
PHYSICAL REVIEW B 103, 155301 (2021)

Superradiantlike dynamics of nuclear spins by nonadiabatic electron shuttling
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We investigate superradiantlike dynamics of a nuclear-spin bath in contact with an electron shuttle, modeled
as a moving quantum dot trapping a single electron. The dot is shuttled between two external reservoirs, where
electron-nuclear flip flops are associated with tunneling events. For an ideal model with uniform hyperfine
interaction, realized through an isotopically enriched “nuclear-spin island”, we discuss in detail the nuclear
spin evolution and its relation to superradiance. We then show that the superradiantlike evolution is robust to
various extensions of the initial setup, and derive the minimum shuttling time which allows to escape adiabatic
spin evolution. We also discuss slow/fast shuttling under the inhomogeneous field of a nearby micromagnet and
compare our scheme to a model with stationary quantum dot. Finally, we describe the electrical detection of
nuclear entanglement in the framework of Monte Carlo wave-function simulations.
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I. INTRODUCTION

Coherent control of spins in solid-state systems is a subject
of intense research, both from the point view of fundamental
physics and future applications. In quantum dots, efforts to
prolong the coherence time of electronic spins has led to
a greatly improved understanding of the coupling with the
nuclear-spin bath [1–3]. Although isotropically purified de-
vices represent an attractive option, the nuclear-spin bath leads
to interesting physical effects and might be turned into a useful
quantum resource. Potential applications include the realiza-
tion of quantum memories [4] and small quantum registers
[5], similar to what has been already demonstrated with single
donors and defects [6–8].

In current quantum dots devices, the effect of nuclear spins
can be often understood well through their polarization. For
example, it is possible to monitor in time the evolution of the
Overhauser field and characterize its noise spectrum [9–11].
Modeling the effect of nuclear spins as a stochastic classical
field has also been very useful in describing decoherence at
short time scales [12,13], and to develop efficient dynami-
cal decoupling techniques [14,15]. Furthermore, dynamical
nuclear polarization (DNP) allows to influence actively the
nuclear-spin polarization, by achieving relatively large values
and/or narrowing its distribution [2,14,16–18,53–57]. Despite
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these successes, however, this physics is insensitive to intrin-
sic quantum features of the nuclear-spin state.

An interesting possibility to go beyond these effects, and
generate entanglement in the nuclear spin-bath in a controlled
and easily detectable way, is based on inducing a superradi-
antlike evolution [19–22]. These proposals are guided by an
analogy between the hyperfine Hamiltonian and the Dicke
model of optical superradiance [20,23–26], with the nuclear
spins playing the role of two-level atoms and the tunneling of
electrons analogous to photon emission. The setup is usually
in a spin-blocked configuration, where election tunneling is
only possible through flip-flop events allowed by the hyperfine
interaction. The electron-nuclear flip flops act collectively on
N nuclear spins, modifying the spin polarization and at the
same time building up entanglement. Despite the similarity
with DNP, a crucial feature here is the detection of entangle-
ment, which is responsible of a large enhancement of electron
tunneling rates. The maximum enhancement factor occurs for
the nearly depolarized state and is of order N , with typical
quantum dots having up to N ∼ 105–106. Thus detecting the
nuclear-spin entanglement should become relatively straight-
forward by transport or charge-sensing measurements.

In this work, we investigate the possibility of realizing the
superradiantlike dynamcis in a movable quantum dot config-
uration, where the electron is shuttled between two external
reservoirs [27–31]. As we will see, our shuttling device offers
certain advantages. It does not rely on ferromagnetic contacts
[22] and allows to escape the blockade regime much more
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efficiently than other stationary configurations [20]. The mode
of operation of the shuttle is rather standard for quantum dot
devices, as it can be seen as a fast switching between the (1,0)
and (0,1) configurations of a double quantum dot.

More generally, our study explores an interesting interplay
of spin dynamics and shuttling, which might be relevant for
a variety of devices. Electron shuttles can also be realized
in nanoelectro-mechanical systems with vibrating organic
molecules [32], metallic grains [27], or silicon nanopillars
[33] and are characterized by rich transport regimes due to
the interplay of charge and mechanical degree of freedoms
[34–36]. They also attract interest in the study of noise and
full counting statistics [37,38]. Finally, recent progress on
shuttling electrons across extended arrays of quantum dots
[39,40] provides further motivations to our study.

Our article is organized as follows. In Sec. II, we present
the electron shuttle model in an idealized setup. In Sec. III, we
give the master equations governing the electron-nuclear spin
dynamics, under the assumption of fast shuttling. In Sec. IV,
we present the main results for the ideal model, which allows
us to establish a precise connection with optical superradi-
ance. In Sec. V, we relax several assumptions, showing that
the superradiantlike evolution is quite robust to imperfections.
In Sec. VI, we derive the important nonadiabaticity condi-
tion for the spin evolution (depending on shuttling speed).
A strictly related discussion of shuttling in the slanting field
of a micromagnet is also provided. In Sec. VII, we dis-
cuss the crucial role played by the nonadiabatic shuttling in
weak-tunneling setups. Finally, in Sec. VIII, we present an
alternative analysis in terms of Monte Carlo wave-function
simulations. Further technical details can be found in Appen-
dices A and B.

II. MODEL

We start by considering an ideal setup of the shuttle,
schematically illustrated in Fig. 1. We model it as a moving
quantum dot, whose time-dependent position x(t ) (i.e., the
minimum of the confining potential) can be controlled exter-
nally. A shuttling motion is imposed between left and right
operating points, which are in contact with external leads.
To simplify matters, we initially suppose that a nuclear-spin
rich region is only embedded at the right position (x = L/2)
while at the left position (x = −L/2, poor in nuclear spins)
the hyperfine interaction is effectively turned off.

Introducing a spatially localized “nuclear-spin island” is
motivated by a recent proposal for approaching nearly uni-
form hyperfine interactions [22]. This condition leads to a
simple integrable Hamiltonian, which is in direct analogy to
the Dicke model. Furthermore, when nuclear spins are only
included at one of the two operation points, shuttling allows to
separate spatially the electron-spin initialization (left position)
from the entangled electron-nuclear dynamics (right position).
In Sec. V, we will see how these assumptions facilitate the
superradiantlike dynamics, but are not strictly necessary.

A. Hyperfine interaction and tunnel couplings

To specify the Hamiltonian, it is convenient to consider
first a given value of x, which fixes the hyperfine and
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FIG. 1. (a) Schematics of the electron shuttle. An excess electron
resides on the orbital ground state of the instantaneous trapping po-
tential, forming a moving quantum dot (QD). The trapping potential
can be controlled between a nuclear-spin free region (left position, at
x = −L/2) and a nuclear-spin rich region (right position, at x = L/2)
[22]. The size of the QD envelope function is significantly larger
than the nuclear region, allowing a “box-model” description for their
coherent coupling [41–43]. (b) Shuttling cycle. In step 1 (step 3),
the dot is tunnel-coupled to the left (right) external lead, with energy
levels as schematically illustrated. Steps 2 and 4 are fast shuttling
processes between x = ±L/2.

tunnel couplings at their instantaneous values. We suppose
that the shuttling is sufficiently slow, such that during the
whole process the electrons occupy the instantaneous orbital
ground state of the quantum dot. Furthermore, due to a large
Coulomb repulsion, we neglect doubly-occupied states. At a
given value of x, the singly-occupied states are d†

σ |0〉, where
|0〉 is the state with no electrons in the dot, d†

σ is a fermionic
creation operator, and σ =↑,↓ is the spin index. The full
Hamiltonian reads

H = H0 + HT + Hb, (1)

where the isolated dot is described by (h̄ = 1):

H0 =
∑

σ

εσ d†
σ dσ + A

Nd
S · I, (2)

where ω0 = ε↑ − ε↓ = gμBBz is the Zeeman splitting due to
an external magnetic field in the z direction and the second
term is the hyperfine interaction, with Sα = 1

2

∑
ss′ σα

ss′d†
s ds′

(σ is the vector of Pauli matrices) the electron spin operators
and Iα = ∑N

i=1 Iα
i the collective spin operators of N nuclear

spins.
In general, the coupling strength of the hyperfine interac-

tion for a nuclear spin at position rk has the form Av0|ψ (rk )|2,
where the energy scale A depends on the nuclear isotope
and the electronic states of the host crystal, v0 is the atomic
volume, and ψ (r) is the envelope function of the quantum dot
[1,42,44]. Here we have approximated Av0|ψ (rk )|2 � A/Nd ,
which is justified under special circumstances. For example,
Ref. [22] proposed to realize approximately uniform hyper-
fine couplings through a nuclear-spin island. As discussed
there, the concept might be implemented in a Si/Ge core-shell
nanowire with a segment of its inner core being isotopically

155301-2



SUPERRADIANTLIKE DYNAMICS OF NUCLEAR SPINS BY … PHYSICAL REVIEW B 103, 155301 (2021)

modulated to host a 29Si section of nanometer size [45,46].
Alternatively, the right position x = L/2 could host one or few
magnetic impurities [47]. We note that Nd is of the order of
the number of lattice sites having significant overlap with the
quantum dot. Thus, for materials with spinless isotopes, N can
be significantly smaller than Nd .

Taking into account the nuclear spins, the empty quantum
dot is simply described by |0, m〉 ≡ |0〉 ⊗ |I, m〉, where |I, m〉
are the eigenstates of I2, Iz with eigenvalues I (I + 1) and
m, respectively (we omit permutational quantum numbers).
In the basis |σ, m〉 ≡ d†

σ |0〉 ⊗ |I, m〉, the eigenstates with one
electron are given by

|ϕ−
I,m〉 = αm−1|↓, m〉 − βm−1|↑, m − 1〉,

|ϕ+
I,m〉 = αm|↑, m〉 + βm|↓, m + 1〉, (3)

where m ∈ [−I, I] and, conventionally, |↑,−I − 1〉 = |↓, I +
1〉 = 0. The amplitudes are αm = cos(θm/2) and βm =
sin(θm/2), with the mixing angle:

θm = arg

[
1

2η
+ m + 1

2
+ i

√
I (I + 1) − m(m + 1)

]
. (4)

The parameter η is the ratio of hyperfine coupling and Zeeman
energy:

η = A/Nd

2ω0
, (5)

and will play an important role in the rest of the paper. For typ-
ical quantum dots, η � 1 under a moderate magnetic field and
we will also restrict ourselves to this condition. For example,
using values appropriate to Si quantum dots [48] A � 2 μeV,
ω0 = 10 μeV (i.e., Bz � 0.1 T), and Nd = 105, one obtains
η � 10−6. Finally, the energies of |ϕ±

I,m〉 are

ε±
I,m = ε̄ ± ω0

2

√
1 + η(4m ± 2) + η2(2I + 1)2 − ηω0

2
, (6)

where we defined ε̄ = (ε↑ + ε↓)/2. Usually (except around
ηI = 1/2), the ± sets of levels form two well-separated en-
ergy bands. In particular, when ηI � 1 the gap is close to
ω0. We choose the level alignment as in Fig. 1(b), where
ε+

I,m > μl,r > ε−
I,m.

The quantum dot is connected to two external leads
through a standard tunnel Hamiltonian:

HT =
∑
α,k,σ

Tαkd†
σ cαkσ + H.c., (7)

with spin-independent tunnel amplitudes, Tαk and α = l, r
labeling the left and right lead, respectively. Hb is

Hb =
∑
α,k,σ

εαkc†
αkσ

cαkσ , (8)

where we assume that the reservoirs are unpolarized, thus
the single-particle energies εαk are spin-independent. As a
consequence, the density of states nα (ε) are spin-independent
as well. The occupation numbers are given by fα (ε) =
{exp[β(ε − μα )] + 1}−1 where we generally assume the low-
temperature regime:

fα (ε) � θ (μα − ε). (9)

Although other choices are possible, the desired spin dynam-
ics can be generated without an applied bias. Therefore we
will assume μl = μr , as illustrated in Fig. 1(b).

B. Electron shuttle

While in some shuttling setups it is necessary to solve a
separate dynamical equation for the moving center x(t ), de-
pending on the evolution of the internal variables of the shuttle
(e.g., its charge state [27]), here we assume that the motion
is determined by external controls. In particular, we neglect
the small back-action on the electron motion from its internal
spin dynamics. The main consequence of the x(t ) parametric
dependence is to induce time-dependent tunnel and hyperfine
couplings in the system Hamiltonian, Eq. (1).

As represented in Fig. 1, the right and left operating
points are at xl = −L/2 and xr = L/2, respectively. When
the electron shuttle moves close to xl (xr) it interacts more
strongly with the left (right) lead. We can write explicitly the
x-dependence of the tunnel amplitudes in Eq. (7) as follows:

Tαk (x) � Tαe−|x−xα |/λα , (10)

where λl,r are the tunneling lengths [27,36,49]. Here we have
also made the usual approximations that Tαk is independent
of k. For simplicity, we will consider λl,r � L, such that
an electron at xl (xr) can only interact with the left (right)
reservoir. Further assuming nα (ε) � nα , the tunneling rates at
the left/right positions are


α = 2πnα|Tα|2, (11)

which we choose to be in the weak-tunneling regime, 
α �
|μα − ε±

I,m|.
Similarly, the spatial dependence of the hyperfine interac-

tion could be of the type:

A(x) = Ae−(L/2−x)2/�x2
, (12)

where we take into account a Gaussian envelope wave func-
tion (appropriate for a harmonic confinement centered in x).
To have all the hyperfine couplings approximately equal, the
spatial extent of the nuclear-spin rich region should be smaller
than �x. Furthermore, we will typically assume �x � L such
that the hyperfine coupling is only significant when x � L/2.
The assumption of uniform coupling is more accurate when
the center of the electron’s wave function sits on top of the
small nuclear-spin island [22]. At this position, the hyperfine
coupling is largest.

III. DYNAMICAL EVOLUTION

We would like to model the electron-nuclear spin dynamics
under a cyclic operation, where the electron continuously
shuttles between the left and right positions of Fig. 1. There
is considerable freedom in designing such cycle. However,
we will first assume that the two shuttling processes between
x = ±L/2 are sufficiently fast to treat them as instantaneous
quenches (in the spin degrees of freedom). This is not in con-
trast with the adiabatic assumption about the orbital ground
state, as typical orbital energies are much larger than the
Zeeman splitting. A detailed discussion of shuttling with finite
speed is given in Sec. VI.
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In summary, the mode of operation is a four-step cycle
illustrated in Fig. 1(b) and comprised by: (i) initialization
period tl at x = −L/2, loading a single electron in the ↓ state;
(ii) a fast shuttling process to the right operation point; (iii) a
waiting period tr at x = L/2, when the electron interacts with
the nuclear spins allowing for flip-flop processes to occur; (iv)
fast shuttling back to x = −L/2. Effectively, we treat the cycle
as a two-step process with only (i) and (iii) and the period is
T � tl + tr .

A. Master equations

By tracing out the degrees of freedom of the two leads, the
system can be described by Markovian master equations. In
the first part of each cycle, we compute the evolution using:

ρ̇s = −i[Hz, ρs] + 
l (D[d↑] + D[d†
↓])ρs, (13)

where Hz is the Zeeman Hamiltonian, defined by taking A = 0
in Eq. (2), and the dissipator is of the Lindblad type, D[L]ρs =
LρsL† − 1

2 {L†L, ρs}. Equation (13) is a standard master equa-
tion for a quantum dot in contact with an external reservoir
(the left lead) where the chemical potential μl lies between
the two Zeeman levels. ρs is the full density matrix of the
system, i.e., includes both the electronic and nuclear degrees
of freedom, but the nuclear dynamics is trivial in this case.

For the second part of each cycle (e.g., tl < t < T ), the
quantum dot center lies on the top of the nuclear-spin island
and it is important to take into account the hyperfine inter-
action. As described in Appendix A, we perform a standard
derivation by tracing out the lead degrees of freedom in the
second-order Born-Markov approximation. After a rotating-
wave approximation (RWA), we obtain

ρ̇s = −i[H0, ρs] + 
r

∑
σ

(D[Aσ+] + D[A†
σ−])ρs, (14)

where we defined the Lindblad operators:

Aσ± = dσ P±, (15)

with P± = ∑
I,m |ϕ±

I,m〉〈ϕ±
I,m| the projectors on the one-

electron eigenspaces, see Eq. (3). For large Zeeman splitting
(compared to the strength of hyperfine interaction), one has
A↑+ � d↑ and A↓− � d↓ while A↑−, A↓+ � 0. However, in
general it is important to take into account consistently the
hyperfine interaction both in the Hamiltonian and dissipative
terms. As we will discuss in more detail in Sec. VII, even
a small difference between dσ and Aσ± can have important
effects on the long-time evolution.

An example of the numerical results obtained in this man-
ner is shown in Fig. 2, where the detailed evolution of the
nuclear-spin polarization Mz(t ) ≡ Tr{Izρs(t )} is plotted. The
result is that the periodic shuttling leads to a systematic lower-
ing of the nuclear-spin polarization with each half-cycle. The
physical mechanism behind this effect is directly related to
the form of the eigenstates Eq. (3), which are superpositions
of |↓, m〉 and |↑, m − 1〉, i.e., they take into account the ex-
change of angular momentum between electron and nuclear
spins induced by the hyperfine interaction. Since |ϕ±

I,m〉 differ
from the Zeeman eigenstates, a fast shuttling processes leads
to a small probability of populating the high-energy eigenstate
and allows the electron to tunnel out of the dot. Such processes

l t
0 50 100 150 200 250 300
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× 10-7

I
M

z

FIG. 2. Full dynamics of the cyclic shuttling process, described
by instantaneous quenches between a right and left waiting periods,
see Eqs. (13) and (14). Starting from |↓, N/2〉 (i.e., fully polar-
ized nuclei), we plot the full time-dependence of the nuclear-spin
polarization (solid black curve) as well as its approximate strobo-
scopic evolution (red dashed line). Parameters (setting ω0 = 1): N =
10, I = N/2, η = 1 × 10−4, 
l = 
r = 0.1, μl = μr = ε̄ = 0, and
tl = tr = 30 
−1

l,r .

are effectively associated with a flip-flop of electron and nu-
clear spins, thereby lowering Mz.

The full time evolution eventually leads to a full reversal
of the nuclear-spin polarization. However, the drop of Mz at
each cycle is small due to the small amplitude of flip-flop
states in Eq. (3): βm ∝ η gives a change in magnetization
�Mz ∝ η2 [see also the discussion in Sec. VII, and especially
Eq. (43)]. Therefore the superradiantlike enhancement ap-
pears after many cycles, which are numerically cumbersome
to simulate. In the next section we develop an approximate
stroboscopic treatment which is accurate (see dashed line in
Fig. 2) and is able to describe the dynamics in a more efficient
and physically transparent manner.

B. Stroboscopic description

If, as in Fig. 2, the waiting times tr,l are relatively long
compared to 
−1

l,r , the system approaches a (temporary) sta-
tionary state before each quench. Under these conditions, it
is possible to derive a simpler stroboscopic description of
the long-time evolution. More specifically, the system after
n periods is described by

ρs(nT ) � |↓〉〈↓| ⊗
∑

m

pm(n)|I, m〉〈I, m|, (16)

and the nuclear-spin bath populations are determined by the
discrete time evolution:

p(n) = Anp(0), (17)

where p(n) = (p−I (n), p−I+1(n), . . . pI (n))T and the evolu-
tion matrix A is derived below.
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FIG. 3. Branching processes for the state |ϕ+
I,m〉. The rate of each

process is indicated explicitly. The rate equations can be easily ob-
tained from Eq. (14) and are explicitly given in Eq. (B1), setting

l = 0.

To obtain A, we first consider the electron prepared at the
left position in the state |↓〉 ⊗ |I, m + 1〉. After the sudden
quench to the right position, it is appropriate to use the eigen-
states of Eq. (3), giving

|↓, m + 1〉 = αm|ϕ−
I,m+1〉 + βm|ϕ+

I,m〉. (18)

This state constitutes the initial condition for Eq. (14) where,
due to the RWA approximation, the coherence between
|ϕ−

I,m+1〉 and |ϕ+
I,m〉 decays to zero without affecting the pop-

ulation dynamics. Thus the stationary state is determined by
rate equations alone.

While |ϕ−
I,m+1〉 is already stationary, the high-energy state

|ϕ+
I,m〉 leads to the electron tunneling out of the quantum dot,

followed by a process where the dot is re-occupied. The de-
tailed branching processes for |ϕ+

I,m〉, with the corresponding
rates, are illustrated in Fig. 3. Taking them into account, it is
seen that |↓, m + 1〉 evolves into a mixture of |ϕ−

I,m〉, |ϕ−
I,m+2〉,

and |ϕ−
I,m+1〉 and the final populations can be obtained as

follows:

Rm,m+1 = β2
mα2

mα2
m−1

α2
m−1 + β2

m

, Rm+2,m+1 = β4
mβ2

m+1

α2
m + β2

m+1

,

Rm+1,m+1 = 1 − Rm,m+1 − Rm+2,m+1. (19)

If we consider the reverse shuttling process, where the elec-
tron is prepared in a |ϕ−

I,m〉 eigenstate and is quickly shuttled to
the (left) nuclear-spin free region, the following sequence of
tunneling events becomes possible for the component of |ϕ−

I,m〉
in the excited state: |↑, m − 1〉 → |0, m − 1〉 → |↓, m − 1〉.
It is quite clear that the final state will be a mixture of |↓, m〉
and |↓, m − 1〉, and the populations are given by

Lm,m = α2
m−1, Lm−1,m = β2

m−1. (20)

In summary, the effect of a full cycle at the left operating point
is to induce transitions from an initial condition |↓, m + 1〉 to
four final states, |↓, m − 1〉, . . . , |↓, m + 2〉, and the transition
matrix A entering Eq. (17) is

A = L R, (21)

l t
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FIG. 4. Time dependence of the nuclear-spin polarization Mz at
different values of N = 1, 2, 4, . . . , 128 (see color code). The verti-
cal dashed lines with red dots mark the times t0 at which Mz = 0.
Inset: scaling of t0 with respect to N , where the blue dashed curve
shows the theoretical prediction Eq. (24). Except N , other parameters
are the same of Fig. 2, and I = N/2 were assumed for all curves.

where the nonzero matrix elements of L, R are given by
Eqs. (19) and (20), after a straightforward redefinition of the
indexes (from [−I, I] to [1, 2I + 1]).

As discussed in Fig. 2, we have checked that the strobo-
scopic description agrees well with the full time dependence.
By using this approach, the long-time dynamics can be effi-
ciently computed as in Fig. 4, where features typical of the
superradiantlike evolution become apparent.

IV. SUPERRADIANT-LIKE SHUTTLING

We show in Fig. 4 the long-time evolution of the nuclear-
spin polarization Mz(t ) at increasing values of N = 1, 2,

4, . . . , 128 and illustrate in Fig. 5 the evolution of the full
distribution function, pm, in the case N = 128. The behav-
iors of Mz and pm are in good agreement with the features
of optical superradiance: We see that the evolution time is
reduced at larger values of N , and pm becomes a broad
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× 108
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l t
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z

/I

p m
(n

)

m

N 128

FIG. 5. Time evolution of the distribution pm (solid lines), for the
N = 128 (I = N/2) case of Fig. 4. The time of each distribution is
marked in the inset with a circle of the same color. The gray dash-
dotted curves show the superradiant approximation, Eq. (25).
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distribution with significant weight over all values of m. The
large variance at intermediate times reflects the large shot-
to-shot fluctuation typical of superradiance [25,50]. In fact,
through the formalism developed in the previous section, it is
possible to establish a direct connection to superradiance and
derive simple analytic expressions.

A. Connection to superradiance

We first notice that, in the stroboscopic description, the
relative probabilities of the branching processes are controlled
by the small parameter β2

m ∝ η2. The most likely event is
|↓, m〉 → |↓, m〉 which, however, does not affect Mz. Clearly,
only the processes which change m are interesting for the time
evolution.

As inferred from Eqs. (19) and (20), the most likely nuclear
spin flip is |↓, m〉 → |↓, m − 1〉. More precisely, the proba-
bility that such a spin flip occurs during the cycle period T is
given by:

T 
m→m−1 = Lm−1,m−1Rm−1,m + Lm−1,mRm,m

� Rm−1,m + Lm−1,m, (22)

where in the second line we used Lm−1,m−1, Rm,m � 1 and only
kept the terms of order η2. The presence of two contributions
corresponds to spin-flip events taking place either at the right
or left contact.

The other types of spin flips have smaller rates. For exam-
ple, there is also process |↓, m + 1〉 → |↓, m + 2〉 increasing
the nuclear polarization but it has a much smaller rate, ∝
β4

mβ2
m+1 ∝ η6. If we neglect them, we find that the nuclear

system will slowly depolarize according to Eq. (22). More
explicitly:


m→m−1 � 2η2

T
[I (I + 1) − m(m − 1)], (23)

where we used βm � θm/2 and approximated θm by the small
η limit of Eq. (4). Such dependence of the depolarization rate
on m has the same form of the superradiant decay of an ensem-
ble of N atoms (if I = N/2). We then can borrow the known
results for the superradiant evolution. In particular, starting
from a fully polarized state, Mz(0) = N/2, the depolarization
time yielding Mz(t0) = 0 is given by

t0 � ln(1.6N )

2N
T/η2, (24)

which is in excellent agreement with the stroboscopic dynam-
ics of Fig. 4 (see inset). The following approximate formula
for the distribution pm can also be obtained, considering the
limit of large I = N/2 and t � T/(2Nη) [25]:

pm(n) �
(

2I

I + m

)2

exp

[
−2I

(
2η2n + I − m

I + m
e−4Iη2n

)]
.

(25)

As shown in Fig. 5, also for the full distribution we find good
agreement with superradiance.

B. Electric detection through tunneling events

The evolution of nuclear polarization could be directly
observed through the Overhauser field (see, e.g., Ref. [51]).
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FIG. 6. Tunnel-out probability Pout (t ), computed for different
numbers N of nuclear spins starting from a maximally polarized state
|I, I〉 (I = N/2). For the precise definition of Pout (t ), see Eq. (26). As
shown in the inset, the peak value of Pout (t ) scales quadratically as
N2 when N � 1. Note that in the main panel Pout (t ) is normalized by
the initial value, thus the peak (square symbols) only scales linearly
with respect to N . Parameters used in calculations (in unit of ω0):
η = 10−4, 
l = 
r = 0.1, and tl = tr = 30/
l .

Furthermore, previous proposals related the superradiantlike
evolution to a strong enhancement of the transport current
through the device [19,21,22]. Unfortunately, this signature
is not available here, since there is no applied bias and an
electron tunneling into a lead is usually followed by refilling
of the shuttle from the same contact.

For this reason, the electric detection in our setup should
rely on monitoring individual tunneling events. While we shall
postpone the detailed treatment to Sec. VIII (cf. Figs. 14 and
15), we compute here the probability Pout (nT ) of observing
tunnel events at the left contact during cycle n + 1:

Pout (nT ) � Trnuc{〈↑|ρs(nT )|↑〉}, (26)

where ρs(nT ) is the state just after the electron shuttled to the
left position. Here we have assumed that, because of a long
waiting time, Pout is very close to the probability of being in
the |↑〉 state. This state allows the electron to tunnel in the
lead, see Fig. 1(b), and shortly after the quantum dot will
be refilled in the |↓〉 state. Detecting this type of events is a
standard practice for single-shot read-out of the electron spin
[52].

In Fig. 6, we show the time evolution of Pout which, as
expected, is characterized by a pronounced peak and has a
strong dependence on N . The peak value increases quadrati-
cally with N (see inset) and occurs at a progressively shorter
time, approximately given by Eq. (24). The observation of
such a peak would constitute a clear demonstration of the co-
operative enhancement of tunneling rates induced by nuclear
entanglement. In fact, without nuclear coherence the flip-flop
rate would be simply proportional to the number of nuclear
spins which can be flipped, Pout ∝ Mz(t ) − Mz(∞), and would
decrease with time. This simple dependence (corresponding
to the exponential decay induced by spontaneous emission) is
only found in Fig. 6 for the N = 1 curve, where the superra-
diantlike effect cannot take place.
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FIG. 7. Effect on Pout (t ) of partial nuclear-spin polarization,
with N = 64. We assume the (properly normalized) initial state in
Eq. (27), with γ = 0, 20, 40, 80, and 160 (solid curves, from lower
to upper). The corresponding percentages of initial spin polarization
are also explicitly indicated. The gray dashed curve depicts Pout (t )
for a maximally polarized nuclear-spin island. Parameters used in
calculations (in unit of ω0): η = 10−4, 
l = 
r = 0.1, and 
l tl =

rtr = 30.

V. EFFECT OF IMPERFECTIONS
AND AN EXTENDED SETUP

As discussed for related proposals [21,22], the enhance-
ment of tunneling rates should be rather robust to various
imperfections. We give below some examples, by first relax-
ing the ideal assumption of a maximally polarized nuclear
ensemble. Furthermore, in Sec. V D, we consider a system
where nuclear spins are present at both (right/left) operating
points. Interestingly, the superradiantlike behavior can still be
observed in that configuration, which is relevant for materials
with no spinless isotopes (e.g., GaAs).

A. Partial polarization

Our scheme has a preferential direction of polarization
(determined by the external magnetic field), so it is best to
prepare the initial state by a separate DNP procedure. Efficient
DNP schemes were developed [2,16–18,53–57], but maximal
polarization is still hard to achieve, e.g., due to the slow cycle
frequency [17,55] or nuclear spin relaxation during pumping
[16,58]. Here we consider an initial state of the following
form:

ρnuc ∝ exp [γ Iz/N], (27)

which interpolates between the infinite temperature limit,
γ = 0, and maximal polarization, |γ | → ∞. A similar state
had been discussed before, with Iz replaced by (Iz )2, to
describe narrowing of the nuclear distribution [59]. Since
Eq. (27) is diagonal in |I, m〉, the stroboscopic evolution
Eq. (17) can be still applied in each I subspace and the re-
sulting Pout (t ) is shown in Fig. 7.

In Fig. 7, no effect of coherence is visible for γ = 0, thus
a certain degree of initial nuclear polarization is necessary.
Encouragingly, the superradiantlike peak can be observed
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FIG. 8. The tunnel-out probability Pout (t ) for a “wedding-cake”
model. (a): Three layer model, where (N0, N1, N2) indicates the
number of nuclear spins. The values of al , see Eq. (28), follow the
coarse-graining shown in the inset: a1 = 0.91 and a2 = 0.67. (b):
Same as in (a), but calculated including only the first two layers, with
N0 = 1, 2, . . . , 10 and N1 = 3N0. (Inset) Peak value of Pout (t ) as a
function of N0. Other parameters (in unit of ω0): η = A0/(2Ndω0) =
10−4, 
l = 
r = 0.1, and tl = tr = 30/
l .

under conditions which should not be challenging for standard
DNP schemes: A pumping sequence based on transport in the
regime of Pauli spin blockade could reach 38%–52% maxi-
mum polarization [16], and more than 80% has been achieved
with optical pumping [57]. At both levels of spin polarization,
Fig. 7 displays a clear superradiantlike peak for Pout (t ).

B. Inhomogeneous couplings

We consider next the effect of an inhomogeneous hyperfine
coupling which, as discussed in Sec. II, depends crucially
on the envelope function ψ (r). A common simplification
beyond the uniform limit is to introduce a “wedding-cake”
coarse-graining [60,61], schematically illustrated in the inset
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of Fig. 8(a). Under this approach, Eq. (2) is generalized to

H0 =
∑

σ

εσ d†
σ dσ + A

Nd

nL∑
j=0

a jI j · S, (28)

where nL is the total number of outer layers and I j is the
collective angular momentum operator for the jth layer, con-
taining Nj spins. We take a0 = 1 (to recover the previous
treatment when nL = 0), while there is some freedom in
choosing the values of Nj and a j �=0 < 1, as they depend on
the type of confinement.

In Fig. 8(a), we show the evolution of Pout (t ) obtained
solving a three-layers wedding-cake model. Clearly, the peak
revealing the coherent enhancement of tunnel rates is visible
already for a small number of nuclear spins, and such peak
becomes more pronounced by doubling all the Nj . Further-
more, by considering in Fig. 8(b) only two layers, we can
compute Pout (t ) for larger values of Nj and show that the
maximum tunnel-out probability still scales quadratically with
the number of nuclei (see inset).

These features agree qualitatively with the homogeneous
coupling limit. Similar findings about the robustness of the
superradiantlike evolution were presented in Ref. [21] which,
based on a different approximation, considered rather large
nuclear systems (of more than 100 spins). These results in-
dicate that inhomogeneous couplings, although unfavorable,
should not prevent observing the effect.

C. Timescales

To estimate the typical timescale of the effect we rely on
the depolarization time t0, approximately given by Eq. (24).
Although that expression was derived under the assumption
ηI � 1, our general formalism is still valid for ηI > 1 (which
might be accessible for highly polarized systems), if one relies
on the exact eigenstates. In that case, the tunneling rates fol-
low the approximate Eq. (23) only at the beginning of the time
evolution, and the initial large enhancement of tunnel rates
becomes observable on a timescales shorter than t0, before it
eventually saturates. Therefore Eq. (24) gives a conservative
estimate of the interesting timescale.

In general, it is advantageous to work at the lowest Zeeman
splitting compatible with the low-temperature and weak-
tunneling assumptions, since this choice leads to a larger value
of η. Choosing ω0 � 10 μeV and couplings to the external
leads ∼1 μeV (smaller than ω0), we have an operation cy-
cle T ∼ 1 ns.1 We first consider GaAs quantum dots, where
A � 90 μeV. As we will see in the next Sec. V D, the shuttle
still works if both quantum dots are in contact with nuclear

1Such a short cycling time T , beneficial to induce a faster superra-
diantlike dynamics, might become incompatible with the detection of
tunnel events, due to the available bandwidth of charge sensing detec-
tors [93,94]. This is a practical difficulty which could be mitigated by
extending T , up to the largest values allowed by nuclear coherence.
Alternatively, fast shuttling could be interrupted in the course of the
superradiantlike evolution, to detect tunnel events (while at the same
time reducing the relevant tunnel rates 
l,r) or to rely on Overhauser
field measurements.

spins. Choosing Nd � 105 and N = Nd gives η = 4.5 × 10−5

and t0 � 30 μs, significantly shorter than nuclear dephasing
times. For example, a coherence time of 1 ms was reported in
Ref. [62] for nuclear spin states in GaAs quantum dots.

For quantum dots based on Si/Ge heterostructures, the
smaller values of A and N imply a much longer timescale, t0 �
1 s supposing η � 10−6 and N = 5000. Although maintaining
coherence for such extended time is certainly challenging,
the restricted geometry for a nuclear-spin island, as well
as an engineered uniform-coupling, may lead to a suppres-
sion of nuclear spin diffusion through dipolar coupling [63],
prolonging nuclear-spin coherence times with respect to
GaAs. We also note that extremely long coherence times were
demonstrated for nuclear spins of 31P donors embedded in Si,
ranging from a few seconds to about 3 hours in bulk samples
[64–66] and about 30 seconds in a nanodevice [67]. These
results are encouraging for observing the superradiantlike
evolution also with group-IV materials.

D. Model with two collective spins

We now address a model more suitable to describe III-V
semiconductors, which are materials without spinless iso-
topes. Then, it is not conceivable to concentrate the nuclear
spins at the center of one dot and we consider the following
variation of Eq. (2):

H0 =
∑

σ

εσ d†
σ dσ + Al

Nl
S · Il + Ar

Nr
S · Ir, (29)

with collective nuclear-spin operators Il,r at both operating
points. Nl and Nr are the number of lattice sites for the left and
right quantum dot where, for simplicity, we neglect the effect
of inhomogeneous couplings (as discussed in Sec. V B, su-
perradiantlike dynamics should survive inhomogeneity). For
definiteness, below we also assume Il,r = Nl,r/2. Similar to
previous discussions, Al,r are time-dependent, through the
moving center x(t ) of the electron wave function. We take
Al = 0 (Ar = 0) when the electron resides at the right (left)
operating point, which is appropriate if the right and left
quantum dots have small overlap.

The presence of two collective spins modifies the eigen-
states in a simple way. In particular, if the electron is shuttled
to the left position, we define:∣∣ϕ±

Il ,ml
, mr

〉 ≡ ∣∣ϕ±
Il ,ml

〉 ⊗ |Ir, mr〉, (30)

where |Ir, mr〉 are the nuclear angular momentum states for
the right dot and |ϕ±

Il ,ml
〉 are given by the single-dot eigen-

states, Eq. (3), with A → Al and Nd → Nl . In a similar way we
define the eigenstates |ml , ϕ

±
Ir ,mr

〉, when the electron resides at
the right operating point. The master equation governing the
spin dynamics is also similar to the one discussed in previous
sections. In particular, if the electron is shuttled to the left
position, Eq. (13) becomes

ρ̇s = − i[H0, ρs] + 
l

∑
σ

(
D

[
Al

σ+
] + D

[(
Al

σ−
)†])

ρs, (31)

where H0 is computed with Ar = 0 and the Lindblad operators
Al

σ,± = dσ Pl
± are as in Eq. (15), except for the projector. At
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FIG. 9. Time evolution of the nuclear-spin polarization Mz,α

(α = l, r) when both operating points are in contact with nuclear
spins. The initial polarization of the two collective spins is antipar-
allel in (a) and parallel in (b). The numbers (Nl , Nr ) in the brackets
are the number of nuclear spins at each site. Other parameters (in
unit of ω0): ηl = 2ηr = 10−4, Iα = Nα/2, 
l = 
r = 0.1, and 
l tl =

rtr = 30.

given values of Il , Ir ,

Pl
± =

∑
ml ,mr

∣∣ϕ±
Il ,ml

, mr
〉〈
ϕ±

Il ,ml
, mr

∣∣. (32)

The Lindblad operators Ar
σ,± = dσ Pr

± and projectors Pr
± at the

right operating point are defined in a similar manner, in terms
of the |ml , ϕ

±
Ir ,mr

〉 eigenstates. They determine the evolution at
the right position in a way completely analogous to Eq. (14).

Provided that the above changes to the master equations
have been taken into account, the simulation of nuclear-spin
polarization dynamics is rather straightforward by using the
approaches developed in Sec. III. Examples of numerical
results are shown in Fig. 9, where the time-evolution of
Mz,α (t ) ≡ Tr{Iz

αρs(t )} is calculated under two difference ini-
tial states. In the first case, the left and right nuclear-spin
islands are maximally polarized in opposite directions. Since
spin-down electrons entering the shuttle can only lower the
nuclear-spin polarization, it is not surprising that left nuclear
spins remain essentially frozen. Instead, the right site still
shows a superradiantlike dynamics, with the evolution of Mz,r

strongly affected by Nr .

The bottom panel of Fig. 9 considers an initial state with
the two nuclear-spin islands polarized in the same direction.
We observe that both Mz,l and Mz,r achieve a complete re-
versal, and the system still displays superradiantlike features
in the evolution of Mz,r . To access more easily larger values
of Nr , here we assumed Nl = 1 and, as a consequence, the
evolution of Mz,l is essentially independent of Nr and does
not show any superradiantlike features. However, we have
checked that also with parallel initial polarization the collec-
tive enhancement of flip flops occurs for general Nl , Nr .

VI. NON-ADIABATIC CONDITION

We have discussed how the superradiantlike behav-
ior should be observable under a variety of conditions,
significantly relaxing the initial assumptions of our setup.
However, it is necessary that the shuttling process is suffi-
ciently nonadiabatic. If the transfer from left to right is too
slow, an initial |↓〉 electron will evolve adiabatically into an
eigenstate of the hyperfine Hamiltonian, and tunneling pro-
cesses out of the dot cannot take place. Therefore, in this
section, we take a closer look at the shuttling process and
discuss the regime of validity of treating it as an ideal quench.
Clearly, this approximation is only valid below a certain shut-
tling time tf , which we would like to estimate.

To this end, we rewrite H0(t ) in the subspace spanned
by |↑, m − 1〉 and |↓, m〉. This basis defines pseudo-Pauli
operators σ̃i, e.g., σ̃z = |↑, m − 1〉〈↑, m − 1| − |↓, m〉〈↓, m|.
Omitting a time-dependent constant, we arrive at

H0(t ) = ηtω0

√
I (I + 1) − m(m − 1)σ̃x + ωm(t )

2
σ̃z, (33)

where

ωm(t ) = ω0[1 + ηt (2m − 1)], (34)

and ηt = A(t )/(2Ndω0). Assuming that the shuttling takes
place with constant velocity, Eq. (12) gives

ηt = ηfe
−(t/tf −1)2L2/�x2

, (35)

and we initialize the quantum dot in the t = 0 ground state
|ϕ−

I,m〉 � |↓, m〉. After evolving this state according to H0(t ),
we compute the probability �Fm(tf ) of finding the quantum
dot in the excited state |ϕ+

I,m−1〉 (with ηt=tf much larger than
ηt=0). A numerical evaluation of Eq. (33) is shown in Fig. 10,
as function of tf . The largest probability is obtained for an
instantaneous transfer (the quench dynamics of previous sec-
tions), giving

�Fm(0) � η2
f [I (I + 1) − m(m − 1)], (36)

which is in direct correspondence to Eq. (23).
Although the initial value Eq. (36) has a strong dependence

on m, reflecting the enhancement of spin-flip probability
around m ∼ 0, we see in Fig. 10 that the subsequent decay
occurs on a timescale which is only weakly dependent on m.
To gain insight into this time-dependence we apply ordinary
time-dependent perturbation theory, which is justified by the
small value of ηt . We find

�Fm(tf ) � �Fm(0)g

(
ω0tf

2

�x

L

)
, (37)
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FIG. 10. Probability of finding the quantum dot in the excited
state at the end of the shuttling process. Here, the upper (blue)
and lower (red) curves are for m = 0 and 150, respectively (with
I = N/2 = 150). Numerical results (squares) are compared to the ap-
proximate Eq. (37) (solid lines). The times t∗ at which the probability
dropped to one half of the initial value are marked by black circles.
The vertical line is our estimate of t∗, Eq. (38). We used �x = L/3
and η−1

f = 1 × 104.

where g(x) = |1 − i
√

πx exp[−x2]erfc(ix)|2, with erfc(x) =
1 − erf (x) the complementary error function [68]. To derive
this expression we supposed L/�x � 1. However, as shown
in Fig. 10, we find that Eq. (37) becomes accurate already at
moderate values L/�x ∼ 2–3.

Importantly, g(x) is independent of m and allows us to
identify the relevant timescale as ω−1

0 L/�x. For example,
setting �F (tf ) � �F (0)/2, one gets

tf � t∗ ≈ 1.8ω−1
0

L

�x
. (38)

The physical interpretation of Eq. (38) is rather transparent,
after noticing that hyperfine interaction is exponentially sup-
pressed in the first part of the shuttling process. A significant
change of the Hamiltonian happens on a distance ∼�x, rather
than L, which effectively shortens the transfer time by a factor
∼�x/L. Therefore the energy is undetermined by an amount
δE ∼ (tf�x/L)−1. If this energy scale is much smaller than
the gap ω0 between ± branches, the probability of being in
the excited states is negligible [in agreement with Eq. (38)].

In closing this section, we note that the problem described
by Eq. (33) is very similar to the scenario illustrated in Fig. 11,
where the shuttling takes place in the presence of a nonuni-
form magnetic field generated by a micromagnet [69–71].
The main difference is that now the relatively small variation
of the magnetic field can be taken as approximately linear
(supposing a shuttling process with constant velocity L/tf ).
If the time dependence is of the type

HB = ω0

2

[
δ⊥

t

tf
σx +

(
1 + δ‖

t

tf

)
σz

]
, (39)

where |δ⊥,‖| � 1, the probability of being in the excited state
at the end of the transfer process (starting from |↓〉) can be

left pos. QD

L / 2  0
left lead right lead

right pos.

 L / 2

micromagnet

| r

x

z

( )x t

|

FIG. 11. Schematics of an alternative shuttling setup. Here there
are no nuclear spins but the electron shuttles through the inho-
mogeneous field of a nearby micromagnet. In addition, a large
homogeneous field is applied along z.

computed as follows:

�F (tf ) � δ2
⊥
4

sin2 (ω0tf/2)

(ω0tf )2/4
, (40)

giving the characteristic timescale

t∗ ∼ 2.8ω−1
0 . (41)

We see that also in this case t∗ is determined by the Zeeman
splitting. For tf � t∗, the shuttling process is slow and allows
the spin to adjust to the instantaneous field. On the other hand,
if tf � t∗, the electron will have a probability � 1

8δ2
⊥ to be

excited at the end of the transfer process and, with a bias
configuration like in Fig. 11, can tunnel out of the quantum
dot.

In summary, we find that the typical timescale of shuttling
processes inducing an electron spin flip is given by the in-
verse Zeeman energy: both for the nuclear-spin island and
the micromagnet a shuttling time of order ω−1

0 has an effect
similar to the instantaneous transfer [see Eqs. (38) and (41),
respectively]. For a Zeeman splitting of ∼10 μeV, Eq. (38)
gives a nonadiabatic shuttling time of order 200 ps. Such a
fast manipulation of charge states was already demonstrated
in double quantum dots [72,73].

VII. SHUTTLING VERSUS STATIONARY
CONFIGURATIONS

The superradiantlike dynamics of nuclear spins in single
quantum dots was discussed in Refs. [21,22], where stationary
configurations were considered (with no shuttling). We would
like to highlight in this section what are the main differences
and potential advantages of the shuttling configuration. Espe-
cially, the scheme analyzed in Ref. [21] considers an ordinary
quantum dot in the weak tunneling regime, with a simple level
structure and normal leads. That proposal represents an at-
tractive option, but we find that the superradiantlike transport
features disappear in a revised theoretical description, sug-
gesting that a nonadiabatic process analogous to fast shuttling
is necessary.

To clarify this point, we consider in detail the transport
model illustrated in the inset of Fig. 12. Since the position
of the dot is kept fixed, the Hamiltonian is simply given
by Eq. (1), with time-independent tunneling amplitudes and
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FIG. 12. Nuclear-spin polarization versus time in a stationary
quantum dot configuration (see inset). The black solid curve shows
Mz from solving the Lindblad master equation, Eq. (42). The thin
blue curve is from Eq. (A6), i.e., without performing the RWA and
taking into account the Lamb shift �LS (the thin magenta curve
shows the small effect of setting �LS = 0). The red dash-dotted
curve is the more approximate evolution Eq. (44). Parameters used
in the calculations (in unit of ω0): N = 12, I = N/2, η = 10−4,

l = 
r = 0.1, μl = 2, μr = 0, and � = 103 [cf. Eq. (A9)].

hyperfine coupling strength. An external bias is applied, with
the ε+

I,m levels lying in the transport window. The main simpli-
fications with respect to Ref. [21] are that we restrict ourselves
to a uniform hyperfine coupling and large Zeeman splitting,
such that we can avoid including a dynamical compensation
of the longitudinal Overhauser field (along z). We derive the
master equation as in Sec. III (and Appendix A), obtaining

ρ̇s = −i[H0, ρs] +
∑

σ

(
rD[Aσ+]ρs

+ 
lD[A†
σ+]ρs + (
r + 
l )D[A†

σ−]ρs), (42)

where the Lindblad operators are given in Eq. (15). A nu-
merical example of the typical nuclear polarization dynamics
(starting with an empty quantum dot, |0〉 ⊗ |I, I〉) is presented
in Fig. 12.

The most remarkable feature of of Fig. 12 is the small
change in Mz, which is in contrast to the full polarization
reversal predicted for superradiantlike dynamics. The station-
ary state is determined by the special form of the Lindblad
operators Aσ±, which involve projectors on the ± bands.
Therefore the |ϕ−

I,m〉 eigenstates are stationary solutions of
the master equation, inhibiting further dynamics. According
to Eq. (42), the nuclear spin bath is unable to remove the
Coulomb blockade and, once the quantum dot is occupied
in the − band, there are no further spin flips affecting the
nuclear-spin polarization.

Based on Eq. (42), we can give an approximate expression
of the small polarization loss from a rate equation analysis,
using the fact that η is small. This approach is described in
detail in Appendix B and here we only cite the final result for

the stationary value. For I = N/2,

Mz(t → ∞) � N

2

(
1 − 2η2 2
l + 
r


l + 
r

)
, (43)

showing that the depolarization is indeed small when η � 1.
We have also extended the above analysis by evaluating the
higher order corrections to Mz, see Eq. (B8).

To check that the behavior is not an artifact of the RWA
between the ± bands, we have also integrated numerically
Eq. (A6), which only relies on the second-order Born-Markov
approximation (justified in the weak-tunneling regime 
l,r �
ω0). As expected, this treatment displays a short-time oscil-
latory dynamics absent under RWA. Otherwise, as shown in
Fig. 12, the two approaches agree on the general features
of the time-dependence and, most importantly, on the small
change of the spin polarization.

A superradiantlike master equation [21,22] can be obtained
from Eq. (42) by neglecting the hyperfine interaction in the
dissipator:

ρ̇s � −i[H0, ρs] + 
rD[d↑]ρs + 
lD[d†
↑]ρs

+ (
r + 
l )D[d†
↓]ρs, (44)

which dramatically changes the long-time behavior. A nu-
merical solution of Eq. (44) is shown in Fig. 12, where the
saturation of Mz is not observed in this case. However, we
stress that Eq. (44) involves an additional approximation with
respect to Eq. (42).

To understand the disagreement between the two master
equations we note that Eq. (44) can be justified at any given
timescale when the hyperfine coupling A is sufficiently small.
In that limit, indeed A↑,+ � d↑ and A↓,− � d↓ [see after
Eq. (15)]. However, when A → 0, it also happens that the
rate of flip-flop processes decreases quickly, being propor-
tional to A2. Correspondingly, the predicted timescale of the
superradiantlike evolution grows like ∝A−2. On this diverg-
ing timescale, the small difference in propagators between
Eqs. (44) and (42) leads to important deviations. From Fig. 12,
we conclude that the threshold time for Eq. (44) [i.e., the time
after which it becomes inaccurate] must be shorter than the
predicted superradiantlike timescale.

In the light of these discussions, one can appreciate better
the crucial role played in our proposal by the nonadiabatic
shuttling processes, which allows to overcome the blockaded
regime and induce the desired superradiantlike evolution. An-
other stationary setup was put forward in Ref. [22] which,
however, requires the fabrication of ferromagnetic leads
[74–78].

VIII. STOCHASTIC EVOLUTION

We devote this last section to a treatment of fluctuations
in the electrical detection process. As we already mentioned
(see Sec. IV B), the presence of nuclear-spin coherence could
be inferred through cooperatively enhanced tunneling rates,
detected through charge sensing. An example of a specific
setup is shown in Fig. 13, where we include two quan-
tum point contacts at the left/right operation point, to allow
detecting individual tunneling events. In such a setup, a typ-
ical measurement would involve monitoring the quantum dot
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left pos. right pos.QD
left lead right lead

IQPC

FIG. 13. Schematics of the electron shuttle with two nearby
charge sensors, e.g., quantum point contacts (QPC). The sensors can
perform nondemolition measurements on the quantum dot occupa-
tion ndot when the dot is moved to the respective proximal positions.

occupation and the superradiantlike dynamics will be reflected
by the statistical properties of tunnel events.

To address this type of evolution it is convenient to adopt
a quantum-jump description of the master equation [79,80].
Following the standard prescription, the following collapse
operators are introduced for Eq. (13):

Cl,1 =
√


l d↑, Cl,2 =
√


l d
†
↓, (45)

and the collapse operators for Eq. (14) read

Cr,1 =
√


rA↑+, Cr,2 =
√


rA↓+, (46)

Cr,3 =
√


rA†
↑−, Cr,4 =

√

rA†

↓−. (47)

In the periods between quantum jumps the electron and nu-
clear spins evolve according to an effective non-Hermitian
Hamiltonian, Hz − i/2

∑
m C†

l,mCl,m or H0 − i/2
∑

m C†
r,mCr,m

depending on the quantum dot’s position. Since the jump
operators in Eqs. (45)–(47) correspond to projective measure-
ments induced by the coupling with the left and right leads,
they provide a direct connection between individual trajecto-
ries and the signal of charge sensors monitoring the quantum
dot.

Figure 14 illustrates a typical trajectory from the Monte
Carlo wave-function simulation. We show in panel (a) the
evolution of the quantum dot’s occupation, characterized by
a series of tunneling events where the electron jumps to the
right/left contact and is reloaded from it on a timescale set by

l,r (see the inset). An important feature is the visible change
in frequency of tunneling events, which are much more rare at
the beginning and the end of time evolution. The increase of
frequency at intermediate times (despite the smaller number
of nuclear spins which can be flipped) reflects the enhance-
ment of tunnel rate induced by the nuclear coherence.

A second important observation, illustrated in panel (b),
is the direct correspondence of tunnel events to the quantum
jumps in the nuclear-spin polarization. As seen, a change
|�Mz| � 1 is associated with tunnel events occurring at both
(left/right) contacts, Although, in principle, some of the tun-
neling events might leave Mz unchanged, these instances are
very unlikely (their probability is suppressed by an additional
factor η2, because they involve two electron-nuclear flip flops
instead of one) and do not occur in Fig. 14. Thus one can rely
on charge measurements to monitor the nuclear-spin polariza-
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FIG. 14. Charge sensing and nuclear-spin polarization dynamics
from the Monte Carlo wave-function (MCWF) simulation. (a) Quan-
tum dot occupation ndot as a function of time for a representative
MCWF trajectory. The blue (red) color marks tunneling events that
happen when the dot is at the left (right) operating point. (b) Nuclear-
spin polarization Mz/I (black solid) as a function of time, for the
same trajectory of panel (a). The vertical dashed lines highlight the
correspondence between jumps in polarization and tunneling events.
(c) Mz from an ensemble average over 100 MCWF trajectories (thick
light-blue). The red thin curve is obtained from solving the strobo-
scopic evolution Eq. (17) with an initial distribution pm(0) = δm,I .
The light gray curves shows the Mz dynamics from 10 MCWF
trajectories from the ensemble. Parameters used in the calculations
(in unit of ω0): N = 32, I = N/2, η = 10−4, 
l = 
r = 0.1, and
tl = tr = 300.

tion. Finally, we show in panel (c) that the ensemble-averaged
nuclear-spin polarization coincides with the master equation
treatment.

To quantify more precisely the occurrence of tunnel events,
we consider a coarse-grained evolution over larger time in-
tervals �t � T , i.e., spanning many shuttling cycles. Since
a trajectory k (with k = 1, 2, . . . , Ntraj) is characterized by a
series of random times t (k)

j ( j = 1, 2, . . .) at which the electron

tunnels out of the quantum dot, we introduce �n(k)
dot (m) as

follows:

�n(k)
dot (m) =

∫ m�t

(m−1)�t
dt

∑
j

δ
(
t − t (k)

j

)
, (48)

which counts the number of narrow spikes in ndot (see Fig. 14)
within the mth time interval. Operationally, the t (k)

j s are de-
tected from signal blips at the charge sensors. The average
number during such mth subperiod is

�ndot (m) = 1

Ntraj

Ntraj∑
k=1

�n(k)
dot (m) (49)

and the fluctuation is given by

σ 2
dot (m) = �ndot (m)2 − �ndot (m)

2
. (50)

The evolution of these quantities with time, obtained nu-
merically from a MCWF simulations of 100 trajectories, is
shown in Fig. 15(a). For each subinterval, the distribution of
tunneling events can also be extracted by direct histogram,
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FIG. 15. Statistics of �ndot (m) from the 100 MCWF trajecto-
ries of Fig. 14. We consider a coarse-grained evolution with 100
intervals (m = 1, 2, . . . , 100). (a) Evolution of the average value,
defined in Eq. (49) and resolved between the left (light-blue squares)
and right (red dots) contacts. The region bounded by the two blue
dashed curves indicates the fluctuations of �ndot (m) at the left
contact, with the upper and lower bounds (dashed lines) given by
�ndot (m) ± σdot (m)/2 [see Eq. (50)]. (b) and (c) show the distri-
bution of �ndot (m) at the initial and intermediate stage evolution,
respectively. The time assumed in (c) is marked in (a) by a vertical
dashed line. The two lower panels refer to the right contact, while the
histograms of the left contact are almost identical.

with two examples shown in panels (b) and (c). Since we are
dealing with a transient process, the form of the distribution
evolves in time and, compared to the initial stage, develops an
elongated tail around t ∼ t0 [see Eq. (24)]. This dependence
leads to the maximum in �ndot (m) observed in panel (a). The
increased frequency of tunnel events is also accompanied by
stronger fluctuations in �ndot (m), reflecting the broad super-
radiantlike statistical distribution discussed in Fig. 5.

An interesting observation from Fig. 15 is that the be-
havior of the right and left contacts is basically equivalent
(we have checked that this property holds to leading order in
η2). Finally, we note that a detailed monitoring tunnel events
might not be necessary. At variance with previous proposals
[19,21,22] here we do not apply a bias and there is zero aver-
age current flowing through the device [see, e.g., Fig. 15(a),
displaying a balanced number of tunnel in/out events at
each contact]. Nevertheless, the evolution of �ndot (m) reflects
enhanced charge fluctuations at intermediate times t ∼ t0.
Therefore an analysis of the time-dependent charge noise at
either one of the contacts should be able to reveal the coherent
enhancement of tunnel rates induced by nuclear spins.

IX. CONCLUSION

In this work, we have analyzed the combined electron-
nuclear spin dynamics in a shuttling device. We have shown
that, under suitable conditions, it is possible to generate quan-
tum coherence in the nuclear spin system through collective
electron-nuclear flip-flop processes, and the superradiantlike

evolution is reflected in a large enhancement of electron tun-
neling rates.

In general, since the ideal evolution proceeds through a
cascade of Dicke states, superradiantlike dynamcs might find
useful applications in metrology [81,82]. The most favorable
states are those with nearly zero-nuclear spin polarization,
which also yield the largest enhancement of spin-flip tun-
neling, thus can most easily identified. Dicke states are
also interesting for quantum networking, see Ref. [83] and
references therein for specific algorithms on teleportation,
telecloning, and quantum secret sharing.

While we have focused here on quantum dots, which is
partially motivated by recent experimental progress on elec-
tron shuttling [39,40], the same ideas could be relevant to
other platforms, like donor impurities with high-spin nuclei
[84–87]. In that case, it would be important to assess the
influence of quadrupolar interaction and strain [88–90].

Finally we note that an important assumption of our setup
and of previous proposals [21,22] is a weak-tunneling condi-
tion. Since efficient stationary DNP schemes were developed
with tunneling rates comparable or larger than the singlet-
triplet splitting of a double quantum dot [16], superradiantlike
schemes in the strong tunneling regime might deserve further
investigation.

ACKNOWLEDGMENTS

We thank W. A. Coish, G. Burkard, and Wen Yang for helpful
discussions. S. Chesi acknowledges support from the National
Key Research and Development Program of China (Grant
No. 2016YFA0301200), NSFC (Grants No. 11574025, No.
11750110428, No. 1171101295, and No. 11974040), and
NSAF (Grant No. U1930402). Y.-D. Wang acknowledges sup-
port from NSFC (Grant No. 11947302) and MOST (Grant No.
2017FA0304500).

APPENDIX A: MASTER EQUATION
OF THE QUANTUM DOT

We present here the derivation of the master equation de-
scribing the stationary quantum dot, i.e., based on Eq. (1)
after tracing out the leads degrees of freedom. Restricting
ourselves to the weak-tunneling regime, we adopt the standard
second-order Born-Markov approximation [91,92]:

˙̃ρs(t ) = −
∫ ∞

0
dτTrb{[H̃T (t ), [H̃T (t − τ ), ρ̃s(t ) ⊗ ρb]]},

(A1)
where ρs(t ) = Trb{ρ(t )} is the reduced density matrix of the
quantum dot, Trb{. . . } is the partial trace over the leads, and ρb

is the reduced density matrix of the leads with given chemical
potentials μα [see Eq. (9)]. The tilde indicates operators in the
interaction picture, Õ(t ) = ei(H0+Hb)t O(t )e−i(H0+Hb)t .

To evaluate Eq. (A1) more explicitly, we use the exact
eigenstates of H0 given in Eq. (3). In this section, we indicate
them as |ξ 〉 (with energy εξ ). In particular, we introduce the
spectral decomposition d†

σ = ∫ ∞
−∞ dωd†

σ (ω), where [91]

d†
σ (ω) = [dσ (ω)]† =

∑
ξ,ξ ′

|ξ 〉〈ξ |d†
σ |ξ ′〉〈ξ ′|δ(ω − εξ ). (A2)
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It is then straightforward to write HT in the interaction picture
and obtain

˙̃ρs(t ) =
∑

σ

∫
dωdω′{
out (ω)[dσ (ω)ρ̃s(t ), d†

σ (ω′)]

+ 
in(ω′)[d†
σ (ω′)ρ̃s(t ), dσ (ω)]}ei(ω′−ω)t + H.c.,

(A3)

where we defined


out (ω) =
∑
αk

∫ ∞

0
dτei(ω−εαk )τ |Tαk|2(1 − fα (εαk )),


in(ω) =
∑
αk

∫ ∞

0
dτe−i(ω−εαk )τ |Tαk|2 fα (εαk ). (A4)

Note that in Eq. (A2) the argument of the delta function
contains εξ instead of the transition frequency εξ − εξ ′ , sim-
ply because |ξ ′〉 corresponds to an empty quantum dot and
εξ ′ = 0. After going back to the Schrödinger picture, the
integrals over frequencies in Eq. (A3) can be evaluated by
introducing the operators 
in/out(H0). It is easy to see that∫

dω
out (ω)dσ (ω) = dσ
out (H0) and similarly for other in-
tegrals of this type. Furthermore, introducing the Hermitian
operators γin/out,�in/out:


in/out(H0) ≡ γin/out

2
+ i�in/out, (A5)

and using that �in/out are approximately equal [�in/out � �LS,
see Eq. (A9) below], we arrive at

ρ̇s = −i[H0, ρs] +
∑

σ

{[
dσ

(
γout

2
+ i�LS

)
ρs, d†

σ

]

+
[(

γin

2
+ i�LS

)
d†

σ ρs, dσ

]
+ H.c.

}
. (A6)

We now give the explicit expressions of γin/out and �LS,
where as usual we transform

∑
k → ∫

dε and compute the
integrals assuming constant density of states and tunnel am-
plitudes. In this way, we obtain

γin =
∑

α


αθ (μα − H0), γout =
∑

α


αθ (H0 − μα ),

(A7)
where the tunnel rates 
α are given in Eq. (11). For the Lamb-
shift terms, we have

�in =
∑

α


α

(
P

∫ μα

μα−�

dε

2π

1

ε − H0

)
,

�out =
∑

α


α

(
P

∫ μα+�

μα

dε

2π

1

H0 − ε

)
, (A8)

where we supposed the α lead to have a bandwidth 2� around
its chemical potential μα . In the limit of large �,

�in/out � �LS =
∑

α


α

2π
ln

( |μα − H0|
�

)
. (A9)

Interestingly, the choice of the cutoff does not affect the evo-
lution of ρs. In fact, by changing �, the right-hand side of

Eq. (A6) is modified by a term proportional to∑
σ

([dσ ρs, d†
σ ] + [d†

σ ρs, dσ ] − H.c.) =
∑

σ

[ρs, {d†
σ , dσ }],

(A10)
which is obviously zero since {d†

σ , dσ } = 1.
So far, the main result of this section is Eq. (A6), which

with uniform hyperfine coupling and fixed total angular mo-
mentum I can be evaluated for a relatively large nuclear
system. An example is given in Fig. 12 of the main text. We
emphasize that Eqs. (A1) and (A6) are essentially equivalent,
since the derivation of Eq. (A6) does not involve further ap-
proximations, except for standard assumptions on the leads
density of states and tunnel amplitudes. Furthermore, we did
not perform yet a rotating-wave approximation. For this rea-
son, the dissipation of Eq. (A6) is not in the Lindblad form,
and small unphysical effects can appear during the time evo-
lution.

To obtain a master equation of the Lindblad type, we per-
form a partial rotating-wave approximation on Eq. (A6). We
can also drop the Lamb shift, which usually has a small effect
(see Fig. 12). To neglect fast-oscillating terms, we first express
γin/out in terms of the projectors P± on the two well-separated
bands of states. For example, for the bias configuration shown
in the inset of Fig. 12,

γin = (
l + 
r )P− + 
lP+, γout = 
rP+. (A11)

Then, the projected fermionic operators Aσ± [defined in
Eq. (15)] naturally appear in the master equation Eq. (A6).
We can also use the fact that, since we always omit doubly
occupied states, the Aσ± provide a decomposition of the dσ

operators: dσ = Aσ+ + Aσ−. Finally, based on the large en-
ergy separation between the P+ and P− subspaces, we neglect
in Eq. (A6) the cross-terms involving two bands simultane-
ously (i.e., the terms containing both Aσ+ and Aσ−). This
treatment lead to Eqs. (14) and (42) of the main text, where
the dissipator is indeed of Lindblad type.

APPENDIX B: RATE EQUATIONS
AND SMALL-η EXPANSION

An even simpler description of the quantum dot dynamics
is through rate equations. For our systems, the description
through rate equations gives results which are in agreement
with more sophisticated treatments. In some cases, they are
even equivalent to the evolution based on a full master equa-
tion. For example, a detailed analysis of Eq. (42) shows that
for the initial state |0〉 ⊗ |I, I〉 the density matrix remains
diagonal in the basis of the eigenstates. We will then consider
the rate equations following Eq. (42). By neglecting the co-
herence between all the eigenstates |ξ 〉 of H0, i.e., assuming
〈ξ |ρs|ξ ′〉 � Pξ δξξ ′ , we obtain

Ṗ+,m = 
l
(
α2

mP0,m + β2
mP0,m+1

) − 
rP+,m,

Ṗ−,m = (
r + 
l )
(
α2

m−1P0,m + β2
m−1P0,m−1

)
,

Ṗ0,m = 
r
(
α2

mP+,m + β2
m−1P+,m−1

)
− (

2
l + 
rβ
2
m + 
rα

2
m−1

)
P0,m, (B1)

155301-14



SUPERRADIANTLIKE DYNAMICS OF NUCLEAR SPINS BY … PHYSICAL REVIEW B 103, 155301 (2021)

where P±,m = 〈ϕ±
I,m|ρs|ϕ±

I,m〉 and P0,m = 〈0, m|ρs|0, m〉 are re-
spectively the populations of the occupied and empty quantum
dot. We recall here the notation |0, m〉 = |0〉 ⊗ |I, m〉 and
that αm = cos(θm/2), βm = sin(θm/2), with the mixing angle
given in Eq. (4).

The physical interpretation of Eq. (B1) is rather trans-
parent, as the various contributions on the right-hand side
can be associated to spin-conserving and spin-flipping tunnel
events to/from the quantum dot: the terms proportional to β2

m
correspond to tunneling events accompanied by a flip-flop
process of the electron and nuclear spins. For such pro-
cesses, the rates are suppressed by the square amplitude of
the spin-flipped component in the quantum-dot eigenstates,
see Eq. (3). Instead, the terms proportional to α2

m are as-
sociated to processes when the nuclear spin flip does not
take place.

To gain analytical insight into the rate equations (B1) and
obtain a simple analytical expression for the nuclear-spin po-
larization Mz(t ), we take advantage of the small parameter η

and expand the populations perturbatively:

Ps,m = P(0)
s,m + P(2)

s,m + P(3)
s,m + · · · , (B2)

where P(k)
s,m is proportional to ηk (as we will see below, the

O(η) term is missing). The lowest-order result is obtained
taking α2

m � 1 and β2
m � 0 and gives the evolution in the

absence of hyperfine interaction. For an initial state ρs(0) =
|0, I〉〈0, I|, it is easy to obtain

P(0)
+,I (t ) =

√

l


l + 
r
e−(
l +
r )t sinh

√

l (
l + 
r )t,

P(0)
−,I (t ) = 1 − e−(
l +
r )t cosh

√

l (
l + 
r )t, (B3)

while P(0)
0,I = 1 − P(0)

+,I − P(0)
−,I and all other P(0)

s,m are zero. To
obtain the higher-order contributions, we consider the expan-
sion of β2

m (note that α2
m = 1 − β2

m):

β2
m = g(2)

m η2 + g(3)
m η3 + · · · , (B4)

where g(2)
m = I (I + 1) − m(m + 1) and g(3)

m = −2(2m +
1)g(2)

m . We see that the first correction is indeed of order η2.
More precisely, since g( j)

m ∼ I j , the expansion parameter is
Iη. If we take I ∼ N , the condition of validity becomes
AN/Nd � ω0. By making use of Eqs. (B3) and (B4)
in the rate equations, it is straightforward to obtain the
equation of motions for P(2)

s,m and P(3)
s,m. For example, defining

P(k)
m = P(k)

0,m + P(k)
+,m + P(k)

−,m, we obtain the compact equation
(with j = 2, 3):

Ṗ( j)
I−1(t ) = −Ṗ( j)

I (t ) = η jg( j)
I−1
lP

(0)
0,I (t ). (B5)

It is also possible to apply the perturbative solution to the
nuclear-spin polarization:

Mz(t ) =
∑

m

mP0,m +
∑

σ,s,m,m′
m

∣∣〈σ, m
∣∣ϕs

I,m′
〉∣∣2

Ps,m′ . (B6)
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FIG. 16. Nuclear-spin polarization dynamics from the rate equa-
tions Eq. (B1). The approximated results, i.e., dashed and dotted
curves, agree well with the exact numerics (blue solid curve). The
orange solid curve (right scale) is the corresponding quantum dot oc-
cupation, ndot = 〈d†

↑d↑ + d†
↓d↓〉, which quickly saturates to ndot = 1.

Parameters used in the calculations (in unit of ω0): N = 12, I = N/2,
η = 10−4, and 
l = 
r = 0.1.

With the choice of initial state |0〉 ⊗ |I, I〉, one immediately
finds M (0)

z = I . The j = 2, 3 corrections are

M ( j)
z =

∑
m

mP( j)
m + η j

(
g( j)

I P(0)
+,I − g( j)

I−1P(0)
−,I

)
. (B7)

As it turns out, in Eq. (B7) only P( j)
I and P( j)

I−1 are differ-
ent from zero, and using Eq. (B5) gives the nuclear-spin
polarization:

Mz(t ) � I − 2Iη2(1 − 2η(2I − 1))

×
(

P(0)
−,I (t ) + 
l

∫ t

0
dt ′P(0)

0,I (t ′)
)

, (B8)

which is plotted in Fig. 16 with and without the O(η3) contri-
bution. We find that for a small η, the lowest order correction
is in excellent agreement with Eq. (B1). In the inset, we show
that including the third-order eliminates any visible discrep-
ancy.

The stationary value can be obtained using
∫ ∞

0 P(0)
0,I (t )dt =

(
l + 
r )−1:

Mz(t → ∞) � I − 2Iη2(1 − 2η(2I − 1))
2
l + 
r


l + 
r
, (B9)

which omitting the O(η3) contribution, is Eq. (43) of the main
text.
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