered here cannot be partially polarized. Second, the value of
�SAS is relevant for transitions from a single-component to a
two-component state. �SAS is typically very large compared
to the Coulomb energy differences between the relevant states.
We determine the value of �SAS from the LDA calculation
(Fig. 6).

The energies of one-component states relative to the CFFS
are shown in Fig. 7. As one can see, the CFFS remains
the lowest energy state for all parameters, although the
Pfaffian comes as close as 0.001 e2

εlB
at densities greater than

FIG. 7. The VMC calculation of the energy difference per parti-
cle between the Pfaffian and the one-component CFFS state in the
thermodynamic limit. The well widths are shown on the plots.

FIG. 8. The VMC calculation of the energy per particle of the
1/4 + 1/4 CFFS state and the singlet CFFS state relative to the
(3,3,1) state in the thermodynamic limit. The well widths are shown
on the plots. The statistical errors are smaller than the symbol sizes.

2 × 1011 cm−2. This conclusion is also supported by exact di-
agonalization studies of finite systems in spherical geometry.
In Appendix D, we show the overlap between the exact ground
state of the LDA interaction with the one-component CFFS
and the Pfaffian states, and we find that in the entire region
of parameter space that we considered, the one-component
CFFS always has a very high overlap with the exact ground
state and thus is superior to the Pfaffian. (Note: We have
also performed the energy comparison in spherical geometry,
where we see a different result, namely that the Pfaffian state
has lower energy in the thermodynamic limit for some parts
of the phase diagram. We believe that the torus results are
more reliable because the thermodynamic extrapolation on the
sphere is less accurate for finite widths. See Appendix A for
further discussion.)

The energies of the two-component states, namely the
pseudospin-singlet CFFS, (3,3,1), and the uncoupled 1/4 +
1/4 CFFS, relative to the (3,3,1), are shown in Fig. 8. A
transition from the singlet CFFS to the Halperin (3,3,1) occurs
at very low densities, followed by a second transition into the
uncoupled 1/4 + 1/4 CFFS (Fig. 8). This behavior is simi-
lar to that found in earlier VMC calculations on zero-width
bilayer systems [24].

Figure 9 shows the energies of all the states. We add 1
2�SAS

to the energy per particle for each two-component state, be-
cause half of all particles occupy the second subband. We
quote all energies relative to the (3,3,1) state in Fig. 9, which
yields the phase diagrams in Fig. 1. In general, one can see
that the ground state of the system is in a one-component
state when the carrier density is low and the system makes
a transition into a two-component state at high density. This
result is qualitatively consistent with the experiments [4,7,9],
and it favors the possibility that the observed incompressible
state is the (3,3,1) state. The phase diagrams for one- and
two-component states are shown separately in Fig. 10.
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FIG. 9. The VMC calculation of the energy per particle of the
one-component CFFS state, the Pfaffian state, the 1/4 + 1/4 CFFS
state, and the singlet CFFS state in the thermodynamic limit. All
energies are measured relative to the energy of the (3, 3, 1) state.
The well widths are shown on the plots. The energies of the one-
component states change rapidly relative to the (3, 3, 1) state due
to the �SAS component. The statistical errors are smaller than the
symbol sizes.

There are significant differences, however. As noted earlier,
the lower phase boundary is very sensitive to �SAS. However,
the upper theoretical phase boundary ought to be more reli-
able, and its deviation from the experimental phase boundary
is thus significant. We note, however, that the calculation, so
far, does not include LLM or disorder.

IV. FIXED-PHASE DIFFUSION MONTE CARLO METHOD

In the following sections, we will use the fixed-phase DMC
method to evaluate the phase diagram. The general DMC is a
standard Monte Carlo method designed to obtain the ground
state of the many-body Schrödinger equation [48,72] by a
stochastic method. By setting time to an imaginary variable
(t → t = −iτ), the Schrödinger equation takes the form

−h̄∂τ
(R, τ) = [H (R) − ET ]
(R, τ), (21)

where R = (r1, r2, . . . , rNe ) is the collective coordinate of the
system, and ET is a constant energy offset. When 
(R, τ)
is real and non-negative, one can interpret the above equa-
tion as a diffusion equation, with 
(R, τ) interpreted as the
density distribution of randomly moving walkers. The energy
offset ET controls the population of random walkers. Starting
from an initial trial wave function 
T , as the walkers diffuse
stochastically, the distribution gradually converges to a stable
distribution that represents the ground state (provided 
T has
a nonzero overlap with the ground state). More details can be
found in Refs. [48,73].

The applicability of the DMC method relies on the assump-
tion that the ground state is real and non-negative. However,
this condition is not satisfied in a system with broken time-
reversal symmetry, which is the case in the presence of a

FIG. 10. (a) The phase diagram of one-component states, includ-
ing CFFS (red) and the Pfaffian state (purple). The Pfaffian state is
not stabilized for the parameters considered. (b) The phase diagram
of two-component states, including the (3, 3, 1) state (green), the
pseudospin-singlet (blue), and the 1/4 + 1/4 CFFS state (yellow).
The region where experiments find an incompressible state [9] is
indicated by light dashed gray lines. At each width, the uncertainty
of the transition density is about 1 × 1010 cm−2. The overall phase
boundary is obtained by smoothly joining the transition points at
W = 50, 60, 70, and 80 nm.

magnetic field. To overcome this difficulty, the fixed-phase
DMC method has been proposed [46,47]. The key idea is to
write the wave function as


(R) = |
(R)| exp [iφ(R)] (22)

and determine the |
(R)| that gives the lowest energy for
a fixed phase φ(R) by the DMC method. This amounts to
solving the Schrödinger equation,

HDMC|
(R, τ)| =
(

−
N∑

i=1

h̄2∇2
i

2m
+ VDMC(R) − ET

)

|
(R, τ)| = E |
(R, τ)| (23)
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with

VDMC(R) = V (R) + 1

2m

N∑
i=1

[
h̄∇iφ(R) + e

c
A(ri )

]2

. (24)

The diffusion equation is often efficiently solved by an
importance sampling method. The so-called guiding function
is defined as

f (R, τ) = |
T (R)||
(R, τ)|, (25)

where 
T is the trial wave function. Instead of solving
Eq. (23), we have an equivalent equation:

−h̄∂τ f (R, τ) = − h̄2

2m
∇2 f (R, τ) + h̄2

m
∇ · [vD f (R, τ)]

+ [EL(R) − ET ] f (R, τ), (26)

where ∇ = (∇1,∇2, . . . ,∇N ) is the dN-dimensional (in
d-space dimensions) gradient operator, vD(R) is the dN-
dimensional drift velocity defined by

vD(R) = ∇ ln |
T (R)|, (27)

and

EL(R) = |
T |−1HDMC|
T | (28)

is the local energy. We give their explicit forms in Appendix
E based on Ref. [46].

The accuracy of the DMC energy depends on the choice
of the phase φ(R). In this paper, our initial DMC trial wave
functions will be our candidate trial wave functions described
earlier. (In the case of 3D-DMC, these will also include the
transverse wave function.) Each trial wave function identifies
a specific phase φT . The DMC algorithm then produces the
lowest energy state for each choice of the trial wave function.

We stress that the DMC calculation automatically includes
LLM. In fact, it is a nonperturbative method for treating LLM,
which has been shown in past studies to give rather accurate
results [46,47,49,50,74–78].

V. 2D FIXED-PHASE DMC STUDY WITH EFFECTIVE
INTERACTION

We implement a 2D fixed-phase DMC study of the prob-
lem, where we obtain the lowest energy using DMC while
setting V (R) in Eq. (24) to Veff (R) introduced in Eq. (18). This
allows for LLM in a model where electrons confined to 2D are
interacting via Veff (R). As noted above, the phase is fixed by
the trial wave functions described above.

As shown in Fig. 11, the comparison between the one-
component CFFS and the Pfaffian state is very similar to
that from VMC calculation, and no transition occurs into the
Pfaffian state [Fig. 14(a)]. Meanwhile, the result for two-
component states is quite different from the VMC result
(Fig. 12). We find that the uncoupled 1/4 + 1/4 CFFS is very
efficient in lowering its energy in the presence of the LLM (see
Fig. 13). In contrast to the VMC result, the system makes a
transition from the pseudospin-singlet CFFS directly into the
1/4 + 1/4 CFFS state for most parameters [Fig. 14(b)]. For

FIG. 11. 2D-DMC calculation of the energy difference per par-
ticle between the one-component CFFS and the Pfaffian state in the
thermodynamic limit.

very large widths and low densities, we find a small region of
a (3,3,1) state.

When both one-component and two-component states are
considered, the resulting phase diagram is shown in Fig. 2.
The one-component CFFS makes a transition into the un-
coupled two-component 1/4 + 1/4 without going through an
incompressible state, except in a small region where the well
width is large. We note here that the extrapolation of the
2D-DMC is less linear for the two-component states, which
leads to a larger statistical error of about 2 × 1010 cm−2 for
the density where the phase transition occurs.

FIG. 12. 2D-DMC calculation of the energy per particle of the
1/4 + 1/4 CFFS and the singlet CFFS state in the thermodynamic
limit relative to the (3,3,1) state. The well widths are indicated on the
plots.
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FIG. 13. 2D-DMC calculation of the energy per particle of the
one-component CFFS state, the Pfaffian state, the 1/4 + 1/4 CFFS,
and the singlet CFFS state relative to the (3, 3, 1) state in the thermo-
dynamic limit. The well widths are labeled on the plots. The energies
include contribution from �SAS.

VI. 3D FIXED-PHASE DMC STUDY OF THE 1/2 FQHE

The transverse trial wave function for the one-component
states is chosen to be


trans({wi}) =
Ne∏

i=1

ψS (wi)

=
Ne∏

i=1

[
cos

(πwi

W

)
− α cos

(
3πwi

W

)]
, (29)

where W is the width of the quantum well and α is a parameter
introduced to improve the converging speed. Empirically, we
find the program to be most efficient and stable when α is
tuned from 0.2 to 0.8 when the well width ranges from 2lB to
10lB. However, one should keep in mind that the choice of α is
a technical matter; as long as the number of iterations is large
enough, any choice of α leads to the same result because the
fixed-phase DMC solves for the lowest energy state within a
given phase sector independent of the initial-wave function.

For two-component states, before coming to 3D-DMC,
it is necessary to address a significant difficulty. In gen-
eral, one needs to evaluate the energy expectation of a
given two-component state [e.g., a Halperin (3,3,1) state] by
fully antisymmetrizing the wave function. For two-component
states in a single layer with real spin, the Coulomb interaction
does not depend on the spin index, all the cross-terms pro-
duced by antisymmetrization vanish, and one can treat the two
components as two sets of distinguishable particles, which
greatly simplifies the calculation. This, however, is not true
for the present case since the Coulomb interaction depends
explicitly on the transverse coordinates, and the cross-terms
are nonzero. Here, one must include all the permutation terms
to fully antisymmetrize the wave function. This is impractical

FIG. 14. (a) The phase diagrams of one-component states ob-
tained by 2D-DMC on a torus. (b) The phase diagrams of
two-component states. The states considered are the CFFS state
(red), the (3, 3, 1) state (green), the singlet CFFS state (blue), the
1/4 + 1/4 CFFS state (yellow), and the Pfaffian state (purple). In the
lower panel, the uncertainty of the transition density from the singlet
CFFS state to (3,3,1) is about 1 × 1010 cm−2, while the transition
density from (3, 3, 1) or singlet CFFS to 1/4 + 1/4 CFFS has an
uncertainty of about 2 × 1010 cm−2. The region where experiments
find an incompressible state [9] is indicated by light dashed gray
lines. The overall phase boundary is obtained by smoothly joining
the transition points at W = 50, 60, 70, and 80 nm.

for systems with more than 10 particles because there are
Ne!

(Ne/2)!(Ne/2)! intercomponent permutations. A special case is
when the two transverse bases have no overlap. In this case,
all cross-terms vanish and one can calculate the energy expec-
tation as if the two components were two distinguishable sets
of particles. We use, therefore, a transverse trial wave function
for the two components to be strictly spatially separated, i.e.,
one basis function is strictly confined in the left half of the
quantum well while the other component is in the other half.
In other words, our basis is given by


trans({wi,w[ j]}) =
Ne/2∏
i=1

Ne∏
[ j]=Ne/2+1

ψL(wi )ψR(w[ j] ), (30)

155306-10



ORIGIN OF THE ν = 1/2 FRACTIONAL QUANTUM … PHYSICAL REVIEW B 103, 155306 (2021)

FIG. 15. The transverse density calculated by the LDA, which
assumes a finite depth quantum well with the realistic parameters of
the GaAs. The carrier densities are shown in units of 1010 cm−2. The
area under each profile is normalized to unity.

where

ψL(wi ) =
{− sin( 2πwi

W ) if − W/2 < wi < 0,

0 if 0 � wi < W/2,

ψR(w[ j] ) =
{

0 if − W/2 < w[ j] < 0,

sin( 2πw[ j]

W ) if 0 � w[ j] < W/2

(31)

represents the left and right components. The 3D trial wave
function for the (3,3,1) state is constructed as


3D
(3,3,1)(R) = 
(3,3,1)({zi, z[ j]})
trans({wi,w[ j]}). (32)

The other two-component states are constructed similarly,
with the in-plane part replaced by the corresponding wave
functions.

In Fig. 38 we test the regime of validity of our approxima-
tion (that the right and left components are nonoverlapping)
for a system of four particles, for which we can implement full
antisymmetrization. We find that our approximation becomes
excellent near the upper phase boundary in Fig. 3.

A. Transverse density profile evaluated by 3D-DMC

It is essential to quantitatively understand how the trans-
verse distribution of electrons evolves as the well-width
increases. We first show the transverse density calculated by
the LDA (Fig. 15). The LDA package [79] is for realistic
parameters with finite well-depth, and the transverse density
extends outside the well by about 3–4 nm or less on each side.
This justifies our infinite-depth approximation. (In principle,
our method can also deal with a finite depth quantum well,
but technically that makes the form of the transverse trial
wave function and the local energy more complicated.) In
our approach, we implement the 3D-fixed-phase DMC and

FIG. 16. 3D-DMC calculation of transverse densities for differ-
ent FQHE states. The calculations are performed for Ne = 16 and
quantum-well width W = 80 nm. The legend shows the carrier den-
sities corresponding to each color, measured in units of 1010 cm−2.

explicitly calculate the transverse density profiles of different
candidate states.

Let us first consider one-component states. Figure 54 in
Appendix H shows that the transverse density for the CFFS is
insensitive to the system size. We have found similar behavior
at other filling factors. Hence, we believe that the density
profiles shown in our work represent the thermodynamic limit.

We have also studied the transverse profile for several
filling factors, e.g., for ν = 1, 1/3, and 1/5 FQHE states. As
shown in Fig. 16, we find that the transverse densities are not
sensitive to the filling factor.

In Fig. 17 we show the transverse density for the one-
component CFFS and Pfaffian states at ν = 1/2 in a 50 and
an 80 nm well width, with the areal density ranging from
n = 1 × 1010 to 3 × 1011 cm−2. Other widths we consider in
this article are between 50 and 80 nm and the profiles of the
transverse density are similar (not shown). As one can see, the
system becomes more and more two-component-like with in-
creasing carrier density. If one compares the 3D-DMC results
with the LDA results, one can see that the two methods give
very similar predictions, although the two “humps,” which
indicate the onset of bilayer-like physics, appear at somewhat
smaller densities in the LDA results.

We next show in Fig. 18 the transverse density profiles for
two-component states, assuming that the density vanishes at
the center point (for reasons discussed above). The transverse
wave function is insensitive to the state in 2D, and, as ex-
pected, the system becomes more bilayer-like with increasing
carrier density.
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FIG. 17. Transverse densities for the one-component CFFS and
the Pfaffian state calculated by 3D-DMC. The legend shows the
carrier density in units of 1010 cm−2. The results are shown for
quantum-well widths W = 50 nm (a) and W = 80 nm WQW (b).
At each width, the density profiles of one-component CFFS in the
Pfaffian state are shown individually in the upper two panels of
(a) and (b). The lowest panel shows the differences between the two
densities ρCFFS − ρPfaf; the scale on the left corresponds to the lowest
plot, and the rest are shifted up by 0.0025 units; also only one out
of every five data points in the calculation is shown for clarity. The
system size is Ne = 16.

B. Energy calculation and phase diagram by 3D-DMC

In this section, we show our calculation of the energy
expectations of different states considered in this article. We
first show in Fig. 19 the energy comparison between the

FIG. 18. Transverse density of the left component obtained by
3D-DMC for two-component states. The right component is analo-
gous. The legend shows the carrier density in units of 1010 cm−2. The
system size is Ne = 8.

one-component CFFS and the Pfaffian state. The energy of the
Pfaffian state gets closer and closer to the CFFS as the carrier
density increases for each well width. In fact, their difference
becomes so small that it is comparable to the statistical error,
and we are not able to determine which one is lower. Within
the two-component states, the energies are shown in Fig. 20

FIG. 19. The energy difference between the Pfaffian state and the
one-component CFFS state in the thermodynamic limit as a function
of the carrier density at different well widths calculated by 3D-DMC
in the torus geometry.
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FIG. 20. The energy of several two-component states relative to
the Halperin (3, 3, 1) state in the thermodynamic limit as functions
of the carrier density at different well widths calculated by 3D-DMC
in the torus geometry.

and the theoretical phase diagram is shown in Fig. 21(b). As
the density increases, the system first makes a transition from
the pseudospin-singlet CFFS state into the Halperin (3,3,1)
state, and finally into the uncoupled 1/4 + 1/4 state. This
is qualitatively similar to the behavior found in the VMC
calculation. The resulting phase diagrams for one- and two-
component states (separately) are shown in Fig. 21(a).

Because the 3D-DMC automatically includes �SAS, we
can directly compare all the states. Their energies are given
in Fig. 22, and the resulting phase diagram is shown in Fig. 3.
This phase diagram is different from that found by VMC or
2D-DMC and suggests that the experimentally observed in-
compressible state is likely to be the one-component Pfaffian
state.

VII. DISCUSSION

This work concerns the nature of the FQHE at ν = 1/2 in
wide quantum wells. We have evaluated the phase diagram of
states at ν = 1/2 as a function of the quantum-well width and
the carrier density at three different levels of approximation.

Figure 1 shows the phase diagram obtained by a variational
Monte Carlo calculation. In this calculation, we evaluate an
effective 2D interaction with the help of a transverse wave
function calculated by the LDA at zero magnetic field. A
shortcoming of this method is the assumption that the trans-
verse wave function and �SAS evaluated at zero magnetic
field remain valid at finite magnetic fields as well. This is of
particular concern for the phase boundaries separating one-
and two-component states, because these phase boundaries
depend sensitively on �SAS, which is a relatively large energy,
and also a rapidly varying function of the quantum-well width
and density. For that reason, in Fig. 1 the phase boundary
separating the (3,3,1) and 1/4 + 1/4 CFFS states is more
reliable than that separating the one-component CFFS and the
(3,3,1) states.

FIG. 21. (a) The phase diagrams of one-component states ob-
tained by 3D-DMC on the toroidal geometry. Above the dashed
boundary, the uncertainty is greater than the energy difference be-
tween the one-component CFFS and the Pfaffian state, so we suggest
it is either the one-component CFFS or the Pfaffian state (purple).
(b) The phase diagrams of two-component states. The states consid-
ered are the CFFS state (red), the (3, 3, 1) state (green), the singlet
CFFS state (blue), and the 1/4 + 1/4 CFFS state (yellow). In the
lower panel, the uncertainty of the transition density at each width is
about 2 × 1010 cm−2. The region where experiments find an incom-
pressible state [9] is indicated by light dashed gray lines. The overall
phase boundary is obtained by smoothly joining the transition points
at W = 50, 60, 70, and 80 nm.

The VMC calculation also does not include the effect of
LLM directly. Figure 2 includes LLM for electrons interacting
with an effective 2D interaction within a fixed-phase DMC
calculation.

The principal result of the present work is given in Fig. 3,
which is the phase diagram obtained from a 3D fixed-phase
DMC. This method produces the ground-state energy directly
at a finite magnetic field, including, in principle, the effect
of finite width and LLM. This suggests, although it does not
prove, that the incompressible state observed in experiments
is the one-component Pfaffian state.
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FIG. 22. The energy of all the states calculated by 3D-DMC on
the torus in the thermodynamic limit. The energy of each state is
measured relative to that of the (3,3,1) state.

A technical difficulty of the 3D-DMC method is that for
two-component states we must assume that the transverse
wave function vanishes at the center of the quantum well.
One may question if this affects comparisons between one-
and two-component states. Fortunately, this is an excellent
approximation near the upper phase boundary of Fig. 3, which
separates the single-component “CFFS/Pfaffian” state from
the two-component “1/4 + 1/4 CFFS” state. That gives us
some degree of confidence that the transition from the two-
component 1/4 + 1/4 CFFS occurs into the one-component
Pfaffian state. Nonetheless, a definitive confirmation must
await further experimental studies. In particular, thermal Hall

FIG. 23. Finite-size extrapolation of the energy for the one-
component CFFS state for different widths and carrier densities. The
calculation is done by VMC on the sphere. The well widths are
shown on the plots.

FIG. 24. Finite-size extrapolation of the energy for the Pfaffian
state for different widths and carrier densities. The calculation is
done by VMC on the sphere. The well widths are shown on the plots.

measurements, which have shown a half-quantized value at
5/2 [80], can convincingly reveal whether the FQHE state
here has a non-Abelian origin.

We also note that we do not consider the anti-Pfaffian state,
which is the hole partner of the Pfaffian state [81–83]. These
two are degenerate in energy in the absence of LLM, but LLM
is expected to select one of them. We have not investigated this
issue here, both because the anti-Pfaffian is harder to deal with
numerically, and because the energy differences are expected
to be small compared to the Monte Carlo uncertainty.

Before ending, we list other assumptions made in our
study. We do not consider the crystal phase. Previous

FIG. 25. Finite-size extrapolation of the energy for the (3,3,1)
state for different widths and carrier densities. The calculation is
done by VMC on the sphere. The well widths are shown on the plots.

155306-14



ORIGIN OF THE ν = 1/2 FRACTIONAL QUANTUM … PHYSICAL REVIEW B 103, 155306 (2021)

FIG. 26. Finite-size extrapolation of the energy for the 1/4 +
1/4 CFFS state for different widths and carrier densities. The cal-
culation is done by VMC on the sphere. The well widths are shown
on the plots.

theoretical studies of possible states in an ideal bilayer [18,84]
(i.e., two 2D layers separated by a distance d) did not find any
crystal states, but a crystal may occur in wide quantum wells
[44]. Such a crystal might be responsible for the fact that the
experiments see an insulator on the either side of the FQHE
state, rather than the compressible 1/4 + 1/4 CFFS state. Of
course, an alternative possibility is that disorder, omitted in
our study, may turn the 1/4 + 1/4 CFFS into an insulator.
Experimental studies in better quality samples can clarify the
situation.

FIG. 27. Finite-size extrapolation of the energy for the
pseudospin-singlet CFFS state for different widths and carrier
densities. The calculation is done by VMC on the sphere. The well
widths are shown on the plots.

FIG. 28. The VMC energies of different states relative to either
the CFFS state or the (3,3,1) state, as labeled in each figure. All
energies are thermodynamic limits evaluated on the sphere. The
statistical errors are smaller than the symbol sizes.
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FIG. 29. The VMC energies of all states relative to the (3,3,1)
state. All energies are evaluated on the sphere, and they represent the
thermodynamic limit. An offset of 1

2 �SAS per particle is included for
the two-component states. The statistical errors are smaller than the
symbol sizes.

APPENDIX A: VMC RESULTS FROM SPHERICAL
GEOMETRY

All of the above calculations have been performed in torus
geometry. In this Appendix, we present results from our VMC
calculations in spherical geometry. The energy extrapolations
are shown in Fig. 23 for the one-component CFFS, Fig. 24
for the Pfaffian state, Fig. 25 for the (3,3,1) state, Fig. 26 for
the 1/4 + 1/4 CFFS, and Fig. 27 for the single-component
CFFS. Figures 28 and 29 depict the energies as a function of
density for several quantum-well widths. The resulting phase
diagrams within the one-component and the two-component
regimes are shown in Fig. 30. While the phase diagram of
two-component states is almost identical to that on the torus,
the phase diagram of one-component states is different: in
particular, a phase transition occurs from the one-component
CFFS to the Pfaffian state at sufficiently large densities. The
final phase diagram shown in Fig. 31 is similar to, but slightly
different from, the VMC phase diagram obtained from the
torus geometry, shown in the main text.

We believe that the results from torus geometry are more
reliable for the following reasons. (i) As one can see, the
thermodynamic extrapolations in spherical geometry are not
as linear as in torus geometry, and thus they entail greater
uncertainty in the thermodynamic limit. This is because the
finite width effect is only considered in the calculation of the
electron-electron repulsion, whereas the electron-background
and background-background interactions are chosen to be
the same as those for zero-width well, for the simplicity
of the calculation. (The form of the background-background
interactions in the spherical geometry can be found in the
Appendix of Ref. [2], while in torus geometry, the electron-
background and background-background interactions are
included through Ewald summation, which assumes the same
form for all interactions.) (ii) The torus geometry is better for

FIG. 30. (a) The phase diagram of one-component states. (b) The
phase diagram of two component states. The phase boundaries are
obtained from VMC calculation in spherical geometry. The region
where experiments find an incompressible state [9] is indicated by
light dashed gray lines. The uncertainty in the density of the transi-
tion point is approximately 1 × 1010 cm−2.

FIG. 31. The full phase diagram of states at half-filling, calcu-
lated by the VMC method on the sphere. The uncertainty in the
density at the transition point is approximately 1 × 1010 cm−2. The
region where experiments find an incompressible state [9] is indi-
cated by light dashed gray lines.
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FIG. 32. The energy of the Pfaffian (2) state [in which θa(z) is
chosen to be θ3(z)] as a function of 1/Ne. Each energy is obtained by
the VMC method with the effective interaction defined in Eq. (20).

the CFFS states. While one can directly construct the CFFS
on the torus by attaching flux quanta to an electron Fermi sea
for any particle number, one must work with the Jain states of
filling factor ν = n

2n+1 and take the limit n → ∞ to obtain the
energy of the CFFS. Alternatively, one can consider systems
with zero effective flux and take the thermodynamic limit
[31,53,54]. The filled shell systems occur at particle numbers

FIG. 33. The energy of the Pfaffian (3) state [in which θa(z) is
chosen to be θ4(z)] as a function of 1/Ne. Each energy is obtained by
the VMC method with the effective interaction defined in Eq. (20).

FIG. 34. Comparison of the VMC thermodynamic energies of
the three Pfaffian states.

Ne = 4, 9, 16, 25, 36, . . . . However, due to the complexity of
the wave functions, we cannot go beyond Ne = 36 in VMC.
This size limitation makes the energy comparisons less re-
liable. (iv) Finally, when it comes to DMC, very few CFFS
systems are accessible in the spherical geometry, making
thermodynamic extrapolations even more unreliable. For that
reason, we have not performed DMC calculations in spherical
geometry.

APPENDIX B: JACOBI θ FUNCTION AND ITS
PERIODICITY

Here we list the definition and properties of the Jacobi θ

function, following the conventions in the textbook by Mum-
ford [60]. In general, the θ function is defined as

θa,b(z|τ ) =
+∞∑

n=−∞
exp[π i(n + a)2τ + 2π i(n + a)(z + b)],

(B1)

which satisfies the periodicity properties

θa,b(z + 1|τ ) = e2πaiθa,b(z|τ ) (B2)

and

θa,b(z + τ |τ ) = exp[−π iτ − 2π i(z + b)]θa,b(z|τ ). (B3)

For simplicity of notation, we have dropped the subscripts and
defined θ1/2,1/2(z|τ ) = θ (z|τ ) in the main text. The other three
Jacobi theta functions for the Pfaffian states on a torus are
defined as follows:

θ2(z|τ ) = θ (z + 1/2|τ ),

θ3(z|τ ) = eiπτ/4eiπzθ (z + 1/2 + i/2|τ ),

θ4(z|τ ) = eiπτ/4eiπzθ (z + i/2|τ ).

(B4)

APPENDIX C: QUASIDEGENERACY OF THE PFAFFIAN
STATE ON THE TORUS

We have given in Eq. (13) the explicit form for three
Pfaffian wave functions, called Pfaffian (1), Pfaffian (2), and
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FIG. 35. Overlaps with the exact lowest Landau level ground state [top panels (a), (b), and (c)], neutral gaps [middle panels (d), (e), and
(f)], and charge gaps [bottom panels (g), (h), and (i)] in the spherical geometry for the ν = 1/3 Laughlin [left panels (a), (d), and (g)], ν = 2/5
Jain [center panels (b), (e), and (i)], and ν = 3/7 Jain [right panels (c), (f), and (i)] state evaluated using the pseudopotentials of the finite-width
interaction obtained using a LDA. All the panels are for Ne = 12 electrons.

Pfaffian (3), which correspond to the choices a = 2, 3, and
4, respectively. These are not related by CM translation, and
as a result, they have different Coulomb energy expectation
values for finite systems. We have calculated the thermody-
namic limits for the energies of these three states using the
VMC method. We present the extrapolations of the VMC
energies of Pfaffian (2) and Pfaffian (3) in Figs. 32 and 33 for
various quantum-well widths and densities. We compare these
energies with the energy of Pfaffian (1) (Fig. 40) in Fig. 34.
At the lowest density of n = 1010 cm−2, the energy differ-
ences can be on the order of ∼0.008 ± 0.003e2/εlB, which
is approximately 1/4 of the energy difference between the
one-component CFFS and Pfaffian (1). As the carrier density
increases, the differences between the various Pfaffian wave
functions quickly drop to ∼0.0001e2/εlB. (Peterson et al.
[69] have also found similar behavior as a function of the
well width in their ED studies.) Around transition densities in
experiments, the difference is smaller than the uncertainty of
either 2D-DMC or 3D-DMC, which is generally of the order

of 0.001e2/εlB. Due to this fact, we conclude that at least in
this work, the choice on the θa(z) in the Pfaffian does not affect
our result, and we have used Pfaffian (1) with a = 2 in our
calculations.

APPENDIX D: EXACT DIAGONALIZATION STUDIES FOR
THE LDA INTERACTION

In the main article, we found that, among the single-
component states, VMC with the LDA interaction (without
LLM) supports the CFFS state in the entire parameter range
considered. In this Appendix, we present results obtained
from exact diagonalization for the LDA interaction, which as
we show below further corroborate the VMC results. Before
we go on to the states at ν = 1/2, we first show that the
1/3 Laughlin and the 2/5 and 3/7 Jain states are robust to
the effects of finite-width and density changes in the LLL.
Using the pseudopotentials of the interaction obtained from
the finite-width LDA discussed above [with parameters W =
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FIG. 36. Overlaps of the ν = 1/2 Moore-Read Pfaffian state with the exact lowest Landau level ground state [top panels (a)–(c)], neutral
gaps [middle panels (d)–(f)], and charge gaps [bottom panels (g)–(i)] in the spherical geometry evaluated using the pseudopotentials of the
finite-width interaction obtained using a LDA. The left, center, and right panels correspond to Ne = 14 [panels (a), (d), and (g)], 16 [panels (b),
(e), and (h)], and 18 [panels (c), (f), and (i)], respectively.

18–70 nm and n = (1 × 1010)–(30 × 1010) cm−2], we obtain
the exact ground states at 1/3, 2/5, and 3/7 in the LLL at
the 1/3 Laughlin, 2/5 Jain, and 3/7 Jain fluxes, respectively.
All our calculations are carried out for a system of Ne = 12
electrons, which is the largest system for which the 2/5 and
3/7 Jain states (obtained by a brute-force projection to the
LLL) have been constructed in the Fock space [85].

We also evaluate the charge and neutral gaps for the
same system of Ne = 12 electrons using exact diagonal-
ization. The neutral gap is defined as the difference in
energies of the two lowest-lying states of the system of
N electrons at the flux 2Qgs corresponding to the incom-
pressible ground state. The charge gap is defined as �c =
[E (2Qgs + 1) + E (2Qgs − 1) − 2E (2Qgs)]/nq, where E (2Q)

is the background-subtracted [40] ground-state energy of Ne

electrons at flux 2Q, and nq is the number of minimally
charged quasiparticles (quasiholes) created by the removal
(insertion) of a single flux quantum in the ground state. The
charge gap measures the energy required to create a far-
separated minimally charged quasiparticle-quasihole pair in
the ground state. The value of nq is 1, 2, and 3 for the 1/3
Laughlin and the 2/5 and 3/7 Jain states, respectively.

The results for the overlaps and gaps obtained from exact
diagonalization using the LDA pseudopotentials at ν = 1/3,
2/5, and 3/7 are shown in Fig. 35 (note that the scales on
different plots are different). We find that the 1/3 Laugh-
lin and the 2/5 and 3/7 Jain states provide a near-perfect
representation of the exact ground state at all widths and
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densities considered. Furthermore, these states support robust
charge and neutral gaps, which indicates that they are stable to
perturbations in the interaction arising from finite-width cor-
rections and density variations. These results are consistent
with the experimental observation of incompressible states at
1/3, 2/5, and 3/7 in wide quantum wells [9].

We next consider the 1/2 state and evaluate its charge
and neutral gaps as well as its overlaps with the Moore-Read
Pfaffian wave function as a function of the width and density.
Here we consider the three systems of Ne = 14, 16, and 18
electrons that do not correspond to any of the Jain states [25].
The overlap maps shown in Fig. 36 indicate that the overlap
of the Pfaffian state with the exact ground state increases with
increasing width and density and reaches a value comparable
to the overlap of the Pfaffian wave function with the 5/2
Coulomb ground state [40]. We next look at the neutral and
charge gaps (nq = 2) of the 1/2 Moore-Read Pfaffian state.
These results, shown in Fig. 36, suggest that the 1/2 Moore-
Read Pfaffian state does not consistently, i.e., for all values
of Ne, support a robust charge/neutral gap. For the system
of Ne = 14 and 16 electrons, we find that the charge gap is
negative for most widths and densities, which indicates that
the 1/2 Moore-Read Pfaffian state is not stabilized for these
interactions. Even for the system of Ne = 18 electrons, where
the charge gaps are positive, the 1/2 Moore-Read Pfaffian
state has a gap that is an order of magnitude lower than that of
the Laughlin and Jain states. Thus, we conclude that the LDA
interaction does not stabilize the 1/2 Moore-Read Pfaffian
state in the LLL (without LLM).

Finally, we turn to the CFFS state at ν = 1/2 and consider
its overlap with the exact ground state. For this purpose, we
consider the exact zero-width LLL Coulomb ground state of
Ne = 14 electrons at 2Q = 2Ne − 3, since this system has a
uniform (L = 0) ground state. We take this ground state to
represent the CFFS state and calculate its overlap with the
exact LDA ground state as a function of width and density.
These overlaps are shown in Fig. 37 and are essentially unity
in the entire parameter space we have considered. (For com-
parison, the overlap of the Moore-Read Pfaffian state with the
exact zero-width LLL Coulomb ground state for this system
size is 0.72 [40].)

To summarize, our exact diagonalization results are con-
sistent with the VMC results given in the main article. In the
entire parameter range that we explored, the CFFS has almost
unit overlap with the exact ground state. Thus the CFFS state
is favored over the Moore-Read Pfaffian state for all the LDA
interactions that we have looked at in the absence of LLM.

APPENDIX E: ADDITIONAL DETAILS ON THE
DIFFUSION MONTE CARLO

The fixed-phase DMC, which is a generalization of the
standard DMC method [48,73], was developed in Ref. [46]
and also described in Refs. [49,50]. The method we use in this
paper is based on these articles. Here we give some details that
are specific to our work.

We use parameters appropriate for gallium arsenide. We
express lengths in units of lB and energies in units of e2

εlB
.

The local energy for a 2D system is simply EL(R) = Ne
2κ

+

FIG. 37. Overlaps of the composite fermion Fermi sea [zero-
width Coulomb ground state in the lowest Landau level (see the
text)] with the ground state of the finite-width LDA interaction for
Ne = 14 electrons at flux 2Q = 25. The overlap is essentially unity
in the entire range of widths and densities considered.

VEwald(R), and for a 3D system an extra term
∑

i Etrans(wi) is
introduced due to the transverse degree of freedom:

EL(R) = Ne

2κ
+ VEwald(R) +

∑
i

Etrans(wi ), (E1)

where Ne/2κ is the cyclotron energy for Ne particles in the
initial trial state. VEwald(R) is the Coulomb interaction ex-
tended periodically in the x-y plane; it satisfies open boundary
conditions in the transverse dimension as appropriate for our
3D quantum wells (for 2D systems we simply set all wi’s to
be 0). Its explicit form is given below in Appendix I. The

FIG. 38. The transverse density profiles of the (3,3,1)-like state
for a four-particle system of widths W = 70 nm (top) and W =
80 nm (bottom). The legend shows the carrier density in units of
1010 cm−2.
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FIG. 39. The VMC energy of the one-component CFFS as a
function of 1/Ne.

transverse local energy of a one-component state is given by

Etrans(w) =
{

1
κ

π2

2W 2

(
9 − 8

1+α−2α cos(2πw/W )

)
, |w| < W/2,

∞, |w| � W/2.

(E2)

For two-component states, the energies for the left layer and
right layer are as follows:

EL
trans(w) =

{
1
κ

β(2W −βw)
2W 2w

, −W/2 < w < 0,

∞, w � 0,

FIG. 40. The VMC energy of the one-component Pfaffian as a
function of 1/Ne.

FIG. 41. The VMC energy of the two-component (3, 3, 1) as a
function of 1/Ne.

ER
trans(w) =

{
1
κ

β[2W −β(w0−w)]
2W 2(W −w) , 0 < w < W/2,

∞, w � 0.
(E3)

We use the mixed estimator method [48] to calculate the
ground-state energy.

APPENDIX F: TRANSVERSE DISTRIBUTION OF FULLY
ANTISYMMETRIZED TWO-COMPONENT STATES

In the main text, we make the approximation that the two
transverse basis wave functions of two-component states do

FIG. 42. The VMC energy of the two-component 1/4 + 1/4
CFFS as a function of 1/Ne.
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FIG. 43. The VMC energy of the two-component pseudospin-
singlet CFFS as a function of 1/Ne.

not overlap, i.e., they are located entirely either in the left
or the right half of the quantum well. The approximation
becomes quantitatively valid when the well width or the den-
sity is very high, in which case both the lowest symmetric and
asymmetric subbands have vanishing density at the center, and
the linear combinations of them form the left- and right-layer
bases. This approximation simplifies the calculation because
the system’s energy can be evaluated without doing an anti-
symmetrization over all particles.

In this Appendix, we test the dependence of the transverse
density on the well width and the carrier density numerically
with fully antisymmetrized wave functions in 3D space and
ascertain to what extent the system can be approximated with

FIG. 44. 2D-DMC energy of the one-component CFFS as a func-
tion of 1/Ne.

FIG. 45. 2D-DMC energy of the one-component Pfaffian as a
function of 1/Ne.

two nonoverlapping bases. Because the number of permu-
tations increases rapidly with the system size, and because
one does not have analytical ways to simplify the calculation
of the drift velocity in the 3D-DMC, we estimate that the
study of a system with more than 8–10 particles is out of our
reach. Fortunately, we have found that the system’s transverse
distribution is largely insensitive to the size of the system and
the type of the in-plane wave function. Therefore, we study
a four-particle system with its in-plane wave function given
by the (3, 3, 1) state. We choose transverse wave functions
that are not strictly orthogonal, i.e., they incorporate a small

FIG. 46. 2D-DMC energy of the two-component (3, 3, 1) as a
function of 1/Ne.
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FIG. 47. 2D-DMC energy of the two-component 1/4 + 1/4
CFFS as a function of 1/Ne.

tunneling between the two layers. Specifically, we choose

ψL(wi ) = wi

W
exp

[
− 8

wi

W

]
,

ψR(wi ) =
(

1 − wi

W

)
exp

[
− 8

(
1 − wi

W

)]
. (F1)

Here we have shifted the quantum well’s location to the range
[0,W ] for simplicity.

FIG. 48. 2D-DMC energy of the two-component pseudospin-
singlet CFFS as a function of 1/Ne.

FIG. 49. 3D-DMC energy of the one-component CFFS as a func-
tion of 1/Ne.

We do not enforce the central density to be zero; as a result,
whether the system is a well-defined bilayer is determined by
the diffusion process itself.

The bases chosen here are not strictly orthogonal but they
are still linearly independent. If the final distribution breaks
into two well-separated density lobes, then it indicates that
the system can be treated as a two-component state. On the
contrary, if the final distribution is not well-separated, then

FIG. 50. 3D-DMC energy of the one-component Pfaffian as a
function of 1/Ne.

155306-23



ZHAO, FAUGNO, PU, BALRAM, AND JAIN PHYSICAL REVIEW B 103, 155306 (2021)

FIG. 51. 3D-DMC energy of the two-component (3, 3, 1) as a
function of 1/Ne.

one should not treat the system as a two-component state.
[This is the reason why we call the state (3, 3, 1)-like state
rather than a (3, 3, 1) state in the caption of Fig. 38.] This also
offers an estimation of the width and density beyond which the
system can be treated as a two-component state. Our 3D-DMC
results for the density are shown in Fig. 38. As one can see,

FIG. 52. 3D-DMC energy of the two-component 1/4 + 1/4
CFFS as a function of 1/Ne.

FIG. 53. 3D-DMC energy of the two-component pseudospin-
singlet CFFS as a function of 1/Ne.

the system is only well-separated and has negligible density
in the center when n � 2 × 1011 cm−2 for W = 70 nm and
n � 1 × 1011 cm−2 for W = 80 nm. Recalling that in the main
text we show a phase transition from a one-component state to
a two-component state occurring around n = 2.2 × 1011 cm−2

for W = 70 nm, and n = 1.5 × 1011 cm−2 for W = 80 nm,
this calculation of the fully antisymmetrized state justifies our
approximation in the main text.

FIG. 54. The transverse density profiles of the CFFS state for
several particle numbers. They are identical within the statistical
uncertainty. The different colors are for different densities, following
the same color scheme as in Fig. 17.
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APPENDIX G: THERMODYNAMIC EXTRAPOLATIONS
OF ENERGY

The phase diagrams in the main text are obtained by com-
paring the energies of different states in the thermodynamic
limit. For completeness, we show the extrapolations of the
energies of various states calculated by either VMC, 2D-
DMC, or 3D-DMC in this Appendix. Figures 39–43 show the
energy extrapolation for the VMC calculation; Figs. 44–48
show the energy extrapolation for the 2D-DMC calculation;
and Figs. 49–53 show the energy extrapolation for the 3D-
DMC calculation.

APPENDIX H: THE SYSTEM SIZE DEPENDENCE
OF TRANSVERSE DENSITY

The profiles of the transverse density for the CFFS, ob-
tained from our 3D-DMC calculation, are shown in Fig. 54 for
several system sizes. These show that the 3D-DMC transverse
density has a negligible dependence on the system size. This

conclusion also applies to other states considered in this paper.
We therefore believe that the various transverse density pro-
files shown in this article represent the thermodynamic limit.

APPENDIX I: PERIODIC COULOMB INTERACTION
AND EWALD SUMMATION

On the torus, we must work with a periodic version of the
Coulomb interaction. A naive strategy is to extend the nor-
mal Coulomb potential periodically. Although this approach
is theoretically possible, it is impractical because of slow
convergence. The Ewald-summation method overcomes this
difficulty. The idea is to split the Coulomb interaction into
a short-ranged part and a long-ranged part. The short-ranged
part can be summed in real space quickly; the long-ranged
part in real space becomes short-ranged in momentum space,
hence it can be summed conveniently in momentum space. We
follow Yeh’s approach [86] in which a generalized summation
is explicitly formalized, including the transverse dimension
with an open boundary:

VEwald = 1

2

Ne′∑
i, j=1

∞∑
|m=0|

qiq j
erfc(α|ri j + m|)

|ri j + m| + π

2A

Ne∑
i, j=1

∑
h�=0

qiq j
cos(h · ri j )

h

×
{

exp (hzi j )erfc

(
αzi j + h

2α

)
+ exp (−hzi j )erfc

(
− αzi j + h

2α

)}

− π

A

Ne∑
i=1

Ne∑
i=1

qiq j

{
zi jerf(αzi j ) + 1

α
√

π
exp

( − α2z2
i j

)} − α√
π

Ne∑
i=1

q2
i . (I1)

The prime on the summation
∑′Ne

i, j=1 is to remind us that terms with i = j are included only for m �= 0. It is worth noting
that this definition of the interaction properly includes the charge-neutrality condition, i.e., it contains the electron-electron,
background-background repulsion, and the electron-background attraction. To be more explicit, the omission of the term with
h = 0 in the summation and the last term of Eq. (I1) is due to the electron-background and background-background interaction.
We refer the reader to Refs. [87,88] for a thorough discussion of the technical aspects of this method.
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