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Parquet approximation and one-loop renormalization group: Equivalence
on the leading-logarithmic level
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We investigate the functional renormalization group (FRG) flow of the two-particle vertex function of a model
for x-ray absorption in metals. Concerning the appearance of logarithmic divergences, the model is prototypical
for an important class of mostly zero- and one-dimensional systems which includes the Kondo model and
the interacting one-dimensional Fermi gas. For our analysis, we formulate the FRG in the framework of the
real-time zero-temperature formalism, in which the model was studied before with a parquet-based approach.
We establish that a reasonably crafted, purely fermionic one-loop FRG approximation is fully equivalent on a
detailed level to the leading-logarithmic parquet approximation. These two approximation schemes are thus
found to just represent different perspectives on the same technical steps. This finding also reconfirms the
traditional understanding of the capabilities of one-loop RG approximations for such models, which was recently
put into question by an investigation of the x-ray-absorption model with multiloop FRG.
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I. INTRODUCTION

It is a well-known problem that perturbative approxi-
mations to low-dimensional condensed-matter systems of
interacting fermions lead to expressions that diverge logarith-
mically at low energies. The focus of this paper lies on a class
of mostly zero- and one-dimensional systems characterized
by the simple pattern in which logarithmic divergences arise
in particle-particle and particle-hole bubbles of perturbative
diagrams for two-particle correlation functions. This class
includes a model for x-ray absorption in metals [1], the Kondo
model [2], and the Fermi gas model for one-dimensional
conductors [3]. Technically, the divergences appear when the
integral of a Green’s function resolvent with respect to single-
particle energy is cut off by the Fermi edge of the level
occupancy. Physically, this phenomenon is reflected by the
parameter dependence of a related susceptibility. This can be
given, e.g., by a power law with an exponent that depends on
the interaction: an expansion in powers of the interaction then
leads to the logarithmic contributions.

The leading-logarithmic parquet approximation provides
a means to compute the correlation function in the vicinity
of the divergence. The underlying reasoning is as follows.
The divergent terms resulting from perturbative diagrams of
different orders and structures depend on different powers
of the interaction and of the logarithms. For small interac-
tions and not too close to the divergence of the logarithms,
the diagrams can be grouped into leading contributions and
negligible corrections. Summing the leading logarithms then
yields a controlled approximation in this regime. For the class
of models which we focus on, all leading contributions are
contained in the so-called parquet diagrams (with bare lines),
which comprise the ladder diagrams in the particle-particle

and particle-hole channels and also diagrams that result from
crossing the channels. The strategy to derive the leading-
logarithmic approximation from the leading contributions
of all parquet diagrams was first implemented for meson
scattering [4]. Well-known realizations of this concept for
low-dimensional condensed-matter systems include the appli-
cation to the problem of x-ray absorption in metals [5] to the
Kondo problem [2] and to fermions in one dimension with
a short-ranged interaction [6]. In the last-mentioned applica-
tion, the leading-logarithmic approximation seems to wrongly
predict a finite-temperature phase transition for attractive in-
teraction. This is, however, beyond its regime of applicability:
at low temperatures the neglected lower-order logarithmic
contributions become important [3].

Apart from the leading-logarithmic version of the parquet
approximation, there exists another well-established one [7,8],
which we refer to as the full parquet approximation. While
both versions are based on parquet diagrams, they differ in
technical aspects, in the kind of system they are typically
applied to, and in the justification for their use. The tech-
nical considerations of this paper specifically concern the
leading-logarithmic parquet approximation. However, in the
next paragraph we briefly describe the full parquet approxi-
mation since a clear understanding of the differences of both
approaches will become necessary to classify our findings and
relate them to the multiloop functional renormalization group
(multiloop FRG).

In our class of mostly zero- and one-dimensional mod-
els, each propagator bubble in one of the relevant channels
produces a simple logarithmic divergence. The situation is
more complicated for many two-dimensional models of cor-
related fermions: Depending on the system parameters, on the
filling, and on the channel under consideration, the bubbles
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of two-dimensional models can feature either no divergence
or a logarithmic or a squared logarithmic one, see, e.g.,
Refs. [9,10]. It is then more involved to identify the leading
contributions. Furthermore, to decide on the existence and
location of phase transitions, subleading contributions might
be relevant. Nonetheless, summing up all parquet diagrams
is a well-known approximation strategy for two-dimensional
problems [7,8]. The typically applied full parquet approx-
imation takes into account all particle-hole channels, uses
propagator lines that are dressed with a self-energy deter-
mined self-consistently from a Schwinger-Dyson equation,
and evaluates the exact sum of all parquet diagrams. In
these aspects, it differs from the leading-logarithmic parquet
approximation for systems with simple logarithmic diver-
gences, which takes into account only the leading-logarithmic
particle-hole channel, uses bare propagator lines, and evalu-
ates only the leading-logarithmic part of the corresponding
parquet diagrams. While in the leading-logarithmic parquet
approximation the totally irreducible vertex is replaced by
the bare one, there exist extensions of the full parquet ap-
proximation which use more involved approximations for the
totally irreducible vertex: In the parquet dynamical vertex
approximation [11], e.g., it is approximated by the local ver-
tex resulting from dynamical mean-field theory. Due to the
complicated logarithmic structure, the full parquet approx-
imation for two-dimensional systems is usually not known
to be controlled. It is still considered to be beneficial as it
includes fluctuations in different channels of pair propagation
in an unbiased way, respects the crossing symmetry [8] and
related sum rules [12], satisfies one-particle conservation laws
[13], and is understood to comply with the Mermin-Wagner
theorem [14]. Such arguments may also motivate the use of
the full parquet approximation for other than two-dimensional
models. For example, Ref. [15] shows an application of this
approximation to a model for a benzene molecule. When the
full parquet approximation is applied to models for which the
leading-logarithmic parquet approximation is controlled, both
approximations coincide on the leading-logarithmic level.

In this paper, we examine the relation between the
leading-logarithmic parquet approximation and a specific
renormalization group (RG) approximation. Indeed, scaling
arguments and the RG provide another approach to interacting
fermionic systems in low dimensions. Historically, the devel-
opment of these techniques for zero- and one-dimensional
systems was driven by the quest for approximations beyond
the parquet-based leading-logarithmic one [3,16,17]. In early
approaches, field-theoretical RG techniques were applied to
the Kondo problem [18,19], to the weakly interacting one-
dimensional Fermi gas [3,20] (see Ref. [21] as well), and also
to the problem of x-ray absorption in metals [22]. In all these
applications, the lowest-order approximation reproduced the
leading-logarithmic result known from the respective par-
quet treatments [2,5,6]. Also Anderson’s poor man’s scaling
approach to the Kondo problem [23,24] and its application
to fermions in one dimension [3] reproduce the respective
leading-logarithmic results. For a specific two-dimensional
model, the equivalence of a one-loop RG and a parquet
approximation on the leading-logarithmic level is discussed
in Ref. [25]; the model has a nested Fermi surface but no
van Hove singularity such that the bubbles produce simple

logarithmic divergences only. For general two-dimensional
systems, an equivalence of one-loop RG and parquet ap-
proaches is not expected. For our class of mostly zero- and
one-dimensional models, however, the RG idea leads beyond
the leading logarithms. A cornerstone is the accurate descrip-
tion of the Kondo effect by Wilson’s numerical RG [26]. But
even an RG flow that is constructed just to account for the
leading logarithms can lead to predictions beyond the realm
of parquet approximations if it is understood as connecting
models with identical low-energy properties. The underlying
concept of universality classes shaped today’s understanding
of one-dimensional interacting fermionic systems as being
Luttinger liquids, Luther-Emery liquids, or Mott insulators
[3,27].

Recently, the relation between the parquet approximations
and the RG, now in the form of the FRG [28–30], again
came into focus, leading to the construction of the so-called
multiloop FRG. The starting point of that development was
an FRG study of x-ray absorption in metals by Lange et al.
[31]. Using Hubbard-Stratonovich transformations and a low-
order truncation scheme, Lange et al. reproduced the result
of the leading-logarithmic parquet approximation [5] for the
x-ray response function. Kugler and von Delft scrutinized this
FRG approach and came to the conclusion that its success is
fortuitous [32]. Among other criticism, Kugler and von Delft
pointed out that the scheme of Lange et al. only reproduces
ladder diagrams. Such a diagramwise juxtaposition of FRG
and parquet approximations is possible as the FRG flow can be
interpreted on the level of individual, flowing diagrams [33].
Kugler and von Delft expanded this idea rigorously and con-
structed a multiloop extension to a purely fermionic one-loop
FRG which makes it possible to approach the exact sum of all
parquet diagrams via iterative one-loop extensions. They pro-
vided schemes to approach the sum of parquet diagrams with
either bare lines [34] or self-consistently dressed lines [35]
and for different approximations for the totally irreducible
vertex [13].

As the multiloop FRG offers the possibility to compute
self-consistent parquet-based approximations by solving flow
equations, it is seen as a promising tool for the study of
correlated two-dimensional systems. Recently, it was com-
bined with special approaches to the momentum dependence
and high-frequency asymptotics of the two-particle vertex and
applied to the two-dimensional Hubbard model [36–38]. This
made it possible to reduce the pseudocritical temperature of
antiferromagnetic ordering compared to one-loop FRG [36],
to achieve numerical convergence to results of the full par-
quet approximation and of determinant quantum Monte Carlo
up to moderate interaction strengths [37], and to analyze
pseudogap physics at weak coupling [38]. Including multi-
loop corrections could also be beneficial for the RG study
of two-dimensional quantum spin systems (in pseudofermion
representation) because a two-loop extension was already
found to attenuate the violation of the Mermin-Wagner the-
orem [39]. Furthermore, the multiloop scheme based on an
irreducible vertex from dynamical mean-field theory could
provide a viable alternative way to evaluate the parquet dy-
namical vertex approximation [13,40].

Whereas these applications concern the full parquet ap-
proximation for two-dimensional systems, Kugler and von
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Delft motivated and introduced the multiloop scheme in the
context of x-ray absorption in metals [32,34]. The interacting
region in the corresponding model is zero-dimensional and
the propagator bubbles in the two relevant channels produce
simple logarithmic divergences. Due to its basic structure, this
model can in fact be seen as prototypical for the case that the
parquet diagrams with bare lines comprise the leading loga-
rithmic contributions. Correspondingly, Nozières et al. under-
stood their parquet study of this model as a preparation for the
analysis of more complicated models with that structure of
logarithms like the Kondo model [5,41]. Formulated from the
RG perspective, the model for x-ray absorption in metals is
at the core of the class of (mostly zero- and one-dimensional)
models for which a reasonably crafted lowest-order, i.e., one-
loop, RG approximation is understood to be accurate and
equivalent to the parquet approximations on the leading-
logarithmic level. This conventional conception is in surpris-
ing contrast to what Kugler and von Delft reported from
their multiloop FRG study of that model [34]—namely, that
increasing the number of loops improves the numerical results
with respect to the known solution of Nozières et al. [5,41,42].
In an astounding twist, the multiloop approach of Ref. [34] in-
verts the direction of the historical development of techniques
for such models: while the RG was originally used as a con-
ceptual framework to overcome the restrictions inherent to the
leading-logarithmic parquet approximation, Ref. [34] trans-
forms its modern functional formulation into a tool to evaluate
the exact sum of the parquet diagrams (in this case, with
bare lines and without the subleading particle-hole channel).
For the model under consideration, this sum constitutes no
controlled improvement compared to the leading-logarithmic
parquet approximation. It differs subleadingly without being
exact on a subleading level [41]. Since Ref. [34], however,
reports on improvements compared to one-loop FRG, there
emerges the pressing question whether the latter might be
deficient: Is a one-loop FRG approximation without multiloop
extensions really less accurate than the early implementations
of RG and poor man’s scaling that were already able to repro-
duce the leading-logarithmic parquet results?

In this paper, we establish that for the considered class of
systems with simple logarithmic divergences, a reasonably
crafted one-loop FRG approximation is fully equivalent to
the leading-logarithmic parquet approximation. We do so by
constructing, specifically for the problem of x-ray absorption
in metals, a one-loop FRG approximation that is, in fact,
identical on a detailed level to the leading-logarithmic ap-
proximation procedure which was performed by Roulet et al.
within the parquet formalism [5]. The only formal difference
is that the cutoff is introduced at a different stage of the
derivation without influencing the result. From this viewpoint,
the two approaches actually fuse into one.

To allow for a detailed comparison to the leading-
logarithmic parquet approximation of Roulet et al. [5], we
devise our FRG approximation in the framework of the real-
time zero-temperature formalism, also known as ground-state
formalism. For brevity, we refer to this formalism simply as
the zero-temperature formalism. As the FRG for condensed-
matter systems was so far used within the Matsubara and
the Keldysh formalism [28], we first need to transfer the
formulation of the method to the zero-temperature formal-

ism. Our approach to that formalism is inspired by Ref. [43]
but differs in some respects. In particular, we develop a
functional-integral representation of the generating functional
that is based on standard coherent states and is therefore
easily applicable to the interacting case. Then we perform the
usual steps to derive the flow equations for the one-particle
irreducible (1PI) vertex functions.

The paper is organized as follows. We briefly introduce the
model under investigation in Sec. II. The most important fea-
tures of a perturbative approach to it are recapped in Sec. III.
In particular, the occurrence of logarithmic divergences is
discussed. In Sec. IV, we set up the FRG framework within
the zero-temperature formalism for a general model. Some
details on deriving the diagrammatic expansion and the flow
equations are relocated from this section to the Appendix. The
core of the paper is Sec. V, where we construct our one-
loop FRG approximation and establish its full equivalence
to the leading-logarithmic parquet approximation of Ref. [5].
Finally, Sec. VI provides a conclusion and outlook.

II. MODEL

In this section, we briefly introduce the model under con-
sideration. It is essentially taken from Ref. [5], where more
details can be found.

The investigated basic model provides a description of
the x-ray-absorption singularity in metals. It comprises two
electronic bands: the conduction band and some lower-energy
band. The latter is assumed to be flat as it typically originates
from atomic orbitals that are more localized. As such, it can
be represented by a single so-called deep state. The effect of
intraband Coulomb interaction, which leads to long-lasting
quasiparticle states, is assumed to be already accounted for
by effective single-particle parameters. The interaction that
is considered explicitly is an attractive one between the con-
duction electrons and a hole at the deep state. The electron
spin is neglected. This physical model is described by the
Hamiltonian

H =
∑

k

εka†
kak + εd a†

d ad − U

V

∑
kk′

a†
k′akad a†

d . (1)

Here, a†
d creates an electron in the deep state and a†

k creates an
electron with momentum k and energy εk in the conduction
band, which shall have a constant density of states ρ and a
bandwidth 2ξ0. We set the zero of single-particle energy in
the middle of the conduction band such that εk ∈ [−ξ0, ξ0].
Then the deep-state eigenenergy is εd < −ξ0. The interaction
amplitude U > 0 is assumed to be momentum independent
and thus describes a local interaction in real space. V denotes
the volume. We study the system at vanishing temperature
T = 0 and with a half-filled conduction band, i.e., the Fermi
energy is εF = 0. In the resulting ground state, the deep level
is occupied as long as the interaction strength is not too large.

As an external perturbation, an x-ray field with frequency
ν is coupled to the system with momentum-independent am-
plitude W ,

HX (t ) = W√
V

∑
k

e−iνt a†
kad + H.c. (2)

HX (t ) is chosen to describe only interband transitions because
these are, in conjunction with the sharp Fermi surface and
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the flat lower band, responsible for the absorption singularity.
Correspondingly, we consider the x-ray frequency to be of the
order of |εd |. We use units with h̄ = 1.

A physical observable of interest is the x-ray absorption
rate R(ν) or, equivalently, the excitation rate of the deep state.
When ν approaches the threshold frequency νc, the leading
behavior of R(ν) is a power-law divergence ∝ [ξ0/(ν − νc)]2g

with g = ρU/V . This was conjectured by Mahan [1] based
on the terms up to third order of an expansion in powers of
the interaction and later confirmed by Nozières et al. [5,42].
In linear response and for sufficiently small |W |2/V , the ab-
sorption rate can be accessed with many-body techniques via
R(ν) = −2|W |2 Imχ (ν), where

χ (ν) = −i
1

V

∑
kk′

∫ ∞

−∞
dt eiνt 〈T a†

d (t ) ak (t ) a†
k′ (0) ad (0)〉 (3)

is a particle-hole susceptibility. Here, 〈.〉 denotes the ground-
state expectation value, a(†)

k/d (t ) are the ladder operators in the
Heisenberg picture with respect to the Hamiltonian Eq. (1),
and T is the time-ordering operator.

A diagrammatic expansion of χ results in a power series
in U/V . Effectively, however, one obtains an expansion in
powers of the dimensionless parameter g = ρU/V because
for every additional interaction vertex in a diagram there
is also one more independent momentum summation

∑
k =

ρ
∫ ξ0

−ξ0
dε.

We note that a many-body approach is not necessary to
treat this model. In fact, it has been solved exactly by applying
a one-body scattering theory [42]. This is possible because
the particular interaction term in Eq. (1) does not alter the
deep-state occupancy and acts just as a single-particle poten-
tial for the conduction states when the deep level is empty.
However, if one chooses to treat this model with many-body
perturbation theory, one encounters the interesting problem
of logarithmic divergences in two distinct channels (see also
Sec. III D). Being spinless and effectively zero-dimensional,
it is probably the most basic model with this important fea-
ture. Therefore, it was repeatedly used as a test bed to refine
and compare various many-body approaches [5,22,31,34,41].
Having an exact solution for comparison was then an addi-
tional advantage of this model.

If the system is prepared in a state with an empty deep
level, the x-ray field can induce the relaxation of an electron
from the conduction band to the deep level. This process is
accompanied by x-ray emission. In Ref. [5], the corresponding
rate of stimulated x-ray emission is studied in close analogy
to the rate of x-ray absorption within the zero-temperature for-
malism, see also our Appendix E. On the leading-logarithmic
level, the main part of the calculation turns out to be identical
in both cases [5]. In this paper, we focus on the case of
absorption. By following the arguments of Ref. [5], all our
considerations can be straightforwardly adapted to the case of
emission.

III. PERTURBATION THEORY WITHIN
ZERO-TEMPERATURE FORMALISM

In this section, we recap the most important features of a
perturbative approach to the model. Following largely Roulet
et al. [5], we choose the (real-time) zero-temperature formal-

ism [43] as the framework for the diagrammatic expansion.
Our one-loop FRG approach developed in Sec. V is also for-
mulated in the realm of this formalism. This makes a detailed
comparison between the parquet-based approach of Ref. [5]
and the one-loop FRG approximation possible.

A. Single-particle Green’s function

We choose to dress the propagator with the first-order
contribution of the self-energy, resulting in

GH
d (ω) = 1

ω − ε̃d − i0+ , (4a)

G0
k (ω) = 1

ω − εk + i0+sgnεk
(4b)

for the deep state and the conduction states, respectively.
Here, the deep-state Hartree self-energy has renormalized
the deep level to ε̃d = εd + gξ0. No Fock contributions to
the self-energy arise in this model: They would involve a
free propagation between the deep state and a conduction
state, which is not admitted by the free Hamiltonian. For
the conduction states, a single-particle perturbation ∝ −U/V
arises when the interaction term in the Hamiltonian Eq. (1) is
brought into the standard form by permuting all creation op-
erators to the left. It exactly cancels with the conduction-state
Hartree self-energy. This cancellation reflects that electrons in
the conduction band do not interact with an electron occupy-
ing the deep state but only with a hole at the deep state; in fact,
for this reason, any (time-dependent) ground-state expectation
value involving only conduction-state ladder operators is not
affected by the interaction from Eq. (1). In the deep-state
subspace, the Hartree-dressed propagator Eq. (4a) is analytic
in the lower half-plane and thus purely advanced. The same
holds for the full deep-state propagator. In time representation,
it takes the form

Gd (t ) = −i〈T ad (t )a†
d〉 = i�(−t )〈a†

d ad (t )〉 (5)

so it is directed backward in time. This can be understood as
creating and subsequently annihilating a hole at the deep state.

In the following computations of two-particle quantities,
we are not going to include additional self-energy contri-
butions so the propagator Eqs. (4) will be used as the full
single-particle Green’s function. This is, in fact, correct for
the conduction states because loops of two or more deep-state
propagators vanish due to Gd (t ) ∝ �(−t ), hence G0

k = Gk .
But in the case of the deep state, it is an approximation. This
does not influence the shape of the divergence of χ (ν) as
far as the leading logarithms are concerned [5]. However, it
influences the threshold frequency which constitutes the posi-
tion of the divergence and which is in our calculations νc =
−ε̃d = |ε̃d |. The further discussion would also be possible af-
ter including other real, static contributions to the self-energy.
In that case, only the specific value of the renormalized deep
level ε̃d would differ. Anyway, we are going to set ε̃d = 0, see
Sec. III C, and focus on investigating the shape of χ (ν) near
threshold.

The bare vertex has an incoming and outgoing leg for the
deep state and an incoming and outgoing leg for the conduc-
tion states, but it has no actual dependence on the momenta.
Thus, all momentum summations are independent of each

155156-4



PARQUET APPROXIMATION AND ONE-LOOP … PHYSICAL REVIEW B 103, 155156 (2021)

FIG. 1. Diagrammatic representation of Eq. (7). Full lines re-
fer to local conduction-electron propagators Gc, fat dashed lines to
deep-state propagators Gd . The circle stands for the 1PI two-particle
vertex. The three-leg vertices involving each a full, dashed, and wavy
line conserve frequency but do not contribute any factor.

other and they can be performed immediately by employing
the local conduction-electron propagator

Gc(ω) = 1

V

∑
k

Gk (ω) (6a)

= ρ

V

[
ln

|ξ0 + ω|
|ξ0 − ω| − iπsgn(ω)�(ξ0 − |ω|)

]
. (6b)

In this sense, the model is effectively zero-dimensional. [In the
exact analytic evaluation of diagrams, e.g., for Eq. (10), it can
still be helpful to integrate over frequencies before summing
over momenta.]

B. 1PI two-particle vertex

The particle-hole susceptibility Eq. (3), when expressed in
terms of the 1PI two-particle vertex γ , can be calculated from

χ (ν) = −i
∫

dω

2π
Gd (ω)Gc(ω + ν)

+
∫

dωdω′

(2π )2
Gd (ω)Gc(ω + ν)γ̄ (ω,ω′; ν)

× Gd (ω′)Gc(ω′ + ν). (7)

The diagrammatic representation of this formula is shown in
Fig. 1. Throughout this paper, we draw full lines for local
conduction-electron propagators and dashed lines for deep-
state propagators.

The 1PI vertex γdk′|dk does not depend on the incoming and
outgoing conduction-electron momentum k and k′, respec-
tively, because the interaction amplitude does not depend on
the momenta, see Eq. (1). Therefore, we introduce the notation
γdc|dc = V γdk′|dk . For the frequency arguments, we employed
in Eq. (7) the notation

γdc|dc(ω′
d , ω

′
c|ωd , ωc)

= 2πδ(ω′
d + ω′

c − ωd − ωc)γ̂ (ωd , ω
′
d ; �) (8a)

= 2πδ(ω′
d + ω′

c − ωd − ωc)γ̄ (ωd , ω
′
d ; X ), (8b)

see also Fig. 2. Here, either the total frequency � = ωd +
ωc = ω′

d + ω′
c or the exchange frequency X = ω′

c − ωd =
ωc − ω′

d has been chosen as one of the independent frequen-
cies. In Eq. (8b), we have chosen the order of the frequencies
ωd , ω

′
d in γ̄ (ωd , ω

′
d ; X ) to match the order of the frequencies

in Fig. 1.

C. Setting ε̃d = 0

In the following calculation of χ (ν), we set the renormal-
ized deep level to ε̃d = 0. This is equivalent to measuring the

FIG. 2. Diagrammatic representation of the 1PI vertex
γdc|dc(ω′

d , ω
′
c|ωd , ωc ). The external legs are meant to be

amputated. Frequency conservation assures ωd + ωc = ω′
d + ω′

c.
As independent frequencies, we will employ ωd , ω

′
d , and either

the total frequency � or the exchange frequency X , but not the
conduction-state frequencies ωc, ω

′
c.

x-ray frequency ν relative to the threshold frequency |ε̃d |. It is
a convenient way to eliminate one of the parameters; the same
was done by Roulet et al. [5]. We present the reasoning behind
this step by relating it to a Ward identity. We intend to build on
this brief discussion in a future publication, which addresses
the same topic in the framework of the Matsubara formalism.

Let us consider a diagram contributing to χ (ν) = χ (ν, ε̃d )
which arises when diagrams for the 1PI vertex and for the full
deep-state lines are inserted into Fig. 1. We may choose the
frequencies of the internal lines in accordance with frequency
conservation such that the external frequency ν appears as
addend in the frequency argument of every conduction-state
propagator but not of any deep-state propagator. Subtracting a
frequency α from the frequency arguments of all conduction-
and deep-state propagators respects frequency conservation
and does not alter the value of the diagram. Then ν appears
only in the conduction-state propagators, always in the form
ν − α, and ε̃d appears only in the deep-state propagators,
always in the form ε̃d + α. This proves the Ward identity

χ (ν, ε̃d ) = χ (ν − α, ε̃d + α), (9)

which results from frequency conservation (i.e., time-
translational invariance) and the conservation of the number
of conduction- and deep-state electrons.

Equation (9) relates the susceptibilities of two models with
respective values ε̃d and ε̃d + α of the renormalized deep
level. These susceptibilities are defined in the state with a
filled lower half of the conduction band and an occupied deep
state. For the model with deep-state energy ε̃d + α and for suf-
ficiently large α, this is not the ground state of the interacting
Hamiltonian. Nonetheless, the zero-temperature formalism al-
lows to compute expectation values in this state because it is
an eigenstate of both the noninteracting and the interacting
Hamiltonian, see Appendix E. When χ is determined accord-
ingly, the identity Eq. (9) holds for all real frequencies α and
even on the level of individual diagrams. As a special case, we
obtain χ (ν − ε̃d , ε̃d ) = χ (ν, 0), where ν is now the deviation
of the x-ray frequency from the threshold frequency |ε̃d |.

D. Logarithmic divergences

The second-order contributions to the 1PI vertex γdc|dc

are shown in Fig. 3. They are the bare bubbles in the
(exchange) particle-hole channel and in the particle-particle
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FIG. 3. Second-order contributions to the 1PI vertex γdc|dc. The
small, empty circle represents the bare vertex contributing a factor
U . The thin dashed lines refer to Hartree-dressed deep-state prop-
agators GH

d . In each channel, the respective natural frequency has
been employed. (a) Particle-hole bubble depending on the exchange
frequency X . (b) Particle-particle bubble depending on the total fre-
quency �.

channel, which is strictly speaking a hole-hole channel, with
the exact values

−g2 V

ρ

[
ln

|X |
|ξ0 − X | − iπ �(ξ0 − X )�(X )

]
(10a)

and

g2 V

ρ

[
ln

|�|
|ξ0 + �| − iπ �(ξ0 + �)�(−�)

]
, (10b)

respectively. As the frequencies at the external legs in Fig. 3
have been chosen to already obey frequency conservation,
there are no factors 2πδ(. . .) in Eqs. (10). The direct particle-
hole bubble does not contribute to γdc|dc, but only to γdd|dd .
The latter vertex is not considered here because its contribu-
tion is subleading [5].

Importantly, the bubbles Eqs. (10) in both the (exchange)
particle-hole and particle-particle channel feature a logarith-
mic divergence as their natural frequency X or �, respectively,
approaches zero. [There are also divergences for X → ξ0 and
� → −ξ0. Those, however, turn out to be not important for
χ (ν) at small ν.] These diverging logarithms arise via the
combination of the real part P 1/ω of the deep-state propaga-
tor with the discontinuous imaginary part −πρsgn(ω)�(ξ0 −
|ω|)/V of the local conduction-electron propagator, e.g.,∫

dω̃

2π
P 1

ω̃
sgn(ω̃ + X )�(ξ0 − |ω̃ + X |)

= − 1

π
ln

|X |
ξ0

+ O

( |X |
ξ0

)2

. (11)

It is known that such logarithmic divergences appear for
all powers of the interaction. For the 1PI vertex, the leading
logarithms have the form gn lnn−1 while subleading contribu-
tions contain at least one logarithm less. Here, the arguments
of the logarithms are essentially |X |/ξ0 or |�|/ξ0, depending
on the channel. The arguments can also depend on the other
free frequencies ω,ω′ if the corresponding external deep-state
leg is not attached to the same vertex as one of the external
conduction-state legs [see, e.g., Fig. 4 and Eq. (15)]. All
of the leading logarithms are contained within the parquet
diagrams without any self-energy insertions (except for static
contributions absorbed into ε̃d ) [5]. These diagrams can be
constructed by starting with the bare vertex and successively
replacing any vertex with either of the bubbles given in Fig. 3.

The leading logarithms appearing in the expansion of the
particle-hole susceptibility χ (ν), which directly follow from

FIG. 4. A third-order diagram contributing to γ̄ (ω,ω′; X ).
Dashed lines refer to Hartree-dressed deep-state propagators GH

d .
From frequency conservation follows �i = ωo + ω + X .

those of γ via Eq. (7), assume the form gn lnn+1(|ν|/ξ0). In
comparison to the 1PI vertex, two additional powers of the
logarithm arise from the two external bubbles in the right dia-
gram in Fig. 1. Close to the threshold ν = 0 where g ln(|ν|/ξ0)
is not much smaller than one, these terms are significant for ar-
bitrary powers n even though g itself is small. To approximate
the behavior of χ (ν) in a reasonable way, it is then necessary
to resum the leading logarithms of all orders. Even closer to
the threshold, i.e., as ν goes to zero, g ln(|ν|/ξ0) increases fur-
ther until also subleading logarithms become large and must
be included. However, in this paper only the resummation of
the leading logarithms is discussed.

As an example, consider the zeroth-order contribution to
χ (ν), which is contained in the first addend on the right-
hand side of Eq. (7). It can be obtained from the result of
the particle-hole bubble given in Eq. (10a) with X = ν by
replacing the prefactor of the square brackets with ρ/V . The
leading logarithm g0 ln(|ν|/ξ0) then appears only in the real
part. In fact, the leading logarithms of all orders appear only
in the real part of the particle-hole susceptibility [5]. If one
employs a scheme to capture just the leading logarithms, one
therefore has to recover the imaginary part to determine the
absorption rate. This can be done as outlined by Roulet et al.
[5].

It is important to note that it is not necessary to include the
exact value of any given parquet diagram in the resummation
scheme to obtain a valid leading-logarithmic approximation.
Instead, one can make further approximations as long as they
do not influence the leading logarithms. That the parquet
diagrams indeed contain subleading contributions is already
obvious from the exact results Eqs. (10) for the bubbles,
where, e.g.,

ln
|X |

|ξ0 − X | = ln
|X |
ξ0

− ln
|ξ0 − X |

ξ0
. (12)

E. Third-order contribution as key example

Roulet et al. worked out how to extract the leading con-
tribution from a given parquet diagram [5]. We briefly recap
their scheme by applying it to the third-order diagram of
γ̄ (ω,ω′; X ) shown in Fig. 4. The achieved insights will form
the basis for the construction of an RG treatment in Sec. V.

The parts of the propagators that do not give rise to the
diverging logarithm in a bare bubble are neglected, i.e., only
the real part of the deep-state propagator and the imaginary
part of the local conduction-electron propagator are retained.
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The diagram in Fig. 4 then translates into

c
∫

dωo dωi

(2π )2
P 1

ωo
sgn(ωo + X )�(ξ0 − |ωo + X |)

×P 1

ωi
sgn(�i − ωi )�(ξ0 − |�i − ωi|), (13)

with the prefactor c = π2g3V/ρ and with the abbreviation
�i = �i(ωo, ω, X ) = ωo + ω + X .

The indices i and o refer to the inner and outer bubble of
the diagram, respectively. When (a part of) a diagram can be
constructed by replacing a vertex at an end of some bubble
by another bubble (or chain of bubbles) of the opposite chan-
nel, then we call the latter bubble (or chain of bubbles) the
inner one and the former bubble the outer one. Repeating this
construction establishes the strict partial order “being inner
to” among the bubbles of a parquet diagram. At the end of
this subsection, we will conclude that there is a related order
among the absolute values of the deep-state frequencies of
the bubbles as far as the leading-logarithmic approximation
is concerned.

The integral over the frequency of the inner bubble in
Eq. (13) yields∫

dωi

2π
P 1

ωi
sgn(�i − ωi )�(ξ0 − |�i − ωi|)

= 1

π
ln

|�i|√
|ξ 2

0 − �2
i |

(14a)

= 1

π

⎛
⎝ln

M

ξ0
+ ln

|�i|
M

+ ln
ξ0√

|ξ 2
0 − �2

i |

⎞
⎠, (14b)

with M = M(ωo, ω, X ) = max{|ωo|, |ω|, |X |}. In the particu-
lar case |X | < |ω| 
 ξ0, this result can be approximated by
[ln(M/ξ0)]/π when inserted into Eq. (13): the other two loga-
rithmic addends contribute only subleadingly, cf. Ref. [5]. The
leading-logarithmic approximation to the value of the diagram
is hence

c

2π2

∫ ξ0−X

−ξ0−X
dωoP

1

ωo
sgn(ωo + X ) ln

max{|ωo|, |ω|}
ξ0

≈ −1

2
g3 V

ρ
ln

|ω|
ξ0

(
ln

|X |
|ω| + ln

|X |
ξ0

)
(15)

for |X | < |ω| 
 ξ0, a result which is ∝ g3 ln2 as expected.
It is illuminating to identify the particular subre-

gion of frequency integration that is responsible for this
leading-logarithmic result. For |�i| � ξ0/2, the range ωi ∈
[−|�i|, |�i|] does not contribute to the value of the inte-
gral in Eq. (14a); this results from the combination of the
principal value and the sign function in the integrand. Sim-
ilarly, approximating the integral by [ln(M/ξ0)]/π means to
restrict the range of integration to M < |ωi| < ξ0. The lead-
ing contribution actually results from the small frequencies
with M < |ωi| 
 ξ0. Larger |ωi| are not important, e.g., the
range ξ0/10 < |ωi| < ξ0 yields only the subleading contri-
bution −(ln 10)/π . Very similarly, the relevant integration
range of the frequency ωo is |X | < |ωo| 
 ξ0. Two important
conclusions can be drawn from these observations.

First, it is indeed sufficient to consider only the case |X | <

|ω| 
 ξ0. If the diagram in Fig. 4 is inserted for the 1PI vertex
in the representation of χ (ν) shown in Fig. 1, X assumes the
value of the x-ray frequency ν; the leading-logarithmic behav-
ior near threshold, which we are interested in, emerges then
for |X | = |ν| 
 ξ0. Furthermore, when the argument used
above for ωi and ωo is applied to the additional ω integration
that appears in the diagram for χ (ν), it shows that the relevant
frequencies ω are from the range |X | < |ω| 
 ξ0 as well. The
same reasoning is possible if the diagram in Fig. 4 is not
directly inserted for the 1PI vertex in Fig. 1 but is used as
part of a larger parquet diagram which in turn is inserted for
that 1PI vertex.

Second, the restriction to M < |ωi| with M =
max{|ωo|, |ω|} implies |ωo| < |ωi|. For the leading
logarithmic contribution, it hence suffices to integrate with
respect to the deep-state frequency of the inner bubble over
only those regions where its absolute value is greater than
the one of the deep-state frequency of the outer bubble. This
statement can be generalized to all parquet diagrams and all
pairs of bubbles where one is inner to the other; corresponding
observations are described in Refs. [2,25]. This is the very
property of the parquet diagrams that is responsible for the
success of our one-loop FRG approach to reproduce the
leading-logarithmic approximation.

IV. FRG IN ZERO-TEMPERATURE FORMALISM FOR A
GENERAL MODEL

In this section, we develop a formulation of the FRG
method [28–30] in the framework of the (real-time) zero-
temperature formalism, also known as ground-state formal-
ism. Since we are not aware of an FRG scheme in the literature
that is based on this formalism, we present the derivation
of FRG flow equations for a general model of interacting
fermions. Readers who are not interested in details on how
to establish a zero-temperature FRG can skip this section. Its
central result that is subsequently used in Sec. V are the flow
equations given in Eqs. (42) and (43).

The FRG flow equations for a class of correlation func-
tions, e.g., Green’s functions or 1PI vertex functions, can
be derived from the corresponding generating functional. We
will start by deriving a functional-integral representation of a
generating functional of Green’s functions for an interacting
system in the ground state.

In Ref. [43], such a functional-integral representation is
presented but only for the noninteracting case. There, the
derivation is based on a nonstandard variant of coherent
states—namely, the common eigenstates of the annihilators
of single-particle states that are empty in the noninteracting
ground state and of the creators of single-particle states that
are occupied in the noninteracting ground state. Compared to
standard coherent states, which are the common eigenstates
of all annihilators, the role of creators and annihilators has
been swapped for levels below the Fermi energy. As a con-
sequence, the noninteracting ground state acquires the role of
the vacuum state. While this approach allows for an elegant
functional-integral representation of the generating functional
in the noninteracting case, see Ref. [43], we found it rather
tedious to work with the corresponding representation in the
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interacting case: treating the coherent-state matrix elements
of the interaction turns out to be cumbersome. We consider
this to be a drawback not only regarding the discussion of
the FRG flow equations but also regarding the derivation of
the diagrammatic perturbation theory within the functional-
integral formulation.

In contrast to Ref. [43], we use standard coherent states,
which turns out to be straightforward. However, we follow
Ref. [43] in regard to deriving the ground-state expectation
value from a damped time evolution instead of using the Gell-
Mann and Low theorem.

A. Definition of Green’s functions and their generating
functional

We consider a general Hamiltonian for an interacting
many-fermion system,

H = H0 + Hint (16a)

=
∑

α

εαa†
αaα + 1

4

∑
α′

1α
′
2α1α2

v̄α′
1α

′
2α1α2 a†

α′
1
a†

α′
2
aα2 aα1 , (16b)

where α = 1, 2, . . . numbers the single-particle eigenstates
of H0 such that the eigenenergies are ordered monotonically
ε1 � ε2 � . . . Let the particle number N be fixed and let there
be a gap εN < εN+1. Then the ground state of the noninter-
acting Hamiltonian H0 is nondegenerate and given by |�0〉 =
a†

1 . . . a†
N |0〉 with |0〉 being the vacuum state. We choose the

zero of single-particle energies to lie between εN and εN+1

so the negative levels ε1, . . . , εN < 0 are occupied and the
positive levels εN+1, . . . > 0 are empty in the noninteracting
ground state. The corresponding occupation numbers are

nα = 〈�0|a†
αaα|�0〉 =

{
1, α � N
0, α > N.

(17)

The normalized ground state of the interacting Hamiltonian
H shall be denoted by |�0〉. It is assumed to be nondegenerate
and not orthogonal to |�0〉.

Note that this scenario applies also to the model of x-ray
absorption in metals even though that model involves a con-
tinuous conduction band. An integration over said band is just
an approximation for the summation over a rather dense but
discrete spectrum of plane-wave states. In particular, the non-
interacting and interacting ground states are nondegenerate
and not mutually orthogonal; in fact, they are identical, see
also Appendix E.

The time-ordered multiparticle Green’s functions are de-
fined as

G(α1t1, . . . , αntn|α′
1t ′

1, . . . , α
′
nt ′

n)

= (−i)n〈�0|T aα1(t1) . . . aαn(tn)a†
α′

n
(t ′

n) . . . a†
α′

1
(t ′

1)|�0〉. (18)

Similarly to the discussion in Ref. [43], one finds that
they can be determined from a damped time evolu-
tion. This can formally be realized via G = limη→0+ Gη

and

Gη(α1t1, . . . , αntn|α′
1t ′

1, . . . , α
′
nt ′

n)

= (−i)n δ2nGη[J̄, J]

δJ̄α1(t1) . . . δJ̄αn(tn)δJα′
n
(t ′

n) . . . δJα′
1
(t ′

1)

∣∣∣∣∣
J̄=0=J

, (19)

with the generating functional

Gη[J̄, J] = lim
t0→∞

Zη[J̄, J]

Zη[0, 0]
(20)

and

Zη[J̄, J] = 〈�0|U (η)
J̄,J

(t0,−t0)|�0〉. (21)

In the time evolution operator

U (η)
J̄,J

(t0,−t0)

= T exp

(
−i

∫ t0

−t0

dt

{
(1−iη)H +

∑
α

[J̄α (t )aα+a†
αJα (t )]

})
,

(22)

source terms with external Grassmann variables J̄α , Jα were
added to the Hamiltonian. When |�0〉 is expanded in eigen-
states of the interacting Hamiltonian H , the factor 1 − iη with
η > 0 suppresses the contributions from excited states to the
Green’s functions, leaving only the ground-state expectation
value as required by the definition Eq. (18). In contrast to
Ref. [43], in which a time contour in the complex plane is
used, we formally attribute this factor not to the time integra-
tion but to the Hamiltonian. This corresponds to the picture
that excited states decay due to a nonzero anti-Hermitian part
of the Hamiltonian.

B. Discrete integral expression for Zη[J̄, J]

We introduce intermediate time steps τm = −t0 + m� with
� = 2t0/M and m = 0, 1, . . . , M and insert resolutions of
unity into Eq. (21) in terms of standard fermionic coherent
states

|ϕ〉 = exp

(
−

∑
α

ϕαa†
α

)
|0〉, (23)

where ϕ stands for the set of Grassmann generators
{ϕ1, ϕ2, . . .}. This yields

Zη[J̄, J] =
∫ (

M∏
m=0

∏
α

dϕ̄m
α dϕm

α e−ϕ̄m
α ϕm

α

)
〈�0|ϕM〉

× 〈ϕM |U (η)
J̄,J

(τM, τM−1)|ϕM−1〉
× . . . 〈ϕ1|U (η)

J̄,J
(τ1, τ0)|ϕ0〉 〈ϕ0|�0〉, (24)

where each ϕ̄m
α is an additional Grassmann generator that is by

definition the conjugate of ϕm
α . The usage of standard coherent

states is an important difference to Ref. [43]. It will allow for
a straightforward derivation of the functional-integral repre-
sentation of the generating functional in the interacting case,
see Eq. (39) below. The factors 〈�0|ϕM〉 = ϕM

N . . . ϕM
1 and

〈ϕ0|�0〉 = ϕ̄0
1 . . . ϕ̄0

N in Eq. (24) are important for the form
of the free propagator, see the integration in Eqs. (27) and the
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remark at the end of Sec. IV C. Up to corrections ∝ �2, the
occurring matrix elements are given by

〈ϕm|U (η)
J̄,J

(τm, τm−1)|ϕm−1〉

= exp

( ∑
α

ϕ̄m
α ϕm−1

α

)

×
{

1 − i�

[
(1 − iη)H (ϕ̄m, ϕm−1)

+
∑

α

(
J̄m−1
α ϕm−1

α + ϕ̄m
α Jm

α

)]}
(25a)

= exp

{ ∑
α

ϕ̄m
α e−(i+η)εα�ϕm−1

α

− i�

[
(1 − iη)Hint(ϕ̄

m, ϕm−1)

+
∑

α

(
J̄m−1
α ϕm−1

α + ϕ̄m
α Jm

α

)]}
, (25b)

where we used the notation J̄m
α = J̄α (τm) and Jm

α = Jα (τm).
The expression for H (ϕ̄m, ϕm−1) can be obtained from
Eqs. (16) by replacing all ladder operators with Grassmann
generators according to a†

α → ϕ̄m
α and aα → ϕm−1

α . In partic-
ular, we have

Hint(ϕ̄
m, ϕm−1) = 1

4

∑
α′

1α
′
2α1α2

v̄α′
1α

′
2α1α2 ϕ̄

m
α′

1
ϕ̄m

α′
2
ϕm−1

α2
ϕm−1

α1
. (26)

(If one uses the particular coherent states of Ref. [43] instead,
the expression that results for Hint is not as simple.) Since
none of the matrix elements Eqs. (25) depend on ϕ̄0 or ϕM ,
the integrations for m = 0, M in Eq. (24) reduce to∫ (∏

α

dϕ̄0
αdϕ0

αe−ϕ̄0
αϕ0

α dϕ̄M
α dϕM

α e−ϕ̄M
α ϕM

α

)

×ϕM
N . . . ϕM

1 ϕ̄0
1 . . . ϕ̄0

N f (ϕ̄M, ϕ0)

=
∫ (∏

α�N

dϕ̄M
α dϕM

α

)
ϕM

N . . . ϕM
1

(∏
α�N

dϕ̄0
αdϕ0

α

)
ϕ̄0

1 . . . ϕ̄0
N

×
[ ∏

α>N

dϕ̄0
αdϕ0

α

(
1 − ϕ̄0

αϕ0
α

)
dϕ̄M

α dϕM
α

(
1 − ϕ̄M

α ϕM
α

)]

× f (ϕ̄M , ϕ0) (27a)

= (−1)N
∫ (∏

α�N

dϕ̄M
α dϕ0

α

)
f (ϕ̄M, ϕ0)

∣∣∣∣
B>

. (27b)

The notation in the last line involving the boundary conditions

B> = {
ϕ̄M

α>N = 0, ϕ0
α>N = 0

}
(28)

means that in f (ϕ̄M, ϕ0) the generators ϕ̄M
α , ϕ0

α with α > N
are replaced by zero. These boundary conditions reflect that
the levels with α > N are empty in the state |�0〉. In total, one
obtains

Zη[J̄, J] = lim
M→∞

∫
DM (ϕ̄, ϕ)eiSM (ϕ̄,ϕ;J̄,J ) (29)

with the Grassmann integration measure

DM (ϕ̄, ϕ)

= (−1)MN

(∏
α�N

M∏
m=1

dϕ̄m
α dϕm−1

α

)(∏
α>N

M−1∏
m=1

dϕ̄m
α dϕm

α

)
. (30)

The action SM (ϕ̄, ϕ; J̄, J ) is the sum of the free part

S0
M (ϕ̄, ϕ) =

∑
α′,α�N

M∑
m′=1

M−1∑
m=0

ϕ̄m′
α′ Qm′m

α′α ϕm
α

+
∑

α′,α>N

M−1∑
m′,m=1

ϕ̄m′
α′ Qm′m

α′α ϕm
α , (31)

with

Qm′m
α′α = iδα′α[δm′m − δm′−1,me−(i+η)εα�], (32)

the interaction part

Sint
M (ϕ̄, ϕ) = −(1 − iη)�

M∑
m=1

Hint(ϕ̄
m, ϕm−1)

∣∣∣∣
B>

, (33)

and the source part

Ssource
M (ϕ̄, ϕ; J̄, J ) = −�

∑
α�N

M∑
m=1

(
J̄m−1
α ϕm−1

α + ϕ̄m
α Jm

α

)

−�
∑
α>N

M−1∑
m=1

(
J̄m
α ϕm

α + ϕ̄m
α Jm

α

)
. (34)

C. Noninteracting generating functional

In the noninteracting case, the integral in Eq. (29) is of
Gaussian form. We consider Q given by Eq. (32) to be a matrix
and introduce row vectors ϕ̄, J̄ and column vectors ϕ, J . We
point out the peculiar ranges of the discrete-time indices [see
Eqs. (31) and (34)]: In the sector with α � N , the row index
m′ of Q runs from 1 to M, whereas its column index m runs
from 0 to M − 1. Correspondingly, the indices of ϕ̄ and J run
from 1 to M, whereas those of ϕ and J̄ run from 0 to M − 1.
In the sector with α > N , all discrete-time indices simply run
from 1 to M − 1. The Gaussian integral evaluates to∫

DM (ϕ̄, ϕ)ei[ϕ̄Qϕ−�(J̄ϕ+ϕ̄J )]

= e−(i+η)2t0
∑

α�N εα e−i�2 J̄Q−1J . (35)

The result for the noninteracting generating functional is thus

G0
η[J̄, J] = lim

t0→∞ lim
M→∞

e−i�2 J̄gJ , (36)

with the free propagator

gmm′
αα′ = (Q−1)mm′

αα′ (37a)

= −iδαα′e−(i+η)εα (τm−τm′ )

×
{

1 − nα, M − 1 � m � m′ � 1
−nα, 0 � m < m′ � M.

(37b)

The free propagator is purely advanced for α � N and
purely retarded for α > N . The inverse of Q assumes such
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distinct forms in the two sectors because of the differently
restricted ranges of the discrete-time indices. These, in turn,
are a consequence of the integrations over the Grassmann gen-
erators at the boundaries, which were performed in Eqs. (27).

D. Continuous notation

In the limit M → ∞, the free propagator becomes

gαα′ (t, t ′) = δαα′gα (t − t ′), (38a)

gα (t ) = −ie−(i+η)εαt [(1 − nα )�(t − 0+)

− nα�(−t + 0+)]. (38b)

Following the usual convention [43], we have chosen gα (0) =
gα (0−). This choice is advantageous for the diagrammatic
expansion: It will allow to drop the infinitesimal differences
of the times at each vertex, see Eq. (41), which matter only
if a free propagator connects a vertex with itself. And if two
external ladder operators in Eq. (18) happen to be at equal
times and to be paired by Wick’s theorem, the choice agrees
with the property T aα (t )a†

α′ (t ) = −a†
α′ (t )aα (t ) of the time-

ordering operator.
Also on the level of the action and of the integral expres-

sion (29), it is possible to go over to a continuous notation.
The details are shown in Appendix A. For the generating
functional, we obtain the functional-integral representation

Gη[J̄, J]

=
∫

D[ϕ̄, ϕ] exp{iϕ̄Qϕ + iSint[ϕ̄, ϕ] − i(J̄ϕ + ϕ̄J )}∫
D[ϕ̄, ϕ] exp{iϕ̄Qϕ + iSint[ϕ̄, ϕ]} ,

(39)

where Q is now the differential operator given by Eq. (A5)
and where the interaction part of the action can be written as

Sint[ϕ̄, ϕ] = −1

4

∑
x′

1x′
2x1x2

v̄x′
1x′

2x1x2 ϕ̄x′
1
ϕ̄x′

2
ϕx2ϕx1 , (40)

with the bare vertex

v̄x′
1x′

2x1x2 = δ(t ′
1 − t1)δ(t ′

2 − t1)δ(t2 − t1)(1 − iη)v̄α′
1α

′
2α1α2 .

(41)

In Eq. (39), we have employed a matrix notation similar to the
one in Sec. IV C but with multi-indices of the form x = (α, t )
and contractions

∑
x = ∑

α

∫ ∞
−∞ dt . In writing Eq. (41) we

have dropped the infinitesimal shifts of the times at a bare
vertex, compare with the time arguments in Eq. (A7). They
are made redundant by the particular choice of the equal-time
value of the free propagator Eqs. (38).

E. Diagrammatic expansion and 1PI flow equations

Based on the functional-integral representation Eq. (39) of
the interacting generating functional, a diagrammatic expan-
sion of the Green’s functions can be derived in the standard
way, see Appendix B. As usual, one can choose to work
in frequency representation. Details on the relevant Fourier
transforms can be found in Appendix C.

As a next step, we introduce 1PI vertex functions and
derive FRG flow equations for them. This can be done using

generating functionals, starting from the one of the Green’s
functions. The procedure is analogous to the one in Matsubara
or Keldysh formalism [28] but, for definiteness, we briefly
show it in Appendix D. The flow equation of a general 1PI
n-particle vertex function is given by Eq. (D10). As the first
two instances (n = 1, 2), we obtain the flow equation of the
self-energy

�̇λ
x′|x = −iγ λ

x′y′|xySλ
y|y′ (42)

and the one of the 1PI two-particle vertex function

γ̇ λ
x′y′|xy = −iγ λ

x′y′a′|xyaSλ
a|a′

+ iγ λ
x′y′|abSλ

a|a′Gλ
b|b′γ

λ
a′b′|xy

+ iγ λ
x′b′|ay

(
Sλ

a|a′Gλ
b|b′ + Sλ

b|b′Gλ
a|a′

)
γ λ

a′y′|xb

− iγ λ
y′b′ |ya

(
Sλ

a|a′Gλ
b|b′ + Sλ

b|b′Gλ
a|a′

)
γ λ

a′x′|bx. (43)

Here, the dot above � and γ denotes the derivative with
respect to λ and Sλ = Gλ(gλ)−1ġλ(gλ)−1Gλ is the single-scale
propagator.

Since the flow equation of the 1PI n-particle vertex func-
tion contains the 1PI (n + 1)-particle vertex function, all of
the flow equations are coupled. In Sec. V B below, we truncate
this infinite hierarchy by neglecting the 1PI three-particle
vertex function in Eq. (43). Due to Dyson’s equation G =
1/(g−1 − �), one is then left with the task of solving a closed
set of differential equations for the self-energy and the 1PI
two-particle vertex function. In Sec. V B, we also neglect the
flow of the self-energy and retain only the flow equation for
the two-particle vertex function.

Lastly, we note that the zero-temperature formalism can
be used for slightly more general problems than to study
ground-state properties. In Appendix E, we discuss how it can
be adapted to systems in particular excited states.

V. ONE-LOOP FRG APPROACH TO THE
X-RAY-ABSORPTION SINGULARITY IN METALS

In the following, we devise a specific one-loop 1PI FRG
approach to the model described in Sec. II that is based on the
(real-time) zero-temperature formalism. The goal is to obtain
the correct leading-logarithmic result for the x-ray absorption
rate. To achieve this, we perform approximations analogous
to those of Roulet et al. [5]. We discuss why a one-loop trun-
cation suffices to capture the leading logarithms. In fact, we
show that the parquet-based scheme by Roulet et al. and the
following one-loop FRG approach are completely equivalent.

A. Cutoff and initial conditions

To introduce the flow parameter directly into the Hartree-
dressed propagator rather than into the free propagator, we
first absorb the deep-state Hartree self-energy �H

d = gξ0 into
the latter. We achieve this by formally adding and subtracting
a term �H

d a†
d ad in the Hamiltonian; in terms of the action, this

corresponds to adding and subtracting a term �H
d ϕ̄m

d ϕm−1
d in

the square brackets in Eq. (25a). The added term is then ab-
sorbed into the free action such that in the deep-state subspace
the Hartree-dressed propagator given by

GH
d (ω)−1 = G0

d (ω)−1 − �H
d = ω − i0+ (44)
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takes on the role of the free propagator. In Eq. (44), the
renormalized deep level has been set to ε̃d = 0, see Sec. III C.
The subtracted term �H

d a†
d ad is treated as a single-particle

perturbation. It will cancel out; see below.
We choose to employ a sharp frequency cutoff that is in-

serted only into the real part of the Hartree-dressed deep-state
propagator:

GH,λ
d (ω) = �(|ω| − λ)

1

ω
+ iπδ(ω). (45)

No cutoff is introduced into the conduction-state propagator.
For the initial value of the flow parameter, we will consider
the limit λini → ∞. At the final value λfin = 0, the original
model is recovered.

In the following, we determine the initial values of the 1PI
vertex functions, starting with the first order of the self-energy.
The deep-state Hartree diagram, which consists of a single
conduction-state loop, is not affected by the cutoff. It exactly
cancels with the single-particle perturbation mentioned above:
this diagram has already been accounted for in Eq. (44). At
λini, the Hartree contribution to the local conduction-electron
self-energy evaluates to

�H,λini
c = V �

H,λini
k′k (46a)

= −iU
∫

dω

2π
eiωη′

[
�(|ω| − λini )

ω
+ iπδ(ω)

]
(46b)

= U, (46c)

which is the same as without cutoff and which cancels the
single-particle perturbation that arises when the interaction
term in Eq. (1) is brought into the standard form. In Eq. (46b),
a convergence factor eiωη′

with η′ → 0+ has been included
as part of the Hartree-dressed deep-state propagator, see
Eq. (C2b). Here, it is important to take the limit η′ → 0+
before the limit λini → ∞.

Let us now consider an arbitrary 1PI diagram with at least
two vertices and conclude that its initial value is negligible. If
it contains a deep-state propagator that connects two different
vertices, this propagator is replaced by its delta-function part
at λini. The result is negligible in leading logarithmic order
according to Roulet et al. [5]. If the diagram does not contain
any such deep-state propagator, then all its external legs are
deep-state ones. But a 1PI subdiagram of this form does not
enter the parquet diagrams that contain the leading logarithms;
see Sec. III D. In the leading-logarithmic approximation, the
initial conditions are thus fully determined by diagrams with
just a single vertex. Consequently, the initial value of the 1PI
two-particle vertex is given by the bare vertex,

γ̂λini (ω,ω′; �) = U = γ̄λini (ω,ω′; X ), (47)

while the initial values of all other 1PI vertex functions, in-
cluding the self-energy, vanish.

B. Flow equation for γ

To truncate and solve the set of FRG flow equations, we
neglect the flow of the self-energy and of the 1PI three-particle
vertex so the values of both remain zero. This means that we
set the right-hand side of Eq. (42) to zero and neglect the
first addend on the right-hand side of Eq. (43). That we can

FIG. 5. The diagrammatic contributions to dγλ/dλ that result
from taking the derivative of the diagram in Fig. 4. Again, �i

stands for ωo + ω + X . In each diagram, the crossed-out dashed
line represents the differentiated deep-state propagator. (a) A leading
contribution. Removing the crossed-out line, which is in the outer
bubble, would render the diagram one-particle reducible. (b) A sub-
leading contribution. Removing the crossed-out line, which is in the
inner bubble, would leave the diagram one-particle irreducible.

indeed renounce corrections to the self-energy for the leading-
logarithmic approximation is evident from the diagrammatic
discussion in Ref. [5], see also our Sec. III A.

Let us clarify why the 1PI three-particle vertex does not
affect the leading logarithmic order of the 1PI two-particle
vertex via the flow equations. The argument is based on the
properties of individual diagrams. In the diagrammatic deriva-
tion [33] of the flow equation for the 1PI two-particle vertex
γλ, the derivative with respect to the flow parameter acts on
each of the contributing diagrams. In each diagram, according
to the product rule, every deep-state propagator needs to be
differentiated. Therefore, dγλ/dλ is represented by a sum of
diagrams in each of which the derivative acts on some particu-
lar dashed line; examples for this type of diagram are shown in
Fig. 5. Let us now consider any such diagram that results from
differentiating one of the parquet diagrams as those contain
all of the important contributions. Because of Eq. (45), the
frequency of the differentiated propagator satisfies |ω| = λ.
With regard to the real parts of the deep-state propagators,
this frequency has the smallest absolute value of all deep-state
frequencies. As far as the leading logarithms are concerned,
the differentiated propagator then has to be in one of the
outermost bubbles; this follows from the discussion at the end
of Sec. III E about the integration regions that give rise to the
leading logarithms. Removing this propagator would render
the diagram one-particle reducible. In contrast, all diagrams
contributing to dγλ/dλ that stem from the 1PI three-particle
vertex, i.e., that represent the first term in Eq. (43), would
remain one-particle irreducible if the respective differentiated
propagator was removed. Consequently, the leading logarith-
mic contributions cannot originate from the 1PI three-particle
vertex so it can indeed be neglected. This shows that, for a
sharp frequency cutoff in the deep-state propagator, a one-
loop truncation already captures all important contributions
of the parquet diagrams even though it does not account for
the exact values of these diagrams.

As an example, we illustrate the above argument for the
third-order parquet diagram in Fig. 4. Its derivative with re-
spect to λ is the sum of the two diagrams shown in Fig. 5.
If we removed the respective differentiated propagator, the
diagram in Fig. 5(a) would become one-particle reducible,
whereas the diagram in Fig. 5(b) would remain one-particle
irreducible, i.e., the latter stems from the 1PI three-particle
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FIG. 6. Diagrammatic representation of the flow equation for the
1PI two-particle vertex given in Eqs. (50). The crossed-out dashed
line stands for the single-scale propagator Sλ

d . The first term repre-
sents the particle-particle channel while the second term represents
the (exchange) particle-hole channel. The external frequencies are
related via ωc = � − ω = ω′ + X and ω′

c = � − ω′ = ω + X .

vertex. In Fig. 5(a), the frequencies (of the real parts of the
deep-state propagators) satisfy |ωo| = λ � |ωi| and in Fig.
5(b) they satisfy |ωo| � λ = |ωi|. Since we have shown in
Sec. III E for the diagram in Fig. 4 that only the integration
region |ωo| < |ωi| gives rise to the leading logarithms, the
contribution to the flow represented by Fig. 5(b) is negligible.

Following Roulet et al. [5], we approximate the prop-
agators by neglecting the real part of the conduction-state
propagator and the imaginary part of the deep-state propagator
because they do not give rise to the logarithmic divergence in
a bubble, cf. Eq. (11). This step can be performed only after
the evaluation of Eq. (46) for the initial conditions, where the
imaginary part of the deep-state propagator contributes half of
the result. Within these approximations, the local conduction-
electron propagator does not depend on the flow parameter
and is given by

Gc(ω) = −iπ
ρ

V
sgn(ω)�(ξ0 − |ω|) (48)

and the Hartree-dressed single-scale propagator assumes the
form

Sλ
d (ω) = d

dλ
GH,λ

d (ω) = −δ(|ω| − λ)

ω
. (49)

There remains to be solved the flow equation for the 1PI
two-particle vertex. While its general form is as stated in
Eq. (43), it now assumes the closed form

d

dλ
γ̂λ(ω,ω′; �)

= d

dλ
γ̄λ(ω,ω′; X ) (50a)

= −1

2

ρ

V

∫
dω̃ δ(|ω̃| − λ)

1

ω̃

× [γ̂λ(ω, ω̃; �)γ̂λ(ω̃, ω′; �)sgn(� − ω̃)�(ξ0 − |� − ω̃|)
+ γ̄λ(ω, ω̃; X )γ̄λ(ω̃, ω′; X )sgn(ω̃ + X )�(ξ0 − |ω̃ +X |)],

(50b)

where the frequency arguments are related via � − X = ω +
ω′. The diagrammatic representation of this equation is shown
in Fig. 6. In writing Eqs. (50), we consider the flow only of
γ λ

dc|dc because it is the sole part of the 1PI vertex needed to
calculate the particle-hole susceptibility Eq. (7). We do not
consider the flow of γ λ

cc|cc because it does not influence the
flow of γ λ

dc|dc: the single-scale propagator, which has only
deep-state indices, cannot be attached to γ λ

cc|cc. We neither
consider the flow of γ λ

dd|dd . Its flow equation and its contri-

bution to the flow of γ λ
dc|dc both involve a bubble with two

deep-state propagators. Consequently, its influence is sublead-
ing. This reflects that the parquet diagrams containing the
leading logarithms do not comprise 1PI subdiagrams with
deep-state external indices only, as mentioned in the discus-
sion of the initial conditions close to the end of Sec. V A. As a
result of neglecting γ λ

dd|dd , the direct particle-hole channel is
absent in Eqs. (50).

We perform a channel decomposition by defining
d γ̂

pp
λ (ω,ω′; �)/dλ as the first addend in Eq. (50b) and

d γ̄
ph
λ (ω,ω′; X )/dλ as the second addend. For the choice

γ̂
pp
λini

(ω,ω′; �) = 0 = γ̄
ph
λini

(ω,ω′; X ), a formal integration of
the flow equation leads to the decomposition of the 1PI two-
particle vertex

γ̂λ(ω,ω′; �) = γ̄λ(ω,ω′; X )

= U + γ̂
pp
λ (ω,ω′; �) + γ̄

ph
λ (ω,ω′; X ), (51)

where � − X = ω + ω′. Equations (50) can then be rewritten
in terms of the two coupled flow equations

d

dλ
γ̂

pp
λ (ω,ω′; �)

= −1

2

ρ

V

∑
ω̃=±λ

1

ω̃
sgn(� − ω̃)�(ξ0 − |� − ω̃|)

× [U + γ̂
pp
λ (ω, ω̃; �) + γ̄

ph
λ (ω, ω̃; � − ω − ω̃)]

× [U + γ̂
pp
λ (ω̃, ω′; �) + γ̄

ph
λ (ω̃, ω′; � − ω̃ − ω′)]

(52a)

and

d

dλ
γ̄

ph
λ (ω,ω′; X )

= −1

2

ρ

V

∑
ω̃=±λ

1

ω̃
sgn(ω̃ + X )�(ξ0 − |ω̃ + X |)

× [U + γ̂
pp
λ (ω, ω̃; ω + ω̃ + X ) + γ̄

ph
λ (ω, ω̃; X )]

× [U + γ̂
pp
λ (ω̃, ω′; ω̃ + ω′ + X ) + γ̄

ph
λ (ω̃, ω′; X )].

(52b)

These are the contributions to the flow in the particle-particle
and particle-hole channel, respectively. In the diagrammatic
language, Eq. (52a) gives rise to diagrams that can be dis-
connected by cutting two parallel lines, whereas the diagrams
resulting from Eq. (52b) can be disconnected by cutting two
antiparallel lines. Since a diagram of one type can appear as a
subdiagram in diagrams of the other type, the two differential
equations are coupled. For the contribution from each channel,
we have employed the notation that features the respective
natural frequency, see Eqs. (8) and (10).

We now make an assumption that we will later show
to be correct within logarithmic accuracy based on a self-
consistency argument: We assume that the relations

γ̂
pp
λ (ω,ω′; �) = γ̂

pp
λ (|ω|, |ω′|; max{λ, |�|}), (53a)

γ̄
ph
λ (ω,ω′; X ) = γ̄

ph
λ (|ω|, |ω′|; max{λ, |X |}) (53b)
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hold, which are trivially satisfied at the start of the flow. We
use these relations to rewrite the vertex functions appearing
on the right-hand side of the flow Eqs. (52).

In the terms representing the cross feedback, we
subsequently approximate the third frequency argument.
For example, in the term γ̂

pp
λ (ω,±λ; ω ± λ + X ) =

γ̂
pp
λ (|ω|, λ; max{λ, |ω ± λ + X |}) appearing in Eq. (52b),

we approximate

max{λ, |ω ± λ + X |} ≈ max{λ, |ω|}. (54)

This step is analogous to neglecting the second addend in
Eq. (14b). It can be justified as follows. For λ � |X |, the
approximation Eq. (54) is correct within a factor of three.
Such a factor is negligible because, based on the consider-
ations of Roulet et al. [5], we expect γ̂

pp
λ to be a slowly

varying function of its arguments; this expectation will be
confirmed by the final result. For λ < |X |, the two summands
for ω̃ = ±λ cancel each other at least to a large extent because
the factor sgn(±λ + X ) does not cancel the sign of 1/(±λ)
anymore. Consequently, the final part with λ < |X | of the flow
in the particle-hole channel does not contribute to building
the leading logarithms. This corresponds to the observation
that small frequencies with |ω̃| < |X | do not contribute to
the logarithmic divergence of the bare particle-hole bubble,
see Eq. (11). For the other cross-feedback terms in the flow
equations, we apply approximations analogous to Eq. (54).
The justification is similar.

Next, we replace the step functions �(ξ0 − |� ∓ λ|) and
�(ξ0 − | ± λ + X |) occurring in Eqs. (52) with �(ξ0 − λ).
When compared with the parquet-based scheme by Roulet
et al. [5], this corresponds to neglecting the third addend in
Eq. (14b) and to replacing the integration boundaries by ±ξ0

in Eqs. (11) and (15). To motivate this approximation, con-
sider integrating the flow equations by applying − ∫ λini

0 dλ . . .

The resulting λ integrals take on the role of the frequency
integral in a bubble. Provided that |�| 
 ξ0 or |X | 
 ξ0,
respectively, the replacement above is wrong only for certain
λ ≈ ξ0, but the leading contribution that builds the logarithm
comes from λ 
 ξ0. Indeed, said conditions are satisfied:
For the particle-hole susceptibility Eq. (7) near threshold, the
values of γ̂

pp
λ=0(ω,ω′; ω + ω′ + ν) and γ̄

ph
λ=0(ω,ω′; ν) are im-

portant only for |ω|, |ω′|, |ν| 
 ξ0; it follows that the values
of γ̂

pp
λ and γ̄

ph
λ are relevant only with all frequency arguments

being small—even for the cross-feedback terms in Eqs. (52),
compare the discussion in the paragraphs following Eq. (15).
Consequently, the error made by replacing the step functions
is negligible. Due to the factors �(ξ0 − λ), the actual flow
now starts at λ = ξ0. This constitutes our last approximation.

Since the vertex functions occurring in the flow equations
do not depend on the sign of ω̃ = ±λ anymore, we can easily
perform the sums over ω̃ in Eqs. (52), e.g.,

∑
ω̃=±λ

1

ω̃
sgn(ω̃ + X ) = 2

λ
�(λ − |X |). (55)

A formal integration with respect to the flow parame-
ter, starting from λini down to some value λ, then leads

to

γ̂
pp
λ (ω,ω′; �)

= − ρ

V

∫ ξ0

max{λ,|�|}

dλ′

λ′

× [
U + γ̂

pp
λ′ (|ω|, λ′; λ′) + γ̄

ph
λ′ (|ω|, λ′; max{λ′, |ω|})

]
× [

U + γ̂
pp
λ′ (λ′, |ω′|; λ′) + γ̄

ph
λ′ (λ′, |ω′|; max{λ′, |ω′|})

]
(56a)

and

γ̄
ph
λ (ω,ω′; X )

= ρ

V

∫ ξ0

max{λ,|X |}

dλ′

λ′

× [
U + γ̂

pp
λ′ (|ω|, λ′; max{λ′, |ω|}) + γ̄

ph
λ′ (|ω|, λ′; λ′)

]
× [

U + γ̂
pp
λ′ (λ′, |ω′|; max{λ′, |ω′|}) + γ̄

ph
λ′ (λ′, |ω′|; λ′)

]
(56b)

for ξ0 > λ, |�|, |X |. As claimed above, the relations Eqs. (53)
follow from these flow equations and are thus validated
within logarithmic accuracy: On the right-hand side of
Eq. (56a), only the absolute values of ω and ω′ enter and
only max{λ, |�|} appears with no separate dependence on λ

or �; the analog holds for the particle-hole channel. For this
reason we can from now on even write γ̂

pp
0 and γ̄

ph
0 instead

of γ̂
pp
λ′ and γ̄

ph
λ′ in the integrands in Eqs. (56). Furthermore,

the flow Eqs. (56), in conjunction with the vanishing initial
conditions, imply that γ̂

pp
λ (ω,ω′; �) does not depend on ω(′)

if |ω(′)| � |�| and the same for γ̄
ph
λ (ω,ω′; X ) if |ω(′)| � |X |.

It is therefore reasonable to introduce the shorthand notation

γ̂
pp
λ (�) = γ̂

pp
λ (ω,ω′; �) if |ω|, |ω′| � |�|, (57a)

γ̄
ph
λ (X ) = γ̄

ph
λ (ω,ω′; X ) if |ω|, |ω′| � |X |. (57b)

With this, the integrated flow equations at λfin = 0 assume the
form

γ̂
pp
0 (ω,ω′; �)

= − ρ

V

∫ ξ0

|�|

dλ

λ

[
U + γ̂

pp
0 (|ω|, λ; λ) + γ̄

ph
0 (max{λ, |ω|})

]
× [

U + γ̂
pp
0 (λ, |ω′|; λ) + γ̄

ph
0 (max{λ, |ω′|})

]
(58a)

and

γ̄
ph
0 (ω,ω′; X )

= ρ

V

∫ ξ0

|X |

dλ

λ

[
U + γ̂

pp
0 (max{λ, |ω|}) + γ̄

ph
0 (|ω|, λ; λ)

]
× [

U + γ̂
pp
0 (max{λ, |ω′|}) + γ̄

ph
0 (λ, |ω′|; λ)

]
. (58b)

C. Relation to parquet approach of Roulet et al.

The integrated flow Eqs. (58) are identical to Eqs. (A1)
and (A2) of Roulet et al. [5]. There are differences only
in the notation; in particular, the authors of Ref. [5] intro-
duced logarithmic variables for all frequencies. They solved
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these integral equations without further approximations and
used the resulting 1PI vertex to determine Imχ (ν). We can
without changes adopt the steps of Roulet et al. to deter-
mine Imχ (ν) = −π (ρ/V )(ξ0/ν)2g�(ν), which provides the
shape of the absorption rate near the threshold via R(ν) =
−2|W |2Imχ (ν). We refrain from repeating these steps here.
We have thus established that the one-loop FRG approach
presented in this section leads to the exact same result for the
x-ray absorption rate as the parquet-based scheme by Roulet
et al. In particular, this proves that the one-loop FRG approach
captures all leading logarithms.

On top of that, we argue that the two approaches do not
only produce the identical result but are fully equivalent on a
detailed level. In fact, the various approximation steps in the
two approaches can be identified with each other. The first ap-
proximation performed by Roulet et al. in Ref. [5] is to replace
the totally irreducible interaction R by the bare interaction.
This reduces the diagrams under consideration to the parquet
diagrams in the particle-particle and exchange particle-hole
channel. The same reduction results in the FRG approach
from neglecting the three-particle vertex and γdd|dd . (The role
of neglecting γdd|dd is to eliminate the direct particle-hole
channel; in the treatment by Roulet et al., this channel is
embedded in the irreducible interaction R and then neglected.)
Note that disregarding the three-particle vertex in the FRG
approach brings about one additional approximation, namely,
that the internal frequency integrations in parquet diagrams
with crossed channels are performed only partly. In the ap-
proach of Roulet et al., the same restriction in the frequency
integrations is a by-product of the logarithmic approximation,
see below.

Reference [5] continues with some approximations which
we transferred one to one to our FRG approach: neglecting the
real part of Gc, neglecting the deep-state self-energy except
for a static contribution, and neglecting the imaginary part of
Gd . The next step is the logarithmic approximation ten lines
above Eq. (29) of Ref. [5]. It has its direct counterpart in our
Eq. (54). Furthermore, approximating the upper integration
boundary by ξ0 on the right-hand side of Eq. (29) in Ref. [5]
corresponds to replacing �(ξ0 − |� ∓ λ|) by �(ξ0 − λ) in
our Sec. V B. Finally, the abovementioned restriction in the
internal frequency integrations follows in Ref. [5] from the
logarithmic approximation when Eqs. (29) and (31) of that
reference are combined. The restriction is fully realized in
Eq. (34) of Ref. [5], where the argument of I1 in the first
integrand is not greater than the integration variable ti. When
the inner bubble contained in I1 is evaluated according to the
second integral, this argument takes on the role of β, which is
the upper bound of the second integral. The integration vari-
able of the outer bubble, i.e., of the first integral, is therefore
greater than the one of the inner bubble. For the corresponding
frequencies of the bubbles follows the reverse relation, and
this is precisely the same restriction as the one established by
the one-loop FRG.

In the parquet approach of Ref. [5], it remains to bring
the equations into a solvable form. To achieve this, Roulet
et al. invoke a “trick by Abrikosov and Sudakov”, see p. 1081
and the Appendix of Ref. [5]. This step at the very end of
their solution can indeed be identified with the introduction
of a sharp frequency cutoff at the very beginning of the

FRG treatment: When applying this trick, one considers the
general structure of a parquet diagram reducible in a given
channel; one identifies among the outermost bubbles the one
with the smallest absolute value of the deep-state frequency;
to both sides of this bubble, there are full 1PI vertices that
are restricted to contain only greater deep-state frequencies;
finally, the above-mentioned smallest frequency is integrated
over. The concept of a smallest deep-state frequency which
is integrated over corresponds precisely to a sharp frequency
cutoff in the deep-state propagator and a formal integration
of the FRG flow equations. In this way, Fig. 13 of Ref. [5]
(which shows only one channel, has wrongly directed arrows
on the deep-state lines, and does not formally add the kernels
I1 to vertex functions γ on the left and on the right) anticipates
the graphical representation of the FRG flow equation in our
Fig. 6.

We thus have established the full equivalence of both ap-
proaches. The only difference lies in the order of the steps.
Our FRG approach starts by introducing a cutoff and contin-
ues with approximations to the flow equations. Roulet et al.,
on the other hand, apply equivalent approximations to the
parquet equations and use the cutoff only at the very end to
rewrite and solve the resulting equations.

We note that our particular choice of the cutoff is crucial for
the equivalence discussed above. For ill-conceived cutoffs, the
1PI three-particle vertex could significantly influence the flow
of the 1PI two-particle vertex such that a one-loop truncation
would not capture the leading logarithms. However, we expect
a one-loop truncation to be sufficient in the case of any sensi-
ble cutoff that regularizes the divergences of the bare bubbles
during the entire flow.

VI. CONCLUSION AND OUTLOOK

Historically, the concept of summing up all parquet dia-
grams with bare lines was developed to construct the leading-
logarithmic approximation for models in which bubbles in
different channels produce simple logarithmic divergences
[2,4–6]. In a paradigmatic case, Roulet et al. derived from this
approach the leading approximation for the rate of x-ray ab-
sorption in metals close to the threshold frequency [5]. In the
present paper, we have shown that a standard one-loop FRG
approximation with sharp frequency cutoff reproduces iden-
tically the parquet-based leading-logarithmic approximation
of Roulet et al. There is a detailed correspondence between
the approaches; in particular, the “trick by Abrikosov and
Sudakov” to evaluate the approximate parquet equations cor-
responds to the introduction of the cutoff in the FRG. In total,
the two approaches can be understood as different viewpoints
on the same technical steps. Extending our one-loop scheme
to a multiloop scheme on the analogy of Ref. [34] would
result in a change on the subleading level without leading to
a controlled improvement. We explained why the parts of the
parquet diagrams that are not captured by the one-loop FRG
(and not by the treatment of Roulet et al.) are subleading.
The traditional understanding that low-order RG approxima-
tions can reproduce the leading-logarithmic parquet result for
models with simple logarithmic divergences of the bubbles
[3,9,18–20,22–25] is thus reconfirmed also in this case.
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For the whole class of these mostly zero- and one-
dimensional models, we therefore do not expect the multiloop
FRG to be advantageous on the leading-logarithmic level.
There remains at least the benefit that the multiloop scheme
provides a leading-logarithmic approximation for any choice
of flow parameter, as long as convergence is reached. This
establishes more flexibility compared to our analysis of the
one-loop scheme, which deals with a specific cutoff. While
we expect that our analysis can be transferred to other reg-
ularizing cutoffs, this should be reexamined in each case. In
fact, the effort to do so would be worthwhile since the leading-
logarithmic properties can often be extracted analytically from
one-loop RG (or from the parquet equations) as seen in this
study and in almost all corresponding references mentioned in
the Introduction. The multiloop scheme, in contrast, provides
only a numerical solution.

Consequently, we expect that the multiloop scheme will
mainly be found useful to evaluate the full parquet approxima-
tion, which is typically used for two-dimensional models. The
resulting approximation benefits from preserving certain sum
rules and conservation laws and the Mermin-Wagner theorem.
Results of multiloop investigations of the two-dimensional
Hubbard model are promising in this respect [36–38]. As the
multiloop FRG is not restricted to approximate the totally
irreducible vertex by the bare one, it might also turn out to
be helpful for constructing diagrammatic extensions of the
dynamical mean-field theory.

In the present paper, we established a formulation of
the FRG within the (real-time) zero-temperature formal-
ism. This formalism is more restrictive than the Matsubara
and Keldysh formalisms because it only provides access to
ground-state properties. Additionally, its application requires
that the noninteracting ground state is not, as a matter of
different symmetries, orthogonal to the interacting one [43].
However, it has the advantage that it is based on real times
or frequencies and therefore does not require an analytic
continuation from the imaginary to the real frequency axis.
Such an analytic continuation is a significant complication
for numerical FRG results obtained within Matsubara formal-
ism, see, e.g., Ref. [44]. Compared to Keldysh formalism,
the zero-temperature formalism is easier to work with as it
involves only a single time axis instead of a two-branch time
contour. The two branches in Keldysh formalism give rise
to different components (say, chronological, lesser, greater,
antichronological) of Green’s functions, whereas there is only
a single component in the zero-temperature formalism. Due
to these features, we expect that the zero-temperature FRG
developed in this paper can have useful future applications.

Several topics for future research naturally arise from
the considerations set forth in this paper. First, it should be
clarified how our observations made within the real-time zero-
temperature formalism can be transferred to formulations of
the FRG within the Matsubara formalism. This is impor-
tant to achieve a more detailed comparability to the works
of Kugler and von Delft on the x-ray-absorption problem
[32,34], which use the Matsubara formalism. In particular, the
nature of the improvements achieved by multiloop FRG as
reported in Ref. [34] could be clarified: either the one-loop
schemes used in that reference are suboptimal in that they
miss some leading logarithms or the observed changes due

to the multiloop scheme are in the uncontrolled regime. This
question is still open as Ref. [34] disregards the subleading
difference between the exact sum of the parquet diagrams and
the leading-logarithmic solution of Roulet et al. from Ref. [5].
The transfer of our observations to the Matsubara formalism
is also important from a more general perspective due to the
widespread use of the Matsubara FRG as a tool to investigate
low-dimensional fermionic systems [28–30]. We started in-
vestigations of the leading-logarithmic approximation to the
x-ray-absorption rate using Matsubara FRG. They indicate
that the central message of this paper can indeed be trans-
ferred to the Matsubara case: a reasonably crafted one-loop
Matsubara FRG scheme reproduces the leading-logarithmic
approximation. We observe that passing over to continuous
Matsubara frequencies at zero temperature and setting ε̃d to
zero requires particular care within Matsubara formalism. We
intend to address these points in a future publication.

Another topic for future research is the mechanism by
which the one-loop FRG captures the leading logarithms. The
corresponding reasoning in Sec. V B was based on individual
diagrams; this allowed us to stress the close analogy to the
leading-logarithmic parquet approximation. We expect, how-
ever, that an argument based completely on the structure of
the flow equations could be more efficient. This could help
with another task, namely, to construct FRG approximations
that treat subleading contributions consistently. Whether the
multiloop FRG with dressed propagators can contribute to
achieve the latter goal remains to be clarified as well.

Furthermore, it is desirable to extend the considerations
of this paper to nonequilibrium situations which can be de-
scribed within the Keldysh formalism. This would allow for
interesting applications to model systems for quantum dots
and wires. For example, one could expand on the FRG study
of nonequilibrium Kondo physics in Ref. [45], which does not
discuss the question of a consistent treatment of logarithmic
divergences. This could make it possible to address open
questions concerning the influence of a magnetic field and to
achieve a methodological comparison with the real-time RG
approach to nonequilibrium Kondo physics of Ref. [46].
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APPENDIX A: DETAILS ON THE CONTINUOUS
FUNCTIONAL-INTEGRAL NOTATION

In this Appendix, we discuss the continuous form which
the parts of the action acquire in the limit M → ∞.
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We can cast the free action Eq. (31) into either of the
following forms:

S0
M (ϕ̄, ϕ)

=
∑

α

�

M∑
m=1

ϕ̄m
α

[
i
ϕm

α −ϕm−1
α

�
− (1−iη)εαϕm−1

α

]∣∣∣∣
B

(A1a)

=
∑

α

�

M−1∑
m=0

[
i
ϕ̄m

α −ϕ̄m+1
α

�
− (1−iη)εαϕ̄m+1

α

]
ϕm

α

∣∣∣∣
B
.

(A1b)

In Eqs. (A1), some addends were introduced artificially; they
evaluate to zero due to the extended boundary conditions

B = {
ϕ̄0

α�N = 0, ϕ̄M
α>N = 0, ϕM

α�N = 0, ϕ0
α>N = 0

}
. (A2)

In the limit M → ∞, the free action can thus be written as

S0[ϕ̄, ϕ] =
∑
α′α

∫ t0

−t0

dt ′
∫ t0

−t0

dt ϕ̄α′ (t ′)Qα′α (t ′, t )ϕα (t )

∣∣∣∣
B
,

(A3)
with the boundary conditions in continuous form

B = {ϕ̄α�N (−t0) = 0, ϕ̄α>N (t0) = 0,

ϕα�N (t0) = 0, ϕα>N (−t0) = 0} (A4)

and with the differential operator

Qα′α (t ′, t ) = δα′αδ(t ′ − t )[i∂t − (1 − iη)εα] (A5a)

or

Qα′α (t ′, t ) = δα′α[−i
←
∂ t ′ − (1 − iη)εα]δ(t ′ − t ), (A5b)

corresponding to Eqs. (A1a) or (A1b), respectively. In the
latter version, the time derivative acts to the left. Indeed,
the continuous form of the free propagator Eqs. (38) is the
inverse, i.e., the Green’s function, of Qα′α (t ′, t ). It is unique in
satisfying the boundary conditions

gα�N (t,−t0) = 0, gα>N (t, t0) = 0,

gα�N (t0, t ′) = 0, gα>N (−t0, t ′) = 0, (A6)

which follow from Eq. (A4).
In the continuum limit, the interaction part of the action is

Sint[ϕ̄, ϕ] = −(1 − iη)
∫ t0

−t0

dtHint(ϕ̄(t ), ϕ(t−))

∣∣∣∣
B

(A7)

and the source part of the action is

Ssource[ϕ̄, ϕ; J̄, J]

= −
∑

α

∫ t0

−t0

dt[J̄α (t )ϕα (t ) + ϕ̄α (t )Jα (t )]

∣∣∣∣
B
. (A8)

APPENDIX B: DIAGRAMMATIC EXPANSION

In this Appendix, we briefly describe the steps that lead to
the diagrammatic expansion of Green’s functions. Given the
functional-integral representation Eq. (39) of the generating
functional in the interacting case, we can follow the standard
procedure as outlined in Chap. 2 of Ref. [43] for the case of the

Matsubara formalism. Note that Chap. 3 of Ref. [43] on the
zero-temperature formalism does not provide an expression
corresponding to our Eq. (39).

We expand the integrands in Eq. (39) in powers of the
interaction. The interacting Green’s functions are thereby ex-
pressed in terms of noninteracting Green’s functions. The
latter can be calculated with the Wick theorem that results
when the functional derivatives in Eq. (19) are applied to the
noninteracting generating functional, which is in the continu-
ous notation of Sec. IV D given by

G0
η [J̄, J] = e−iJ̄gJ . (B1)

By the standard steps, the interacting Green’s functions Gη

can be represented by sums of diagrams made out of ex-
ternal points, interaction vertices, and free-propagator lines.
Due to the denominator in Eq. (39), all clusters that are not
linked to the external points cancel out from the diagrams. We
can obtain an efficient representation by employing unlabeled
Hugenholtz vertices, see Chap. 2 of Ref. [43]. The value of a
specific diagram is then given by

(−1)P(−1)nloop

2neq S

(∏
iv̄

)(∏
g
)
, (B2)

with implicit contractions of all internal multi-indices. (−1)P

is the sign of the permutation which is given by the external
indices x′

i and xP(i) being connected, nloop is the number of
internal closed loops, neq is the number of pairs of equivalent
lines, and S is the diagram symmetry factor, see Chap. 2 of
Ref. [43].

APPENDIX C: FREQUENCY REPRESENTATION

Here, we describe the Fourier transformation used to go
from time arguments in the diagrammatic expansion over to
frequency arguments. Since the Green’s functions Eq. (18),
the free propagator Eqs. (38), and the bare vertex Eq. (41)
are time-translationally invariant, it is advantageous to work
in frequency representation, where each of these quantities
becomes frequency conserving and where convolutions of
time that occur in the diagrams are transformed into simple
products. We note that the limit t0 → ∞ has to be performed
first so the boundaries of the Fourier integrals

∫ ∞
−∞ dt e±iωt . . .

can be infinite.
The frequency-dependent free propagator is defined as

gαα′ (ω,ω′) =
∫ ∞

−∞
dt

∫ ∞

−∞
dt ′ei(ωt−ω′t ′ )gαα′ (t, t ′). (C1)

The integrals converge thanks to the positive infinitesimal η

that was introduced in the context of the generating functional,
see Eq. (22). The result is

gαα′ (ω,ω′) = 2πδ(ω − ω′)δαα′gα (ω), (C2a)

gα (ω) = eiωη′

ω − εα + iηsgnεα

, (C2b)

where we made the replacement ηεα → ηsgnεα . The positive
infinitesimal η′ is necessary to obtain the correct equal-time
value gαα′ (t, t ) from the inverse Fourier transformation. It
is relevant only for Hartree-Fock-type propagator loops. The
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bare vertex is Fourier transformed into

v̄α′
1α

′
2α1α2 (ω′

1, ω
′
2, ω1, ω2)

= 2πδ(ω′
1 + ω′

2 − ω1 − ω2)(1 − iη)v̄α′
1α

′
2α1α2 . (C3)

The frequency-dependent interacting Green’s functions

G(ω1, . . . | . . . , ω′
n)

=
∫ ∞

−∞
dt1 . . .

∫ ∞

−∞
dt ′

nei(ω1t1+···−ω′
nt ′

n )G(t1, . . . | . . . , t ′
n)

∝ δ(ω1 + · · · + ωn − ω′
1 − · · · − ω′

n) (C4)

are well-defined whenever long-term correlations decay so
the Fourier integrals converge. They can be calculated by
applying the diagrammatic rules from Appendix B to obtain
Gη and finally taking the limit G = limη→0+ Gη.

APPENDIX D: DERIVATION OF 1PI FLOW EQUATIONS

In the following, we outline how to arrive at the generating
functional for the 1PI vertex functions, starting from Gη[J̄, J].
Based on these steps, we then present a concise derivation
of the FRG flow equations of the 1PI vertex functions. It
adapts the established approach (see, e.g., Refs. [28,43]) to
the zero-temperature formalism. We will use matrix notation
with multi-indices x = (α, t ) or x = (α,ω), depending on the
chosen representation.

Let us define

Wη[J̄, J] = ln Gη[J̄, J] = lim
t0→∞ ln

Zη[J̄, J]

Zη[0, 0]
, (D1)

which can be shown to be the generating functional of the con-
nected Green’s functions via the replica technique. Next, we
define the so-called effective action as the Legendre transform
of Wη[J̄, J],

Uη[ψ̄, ψ] = −J̄ψ + ψ̄J + Wη[J̄, J], (D2)

where J̄ = J̄[ψ̄, ψ] and J = J[ψ̄, ψ] are the inverse relations
to the definitions of the new variables

ψ̄x′[J̄, J] = δWη

δJx′
, ψx[J̄, J] = δWη

δJ̄x
. (D3)

Note that this (standard) notation is misleading as ψ̄ and ψ

are not conjugated to each other even if J̄ and J are. Lastly, we
define the generating functional of the 1PI vertex functions

�η[ψ̄, ψ] = Uη[ψ̄, ψ] − iψ̄Qψ. (D4)

The 1PI vertex functions are generated from it via

γ (x′
1, . . . , x′

n|x1, . . . , xn)

= lim
η→0+

(−1)ni
δ2n�η[ψ̄, ψ]

δψ̄x′
1
. . . δψ̄x′

n
δψxn . . . δψx1

∣∣∣∣
ψ̄=0=ψ

. (D5)

Diagrammatically, they are the sums of all one-particle irre-
ducible diagrams, which cannot be disconnected by removing
any single propagator line and which are evaluated with an
additional prefactor i1−n compared to Eq. (B2).

In the 1PI FRG formalism, the problem of determining the
1PI vertex functions is recast into the task to solve a set of
differential equations that map the 1PI vertex functions for an
easily solvable system to the ones for the system of interest.

To this end, one introduces a flow parameter λ into the free
propagator g → gλ. Then also the functional Zη[J̄, J] acquires
a λ-dependence through the inverse free propagator Q → Qλ.
Its flow equation reads

Ż = i
δ

δJ
Q̇

δ

δJ̄
Z. (D6)

For conciseness, we have suppressed all dependencies, used
the shorthand notation Ż = dZ/dλ, and considered δ/δJ as a
row vector and δ/δJ̄ as a column vector. Since the definition
of Zη[J̄, J] does not contain the limit t0 → ∞ as it would oth-
erwise diverge, see Eq. (35), the time integrations in Eq. (D6)
are restricted to the finite interval [−t0, t0]. This is not the case
for the other equations in this Appendix. For Wη[J̄, J], one
obtains the equation

Ẇ = i

(
δW
δJ

Q̇
δW
δJ̄

− TrQ̇
δ2W
δJ̄δJ

)
− TrQ̇G, (D7)

where G stands for the single-particle Green’s function and
the second derivatives δ2W/δJ̄xδJx′ form a matrix with row
index x and column index x′. This in turn leads to

�̇ = −iTrQ̇(u−1)++ − TrQ̇G, (D8)

with the matrix

uXX ′ = δ2U
δψX δψX̄ ′

, (D9)

for which the multi-index was extended to X = (c, x)
with c = ± and we defined X̄ = (−c, x), ψ(+,x) = ψ̄x, and
ψ(−,x) = ψx. With this notation, the resulting flow equations
of the 1PI vertex functions can be written as

γ̇ (x′
1, . . . , x′

n|x1, . . . , xn)

= lim
η→0+

(−1)nTrQ̇

(
δ2nu−1

δψ̄x′
1
. . . δψx1

∣∣∣∣
ψ̄=0=ψ

)
++

. (D10)

The right-hand side of each of these flow equations cor-
responds to a sum over ring diagrams composed of 1PI
m-particle vertex functions with m = 2, . . . , n + 1 that are
connected by full single-particle Green’s functions and one
single-scale propagator

S = −GQ̇G = Gg−1ġg−1G. (D11)

APPENDIX E: GENERALIZATION OF THE
ZERO-TEMPERATURE FORMALISM

In spite of its name, the zero-temperature formalism can in
certain cases be used to compute the properties of systems in
particular excited states. Consider an N-particle eigenstate of
H0 given by

|�̃〉 = a†
1̃
. . . a†

Ñ
|0〉, (E1)

where 1̃, . . . , Ñ denote some single-particle eigenstates of H0.
We do not require that {1̃, . . . , Ñ} = {1, . . . , N}, i.e., |�̃〉 does
not have to be the ground state of H0. Let |�̃〉 denote the
lowest-energy eigenstate of H that has a nonzero overlap with
|�̃〉. We assume |�̃〉 to be unique. If |�̃〉 is orthogonal to
the ground state of H , then |�̃〉 is not that ground state. |�̃〉
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evolves into |�̃〉 under a damped but suitably normalized time
evolution. To be more precise, we define

Z̃η[J̄, J] = 〈�̃|U (η)
J̄,J

(t0,−t0)|�̃〉 (E2)

and

G̃η[J̄, J] = lim
t0→∞

Z̃η[J̄, J]

Z̃η[0, 0]
(E3)

on the analogy of Eqs. (20)–(22). Then G̃η[J̄, J] generates the
Green’s functions of the system in the state |�̃〉,

G̃(α1t1, . . . | . . . , α′
nt ′

n)

= (−i)n〈�̃|T aα1 (t1) . . . a†
α′

1
(t ′

1)|�̃〉. (E4)

The steps done in Sec. IV A–IV D can also be applied
to this situation. Instead of α � N and α > N , one now
distinguishes between α ∈ {1̃, . . . , Ñ} and α /∈ {1̃, . . . , Ñ}, re-
ferring to levels which are occupied and empty in the state
|�̃〉, respectively. However, it is not evident that a diagram-
matic expansion analogous to Appendix B is well-defined. If a
single-particle state α with εα < 0 is unoccupied in |�̃〉, then
the corresponding propagator g̃α (t ) = −ie−(i+η)εαt�(t − 0+)
diverges exponentially with time. The same holds for single-
particle states with positive eigenenergy that are occupied
in |�̃〉. (We note that if |�̃〉 is not the ground state of H0,
one cannot avoid all such divergences by simply shifting the
reference point for single-particle energies.) Therefore, the
convergence of time integrations that arise in diagrams has
to be checked. In the following, we present simple cases in
which a diagrammatic expansion is possible, focusing on the
treatment of absorption and emission of x rays in metals.

We start by considering the case that |�̃〉 = |�̃〉 is a com-
mon eigenstate of H0 and H . Then the damping factor η and
the limit t0 → ∞ are not required in the definition of Z̃[J̄, J]
and G̃[J̄, J] to generate the Green’s function Eq. (E4). Instead,
it suffices to choose t0 � max{|t1|, . . . , |t ′

n|}. Thus, the time
integrations that arise in diagrams are restricted to the finite
interval [−t0, t0] and converge. To derive a frequency repre-
sentation, one takes the limit t0 → ∞ and only now introduces
appropriate dampings η into the retarded and advanced free
propagators such that the Fourier integrals converge. The re-
sult for the free propagator is as in Appendix C:

g̃α (ω) = eiωη′
{
(ω − εα + iη)−1, α /∈ {1̃, . . . , Ñ}
(ω − εα − iη)−1, α ∈ {1̃, . . . , Ñ}. (E5)

We present two examples of this situation in the context of
the model for x-ray absorption in metals with

H0 =
∑

k

εka†
kak + εd a†

d ad , (E6a)

Hint = −U

V

∑
kk′

a†
k′akad a†

d (E6b)

= −U

V

∑
kk′

a†
k′ak + U

V

∑
kk′

a†
k′a

†
d ad ak (E6c)

= H (1)
int + H (2)

int . (E6d)

First, we define |�̃〉 as the state in which the deep level as well
as all plane-wave states k in the lower half of the conduction

band are occupied, while the upper half of the conduction
band is empty. For εd < 0, this state is the ground state of H0,
but for εd > 0 it is an excited eigenstate of H0. Furthermore,
for sufficiently negative εd , the state |�̃〉 is the ground state of
H ; otherwise, it is an excited eigenstate of H . In any case,
the formalism allows us to compute the Green’s functions
of the system in this state. As a consequence, the function
χ (ν) depends smoothly on εd as indicated in Eq. (9) so the
transition to ε̃d = 0 in Sec. III C is possible.

For the second example, we consider the system with an
empty deep level. The single-particle eigenstates of H ′

0 =
H0 + H (1)

int consist of the deep state, a conduction band of
scattering states, and one bound state which originates from
the attractive potential of the deep hole and which has an
energy below the conduction band. We define |�̃′〉 as the state
with the deep level empty but the bound state and the (N − 1)
lowest scattering states occupied. This state is a common
eigenstate of H ′

0 and H . Again, it depends on the value of
εd whether it is the respective ground state or an excited
state. In each instance, the formalism can be used to compute
the Green’s functions in the state |�̃′〉. In the corresponding
perturbative expansion, H (2)

int is treated as perturbation to H ′
0.

The free propagator in frequency representation is analogous
to Eq. (E5):

g̃′
α′ (ω) = eiωη′

{
(ω − ε′

α′ + iη)−1, α′ unoccupied in
∣∣�̃′〉

(ω − ε′
α′ − iη)−1, α′ occupied in

∣∣�̃′〉.
(E7)

Here, α′ denotes a single-particle eigenstate of H ′
0 with energy

ε′
α′ . This approach can be used to study the rate of stimulated

x-ray emission, cf. Ref. [5].
As a final, related case, we present an alternative way to

access the Green’s functions in the state |�̃′〉 from above
and thereby treat x-ray emission, cf. Ref. [5]. For this, we
consider the state |�̃1〉 with the deep level empty and the
lowest N plane-wave conduction states (not scattering states)
occupied. This is an eigenstate of H0. Under a damped but
suitably normalized time evolution, it evolves into |�̃′〉. If
we define Z̃η[J̄, J] as the expectation value of U (η)

J̄,J
(t0,−t0)

in the state |�̃1〉, the corresponding functional G̃η[J̄, J], in-
volving the limit t0 → ∞, generates the Green’s functions
of the interacting system in its stationary state |�̃′〉. This
leads to an expansion in H (1)

int + H (2)
int as perturbation to H0.

Although the retarded free deep-state propagator g̃d (t ) =
−ie−(i+η)εd t�(t − 0+) diverges exponentially for t → ∞ if
εd < 0, all time integrations arising in diagrams converge.
The reason is as follows. Since each two-particle vertex has
both an incoming and an outgoing deep-state leg and since
time strictly increases in direction of the deep-state lines, the
time arguments of the two-particle vertices are restricted to
the finite interval spanned by the external time arguments
of the Green’s function. Therefore, integrations with respect
to the time arguments of two-particle vertices converge. Only
the single-particle vertices produced by H (1)

int can appear on
the whole time axis. They have an incoming and an outgoing
plane-wave line only. Since the occupied plane-wave levels in
|�̃1〉 are the lowest ones, we can choose the reference point for
single-particle energies to lie between the occupied and unoc-
cupied plane-wave levels. Then the dampings ηεk contained
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in the free plane-wave propagators ensure that they are ex-
ponentially suppressed for t → ±∞. We note that while this
particular choice of the reference point makes it easy to realize
that the time integrals converge also for the single-particle
vertices, it is actually not necessary for the convergence. In
fact, only differences of plane-wave levels enter the integrals
with respect to times of single-particle vertices. Since in all
situations the time integrations ultimately converge, it is pos-
sible to adjust the dampings in the individual free propagators

g̃α (t ) such that all retarded ones are suppressed for t → ∞
and all advanced ones are suppressed for t → −∞. Diagrams
can then be evaluated as well in Fourier space with

g̃α (ω) = eiωη′
{
(ω − εα + iη)−1, αunoccupied in

∣∣�̃1
〉

(ω − εα − iη)−1, αoccupied in
∣∣�̃1

〉
.

(E8)
We expect that dressing this free propagator, which corre-
sponds to H0, with the single-particle vertices from H (1)

int leads
to the propagator Eq. (E7), which corresponds to H ′

0.
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