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Geometric response of quantum Hall states to electric fields
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Exploiting novel aspects of the quantum geometry of charged particles in a magnetic field via gauge-invariant
variables, we provide tangible connections between the response of quantum Hall fluids to nonuniform electric
fields and the characteristic geometry of electronic motion in the presence of magnetic and electric fields. The
geometric picture we provide motivates the following ansatz: nonuniform electric fields mimic the presence
of spatial curvature. Consequently, the gravitational coupling constant also appears in the charge response to
nonuniform electric fields.
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I. INTRODUCTION

Quantum Hall states were the first examples of topological
quantum states of matter to be discovered [1,2]. They continue
to serve as paradigmatic models of topological quantum states
of matter [3,4]. The defining characteristic of these states is
the topologically protected quantization of their eponymous
conductance property. Less well known is the quantization
of their gravitational coupling constant, which characterizes
charge response to spatial curvature in the continuum [5]
and on lattices [6]. There is an active quest to understand
the topological protection of the gravitational coupling con-
stant in terms of fundamental physical principles [7–10]. A
flurry of recent developments have connected the gravitational
coupling constant to response coefficients for a fundamen-
tally different type of perturbation due to nonuniform electric
fields. Specifically, using effective topological field theory
techniques, the gravitational coupling constant is proportional
to the anomalous viscosity [11,12] and appears in the current
response to nonuniform electric fields [13]. What founda-
tional basis underlies the appearance of the gravitational
coupling constant in these disparate contexts? Herein we ad-
dress this question and provide tangible connections between
the response of quantum Hall fluids to nonuniform electric
fields, and the characteristic geometry of electronic motion
in the presence of magnetic and electric fields. The geomet-
ric picture we provide motivates the following conjecture:
nonuniform electric fields mimic the presence of spatial cur-
vature. Consequently, the gravitational coupling constant also
appears in the charge response to nonuniform electric fields.

To elucidate the characteristic geometry of electronic
motion in a magnetic field we introduce an explicitly gauge-
invariant quantum description of quantum Hall systems, and
thus a calculational framework naturally suited for describing
attendant physics. Our formulation is based on the semi-
classical description of quantum Hall physics in terms of
gauge-invariant variables (operators), the kinetic momenta
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(π), and guiding center coordinates (R), respectively defined
as [14]

π = p + eA, R = r + (�2/h̄)ẑ × π. (1)

� = √
h̄/eB is the magnetic length and we will orient our z

axis along the magnetic field, B = Bẑ. These operators satisfy
the commutation relations

[Rx, Ry] = i�2, [πy, πx] = ih̄2/�2. (2)

π and R commute with each other. Our quantum formalism
uses these gauge-invariant operators (variables), henceforth
referred to as GIVs. These replace real-space position oper-
ators and gauge-sensitive canonical momentum operators in
the traditional description of the quantum Hilbert space in the
Schrödinger formalism. Here we focus on the single-particle
physics of electrons in the presence of a magnetic field; the
extension of this formalism to the interacting case has been
presented elsewhere [15]. The guiding center (viz., projected
coordinate) commutation relations, in particular, are known
to encapsulate the topological nature of the quantum Hall
state [16,17]. This identification is a useful first step towards
future extensions of our analysis to a broader class of topolog-
ical insulating states on the lattice.

Below we show how the GIV formalism naturally and
elegantly yields Landau quantization and the extensive degen-
eracy of Landau levels [18–20]. The geometry encapsulated
by the commutation relations of the guiding center operators,
Eq. (2), is reflected in the characteristic form of equations
of motion of these operators in an electric field. These can
be used to derive quantization of the Hall conductance in
the presence of potential (electrostatic) disorder. The guiding
center operators have also been used to construct the guid-
ing center density operators [21] which describe collective
excitations in the fractional quantum Hall phases [22,23].
Recently, these operators have been used to generate a family
of variational deformed Laughlin states; these were then used
to obtain a geometric theory of the collective mode excitation
and its connection to the anomalous nondissipative viscosity
of quantum Hall states [24].
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FIG. 1. A geometric summary of how a nonuniform electric
field, E, deforms a cyclotron orbit. We have set the magnetic length
(�), electronic charge (e), h̄, and mass (m) to unity. The changes
can be expressed in terms of a vector field, �(R) [Eq. (26b)], and
a shearing field, �(R) [Eq. (29b)]. The new orbit is shifted by an
amount δ(R) = ẑ × �(R) with respect to the original center, R, and
acquires a drift velocity, vd = �(R). The orbit is also sheared into
an ellipse with aspect ratio λ2 [see Eq. (35) and accompanying text
for details]. The guiding center coordinate, R, labels the field-free
orbit center while the kinetic momentum, π, gives the velocity of the
electron [Eq. (1)].

While a plethora of works have exploited the operator
algebra of the GIVs, calculations utilizing Schrödinger wave
mechanics in the GIV Hilbert-space representation are un-
common [25,26]. In this paper we present such a calculation
for noninteracting electrons in a Landau level using wave-
functions in the GIV basis to conceptualize the shearing of
cyclotron orbits in the presence of nonuniform electric fields
(Fig. 1). We find that the Hall viscosity contribution in the
current response [11,13] is a direct consequence of shearing of
cyclotron orbits. Our formalism directly connects the shearing
of cyclotron orbits, i.e., a change in the effective Galilean
metric, to the nonuniformity of electric fields. We calculate
the effective spatial curvature induced by the electric field,
Eq. (27), and predict that the gravitational response of integer
quantum Hall states also appears in the charge response to
nonuniform electric fields. We confirm our predictions with
numerical calculations and conclude with a conjecture regard-
ing the extension of these results to fractional quantum Hall
states.

This paper is structured as follows: In Sec. II we define
the GIV representation of the Hilbert space of planar charged
particles in the presence of a uniform magnetic flux. Next,
we establish how conventional wavefunctions in a variety of
gauge choices can be recast in our gauge-invariant language.
In Sec. III the action of a nonuniform electric field on the
cyclotron orbits is considered. In Sec. III A we introduce the
Landau-level projection, i.e., the simplest approximation, to
derive a low-energy effective Hamiltonian and some basic
properties of quantum Hall states. We improve this picture
in Sec. III B to derive an effective Hamiltonian which yields
our main results for the geometric changes to the cyclotron
orbits depicted in Fig. 1. These results are utilized in Sec. III C

to calculate, using Wigner pseudoprobability functions, the
nonuniform current and charge densities induced by the elec-
tric field.

II. WAVEFUNCTIONS IN THE GIV FORMALISM

For brevity, we set the magnetic length (�), electronic
charge (e), and h̄ to unity. In places where we consider a
specific Hamiltonian we assume a quadratic dispersion for
electrons with unit mass (m) and ignore the effects of spin.

The commutation relations between the GIVs [14],

[Rx, Ry] = i, [πy, πx] = i, [πi, Rj] = 0, (3)

are canonical and analogous to the canonical commutation
relations between the two-dimensional (2D) coordinates and
canonical momenta:

[x, px] = i, [y, py] = i, [(x, px ), (y, py )] = 0. (4)

Thus, the GIVs can be obtained from the canonical coordi-
nates and momenta via a canonical transformation: a unitary
transformation exists from the orthonormal quantum Hilbert-
space basis labeled by the coordinates, {|x, y〉}, to another
labeled by the values of one operator from each of the canon-
ical pairs in Eqs. (3). For example, {|Rx, πy〉}, labeled by the
eigenvalues of the operators (Rx, πy), form one such orthonor-
mal basis. It is well known that the Hilbert space can be
labeled by any of the following orthonormal bases: {|px, y〉},
{|x, py〉}, or {|px, py〉}. Analogously, alternate GIV represen-
tations are possible: {|Ry, πy〉}, {|Rx, πx〉}, or {|Ry, πx〉}.

To illustrate use of this formalism, we derive the unitary
transformation matrix elements 〈x, y|Rx, πy〉 ≡ χ (x, y), i.e.,
the wave function of a GIV basis state in the conventional co-
ordinate (Schrödinger) representation. By definition, χ (x, y)
is the simultaneous eigenstate of R̂x and π̂y, with eigenvalues
Rx and πy, respectively. Since the coordinate representation
is gauge dependent, we will need to choose a gauge for the
magnetic vector potential, A. First, we consider the Landau
gauge, ALan = xŷ (note that B = 1 in our units). The eigen-
value conditions become

i∂yχ = Rxχ, −i∂yχ + xχ = πyχ. (5)

The (unnormalized) solution, far from boundaries, is

χLan(x, y) ∼ √
δ(x − Rx − πy)e−iRxy. (6)

Alternately, we can find χ (x, y) in the symmetric gauge,
Asym = (−yx̂ + xŷ)/2:

χsym(x, y) ∼ √
δ(x − Rx − πy)e−iRxyei xy

2 . (7)

Despite the necessity to gauge-fix {|x, y〉}, the GIV states
{|Rx, πy〉} are themselves invariant under gauge transfor-
mations. Consequently, χLan and χsym differ only by a
GIV-independent phase factor; the corresponding phase, φ =
xy/2, satisfies ∇φ = ALan − Asym.

Within the GIV formalism, now consider the energy
eigenstates of an electron in two dimensions experiencing a
perpendicular magnetic field. Assuming minimal coupling to
the gauge field, the Hamiltonian is of the form

H = K (p + eA) − V (r) ≡ K (π) − V (R + π × ẑ). (8)
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Here, K denotes the kinetic operator. V is the local elec-
trostatic potential which includes contributions both from
externally applied fields and local electrostatic irregularities
in the material; the negative sign results from the sign of
electronic charge. When V = 0, since the Hamiltonian is only
a function of the kinetic momenta, the eigenstates in the GIV
basis {|Rx, πy〉} can be found by separation of variables:


(Rx, πy) = ψ (Rx )η(πy). (9)

For quadratic dispersion, K (π) = π2/2, the commutation re-
lations, Eqs. (3), imply that the Hamiltonian is equivalent
to that of a quantum simple harmonic oscillator with ener-
gies [27] and eigenfunctions [28] of the form

K (π)ηn(πy) = χnηn(πy), n = 0, 1, . . . ,

χn = n + 1

2
, ηn(πy) = e−π2

y Hn(πy)√
2nn!

√
π

. (10)

Thus, the discrete nature of the eigenvalue spectrum of K (π)
arises from the commutation relations satisfied by the kinetic
momenta GIVs and defines the familiar electronic Landau
levels (LLs). The kinetic operator does not affect the guiding
center part of the wavefunction, ψ (Rx ), an arbitrary func-
tion, resulting in the high degeneracy of the Landau levels.
This degeneracy is countable; the countability arises from the
canonical commutation relation satisfied by the guiding center
variables. This degeneracy can be counted using von Neu-
mann’s result that the phase-space density of quantum states
is (2π )−1 [29]. Thus, in the guiding center phase space, i.e.,
the 2D space spanned by (Rx, Ry), there is one quantum state
corresponding to each area of 2π . This area corresponds to an
equal area in real space, since the guiding center corresponds
to the real-space location of the cyclotron orbit center. Putting
together these results and restoring units, we arrive at the
well-known result: inside a Landau level, there is an extensive
degeneracy arising from the existence of one quantum state
per real-space area of 2π�2 = (h/e)/B, i.e., the area pierced
by one flux quantum, φ0 = h/e.

The gauge-invariant nature of the GIV quantum basis al-
lows for straightforward visualization and representation of
Landau-level wavefunctions. The popularly used wavefunc-
tions in the Landau (L) and symmetric (S) gauges in the LL
with index n become simply [18]


L =
√

δ(Rx − X )ηn(πy), (11)


S = ηm(Rx )ηn(πy). (12)

These are respectively parametrized by X , the x coordinate
of the guiding center, and m = 0, 1, . . ., the eigenvalue of the
operator (R2

x + R2
y − 1)/2. Note that the kinetic momentum-

dependent part of the wavefunction is the same for both: it
is fixed for a given LL. Thus written, these wavefunctions
are gauge independent. The corresponding Schrödinger wave-
functions in any gauge can be calculated using the appropriate
unitary transformation. It is straightforward to convert 
S ,
the conventional wavefunctions used in the symmetric gauge,
to the Landau gauge using the unitary transform derived in

Eq. (6):


S (x, y) =
∫∫

dRxdπy χ (x, y)ηm(Rx )ηn(πy)

∝ e− x2+y2−2ixy
4 (x − iy)n−mLn−m

m

(
x2 + y2

2

)
. (13)

Here, Lα
n are the associated Legendre polynomials [30]. This

result can be verified by straightforward computation of the
integral. Comparison with conventional wavefunctions in the
circular gauge [18] shows that the above expression differs
only by a factor of eixy/2. This is as expected since the gradient
of xy/2 accounts for the difference between the symmetric and
Landau gauge vector potentials.

III. MOTION IN A NONUNIFORM ELECTRIC FIELD

Consider the general Hamiltonian in Eq. (8), with quadrat-
ically dispersing kinetic energy, which describes electronic
motion in the presence of crossed uniform magnetic and
nonuniform electric fields:

H = (p + A)2

2
− V (r) ≡ π2

2
− V (R + π × ẑ). (14)

Our objective in this section is to calculate the local charge
and current density operators as linear gradient expansions
in the electrostatic potential V . We will also relate a sub-
set of these expansion coefficients to apparently unrelated
topological quantities, which describe electronic response
to geometrical real-space (gravitational) perturbations to cy-
clotron motion [5,13]. The local charge and current operators
are expressed in terms of the GIVs as follows. (Operators
have been distinguished from c numbers using carets in what
follows. c numbers should be interpreted as multiplying the
identity operator when appropriate. However, ẑ is the unit
vector along the z direction.)

ρ̂(r) = δ(r̂ − r) = δ(R̂ + π̂ × ẑ − r), (15a)

ĵ(r) = {v̂, δ(r̂ − r)}
2

= {π, δ(R̂ + π̂ × ẑ − r)}
2

. (15b)

Here v̂ = i[H, r] = π̂ is the velocity operator.
We assume that the potential V is weak and varies slowly

in space, specifically, that its variation over a magnetic length
is negligible compared to the inter-Landau-level energy gap.
This condition needs to be satisfied for the electronic motion
to exhibit topological transport properties of the associated
Landau level. Realistic scenarios include those involving po-
tentials generated by electrostatic gates or due to distant
charged impurities in conventional semiconductor wells used
for quantum Hall research. In chosen units the inter-Landau-
level energy gap is unity. (It is equal to h̄ωc, where ωc =
eB/m = 1 is the cyclotron frequency, i.e., the angular fre-
quency of classical cyclotron motion.) Thus, the condition that
V is weak and slowly varying is equivalent to the following set
of conditions in our chosen units:

∂m
r V (r) � 1, m = 1, 2 . . . . (16)
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The condition on V can be used to approximate the operator,
V (r), by the first few terms of the Taylor series,

V (r) ≡ V (R + π × ẑ)

= V (R) + (∂aV (R))(εapπp) + 1
2 (∂2

abV (R))(εapεbqπpπq)

+ 1
6 (∂3

abcV (R))(εapεbqεcrπpπqπr ) + · · · . (17)

We have used the Einstein convention for summation of
repeated indices (over the two values x and y) and the two-
dimensional Levi-Cività tensor εxx = εyy = 0, εxy = −εyx =
1. This decomposition has twofold utility. First, the derivatives
of V are all small since V is weak and slowly varying, thus
allowing for the use of perturbation theory to calculate mod-
ifications to the cyclotron motion. Second, within a Landau
level the kinetic momenta, (πx, πy), are rapidly oscillating
relative to each other since they form a canonical pair gov-
erned by the simple harmonic oscillator (SHO) Hamiltonian,
K (π) = (π2

x + π2
y )/2. Consequently, the products of kinetic

momentum operators in the above expansion are either rapidly
varying or static, thus allowing for a clear separation of time
scales.

A. Landau-level projection

In light of the Taylor expansion in Eq. (17), the simplest
tractable approximation to the full Hamiltonian, Eq. (14),
involves neglecting all perturbative terms in Eq. (17). This
crude approximation is equivalent to the standard procedure
of Landau-level projection. Within this approximation, the
eigenstates of Eq. (14) can be written in the form


m,n(Rx, πy) = ψm(Rx )ηn(πy), Em,n = χn + vm, (18)

where ηn and χn are defined in Eq. (10), and the guiding center
eigenfunctions are determined by

V (R̂)|ψm〉 = −vm|ψm〉. (19)

This eigenequation is unusual because both canonically con-
jugate operators, R̂x and R̂y, are a priori present with equal
priority in V . However, the nature of the eigenfunctions can be
deduced from the well-known operator equations of motion,

Ṙ = i[H, R] = ẑ × ∇V (r) = −ẑ × E(r), (20)

where E(r) = −∇V (r) is the local electric field. Using our
Landau-level projection approximation, r ∼ R and so Ṙ 	
−ẑ × ∇V (R), which implies that cyclotron orbits drift along
equipotentials [18]. Consequently the (stationary) eigenstates
of Eq. (19) should also lie along equipotentials and each cover
an area of 2π�2.

In the presence of a random disorder potential with short-
range correlations, equipotentials are closed in the bulk, thus
localizing all bulk states as shown in Fig. 2. The bound-
ary, assumed to be a steep confining potential, has extended
wavefunctions circulating along the perimeter. These are the
so-called edge states [31]. What we have described here is the
standard noninteracting picture of bulk localization in a mag-
netic field. This accounts for the existence of plateaus in the
quantum Hall effect since the filling up of the bulk localized
states does not change macroscopic transport coefficients. The
quantized value of Hall conductance can then be derived using
standard techniques [18] when the externally applied chemical

FIG. 2. Equipotentials in a typical disordered material. The red
dots show random potential centers used to simulate this example.
These equipotentials are localized and closed in the bulk while those
at the boundary run along the entire perimeter of the material. Since
guiding center eigenstates run along these equipotentials (see accom-
panying text), those in the bulk are localized. The extended guiding
center states along the edge are the well-known edge states, which
account for the quantized Hall conductance of a filled Landau level.

potentials at the boundaries differentially populate edge states
belonging to the same set of Landau levels.

B. Beyond Landau-level projection: An effective Hamiltonian

Next we take into account the second- and higher-order
terms in Eq. (17). These account for the cyclotron-motion-
induced “jitter” in the electron’s position. Since we have
assumed that V (r) varies slowly, we can look upon the higher-
order terms in Eq. (17) as location-dependent perturbations
to the cyclotron orbits. To mathematically articulate this pic-
ture we first fix the Landau level index, n, and the guiding
center location, R, and then find the new R-dependent kinetic
momentum eigenfunction using perturbation theory. Thus, the
corrections take the form of a gradient expansion in the elec-
tric field; for the purposes of connecting to the gravitational
response of quantum Hall states, we need to keep only the
first few terms in Eq. (17).

Since we are mainly interested in response functions, we
only need calculate the first two moments of GIV operators.
To this end we will use the following trick to compactly
organize the perturbation expansion. Consider a quantum har-
monic oscillator Hamiltonian perturbed by operators that are
symmetrized polynomials of the canonical pair of momentum
and coordinate operators, (p, q). We keep perturbations till the
third degree:

HHO = p2 + q2

2
+ ε

3∑
k=0

Sk, (21)
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where Sk is a real polynomial of degree k in p and q, and
all terms that mix p and q are symmetrized. For example, the
general form of S3 is

S3 = ap3 + b(p2q + pqp + qp2)

+ c(q2 p + qpq + pq2) + dq3,

where (a, b, c, d ) are real numbers. Consider, for a given
SHO level index n, an effective quadratic Hamiltonian, H(n)

HO,
obtained by Wick-contracting each monomial to terms that
are either degree 1 or 2 (i.e., linear or quadratic) in q and p;
each contraction is replaced by the expectation value in the
unperturbed energy level with index n. For example, following
this procedure, p3 → 3〈p2〉n p = 3χn p, where

χn = n + 1
2 (22)

is the expectation value of p2 (or q2) in the (n + 1)th energy
eigenstate of the unperturbed SHO. Clearly, only S3 is modi-
fied by this procedure.

The utility of this procedure is that the expectation values
of all observables which are linear or quadratic in q and p, in
the perturbed eigenstate of Eq. (21) with index n, are obtained
correctly to all orders in S0, S1 and S2, and only to linear order
in S3, when calculated using the (n + 1)th eigenstate of the
effective Hamiltonian, H(n)

HO. That this is true can be checked
by straightforward computation.

This key insight allows us to write down the following ef-
fective quadratic Hamiltonian for calculating properties of the
(n + 1)th eigenstate of Eq. (14), using the gradient expansion
in Eq. (17) and keeping up to the third order in derivatives of
V :

H(n) = πaπa

2
− V (R) − (∂aV (R))(εapπp)

− 1

2
(∂2

abV (R))
(
εapεbqπpπq

)

− 1

2
(∂3

abcV (R))
(
εapεbqεcrχnδpqπr

)
. (23)

We have continued to use the Einstein summation conven-
tion for repeated indices, and also exploited the commutative
property of partial derivatives. Using the identity εapεbq =
δabδpq − δaqδpb, and substituting E = −∇V ,

H(n) = πaπa

2
− V (R)

+
[
Ea(R) + χn

2
∂a(∇ · E(R))

]
(εapπp)

+ 1

2
[(∇ · E(R))δab − ∂aEb(R)]πaπb. (24)

Note that we have used 2D divergence operators. Conse-
quently, Gauss’s law cannot be applied to replace ∇ · E with
the charge density. Ignoring corrections that are nonlinear in
the electric field, the effective Hamiltonian can be compactly
expressed as

H(n) = gab(πa − �a)(πb − �b)

2
− V (R). (25)

In the preceding expression, the new position-dependent
“metric” and divergence-free “drift” corrections are, up to
third (linear) order in the derivatives of V ,

gab(R) = δab(1 + ∇ · E(R)) − ∂aEb(R), (26a)

�a(R) = εab

[
Eb(R) + χn

2
∂b(∇ · E(R))

]
. (26b)

As we show below, the determinant of g is responsible for
a local modulation in the cyclotron orbit energies, while the
unimodular part shears the cyclotron orbit. Thus, we expect
the unimodular metric, G = g/

√
det g, to be the metric rele-

vant for topological response of the quantum Hall state [5].
A Gaussian curvature field, KG(R), can be extracted from this
unimodular metric using the Brioschi formula [32]:

KG(R) = −∇2(∇R · E(R))

4
. (27)

We will return to this expression for the curvature in a subse-
quent section. We note here that an alternate line of reasoning
suggests that since gab appears in the place of an inverse mass
matrix, the choice for the spatial metric is the inverse of G
used above. This inverse choice will change the sign of the
curvature derived above, leaving its magnitude unchanged.

In the presence of a nonuniform electric field the metric is
no longer proportional to identity. Instead, the cyclotron orbit
is stretched and rotated in a location-dependent manner. To
see this note that the metric can be decomposed thus:

g =
√

det(g)
(
�−1

)T
�−1, (28)

where �−1 is a real matrix with unit determinant and com-
posed of a shear and rotations (see below). To the linear
third-order derivative of V ,

√
det(g)(R) = 1 + ∇ · E(R)

2
, (29a)

�ab(R) =
(

1 − ∇ · E(R)

4

)
δab + ∂aEb

2
. (29b)

Equation (28) allows us to locally define a rotated and
appropriately rescaled pair of modified kinetic momentum
operators:

� = �−1(π − �). (30)

These operators satisfy the same commutation relations,
Eqs. (3), as the original kinetic momenta. The guiding center
variables, R, also need modification to ensure that they com-
mute with the modified kinetic momenta:

Xa = Ra + (∂p�a)πp − 1
2εarεps(∂r�sq)πpπq, (31)

where � and � are evaluated at R. To third order in derivatives
of V , these modified guiding center variables, X , commute
with the modified kinetic momenta, �, and satisfy the GIV
commutation relations, Eqs. (3).

In terms of these modified GIVs, the effective quadratic
Hamiltonian for calculating properties of the (n + 1)th eigen-
state of Eq. (14) becomes that of a simple harmonic oscillator
with a position-dependent cyclotron frequency:

H(n) = ω(X )
�2

2
− V (X ), (32)
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where

ω(X ) =
√

det(g(X )) = 1 + ∇ · E(X )

2
. (33)

To summarize, the (n + 1)th eigenstate of this Hamiltonian
yields the correct linear and quadratic kinetic momentum op-
erator moments, up to linear order in the background potential
and the third order in derivatives of V (R) for a fixed value of
R. The n dependence of this Hamiltonian is hidden in the defi-
nitions of the locally varying parameters and definitions of the
altered GIVs. This approach automatically takes into account
Landau-level mixing by the electric field. For example, the
local energy of a particle in the (n + 1)th Landau level is

En(R) = 〈H(n)〉n

= ω(R)

(
n + 1

2

)
− V (R)

=
(

1 + ∇ · E(R)

2

)(
n + 1

2

)
− V (R). (34)

The local Landau-level spacing is thus modified by a nonuni-
form electric field. This observable effect takes into account
Landau-level mixing by the electric field and has been pre-
dicted before [33–35].

Before proceeding to calculate the response of other ob-
servables to the nonuniform electric field, we use the effective
Hamiltonian in Eq. (32) to derive a simple geometric picture
for the effect of the electric field on the cyclotron orbits (see
Fig. 1). Clearly, the form of Eq. (32) implies that the modified
cyclotron orbits are circular in � space. The � coordinates
were obtained from the original kinetic momenta via the linear
transformation, Eq. (30), which is the combination of a shift
by � and a unimodular transformation, �−1. The transforma-
tion � can be decomposed [36] as

� = R(−θ ) ·
(

λ 0
0 λ−1

)
· R(θ ), (35)

where θ is the angle by which the coordinate axes need to
be rotated to ensure that ∂xEx − ∂yEy is maximized. λ = 1 +
(∂xEx − ∂yEy)max/2, where the derivatives are evaluated in the
new orientation specified by θ . Thus, the cyclotron orbits in
real space are sheared, with the long axis aligned with the
x axis of the rotated coordinate frame in which ∂xEx − ∂yEy

is maximum. The ratio of the two axes of the elliptical orbit
is given by λ2. There are two additional modifications to the
field-free cyclotron orbits. First, an orbit at the original field-
free location R is translated by an amount δ(R) = 〈r − R〉 =
ẑ × �(R). Second, these orbits are no longer stationary and
acquire a drift velocity vd = 〈π〉 = �(R) which is perpendic-
ular to the shift, δ(R). Figure 1 summarizes these changes in
the geometry of cyclotron orbits, when placed in an external
electric field.

C. Local observables in a nonuniform electric field

Now we consider how different observable quantities
change when a nonuniform field is switched on. Using our
geometric picture we can delineate these changes as aris-
ing due to (i) displacement and drift (i.e., due to �) and

(ii) shearing of the orbits (due to an effective distorted real-
space metric, whose effect is encapsulated in the matrix �).

These calculations are succinct using the Wigner pseudo-
probability formalism [37]. The central idea is to replace the
quantum wavefunction, which is a function of one coordinate
from each independent canonically conjugate pair of vari-
ables, by the Wigner pseudoprobability distribution, which is
defined over the entire canonical phase space:

W
 (R, p) =
∫∫

dR

2π

dπ

2π

∗(Rx + R/2, πy + π/2)

× 
(Rx − R/2, πy − π/2)ei(RyR+πxπ ). (36)

This formalism provides a natural framework for calcu-
lations involving GIVs, since typical observables expressed
using GIVs do not favor any particular component in the
canonical pair of guiding center coordinates. Given an op-
erator Ô(R,π), where the products of canonically conjugate
variables have been symmetrized, the expectation value of Ô
in state 
 is found by simply integrating the product of the
Wigner function and the classical function O(R,π) over the
Rx − Ry − πx − πy phase space.

Within the scheme of Landau-level projection, the Wigner
function corresponding to the product wavefunctions in
Eqs. (18) is also a product of Wigner functions in the guiding
center and kinetic momenta phase spaces:


m,n(Rx, πy) = ψm(Rx )ηn(πy)

⇔ Wm,n(R, p) = Wm(R)wn(π).

Using the effective Hamiltonian, Eq. (32), we conclude that
the energy eigenstates are still of the form (18), except that
they are functions of the modified �-X phase-space coordi-
nate pairs [which were defined in Eqs. (30) and (31)]:

Wm,n(R, p) = Wm(X )wn(�). (37)

Since the bulk guiding center wavefunctions, ψm, form a com-
plete basis, we also have the following completeness relation,
correct to the third linear order in derivatives of V :∑

m

Wm(R) = 1

2π
=

∑
m

Wm(X ). (38)

1. Local current density: Analytical approach

Following Eq. (15), we consider the local single-particle
charge current density at location x,

ĵ(x) = − 1
2 {π̂, δ(r̂ − x)}. (39)

Carets denote operators and we have used the fact that for
quadratic dispersion the velocity operator is simply the kinetic
momentum.

Within a single filled Landau level with index n, the sum
of the expectation values of this operator in all single-particle
states yields the total local current density, j (n)(x). In compo-
nent notation,

j (n)
a (x) = −

∑
m

∫∫
d2Xd2� Wm,n(X ,�)πaδ

2(r − x)

= −
∫∫

d2Xd2�

2π
wn(�)πaδ

2(r − x). (40)
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The completeness relation, Eq. (38), was used to eliminate
the guiding center Wigner function. In this expression, π and
r are functions of X and �, as defined in Eqs. (30) and (31).
Substituting these expressions,

j (n)
a (x) = −

∫∫
d2Xd2�

2π
wn(�)(�� + �)a

× δ2[r(�, X ) − x], (41)

where

ra(�, X ) = Xa + εab�b(X ) + [εac�cb(X ) − ∂b�a(X )]�b

+ 1
2εarεps(∂r�sq(X ))�p�q. (42)

The δ function in Eq. (41) has a zero at X = X̃ :

X̃a(x) = xa − εab�b + · · · , (43)

where the ellipsis denotes terms which are of the same order
of smallness as the electric field. Thus, for any function F ,∫∫

d2Xδ2(r − x)F (X ) = J−1(x)F (X̃ (x)),

where J (x) is the Jacobian arising from the δ-function inte-
gral:

J (x) =
∣∣∣∣det

(
∂ra

∂Xb

)∣∣∣∣
X=X̃ (x)

= [εac∂a�c(X ) + εac�p∂a�cp(X )]X=X̃ (x)

= 1 + εac∂a�c(x) − (
∂2

aa�p(x) − εac∂a�cp(x)
)
�p

+
(εabεcpεdq

2
∂3

acd�b − εacεbq∂
2
ab�cp

)
�p�q. (44)

The above expression is correct to third order in derivatives of
E. Next,

j (n)
a (x)

= −
∫∫

d2�

2π
wn(�)(�(X̃ (x))� + �(X̃ (x)))aJ−1(x)

= −�a(x)

2π
−

(
−εde∂d�ac + 1

2
εbcεde∂

2
bd�a

) 〈�c�e〉n

2π

+ (
εdc∂d�cb − ∂2

dd�b
) 〈�a�b〉n

2π

= −�a(x)

2π
− χn

2π

(
3

2
∂2

dd�a − 2εdc∂d�ac

)
. (45)

The current density can be separated into two contributions.
First is a contribution arising from the drift-displacement vec-
tor, �:

[
j (n)
� (x)

]
a = −�a(x)

2π
− 3

2
∂2

dd�a
χn

2π

= − εab

2π
[E + 2χn∇(∇ · E )]b. (46)

Second is another contribution involving the shear matrix, �:

[
j (n)
� (x)

]
a

= 2εdc∂d�ac(x)
χn

2π
= εab

2π

χn

2
[∇(∇ · E )]b. (47)

Adding these, we obtain the total current density contributed
by a filled Landau level with index n:

j (n)
a (x) = [

j (n)
� (x)

]
a + [

j (n)
� (x)

]
a

= − εab

2π

[
E + 3χn

2
∇(∇ · E )

]
b

. (48)

The preceding expression for linear response is correct up to
the third order in derivatives of the electrostatic potential and
agrees with previous derivations [13,38].

It is known from field-theoretical approaches [11,13] that
the coefficient of the second term in Eq. (48) arises from
a combination of Hall viscosity and a term that originates
from the swirling motion of cyclotron orbits [13]. Since
the motion of cyclotron orbits is given by the drift ve-
locity, vd = �, which involves only �. We formulate the
following conjecture: the Hall viscosity contribution (which
is related to the gravitational coupling constant of quantum
Hall states [5,11,13]) is given by j (n)

� (x), the current density
arising from the shearing of cyclotron orbits. The magnitude
of j (n)

� (x) matches that obtained from the Hall viscosity con-
tribution, thus yielding the correct values for the Hall viscosity
and gravitational response coefficients.

2. Local charge density: Analytical approach

Following Eq. (15), the single-particle charge density op-
erator at location x is

ρ̂(x) = −δ(r̂ − x). (49)

Within a single filled Landau level with index n, the sum of
the expectation values of this operator in all single-particle
states yields the total local charge density, ρ (n)(x). Using
techniques introduced previously for calculating the current
density operator, we find

ρ (n)(x) = −
∑

m

∫∫
d2Xd2� Wm,n(X ,�)δ2(r − x)

= −
∫∫

d2Xd2�

2π
wn(�)δ2(r − x)

= −
∫∫

d2�

2π
wn(�)J−1(x)

= − 1

2π

[
1 − εac∂a�c(x)

− χn

(∇2(εab∂a�b)

2
− εacεbp∂

2
ab�cp

)]
. (50)

The expression above is correct to third order in derivatives
of the electric field. Using ρ0 = −(2π )−1 to denote charge
density in the absence of electric field, the contributions from
� and � can be separated as follows:[

ρ (n)(x) − ρ0

ρ0

]
�

= −εac∂a�c(x) − χn

2
∇2(εab∂a�b)

= ∇ · E(x) + χn∇2(∇ · E ) + · · · , (51a)[
ρ (n)(x) − ρ0

ρ0

]
�

= χnεacεbp∂
2
ab�cp

= −χn

4
∇2(∇ · E ) + · · · . (51b)
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FIG. 3. The variation of cyclotron orbit energy with orbit location, x. The Landau levels are modeled by the lowest bands in a Hofstadter
model on a square lattice. The nonuniform electric field is generated by a sinusoidal background potential, which is small compared to the
inter-Landau-level energy gap, so that the system is in the linear response regime. The brown circles correspond to the cyclotron energies
obtained via numerical diagonalization. The dashed green curve is the sum of the Landau level energy and the local potential energy, which is
the correct energy when the electric field is uniform. The thick blue curve corresponds to Eqs. (34) and (56), correct up to the second order in
the derivatives of the electric field. For these plots, V0/εc = 0.05, k� = 0.65.

Adding these contributions, the local fractional change in
charge density becomes

ρ (n)(x) − ρ0

ρ0
= ∇ · E(x) + 3χn

4
∇2(∇ · E ) + · · · . (52)

Our result is consistent with previous calculations on the lin-
ear response of quantum Hall states [38,39].

The contribution [Eq. (51a)] from the orbital shift field,
�, can be interpreted simply in terms of the geometric
picture sketched in Fig. 1. The nonuniform electric field
causes the orbit at location X to shift by an amount δ(X ) =
ẑ × �(X ). Ignoring the effects of orbit shear, this induces
a coarse-grained charge polarization field P(X ) = ρ0δ(X ).
This polarization field induces an excess charge ρ(x) − ρ0 =
−〈∇ · P(X̃ (x))〉, a standard result in the study of electrostatics
in continuous media; the angular brackets denote an average
over orbits which contribute to the charge at x while X̃ (x)
was defined in Eq. (43). Expressing P in terms of � and
using Eq. (43), we arrive at the � contributions in Eqs. (51a)
and (52).

We can obtain the contribution [Eq. (51b)] from the shear-
ing field, �, by exploiting an apparently unrelated property of
quantum Hall states. It is known that spatial curvature induces
excess charge in quantum Hall states [5], a phenomenon we
term topological gravitational response. For the fully filled

Landau level with index n, this becomes

δρG(x) = − κ

2π
KG(x) ≡ ρ0χnKG(x), (53)

where KG(x) is the local Gaussian curvature and δρG denotes
the change in charge density arising due to topological gravi-
tational response. χn is the value of the gravitational coupling
constant, κ , associated with a fully filled Landau level with
index n. κ is believed to be a topologically protected quantity
which can only take up rational fraction values.

While there is no literal real-space curvature in the scenario
we are considering, we have already noted that the nonuni-
form electric field can induce a fictitious Gaussian curvature,
given by Eq. (27). Therefore, we conjecture that the introduc-
tion of this curvature has the same effect as that of a spatial
curvature with the same magnitude. Then it follows that the
physics of topological gravitational response contributes the
following amount to the induced charge:

δρG(x) = −ρ0
χn

4
∇2(∇ · E ). (54)

This is exactly the value obtained from the shear contribution,
Eq. (51b). We have thus shown that topological gravitational
response apparently contributes to the local charge density
response of quantum Hall states in nonuniform electric fields.

We conclude this section with the following conjecture,
in analogy with the connection between the current density
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FIG. 4. The spatial variation of local current density in a nonuniform (sinusoidal) electric field. The Landau levels are modeled by the
lowest bands in a Hofstadter model on a square lattice. The nonuniform electric field is generated by a sinusoidal background potential, which
is small compared to the inter-Landau-level energy gap so that the system is in the linear response regime. The brown circles correspond to
the local current density values obtained via numerical diagonalization. The dashed green curve is the quantized local Hall response, which
is correct when the electric field is uniform. The thick blue curve corresponds to Eqs. (48) and (57), correct up to the second order in the
derivatives of the electric field. For these plots, V0/εc = 0.05, k� = 0.32.

response and the gravitational coupling constant [11,13]. We
expect that the charge density response to a nonuniform elec-
tric field should have the form

ρ(x) − ρ0 = −∇ · P(x) + κ

2π

∇2(∇ · E )

4
+ · · · , (55)

where ρ0 is the charge density in the absence of any electric
field, κ is the gravitational coupling constant, and P(x) is the
averaged polarization field caused by shifts in the guiding
centers.

3. Numerical checks of analytical calculations

Now we provide numerical checks for our analytical re-
sults on how local observables change as a function of a
spatially varying electric field. To this end we construct a
Hofstadter model on a square lattice with nearest-neighbor
hopping and periodic boundary conditions in the x direction.
To this we add a sinusoidally varying on-site electrostatic po-
tential, V (x) = V0 sin kx. We use the Landau gauge, A = Bxŷ,
yielding eigenstates which are extended in the y direction
but localized in the x direction. In this system, it is natural
to set the hopping amplitude, the lattice spacing, Planck’s
constant h, and the magnitude of electronic charge, e, to unity.
In these units, we choose the magnetic field to be B = 1/q,
where q  1. With this choice, the lowest few Landau levels
have the same characteristics as obtained for a continuum
model with quadratically dispersing particles. Diagonalizing

the Hamiltonian, we obtain the spatial variation of cyclotron
orbit energies, the local charge-current density, and the charge
density.

Below, we use slightly modified units better suited for
the Hofstadter model: the units of length and energy are re-
spectively set to the lattice spacing and the nearest-neighbor
hopping amplitude. In these units the magnetic length is
� = √

q/2π and the inter-Landau-level (cyclotron) gap, in the
continuum limit, is εc = 4π/q. For k�  1 (slowly varying
potential) and V0 � εc (weak potential) our results can be
written as follows.

The cyclotron orbit energies [from Eq. (34)] become the
local energy of each quantum state:

En(x) =
(

n + 1

2

)
−

(
1 − (k�)2

2

(
n + 1

2

)
+ · · ·

)
V0 sin kx.

(56)

In this expression, x denotes the average x position of the
quantum state and n denotes the index of the Landau level
to which the orbit belongs. In Fig. 3, we have shown the
numerical verification for this relation for the lowest three
Landau levels.

In the presence of a potential that varies only in the x
direction, only the y component of the local current density
is nonzero. Its value for a filled Landau level with index n is

155303-9



CHEN, JIANG, AND BISWAS PHYSICAL REVIEW B 103, 155303 (2021)

FIG. 5. The spatial variation of local fractional charge density modulation in a nonuniform (sinusoidal) electric field. The Landau levels are
modeled by the lowest bands in a Hofstadter model on a square lattice. The nonuniform electric field is generated by a sinusoidal background
potential, which is small compared to the inter-Landau-level energy gap so that the system is in the linear response regime. The brown circles
correspond to the local charge density values obtained via numerical diagonalization. The dashed green curve is the response obtained correct
to the second derivative in the electric field, Eq. (51), corresponding to the nonuniform polarization induced by cyclotron orbit shifts. The thick
blue curve corresponds to Eqs. (52) and (58), correct to the third order in the derivatives of the electric field. For these plots, V0/εc = 0.05,
k� = 0.49.

[using Eq. (48)]

j (n)
y (x) = kV0 cos kx

(
1 − 3(k�)2

2

(
n + 1

2

) + · · · ).
A convenient observable is the total current density when the
first N Landau levels are completely filled. It is obtained by
summing the preceding expression over n = 0, 1, . . . , N − 1:

J (N )
y (x) = NkV0 cos kx

(
1 − 3N

4
(k�)2 + · · ·

)
. (57)

We have used
∑N−1

n=0 χn = N2/2. The expression outside the
brackets is the expected current profile for uniform Hall con-
ductance. In Fig. 4 we have shown the numerical verification
of this result for the lowest three Landau levels.

Finally, our prediction [Eq. (52)] for the change in local
charge density, δρ (n)(x) = ρ (n)(x) − ρ0, becomes

δρ (n)(x)

ρ0
= (k�)2

(
1 − 3(k�)2

4

(
n + 1

2

) + · · · )V0 sin kx
εc

.

We have used the field-free cyclotron gap, εc = 4π/q, to scale
quantities with dimensions of energy. The second term in
the bracket corresponds to the fourth-order derivative of the
potential. Previously, we provided a conjecture for the value of
its coefficient by connecting it to the topological gravitational
response of quantum Hall states: as expected, it is found to be
half the gravitational coupling constant. Again, a convenient

observable is the fractional change in the total charge density,
ρ

(N )
tot (x), when the first N Landau levels are full:

δρ
(N )
tot (x)

ρ
tot,N
0

= (k�)2

(
1 − 3N

8
(k�)2 + · · ·

)
V0 sin kx

εc
. (58)

In Fig. 5, we have shown the numerical verification of this
relation for the lowest three Landau levels.

IV. DISCUSSION

In this work, we have introduced a quantum Hilbert space
representation based on gauge-invariant variables (GIVs), de-
fined in Eq. (1), to describe Schrödinger quantum mechanics
of two-dimensional charged particles (electrons) in the pres-
ence of a uniform perpendicular magnetic field. We have
included a background electrostatic potential, which gives rise
to a nonuniform electric field, and ignored interactions. The
case with interactions has been discussed elsewhere [15]. The
GIV representation is gauge invariant, exploits the unique
geometry of quantum mechanics in the presence of a magnetic
field [captured by the GIV commutation relations, Eqs. (2)],
and provides a natural quantum representation which builds
on the classical cyclotron orbit picture and the classical mo-
tion of the orbit in an external electric field.

Using the GIV representation we have derived a geometric
picture of the response of cyclotron orbits to a nonuniform
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electric field, as summarized in Fig. 1. To recapitulate, the
orbits get sheared, are shifted from their original position, and
drift in a direction perpendicular to the shift. These modifica-
tions are characterized by an effective shearing metric, g, and
a vector field, �, which controls both orbit drift and location
shift; g and � are defined in Eqs. (26a) and (26b), respectively.

We have combined this geometric picture and the Wigner
quasiprobability formalism to calculate the linear local
responses to the nonuniform electric field, as gradient expan-
sions to the second order in derivatives of the electric field.
Specifically, we calculated the local cyclotron orbit energy
[Eq. (34)], the local current density [Eq. (48)], and the local
charge density [Eq. (52)].

These calculations provide mechanistic insights as to why
the gravitational coupling constant [defined as κ in Eq. (53)]
appears in the current response to a nonuniform electric
field [11,13]. Motivated by our calculation of the local current
density response, we were led to the conjecture that the current
contribution from the shearing of the cyclotron orbit is the
same as the previously obtained current contribution involving
the gravitational coupling constant [13]. Following this, we
pursued a stronger conjecture—that the metric induced by
nonuniform electric fields acts upon the quantum Hall state in
the same way as a bona fide real-space metric with a Gaus-
sian curvature given by Eq. (27)—in the context of charge
density response to a nonuniform electric field. We found

that the gravitational coupling constant appears in the local
charge density response and enters the electric field gradient
expansion for charge response at the third order, Eq. (55). It
will be illuminating to see if this conjecture continues to hold
in other kinds of quantum Hall states, say, the Laughlin states,
for which no such calculation exists. If the conjecture is found
to hold generally, it will have implications for improving the
extended universal effective theory of quantum Hall states,
which in present form [13] does not predict charge response
to the third order in the derivative of the electric field. We
expect that these results will readily generalize to a wide class
of topological insulating materials, since the guiding center
commutation relations are known to directly encode nontrivial
band topology [16,17].
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