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In many paradigmatic materials, such as transition metal dichalcogenides, the role played by the spin
degrees of freedom is as important as the one played by the electron-electron interaction. Thus an accurate
treatment of the two effects and of their interaction is necessary for an accurate and predictive study of the
optical and electronic properties of these materials. Despite the fact that the GW-BSE approach correctly
accounts for electronic correlations, the spin-orbit coupling effect is often neglected or treated perturbatively.
Recently, spinorial formulations of GW-BSE have become available in different flavors in material-science
codes. However, an accurate validation and comparison of different approaches is still missing. In this work,
we go through the derivation of the noncollinear GW-BSE approach. The scheme is applied to transition
metal dichalcogenides comparing the perturbative and full spinorial approaches. Our calculations reveal that
dark-bright exciton splittings are generally improved when the spin-orbit coupling is included nonperturbatively.
The exchange-driven intravalley mixing between the A and B excitons is found to play a role for Mo-based
systems, being especially strong in the case of MoSe2. We finally compute the excitonic spin and use it to
sharply analyze the spinorial properties of transition metal dichalcogenide excitonic states.
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I. INTRODUCTION

The investigation of the excited-state properties of ma-
terials by means of modern ab initio theories is a rapidly
developing field that has yielded notable progress in our
understanding of bulk, surfaces, nanostructures, molecules,
and disordered systems [1]. At the same time, an increas-
ing number of experimental and technological applications
have been highlighting the central role played by spin de-
grees of freedom in the explanation of novel and intriguing
physical processes such as the chirality effect, observed in
low-dimensional systems that lack structural inversion sym-
metry [2]. Moreover, spin-orbit coupling (SOC) is essential
to correctly describing electronic and optical excitations not
only for transition metal dichalcogenides (TMDs) and topo-
logical insulators (TIs) but also nanomaterials with light
atoms, such as carbon nanotubes [3]. Finally, an accurate
description of spin dynamics is essential in the fields of
spintronics and magneto-optics [4]. Despite this fact, most
of the many-body calculations based on the GW and Bethe-
Salpeter-equation (BSE) methods [1] have been carried out
within a spin-independent or spin-polarized [5] framework,
generally neglecting the SOC. At present, several electronic
structure codes [6–9], which include SOC within the GW-BSE
approach either perturbatively [10,11] or fully considering the
spinorial nature of the electronic wave functions, have been

applied in a number of cases [7,8,12–17]. However, the math-
ematical derivation and a complete discussion of the spinorial
formulation of GW-BSE is not present in the literature, and
an accurate comparison of the full spinorial GW-BSE with
the perturbative approach, benchmarking the latter, is also
missing.

In addition to their importance for fundamental and ap-
plicative reasons [18–20], TMD monolayers are ideal for
testing different levels of SOC inclusion because both the
presence of strong spin-orbit interaction and the enhancement
of many-body effects are the basis of their intriguing elec-
tronic and optical properties. The strong spin-orbit interaction
determines the macroscopic features of the optical properties
of these materials, such as the presence of spin-split peaks and
valley-selective optical transitions in their absorption spectra.
Moreover, SOC is responsible of finer details that are nev-
ertheless crucial for applications of TMDs in optoelectronic
devices. These are the splitting and the energetic order of spin-
allowed (bright) and spin-forbidden (dark) excitons, which
are involved in the exciton dynamics. From this standpoint,
TMDs are an optimal class of materials against which we
can compare a full and a perturbative SOC formulation up
to the GW-BSE level by using the same set of computational
parameters. Despite the fact that most of the equations can
be obtained as a direct extension of the standard formulation
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[21], we provide a detailed derivation of noncollinear GW-
BSE equations. In doing so, we aim at providing a complete
reference with all spin-indexes carefully included and with an
extensive discussion of the different approximations chosen.

We show how this formulation allows us to include SOC
in a natural way at the level of the ground-state calculation,
and it is nicely suited to the study of the optical properties
of any many-body quantum-mechanical system in which the
dependence from the spin can be described as a nonlocal term
in the Hamiltonian. Finally, we apply this formalism to the
calculation of the electronic and optical properties of group-
VI TMD monolayers (MX2, with M = Mo,W and X = S,Se),
and we accurately compare the no-, perturbative, and full SOC
schemes. Furthermore, a full analysis of the spin character
of its excitons, which is relevant for envisaged valleytronics
applications but is intrinsically not achievable in a perturbative
approach, is presented.

II. THE NONCOLLINEAR MANY-BODY PROBLEM

We start from the many-body total Hamiltonian of the
system, including first-order relativistic corrections

Ĥ = Ĥ0 + Ĥ (e-e) + Ĥ (RK) + Ĥ (SOI). (1)

Here Ĥ0 is the nonrelativistic one-body Hamiltonian, com-
posed of a kinetic term and the atomic scalar external
potential, Ĥ (e-e) is the electron-electron Coulomb interaction,
while Ĥ (RK) + Ĥ (SOI) are the first-order relativistic correc-
tions. Ĥ (RK) is the mass-velocity term plus the Darwin term,
while Ĥ (SOI) is the spin-orbit-interaction (SOI) term [22].

In the position, momentum, and spin of each electron
x̂, p̂, ŝ, the different terms can be expressed as

Ĥ0 = H0[{x̂n, p̂n}] =
∑

i

h0(x̂i, p̂i ), (2a)

Ĥ (e-e) = H (e-e)[{x̂n}] = 1

2

∑
i �= j

1

|x̂i − x̂ j | , (2b)

Ĥ (RK) = H (RK)[{p̂n}] =
∑

i

h(RK)(p̂i ), (2c)

Ĥ (SOI) =
∑

i

H (SOI)[{x̂n, p̂n}](ŝi ). (2d)

Here bold symbols indicate spatial vectors, ĥ0 = t̂ + v̂ext is
the sum of the kinetic and one-body external potential, while
Ĥ (RK) is the sum of one-body terms; for its explicit expression,
we refer the reader to Ref. [23], Eqs. 9.2.2. By following
Ref. [24], we know that the SOI term is composed of three
different contributions:

Ĥ (SOI) = Ĥ [SO(N )] + Ĥ [SO(2e)] + Ĥ (SOO). (3)

Here Ĥ [SO(2e)] and Ĥ (SOO) are many-body terms, called
“two-electrons spin-orbit” and “spin-other-orbit,” respec-
tively. Ĥ [SO(N )], or “one-electron spin-orbit,” is a purely
one-body term:

Ĥ [SO(N )] =
∑

i

v(SOC)(x̂i, p̂i ), (4)

with v a 2 × 2 matrix in the ↑,↓ spin space. What is relevant
here is that H (SOI) can be expressed as a sum of terms that
depend on a single spin operator and can thus be conveniently
written as a sum of a 2 × 2 matrix in ↑,↓ spin space. Since all
other terms are spin-independent, this implies that the whole
Hamiltonian can be expressed as a sum of 2 × 2 matrices. We
denote as o such matrices in ↑,↓ spin space.

A. The single-particle part of the Hamiltonian within density
functional theory

Within DFT, the whole Eq. (1) is replaced with a mean-
field representation:

Ĥ �⇒
∑

i

hKS[ρ](x̂i, p̂i ). (5)

The one-body KS Hamiltonian depends on the electronic den-
sity matrix, ρ, defined in (11), and it reads

hKS
ss′ [ρ](x̂, p̂) = h(x̂, p̂)δss′ + v

(SOC)
ss′ (x̂) + v

(Hxc)
ss′ [ρ](x̂), (6)

with s the spin index. In Eq. (6), ĥ = ĥ0 + ĥ(RK) while v̂(SOC)

is the one-electron spin-orbit-coupling nucleus term, which
comes from the SO(N ) term defined in Eq. (4), and v

(Hxc)
ss′

is the sum of the exchange-correlation and Hartree potential.
The more general form of v̂(SOC) (if the vector potential is
zero) is

v(SOC)(x̂, p̂) = 1

2c2
σ · [∇v(ext)(x̂) × p̂

]
. (7)

Here σ is the three-dimensional vector whose components are
the Pauli matrices. In a plane-wave representation, the SOC
is, in practice, accounted for by the use of pseudopotentials
[25], and also ĥ(RK) corrections are taken into account for
the kinetic energy of core electrons in the generation of the
pseudopotential [26]. The SOC contribution from the pseu-
dopotential captures what is called “local SOC,” which is
due to the electrons orbiting around the nuclei. It neglects
instead the itinerant SOC, which cannot be easily captured
in periodic boundary conditions. Relativistic corrections to
the kinetic energy of valence (and conduction) electrons are
instead usually neglected.

Neglecting the relativistic corrections v̂(Hxc) is the mean-
field replacement of Ĥ (e-e). When relativistic corrections are
taken into account instead, one should in principle account
for the effects of the many-body terms Ĥ [SO(2e)] and Ĥ (SOO).
A short cut [24] is to add a term constructed replacing vext

with v(Hxc) into Eq. (7). Doing so partially accounts for the
physics of Ĥ [SO(2e)] while the effects described by Ĥ (SOO) are
neglected, as is commonly done in standard DFT calculations.

Thus there are two terms entering the ĥKS Hamiltonian
that are nondiagonal in spin-space and are responsible for
inducing spinorial eigenstates: v̂(SOC) and v̂(Hxc) [27]. The
spin-dependent formulation of the density functional theory
[28] in its local spin density approximation (LSDA) is cur-
rently implemented in several ab initio codes and is at the
basis of the present excited-state calculations. It gives rise to a
renormalization of the SOC splitting. In Appendix A, we also
show how the noncollinear form of the Hamiltonian can be
rewritten in terms of density and magnetization coupling with
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the xc scalar potential φxc plus an xc magnetic field Bxc. If the
local magnetization is zero everywhere, then Bxc = 0.

The eigenstates of ĥKS are vectors in ↑,↓ spin space:

〈x|ĉ†
I |0〉 = −→

ψ I(x) = 〈x−−→|nk〉 ≡
(

φnk↑(x)
φnk↓(x)

)
, (8)

with n the spinor band index, and k a Brillouin zone generic
point, which from now on we group in the index I ≡ (n, k) to
simplify the notation.

−→
ψ satisfies the matrix equation

hKS(x̂)
−→
ψ I(x) = εI

−→
ψ I(x). (9)

Thanks to Eq. (8), we can define the fermionic field opera-
tors

�̂(x, s) =
∑

I

φIs(x)ĉI, (10)

with the operators written in the Heisenberg representation. In
Eq. (10), we have embodied in the spinorial wave function,
φIs, the 1√

Nk
prefactor, with Nk the number of k-points. In this

way we can write, for example, the spin components of the
density matrix as

ρss′ (x) =
∑

I

∑
α=0,3

φ∗
Is(x)[σα]ss′φIs′ (x), (11)

where φ∗
Is is the complex conjugate of φIs, and σ0 is the

identity. The properties of the spinorial field operators can
be easily obtained from some anticommutation rules of the
fermionic creation and annihilation operators. We have that{

ĉI1 , ĉ†
I2

} = δI1,I2 , {ĉI1 , ĉI2} = 0, (12a)∑
s

∫
dx φ∗

I1s(x)φI2s(x) = δI1,I2 , (12b)

∑
I

φ∗
Is1

(x1)φIs2 (x2) = δs1s2δ(x1 − x2), (12c)

where δI,J ≡ δk,k′δn,n′ .

B. The interaction term and the perturbative expansion

A crucial point of the present formulation is that by
replacing the bare single-particle Hamiltonian, ĥ, with the

Kohn-Sham (KS) Hamiltonian, ĥ
KS

, the whole perturbative
expansion is done on top of the KS energies and eigenvectors.

A subtle but essential point, however, is that in order to
prevent double-counting problems, the pure electron-electron
interaction needs to be amended. Without relativistic correc-
tions, this means that∑

i

ĥ0
i + Ĥ (e-e) →

∑
i

ĥKS
i + 
Ĥ (e-e), (13)

with


Ĥ (e-e) = Ĥ (e-e) −
∑

i

[
v̂Hxc

i

]
, (14)

which is done in practice by subtracting v(xc) from the many-
body self-energy �.

In the presence of relativistic corrections, one needs to
replace in Eq. (13),

ĥ0 → ĥ0 + ĥ(RK) + v̂SOC, (15)

Ĥ (e-e) → Ĥ (e-e) + Ĥ [SO(2e)] + Ĥ (SOO). (16)

The resulting effective electron-electron interaction is non-
diagonal in spin-space, and one should in principle follow
the derivation of Ref. [21] to define the proper many-body
self-energy at the diagrammatic level. Here we neglect such
a complication, and we focus on the effect of using a
fully noncollinear noninteracting Hamiltonian while keeping
a standard spin-independent interaction at the diagrammatic
level. This means that we will use the standard definition
of the many-body self-energy and still rely on Eq. (14) for
applying corrections of MBPT on top of DFT.

III. SPINORIAL FORMULATION OF HEDIN’S EQUATIONS

When a noncollinear potential is present in h, this implies
that the whole formulation of the many-body problem must
be rewritten in the spinorial basis. We start from the standard
Hedin equation in the space and spin, (x, s), basis. Then,
using the definition of the spinorial field operators of Eq. (9),
we expand all terms in the theory in the spinorial basis. In
Appendix B, we give a short review of Hedin’s equations,
which solve exactly the problem. To rewrite the MBPT in the
spinorial representation, we note that, in principle by using
Eq. (10), the different components of Hedin’s equations can
be conveniently rotated.

In practice, we define two maps, M2 and M4:

M2 : F (1, 2) ≡ φ∗
I1s1

(x1)F (1, 2)φI2s2 (x2) = FI1I2 (t1, t2) (17)

and

M4 : F (1, 2, 3, 4)

≡ φ∗
I1s1

(x1)φI2s2 (x2)F (1, 2, 3, 4)φI3s3 (x3)φ∗
I4s4

(x4)

= F
I1I2

I3I4

(t1, t2, t3, t4). (18)

In Eqs. (17) and (18), n ≡ (xn, sn, tn) and repeated variables
are either integrated or summed up. Thanks to these two
maps, we can easily define the representations in the spinorial
basis of the different components of Hedin’s equations. More
specifically, following Ref. [29], we define

GI1I2 (t1, t2) = M2 : G(1, 2), (19a)

�I1I2 (t1, t2) = M2 : �(1, 2), (19b)

V
I1I2

I3I4

= M4 : v(1, 3)δ(1, 2)δ(3, 4), (19c)

W
I1I2

I3I4

(t1, t2) = M4 : W (1, 2)δ(1, 3)δ(2, 4), (19d)

�̃
I1I2

I3I4

(t1, t2; t3) = M4 : �̃(1, 2; 3)δ(3, 4), (19e)

χ̃
I1I2

I3I4

(t1, t2) = M4 : χ̃ (1, 2)δ(1, 3)δ(2, 4). (19f)
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The kind of map to be applied depends on the number of
field operators involved in the definition of the correspond-
ing quantity and not on the number of space-time or spin
arguments. This implies the need for δ functions that extend
“contracted quantities.” For example, the response function
χ (1, 2) is a contraction of the more general two-particle Green
function L(1, 3; 2, 4) with χ̃ (1, 2) = L̃(1, 1; 2, 2). The proof
of each rotation is given in Appendix C and referenced here
when necessary. As a simple example, we see that the most
elemental ingredient of MBPT is the GF. This can be rotated
by simply using Eq. (10),

G(1, 2) =
∑
I1,I2

φI1s1 (x1)GI1I2 (t1, t2)φ∗
I2s2

(x2). (20)

Then the Dyson equation reads

GI1I2 (t1, t2) = G(0)
I1I2

(t1, t2)

+ G(0)
I1I3

(t1, t3) �Hxc
I3I4

(t3, t4)GI4I2 (t4, t2) (21)

with �Hxc = vH + �; the Hartree potential and the self-
energy are defined as

vH
I3I4

(t3) = −iV
I3I4
I5I5′

GI5I5′ (t3, t+
3 ), (22a)

�I1I2 (t1, t2) = −iGI1′ I3 (t1, t3)

×̃�
I3I2

I4I4′

(t3, t2; t4)W
I4′ I4
I1I1′

(t4, t1). (22b)

The equation of motion for the vertex can be derived by using
a generalized chain rule written in the spinorial basis; this is
derived in Appendix C 3:

�̃
I3I2
I4I5

(t3, t2; t4) = δI3,I4δI2,I5δ(t3 − t4)δ(t4 − t2)

+ δ�I3I2 (t3, t2)

δGI6I7 (t6, t7)
GI6I8 (t6, t8)

× �̃
I8I9
I4I5

(t8, t9; t4)GI9I7 (t9, t7). (23)

From Eqs. (23) and (B10) we obtain the equation for the
response function in the spinorial basis. Indeed,

L̃
I1I1′
I2I2′

(t1, t2) = GI1I3 (t1, t3) �̃
I3I4
I2I2′

(t3, t4; t2)GI4I1′ (t4, t1). (24)

It is crucial to observe that L̃ is a two times and four space
points function that can be contracted to define χ̃ , as explained
in Appendix C 4. Equations (21)–(24) represent the spinorial
form of Hedin’s equations.

A. The GW approximation

Starting from Eqs. (22b) and (23), the GW approximation
follows from choosing

�̃
I3I2
I4I5

(t3, t2; t4) ≈ δI3,I4δI2,I5δ(t3 − t4)δ(t4 − t2), (25)

from which

�GW
IJ (t1, t2) = −iGLM(t1, t2)W RPA

JM
IL

(t1, t2). (26)

Starting from the GW self-energy, different flavors of
the scheme can be considered. The G0W0 flavor assumes
GIJ(t1, t2) ∼ GKS

IJ (t1, t2) and also W RPA functional of the KS
states only.

From this point up to the end of the present section, we
will use the extended form of the spinor indexes, I → (nk),
together with the translational invariance. Thus we assume
to be in a perfectly periodic system, where the Coulomb
interaction and the response function are represented as a
Fourier expansion in terms of plane waves, G, and transferred
momenta, q,

v(x − x′) =
∑

G

∫
dq

(2π )3

4π

|q + G|2 ei(q+G)·(x−x′ ) (27a)

and

W RPA(x, x′; ω)

=
∑

G1,G2

∫
dq

(2π )3 W RPA
G1G2

(q; ω)ei(q+G1 )·xe−i(q+G2 )·x′
, (27b)

with W RPA(x1, x2; ω) the Fourier transform of W RPA(1, 2).
The extended forms of Eq. (27) can be found in several ref-
erences; see, for example, Ref. [1]. By using Eq. (27b), we
finally get that

�
G0W0
nmk (ω) = − i

∫
dω′

2π

∫
d3q

(2π )3

×
∑

i jG1G2

GKS
i jk−q(ω − ω′)W RPA

G1G2
(q, ω′)

× ρ
q
nik(G1)ρq,∗

jmk(G2) (28)

with

ρ
q
nmk(G) =

∑
s

∫
dx φnks(x)φ∗

mk−qs(x)ei(q+G)·x. (29)

The Fourier transform of GKS
nmk(t1, t2) can be conveniently

written as

GKS
nmk(ω) = δn,m

[
(1 − fnk )

ω − εKS
nk + iO+ + fnk

ω − εKS
nk − iO+

]
. (30)

We have now all the ingredients to calculate the self-energy.
Indeed, thanks to the definition Eq. (29), all can be recast
in the product of simple oscillators that can be efficiently
calculated via fast Fourier transformation techniques.

The use of the KS Hamiltonian as a zeroth-order term of
the total Hamiltonian implies also that �nmk(ω) needs to be
replaced by �nmk(ω) − vxc

nmk in the Dyson equation for G. It
follows then that the Dyson equation reads

Gnmk(ω) = GKS
nmk(ω) + GKS

nik(ω)
[
�i jk(ω) − vxc

i jk

]
Gjmk(ω).

(31)
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The last approximation in the G0W0 flavor is to assume that
only the energies need to be corrected and not the wave func-
tions. This implies

�nmk(ω) ≈ δnm�nnk(ω), (32a)

Gnmk(ω) ≈ δnmGnnk(ω). (32b)

From Eq. (32b) we obtain the final form of the Dyson equa-
tion, Eq. (B4) used in this work,

εGW
nk ≈ εKS

nk + [
�nnk

(
εGW

nk

) − vxc
nnk

]
. (33)

IV. THE BETHE-SALPETER EQUATION

The spinorial Bethe-Salpeter equation can be derived from
the general spinorial Hedin’s equations by some manipu-
lations that we outline in the following. Let us start by
introducing the static limit of the GW self-energy, the so
called screened exchange (SEX) approximation

�SEX
I1I2

(t ) = −iGI4I3 (t )W st

I1I4
I3I2

, (34)

with W st = δ(t1 − t2)W RPA(t1, t2). The approximation intro-
duced by Eq. (34) is crucial in turning the BSE, an equation
for a four-point Green’s function L̃, into a simpler equation
for a two-time-point function. Still the general solution is a
four-index function L̃

I1I1′
I2I2′

(ω).

We can now easily calculate the functional derivative
δ�I3I2
δGI6I7

,

which defines the kernel of the BSE for the vertex function:

δ�I3I2 (t3, t2)

δGI6I7 (t6, t7)
≈ δ(t3 − t6)δ(t2 − t7)W st

I3I6
I7I2

, (35)

where we have assumed the derivative of W st to be negligible.
Thanks to the approximation Eq. (34), the equation of motion
for the vertex acquires a simple form that can be solved in
subspace of single-frequency vertex functions, �(ω). From
Eq. (35) and by using Eq. (32b) we can work out the BSE
for the spinorial vertex in the SEX approximation:

�
I3I2
I4I5

(ω) = δI3,I4δI2,I5 + i

[
W st

I3I6
I7I2

− V
I3I6
I7I2

]

× GI6I6 (ω)�̃
I6I7
I4I5

(ω)GI7I7 (ω). (36)

To connect Eq. (36) to an equation of motion for the response
function, the BSE, we now move from the I basis to the
explicit (nk) presentation. We start by introducing, for the
general representation of L̃

I1I1′
I2I2′

(t ) evaluated for a given trans-

ferred momentum q,

I1 ≡ (nk), (37a)

I1′ ≡ (n′k − q), (37b)

I2 ≡ (mp), (37c)

I2′ ≡ (m′p − q). (37d)

We denote as L̃
nn′k
mm′p

(q, t ) the response function whose scat-

tering geometry is defined by Eq. (37). Equation (36) now
defines an equation for L̃

nn′k
mm′p

(q, ω) as, following the notation

Eq. (37), we can write

L̃
nn′k
mm′p

(q, ω) = Gnnk(ω − ω)Gn′n′k−q(ω)�
nn′k
mm′p

(ω). (38)

By putting together Eqs. (38) and (36), we get the final equa-
tion for L̃:

L
nn′k

mm′p
(q, ω)

= L0

nn′k
mm′p

(q, ω)L0

nn′k
nn′k

(q, ω)K
n n′k
m m′p

(q)L̃
m m′p
mm′p

(q, ω) (39)

with

L0

nn′k
mm′p

(q, ω) ≡ δ(k − p)δnmδn′m′Gnnk(ω − ω)Gn′n′k−q(ω),

(40)

−iK
nn′k
mm′p

(q) ≡
⎡⎣W st

nmk
n′m′k−q

(k − p) − V
nn′k
mm′p

(q)

⎤⎦. (41)

∫
d3k

(2π )3 ,
∫ d3p

(2π )3 , and
∫

dω
(2π ) are implicit. Equation (39) is the

spinorial Bethe-Salpeter equation written for a generic trans-
ferred momentum q. In the q → 0 (optical) limit it reduces
to the optical BSE, which we will use to study the optical
properties of group VI TMDs in the next section.

As in the G0W0 case, Eq. (39) looks the same as the
scalar BSE. Indeed, the only difference is the definition of
the oscillators defined in Eq. (29). It also follows that, as in
the spin-independent case, the solution of Eq. (39) can be
recast in an eigenvalue problem. To show this, it is enough
to solve Eq. (39) by noting that L0(ω) is a sum of simple
single-pole functions. Carefully separating the resonant and
the antiresonant term, the eigenvalue problem can be defined,

H excAλ = EλMAλ, (42)

in terms of an excitonic matrix H exc [1] and a metric tensor,

M =
(

1 0
0 −1

)
. (43)

The final form of L
nn′k
mm′p

(ω) can be expressed in terms of the

eigenstate of the BSE matrix. It has a particularly simple
expression if the resonant-only contribution is considered:

L
nn′k
mm′p

(ω) =
(∑

λ

Aλ,∗
nn′kAλ

mm′p

ω − Eλ + i0+

)
. (44)

Starting from the eigenvectors of the excitonic Hamiltonian,
we can define the excitonic-state wave function as a linear
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combination of electron-hole pairs:
←→|λ〉 =

∑
nmk

Aλ
nmk

−−→|nk〉 ⊗ −−→|mk〉. (45)

The electron-hole pairs contributing to the excitonic wave
function are vectors in spin space. In practice, this means that
the exciton is, in the noncollinear case, a linear combination
of the four possible spin orientations of the electron and hole,
i.e., a tensor.

A. Blocking of the BSE matrix and BSE spin structure

1. The magnetic case

If v̂(SOC) is weak, the noncollinearity of the KS eigenstates
can be neglected as a first step and then the SOC correction
treated perturbatively. In the collinear limit case, sz, i.e., the
spin projection of electrons (and holes), becomes a good quan-
tum number and accordingly also Sz, i.e., the spin projection
of the exciton. The extra quantum number can be added in
Eq. (8), which becomes

〈x−−→|nks〉 ≡ −→
ψ Is(x) = φnks(x)

−→|s〉, (46)

where
−→|s〉 is either

−→|↑〉 = (1, 0)t (for s = +1/2) or−→|↓〉 = (0, 1)t (for s = −1/2); the superscript “t” indicates
the transposition operation. If a collinear calculation is
performed, in practice one can compute just φnks(x) and
reconstruct the spinorial wave functions via Eq. (46). This
would be, in principle, also the result of a spinorial calculation
with a collinear Hamiltonian. However, in this second case,
whenever εnk↑ = εnk↓, the resulting wave functions will be a

random (but orthogonal) linear combination of
−→
ψ I↑(x) and−→

ψ I↓(x) wave functions.
In the collinear limit, H exc can be blocked in two matrices

with half the size of the spinorial BSE: the spin-conserving
(
Sz = 0) transitions or “excitons” (λe) and the spin-flip
(
Sz = ±1) transitions or “magnons” (λm), with

|λe〉 =
∑
cvks

Aλe
cvks|ck, s〉 ⊗ |vk, s〉, (47a)

|λm〉 =
∑
cvks

Aλm
cvks|ck, s〉 ⊗ |vk,−s〉. (47b)

Excitons and magnons, in Eq. (47), distinguish the two pos-
sible spin combinations of the electron-hole pair. In the
collinear case, only excitons, where the c and v states have the
same spin, can be excited by the laser pulse. Magnons cannot
be generated, since optical transitions between states with op-
posite spin are forbidden. Notice that the magnon block is also
composed by two independent subblocks, which are in general
different, i.e., 
Sz = +1 and −1. These are two independent
sets of excitations when Sz is a good quantum number. For
an analysis of BSE applied to the magnon channel, see, for
example, Ref. [30]. Instead, the total spin is not yet a good
quantum number, and the origin of this can be traced back
to the fact that |φnk↑(x)|2 �= |φnk↓(x)|2. This is well known
in the literature of quantum chemistry, where the term “spin
contamination” is used, and restricted calculations, which
indeed impose φnk↑(x) = φnk↓(x) and εnk↑ = εnk↓, are some-
times performed. In extended systems, the breaking of spin

symmetry is instead regarded as less important; the exchange
splitting 
nk = εnk↑ − εnk↓ is seen as a physical quantity.

2. The nonmagnetic case

Instead if the system is nonmagnetic, εnk↑ = εnk↓ for any
nk, the ground state has total spin S = 0, and

φnks(x) = eiαnksφnk(x), (48)

with αnks an arbitrary phase factor. In practical calcula-
tions only φnk(x) are computed and αnks = 0 is assumed.
However, if a collinear spin-dependent calculation is explic-
itly performed on a nonmagnetic system, random phases
αnk↑ − αnk↓ will be present in between the two spin chan-
nels. Using Eq. (48), i.e., the BSE Hamiltonian, the exciton
channel (
Sz = 0) can be further blocked into singlets (S)
with (S, Sz ) = (0, 0) and triplets (T ) with (S, Sz ) = (1, 0). The
“magnons” channel remains composed of two blocks, which
now represent the triplets (S, Sz ) = (1,+1) and (S, Sz ) =
(1,−1). All triplet blocks are degenerate and identical up to
the phases αnk. Starting from the solutions of the unpolarized
BSE ÃλS

cvk (ÃλT
cvk) in the singlet (triplet) block, the full eigen-

vectors can be reconstructed as

AλS
cvks = (−1)2s+1 ei(αcks−αvks )

√
2

ÃλS
cvk, (49a)

AλT
cvks = ei(αcks−αvks )

√
2

ÃλT
cvk. (49b)

The factor
√

2 in Eq. (49) ensures that the eigenvectors are
normalized to 1.

3. BSE matrix blocking

To summarize, let us explicitly write the general spin struc-
ture of the matrix relabelling the states nk (with n = 1, . . . , N)
as n̄sk (with n̄ = 1, . . . , N/2, s =↑,↓). This is just an exact
relabeling, which becomes meaningful, i.e., n̄↑k (n̄↓k) refers
to a “spin-up” (“spin-down”) state if v̂(SOC) is small and the
collinear case notation can be recovered, i.e., {n̄↑k} = {mk ↑}
if v̂(SOC) = 0. For each set of indexes {n̄n̄′k, m̄m̄′p},

H res = H0 + H exch + He-h-int (50)

is written in terms of 4 × 4 matrices in the “spin” indexes [31]:

H0
s1s2s3s4

= (εs1 − εs2 )δs1,s3δs2,s4 , (51a)

H exch
s1s2s3s4

= −iVs1s2s3s4 , (51b)

He-h-int
s1s2s3s4

= iW st
s1s3s2s4

. (51c)

We have the following three cases:
(i) Noncollinear case. Neither Sz nor S is a good quantum

number, thus excitons and magnons are mixed. H exc is an
N × N matrix. All the matrix elements of Eq. (51) can be
different from zero.

(ii) Collinear magnetic case. Sz is a good quantum number,
while S is not. The BSE can be blocked in two matrices, He

and Hm, of size N/2 × N/2 each, which describe separately
excitons and magnons. This results from the fact that, for the
collinear case, Vs1s2s3s4 ∝ δs1,s2δs3,s4 and W st

s1s3s2s4
∝ δs1,s3δs2,s4 ,

and thus all matrix elements that couple the 
Sz = 0 channel
to the 
Sz = ±1 channels are zero.
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(iii) Collinear nonmagnetic case. Both Sz and S are good
quantum numbers. The BSE can be further blocked with four
blocks in total, three of which carry the same information.
The exciton channel He generates the singlet block (
S = 0)
and the triplet block (
S = 1). The two blocks resulting from
the magnon channel Hm are equivalent to the triplet block.
Indeed, since the ground state is nonmagnetic, the distinc-
tion between excitons and magnons becomes meaningless.
In total, there are two matrices, HS/T , of size N/4 × N/4
each. This results from the fact that Vs1s1s3s3 = V for any
{s1, s3} and W st

s1s1s2s2
= W st for any {s1, s2}. The blocking

in this second step is obtained via the vectors 1/
√

2(1, 1)t

and 1/
√

2(1,−1)t . As a consequence, H exch,S = 2V while
H exch,T = 0 and all triplet states are lower in energy.

V. THE EXCITONIC SPIN POLARIZATION

In the previous section, we discussed the spin structure of
H exc in different cases and connected the different sized of the
matrix to the spin of the exciton in the singlets and triplets
channels. We start the present section introducing the matrix
that relates the spin of the electron and the hole to the total spin
S and its projection Sz of the electron-hole pair. We define the
triplet and singlet spin states in the usual way, |S, Sz〉 [32],

|S, Sz〉 = RSSz
sesh

|se〉 ⊗ |sh〉. (52)

RSSz
sesh are matrices in the basis of the products of the electron

and hole spins. These can be written as 2 × 2 matrices as
follows:

R1,−1 =
(

0 0
1 0

)
, (53a)

R1,0 = 1√
2

(−1 0
0 1

)
, (53b)

R1,1 =
(

0 1
0 0

)
, (53c)

R0,0 = 1√
2

(
1 0
0 1

)
. (53d)

We start by expanding Eq. (45) in the basis of space/spin
components, and we write explicitly the sesh component of
the excitonic state:

|λ〉 =
∑
sesh

∫
d3red3rh|sesh〉|rerh〉〈rerh|〈sesh|λ〉. (54)

Equation (54) defines the excitonic wave function projected
on the spin state |sesh〉|rerh〉:

�λ
sesh

(rerh) ≡ 〈rerh|〈sesh|λ〉. (55)

Thanks to Eq. (52), we can rewrite Eq. (55) in terms of the
components on the triplet and singlet spin states,

|λ〉 =
∑
SSz

∫
d3red3rh|S, Sz〉|rerh〉〈rerh|〈S, Sz|λ〉, (56)

with

�λ
S,Sz

(rerh) ≡ 〈rerh|〈S, Sz|λ〉 =
∑
sesh

RS,Sz
sesh

�λ
sesh

(rerh). (57)

Thanks to Eq. (57), we can introduce several observables that
can efficiently describe the noncollinearity of the excitonic
state.

We start from the normalization condition:

δλλ′ = 〈λ|λ′〉 =
∑
S,Sz

∫
d3red3rh

∣∣�λ
S,Sz

(rerh)
∣∣2 =

∑
S,Sz

Nλ
S,Sz

,

(58)

with

Nλ
S,Sz

≡ |〈S, Sz|λ〉|2

=
∫

d3red3rh

∣∣∣∣∣ ∑
cvksesh

Aλ
cvkRS,Sz

sesh
φckse (re)φ∗

vksh
(rh)

∣∣∣∣∣
2

.

(59)

It is worth noting that when expanding the square modulus
of Eq. (59), only a single summation over k survives due
to momentum conservation, whereas on all the other indexes
double summations remain. From Eq. (59) it follows that we
can define an excitonic total average spin and momentum as

S2
λ = 〈λ|Ŝ2|λ〉 =

∑
Sz

S(S + 1)Nλ
S,Sz

, (60a)

Sz,λ = 〈λ|Ŝz|λ〉 =
∑

S

SzN
λ
S,Sz

. (60b)

A. The collinear magnetic case

The meaning of Eq. (59) can be better understood by taking
the collinear case. From Eq. (59) it follows that we can define
the spin polarization of excitons and magnons as

Nλe,m

S,Sz
=

∑
cv

c′v′

k
∑
ss′

Aλe,m,∗
c′v′ks′A

λe,m

cvksR
S,Sz,∗
s±s RS,Sz

s′±s′ 〈c′k, s′|ck, s〉

× 〈vk,±s|v′k,±s′〉, (61)

where the + and − signs stand for the excitons and magnons
channel, respectively. Note that in Eq. (61) the two inner
products are between the spatial part of the wave function,
which does not impose the spin to be conserved.

To manipulate Eq. (61), we observe, from Eq. (53), that
the specific form of the R matrices imposes that in the Nλe

S,Sz

case only the (S, Sz ) = (1, 0) and (0, 0) are nonzero. On the
contrary, in the Nλm

S,Sz
case the nonzero components will be

(S, Sz ) = (1,±1). This marks the distinction between exci-
tons and magnons.

After some simple manipulation, we get

Nλe
S0 = 1

2

{
1 ±

∑
cv

c′v′k

[
O

cv↑
c′v′↓k

+ O
cv↓

c′v′↑k

]}
(62a)

O
cvs

c′v′s′k
= Aλe,∗

c′v′ksA
λe
cvks′ 〈c′k, s|ck, s′〉〈vk, s′|v′k, s〉, (62b)
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where the + (−) refers to S = 0 (S = 1). Similarly, we get

Nλm
11 =

∑
cvk

∣∣Aλm
cvk↑

∣∣2
, (63)

Nλm
1−1 =

∑
cvk

∣∣Aλm
cvk↓

∣∣2
. (64)

From Eqs. (62) and (64) it follows that, in general, also in
the collinear case the value of Sλ is not fixed. This is again a
manifestation of the fact that S is not a good quantum number
in general. The collinear systems can be characterized by a
nonvanishing magnetization that causes the ↑ and ↓ compo-
nents of the electronic wave functions to differ by more than
a simple phase factor. The consequence is a state-dependent
value of the excitonic spin.

B. The collinear nonmagnetic case

Let us conclude this section by considering the case of a
collinear and nonmagnetic system. When Eqs. (48) and (49)
are plugged into Eq. (61), it turns out that

Nλe(S)
SSz

= δS,0δSz,0, (65a)

Nλe(T0 )
SSz

= δS,1δSz,0, (65b)

Nλm (T1 )
SSz

= δS,1δSz,−1, (65c)

Nλm (T−1 )
SSz

= δS,1δSz,1, (65d)

as it should from the blocking of the BSE matrix.

VI. A PERTURBATIVE APPROACH TO THE EFFECT
OF SPIN-ORBIT COUPLING

We now proceed to consider the SOC as a perturbation. To
first order, the perturbation just gives a correction to the DFT
eigenvalues and does not touch the wave functions. Numer-
ically, the perturbation needs to be applied by mapping the
solution of the DFT calculation without SOC into the solution
of the DFT calculation with SOC. In the first part of this
section, we discuss such mapping.

Once a mapping is defined, the SOC perturbation could be
directly applied to the KS energies before solving both the
GW scheme and the BSE or after. In the second part of this
section, we discuss such a distinction.

A. Mapping procedure

Now, in order to define a mapping procedure in practice we
distinguish between the KS Hamiltonian without SOC, ĥKS,0,
and the standard KS Hamiltonian ĥKS, with ĥKS − ĥKS,0 =
v̂(SOC). Moreover, let us focus here on the situation in which
the ground state is nonmagnetic, since it is the case for which
calculations are actually performed in the present paper and
also because it is the more complex case. The generalization
to magnetic systems is straightforward. ĥKS,0 is then collinear
and spin-independent. It has eigenvectors φ0

nk(x) and energies
εKS,0

nk .
The key passage now is how to connect the eigenvectors

of the SOC-free case to the full spinorial case. To this end,
we define a map based on the overlap between φ0

nk(x) and−→
φ nk(x). Since both represent a complete basis set for each

k-point, we just need to expand
−→
φ nk(x) in terms of the spinor

defined extending φ0
mk(x), first including the spin index [i.e.,

using Eq. (48)] and then constructing the spinors [i.e., using
Eq. (46)]. Notice that in doing so, the gauge with eisαnk = 1
is assumed. Moreover, in the degenerate spaces, the “up” and
“down” spinors are always chosen among all possible random

combinations. Let us call
−→
φ 0

mks(x) = 〈x|−−→mks〉 the result of
such an expansion. Then it follows that

|−→nk〉 =
∑
ms

|−−→mks〉〈←−−
mks|−→nk〉 =

∑
ms


k
n,ms|

−−→
mks〉. (66)

We now want compute the first-order perturbation theory cor-
rection to the energy with respect to the perturbation V̂ =
ĥKS − ĥKS,0. Using Eq. (66), it can be expressed as

εmks = ε0
mk + 〈←−−

mks|(ĥKS − ĥKS,0)|−−→mks〉
= ε0

mk + (〈←−−
mks|ĥKS|−−→mks〉 − ε0

mk

)
= ε0

mk +
∑

n

∣∣
k
n,ms

∣∣2
εnk − ε0

mk, (67)

where in the third line we inserted two completeness relations

over |−→nk〉, we used the fact that |−→nk〉 are eigenstates of ĥKS,
and we used the definition of 
k

n,ms. Equation (67) is exact. We
now define a generic mapping function, fk, which maps every
eigenstate of ĥKS to the eigenstates of ĥKS,0. In case neither

|−−→mks〉 nor |−→nk〉 is degenerate, the mapping function can be
defined as

fk(ms) = n if
∣∣
k

n,ms

∣∣2 = Dk
n , (68)

with Dk
n = maxms |
k

n,ms|2. The extension to the degenerate
case is discussed is Appendix F. Using the mapping proce-
dure, we can approximate Eq. (67) as

εmks ≈ ε0
mk + (

ε fk (ms)k − ε0
mk

)
≈ ε0

mk + 
εSOC
mks . (69)

Note also that for each eigenvalue ε0
mk, a pair of spinorial

states is selected, one for s =↑ and one for s =↓, since to each
mk are associated two spinors via Eqs. (48) and (46). This
property will be crucial to defining spin-conserving (
Sz ≈ 0)
and spin-flip (
Sz ≈ ±1) excitations.

We also define the quality of the mapping as

Q = min
nk

(
Dk

n

)
, (70)

and we monitor its value. 0 < Q � 1, and Q = 1 means the
mapping is exact.

B. Perturbative SOC within GW and BSE

We now want to use the mapping to apply the corrections
in the GW-BSE scheme. Formally, one should first apply
the SOC corrections and then solve the GW-BSE scheme.
Applying them before would significantly increase the com-
putational load, thus reducing the advantages of using a
perturbative approach compared to the full approach. We thus
want to apply the corrections afterward. In the next section,
we will check the quality of the scheme against full SOC
calculations.
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Both in GW and in BSE, the KS energies enter in the RPA
screening. In W RPA one can reasonably expect no significant
changes due to SOC. Then, as far as GW is concerned, the KS
energies enter in two more points: the definition of the self-
energy and the Dyson equation for G. The Dyson equation for
G is recast in terms of Eq. (33) for the QP energies, and it
gives

εGW
mks ≈ εKS

mk + [
�mmk

(
εGW

mk

) − vxc
mmk

] + 
εSOC
mks . (71)

Since the perturbative approach assumes that only the energies
change, all matrix elements remain in the collinear basis set.
Only the self-energy depends explicitly on the energies. Thus
small differences between applying SOC corrections before
or after can be due to the self-energy. Further differences with
the full SOC approach are expected to be higher order.

In the BSE scheme instead there is no straightforward way
to apply the corrections afterward, and a new procedure needs
to be defined. To this end, we follow the “perturbative-BSE”
(pBSE) approach of Ref. [11], which, however, we critically
discuss and refine. In the pBSE, the SOC potential extended
to the e-h basis set is defined as

V (SOC)
ss′ (xc, xv ) = [

v
(SOC)
ss′,c (xc) ⊗ 1v

] − [
1c ⊗ v

(SOC)
ss′,v (xv )

]
.

(72)

This potential is then used to define the SOC corrections 
ωλs

to the BSE eigenvalues without SOC ω0
λ via its expectation

value on the excitonic state.
For the spin-conserving, optically active channel, we use

the mapping procedure proposed in the literature [11]. Intro-
ducing

�λS,0
ss′ (xc, xv ) = δs,s′

∑
cvks

AλS
cvksφ

0,∗
cks(xc)φ0

vks(xv ),

where AλS
cvks is obtained from Eqs. (49), the SOC corrections

are defined as


ωS,0
λ = 〈�0,λ|V̂ (SOC)|�0,λ〉

=
∑
cvks

∑
c′v′k′s′

AλS,∗
cvksA

λS
c′v′k′s

× [〈
ψ0

cks

∣∣v̂(SOC)
∣∣ψ0

c′k′s′
〉

+ 〈
ψ0

vks

∣∣v̂(SOC)
∣∣ψ0

v′k′s′
〉]

≈
∑
cvks

∣∣AλS
cvks

∣∣2(

εSOC

cks − 
εSOC
vks

)
. (73)

We used the mapping approximation and we neglect the terms
with c �= c′, v �= v′, and s �= s′. δ(k − k′) is instead imposed
by the Bloch Hamiltonians. This is a simplification, and one
should carefully check how the SOC splitting compares with
the exchange splitting (see Appendix E for more details).

For the spin flipping (or magnons) channel instead, the
exchange interaction is always ≈0 and the mapping procedure
is unique, with

�λT,±1
ss′ (xc, xv ) = δs,−s′

∑
cvk

AλT
cvksφ

0,∗
ck±s(xc)φ0

vk∓s(xv )

and


ωT,±1
λ ≈

∑
cvk

∣∣AλT
cvks

∣∣2(

εSOC

ck±s − 
εSOC
vk∓s

)
. (74)

Equations (73) and (74) are used in the present paper to
compute the optical properties of TMDs.

VII. RESULTS FOR PARADIGMATIC MATERIALS

Bulk TMDs are indirect gap semiconductors, but when go-
ing to a single layer, their gap becomes direct (or quasidirect),
making them suitable for applications in the fields of electron-
ics, optoelectronics, and sensing. The K+ and K− points of the
hexagonal Brillouin zone are the location of the band extrema
of the TMDs. At these inequivalent points, linked by time-
inversion symmetry, the spin-split valence-band maximum
(VBM) and conduction-band minimum (CBM) are almost
completely spin-polarized in an opposite way in the two val-
leys, allowing for a selective valley excitation by σ+- and
σ−-polarized light. All the results that will be discussed from
this point on were obtained using the computational methods
and parameters presented in Appendix D.

A. Effect of SOC in the band structure

As shown in Table I, the valence-band spin splitting at K
is of several hundreds of meV, whereas the conduction band
is split only a few tens of meV. Because the lowest SOC split
conduction band can either have the same as or the opposite
spin character of the top valence band, it is convenient to de-
fine the conduction-band splitting as CBMS = εσ

CBM − ε−σ
CBM,

where σ is the spin of the top of the valence band at K. In
this way, the two different situations are marked by the sign
of the splitting, i.e., if the bottom of the conduction band has
the same spin character as the top of the valence band, the
resulting CBMS will be negative.

Similarly to previous calculations, and shown in Figs. 2
and 3, we observe that for Mo-based systems, the bottom of
the conduction at K has the same character of the top of the
valence, whereas the opposite is true for W-based systems. We
find a reduction (increase) of the absolute value of the CBM
splitting for the WX2 (MoX2) systems, as the conduction state
with the same spin character of the VBM is less corrected
than the one with the opposite character (if σ is the spin of
the top of the valence band at K, 
εGW

σ,c < 
εGW
−σ,c). At the

GW level, the sign of the CB splitting is consistent with the
literature; the observed dispersion in the computed numerical
values is possibly due to the use of the GdW approach in one
case [37] and to different calculation parameters or numerical
implementations in the remaining cases [33–36].

As a consequence of the positive/negative CBM splitting,
based only on the analysis of the GW electronic states, it
could be argued that for W-based systems, the optically ac-
tive and spin-allowed transition should have higher energy
with respect to the dark spin-forbidden transition, while the
opposite should be true for Mo-based systems. However, it is
not possible to predict whether the lowest optical excitation
is spin-forbidden (dark) or spin-allowed (bright) only on the
basis of the electronic band structure. The dark or bright
character of the lowest optical excitation is indeed the result
of a delicate interplay between the different contributions to
the excitation energy, and the full treatment of SOC at a
nonperturbative level may change qualitatively the picture.
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TABLE I. SOC splitting of the highest valence and lowest conduction band (VBM, CBM) at K. The conduction-band splitting is defined
as CBMS = εσ

CBM − ε−σ
CBM, where σ is the spin of the top of the valence band at K. All energies are in meV.

SOC splitting

Present work Literature

VBM CBM CBM

DFT GW DFT GW DFT GW

WSe2 458 516 46 25 37 [33] 40 [34] 7 [35], 10 [36], 6 [33]
WS2 408 394 33 12 33 [33] 10 [35], 12 [36], 5 [33]
MoSe2 186 191 −23 −29 −21 [33] −42 [35], −41 [36], −14 [33]
MoS2 145 151 −3 −9 −3 [33] −15 [35], −15 [36], −31 [33]

B
A AA BB

A
A BA

A
B

A B

A*
A*

A* A*

A' A'

A'A' B'

B*

A'

B
B'A'/B

FIG. 1. Top panel: Bethe-Salpeter spectra of single-layer WSe2, WS2, MoS2, and MoSe2. Middle panel: oscillator strengths (normalized
to 1). Bottom panel: each bar represents an excitation regardless of its oscillator strength. No SOC, full SOC, and perturbative SOC results
are presented in red, blue, and green, respectively. All the theoretical curves have been rigidly redshifted ∼0.1–0.2 eV to align the energetic
position of peak A to the experimental one. Experimental data are taken from Ref. [38] for MoS2, and from Ref. [39] for the remaining systems.
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MMM

MMMM

MoS2

MoSe2

FIG. 2. Zoom of the spin-split VBM and CBM around K showing the single-particle contributions to the main optical excitations: the
width of the points is proportional to the contribution of the state to the excitation, while the color refers to the spin character. Top panels:
MoS2; bottom panels: MoSe2.

B. Optical absorption spectra

In the top panels of Fig. 1, we show the GW+BSE
absorbance spectra calculated without SOC and with pertur-
bative and nonperturbative SOC, and we compare them with
available experimental data [39]. In the middle panel, bars
represent oscillator strengths for each excitation, while in
the bottom panel they signal the presence of an excitation,
independently from its oscillator strength. The optical spec-
tra are characterized by the presence of spin-split strongly
bound excitons and their corresponding series. The lowest
bright excitation (the so-called A exciton) is mainly composed
of transitions at the six-equivalent K-points of the BZ from
the VBM to the first unoccupied state with the same spin-
character, which is the CBM for MoX2 and the CBM + 1 for
WX2; see also Figs. 2 and 3. In Table II, the A exciton binding
energies, defined as the difference between the electronic and
the optical gap, are shown for the different levels of calcula-
tion together with the difference, between perturbative and full
SOC, of the absolute position of the A peak, 
EA, and of the
energy of the single-particle transition that mainly gives rise

to it, 
EIP. In general agreement with previous calculations
[40,41], in free-standing MLs the binding energy of exciton
A is large. By looking at the A exciton binding energy, it
could be simply argued that perturbative SOC systematically
underbinds the A exciton by ∼20 meV. However, by taking
a closer look at the absolute positions of the peak, the effect
of applying perturbative SOC seems far from systematic, and
thus predictable. Indeed, when looking at 
EA in Table II and
at the spectra in Fig. 1, the absolute value of the A peak po-
sition may vary by as much as 116 meV in the case of WSe2.
Moreover, the blueshift of the A exciton in the perturbative
SOC scheme is almost entirely due to larger independent-
particle transition energies for W-based materials, as shown
by the 
EIP column of Table II, but not for Mo-based ones.
This furthermore means that, while for W-based materials in
the perturbative and full SOC schemes the e-h interaction that
renormalizes the independent-particle (IP) transition energies
is very similar, for Mo-based MLs, perturbative SOC under-
estimates the strength of e-h attraction by ∼20 meV. Finally,
it is worth mentioning that experimental binding energies
depend on the substrate and are generally smaller than what
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M

M
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WS2

WSe2

FIG. 3. Zoom of the spin-split VBM and CBM around K showing the single-particle contributions to the main optical excitations: the
width of the points is proportional to the contribution of the state to the excitation, while the color refers to the spin character. Top panels:
WSe2; bottom panels: WS2.

has been found theoretically for free-standing layers [42–50].
Therefore, the direct comparison with theoretical data is not
meaningful due to the presence of the substrate that modifies
the electronic screening.

As shown in Figs. 2 and 3, the excitonic peak B is mainly
composed of single-particle transitions located at K from the

TABLE II. A exciton binding energy, difference between the
perturbative and full SOC schemes of the absolute position of the
A peak, 
EA, and of the independent-particle transition that mainly
contributes to the A peak, 
EIP. All energies are in (meV).

A exciton binding energy (meV) 
EA 
EIP

SOC Pert. SOC No SOC (meV) (meV)

WSe2 550 533 596 116 119
WS2 631 610 658 33 32
MoSe2 666 648 547 31 13
MoS2 691 673 679 29 11

spin-split VBM-1 to the first conduction band with its same
spin character, namely the CBM for W-based systems and the
CBM + 1 for Mo-based ones. The IP B-A splitting, presented
in Table III, arises from the DFT splitting of the conduction
and valence bands in the case of perturbative SOC, and from
the spinorial GW calculation for the full SOC scheme. Within
both approaches, the mixing of transitions reduces such IP
splitting, and the perturbative SOC reproduces quite well the
full SOC B-A splitting with the exception of WSe2, where
there is a difference of about ∼70 meV. The origin of such
a large deviation in the case of WSe2 can be ascribed to
large differences already at the IP level: the IP B-A splitting
difference between full and perturbative SOC [
(EB − EA)IP]
is ∼80 meV in the case of WSe2, while it ranges from
7 to 12 meV for the remaining cases. It is easy to show
that 
(EB − EA)IP = 
GW(VBMS) − 
GW(CBMS), where

GW(VBMS) [
GW(CBMS)] is the GW correction to the top
(bottom) valence- (conduction-) band splitting. Thus, in the
end, in WSe2 the large difference between full and pertur-
bative SOC B-A splittings is due to large GW corrections
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TABLE III. A′-A and B-A splittings within full and perturbative SOC schemes. BSE and independent-particle (IP) results are compared
for the case of B-A splitting. The B exciton in the full SOC MoSe2 case is not univocally defined; see the discussion in the text. Experiments
were either performed on a SiO2/Si substrate [42,45,47,49,54,55], or encapsulating the monolayer in hexagonal BN [44,46,53,56–58]. All
energies are in meV.

B-A splitting (meV) A′-A splitting (meV)

Pert. SOC SOC

IP BSE IP BSE Expt. Pert. SOC SOC Expt.

WSe2 410 380 491 450 410–430 [42,44,47,54] 140 140 130–160 [44,46,47,49,56,57]
WS2 380 340 382 340 371–395 [42,45,54] 210 210 160 [45]
MoSe2 210 200 221 200;210 155 [53] 190–220 [55] 190 200;210 155 [53]
MoS2 150 140 160 150 124–150 [45,54,58] 210 230 175 [58]

to valence- and conduction-band splittings, which are, more-
over, of opposite sign and thus sum up. On the contrary, for
WS2, the GW corrections to valence- and conduction-band
splittings have the same sign and tend to cancel each other.
Finally, for Mo-based systems the two contributions add up,
as in WSe2, but to a lower value, being one order of magnitude
smaller.

In the perturbative SOC scheme, excitons A and B are
compelled to have the same oscillator strength, which should
be half of the oscillator strength of the NO SOC calculation
they stem from, as shown in the middle panel of Fig. 1. On the
contrary, when using a full spinorial formulation, the oscilla-
tor strengths of the two structures may be different, yielding a
better agreement with experiment [51]. In particular, we find
that for W-based materials the oscillator strength of the A
exciton is larger than that of the B exciton, while the opposite
is true for Mo-based ones, although the case of MoSe2 must
be handled with care, as better detailed in the following.

The A′ structure is identified as the first structure following
A that has similar single-particle composition. From Table III
and Fig. 1 it can be seen that the sequence of A,B,A′ peaks
of the full SOC calculations is well reproduced by the pertur-
bative SOC approach, with the W-based materials featuring
an A′ peak clearly below the B one. The comparison with ex-
periments shows that the B-A splittings are well reproduced,
but A′-A splittings are in most of the cases overestimating
the experimental values. This different behavior may be due
to the different origin of the two splittings and to the cor-
responding sensitivity to the dielectric environment. While
the B-A splitting is connected to the spin-orbit splitting of
the conduction and valence bands, but is not affected by the
changes in the electronic screening due to substrates and/or
sample encapsulations, the A′-A splitting due the hydrogenoid
series is instead strongly affected, just like the binding energy.
However, it is worth noting that the A′-A splitting may require
finer k-point grids to converge its absolute value and make a
meaningful comparison with experiments, therefore we per-
formed full SOC calculations on a denser 39 × 39 × 1 k-point
grid for MoS2, MoSe2, and WSe2, finding A-A′ splitting val-
ues of 270, 231, and 215 meV, respectively. The converged
values enhance the overestimation with respect to experiment,
suggesting that the substrate effect on the A-A′ splitting needs
further investigations, but this is beyond the scope of this
paper.

C. Exchange-driven intravalley mixing

In the perturbative SOC approach, the identification of
the A and B structures is straightforward as the A and B
excitons are derived from the same excitation of the underly-
ing SOC-free BSE calculation to which different corrections
are applied. Thus, by construction, in the perturbative SOC
scheme the single-particle transitions that contribute to the A
structure are completely disjoint from those that contribute to
the B structure. However, it was recently pointed out for MoS2

that, when using a full spinorial formalism, an exchange-
driven intravalley mixing was found, meaning that transitions
pertaining to the B exciton contributed (minimally) to the
A exciton and vice versa [51]. We confirm this finding for
MoS2, and we found a similar mixing of contributions for the
W-based materials. The mixing of transitions can be easily
recognized looking at Fig. 2, where for the B excitons we see
that all bands contribute. But while for MoS2 this mixing is
minimal, we find a huge effect for the B exciton of MoSe2.
In this case, the structures that we labeled A′/B arise from
four almost degenerate excitons, which are linear combina-
tions of single-particle transitions from the VBM to the CBM
(characterizing the A series) and from the VBM-1 and the
CBM + 1 (characterizing the B series). The degree of mixing
is one order of magnitude larger than in the other cases,
meaning the exchange interaction, leading to the intravalley
mixing between VBM → CBM and (VBM-1)→(CBM + 1)
transitions, is playing a prominent role. To understand this
enhancement, we must look back at the structure of the BSE
Hamiltonian 
Sz = 0 channel in the collinear magnetic case;
see Sec. IV A 3. The magnitude of the exchange term should
be compared to the splitting of the diagonal part: the smaller
such splitting is, the more the off-diagonal exchange term will
mix the two transitions.

In the perturbative SOC calculations, where the A and B se-
ries cannot mix by construction, the A′ and B peaks happen to
be in close proximity to one another, as also reported in [52].
The proximity in energy between these two states explains
the enhanced, exchange-driven, intravalley mixing, and this
finding is robust with respect to denser k-point sampling. A
recent up-conversion experiment on a hexagonal boron nitride
encapsulated sample [53] is able to resolve two structures
150 and 155 meV above the A exciton, which could not
be previously resolved [54,55]. While it is not possible to
experimentally assign to such structures a pure A′ and B or
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TABLE IV. A-A∗ splitting (i.e., bright-dark splitting of exciton A). All energies are in meV. A-A∗ splittings from Ref. [33] are taken from
G0W0-PBE + BSE calculations for Mo-based materials, while they are taken from G0W0-HSE + BSE calculations for W-based ones. The
experimental value of the A-A∗ splitting for MoS2 from Ref. [64] was estimated from the digitalization of Fig. 6 of the corresponding paper.
Experiments were either carried out on Si/SiO2 substrate [34,60,64,65], on sapphire [64], or on hBN encapsulated samples [62,63,66,67].

A-A∗ splitting (meV)

Theory

Present work Literature

SOC (GW) SOC (scissor) Pert. SOC No SOC (Other) Expt.

WSe2 56 77 96 36 80 [36], 16 [33] 55 [63], � 47 [60], 57 [34], 47 [62]
WS2 42 72 80 30 80 [36], 11 [33] 40 [63], 47 [60]
MoSe2 −1 7 25 42 10 [36], −11 [33] −1.5 [66], −1.3 [67], � 0 [63] � 0 [60] -30 [65]
MoS2 17 19 41 38 25 [36], 20 [68], 5 [33] 98 [60], < 20 [64], 14 [67]

a mixed A′/B character, this finding confirms that the “acci-
dental” proximity of the A′ and B excitations is present both
in our theoretical calculations on free-standing MLs and in
experiments including a dielectric environment.

D. Dark-bright splitting

Several recent experimental and theoretical works have
shown that dark (spin-forbidden and finite-momentum) ex-
citons are present near the first bright A exciton [59–62].
The knowledge of their energetic position is crucial in order
to understand the exciton dynamics in view of the possi-
ble use of TMD-MLs in optoelectronic devices. Indeed, at
the experimental level, spin-forbidden dark excitons could
be revealed by photoluminescence [63], ellipsometry mea-
surements with out-of-plane light polarization [64], by using
photocurrent spectroscopy [65] or brightening with magnetic
field [34,60,66], or near-field coupling to surface plasmon po-
laritons [62]. In particular, here we focus on the lowest-energy
spin-forbidden dark excitons (which we label A∗) in order to
see how the perturbative and full SOC schemes compare.

In Table IV, the theoretical A-A∗ splittings are shown
and compared with the available theoretical and experimental
literature. The no-SOC scheme corresponds to the non-
spin-polarized calculation, where the triplet, spin-forbidden
excitons are obtained simply by switching off the exchange
term in the BSE kernel. A full SOC BSE calculation employ-
ing a rigid shift of the conduction bands (scissor operator),
opening the single-particle DFT gap to the corresponding GW
value, was also performed. In this last case, the SOC-related
splittings of the single-particle energies are the DFT ones.
Within our results, we note that different theoretical schemes
produce different splitting values, and that only when full-
SOC is used is a better agreement with experimental data
reached.

The case of MoS2 is more controversial and needs further
discussion. Magnetophotoluminescence experiments carried
out on a Si/SiO2 substrate show an extremely large A-A∗
splitting of ∼100 meV [60], whereas upon hBN encap-
sulation, which is known to enhance the optical quality
of the samples, an A-A∗ splitting of 14 meV is reported
[67], and spectroscopic ellipsometry shows an A-A∗ splitting
smaller than 20 meV [64]. These last experimental results are
more consistent with theoretical predictions, which, within

all schemes and implementations, range from 5 to 40 meV.
Indeed, the A-A∗ splitting can be thought of in terms of two
main contributions: the first due to the exchange term of the
BSE kernel, and the second due to the CBM splitting. The
first contribution is always of positive sign and is the only
one present in the no-SOC scheme. The second contribution is
positive for W-based systems and negative for the Mo-based
ones. In the case of the perturbative SOC and full SOC with
scissor schemes, this contribution arises from the DFT CBM
splitting, whereas for the full SOC calculation it arises from
the GW one. While the exchange contribution, estimated from
the no-SOC scheme, is approximatively the same for all mate-
rials, analysis of the atomic origins of the spin splitting of the
conduction bands shows that the CMB splitting is expected
to be small for Mo-based TMDs and in particular for MoS2

[69]. On this basis, the overall A-A∗ splitting is expected
(and theoretically predicted) to be smaller for Mo-based
TMDs.

The scattering of the theoretical estimate of the A-A∗
splitting can again be explained by the different approach
(GdW approach for [36]) and/or different calculation pa-
rameters or numerical implementations [33]. However, within
each calculation the picture is consistent with a more or less
material-independent exchange contribution plus material-
specific CBM,CBM + 1 splittings (see Table I and Ref. [33]).

E. Excitonic spin polarization

In a full spinorial treatment, it is possible to determine
the exciton’s spin expectation value, namely 〈S2〉, given by
Eq. (60), and its projections Nλ

SM along the singlet state and
along the three components of the triplet state, given by
Eq. (59). It is worth noting that such an analysis is not possible
in a perturbative SOC approach where only the excitation
energies are corrected and the single-particle wave functions
are kept fixed to the nonmagnetic case. In Fig. 4, the dots
represent 〈S〉 for each excitation, the color of the dot is deter-
mined by its oscillator strength, while the absorption spectrum
is plotted as a guide for the eye in a full line. There are
two main classes of excitations: those whose 〈S〉 ∼ 1 and
those whose 〈S〉 ∼ 0.6. All the 〈S〉 ∼ 1 excitons are dark,
as they are mainly composed of linear combinations of the
|S = 1, M = ±1〉 states and are thus spin-forbidden excita-
tions. The situation for 〈S〉 ∼ 0.6 is less homogeneous; some
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FIG. 4. Dots: excitonic total spin expectation value. The dot color refers to the oscillator strength of that specific excitation (normalized to
1). Full lines, as a guide for the eye, show the absorption spectra. Top panel: W-based materials: WSe2 left, WS2 right. Bottom panel: Mo-based
materials: MoSe2 left, MoS2 right.

excitations are bright and build up the optical spectrum, while
others are dark. In this case, the origin of the low oscillator
strength cannot be attributed to spin conservation but to dipole
symmetry rules. The fact that 〈S〉 ∼ 0.6, significatively lower
than 1, is evidence of a strong component along the singlet
state.

Indeed, in Table V we report the decomposition of the
main structures identified in the absorption spectrum, along
with that of the dark A excitation. The A and B excitons are
linear combinations of the |S = 0, M = 0〉 and |S = 1, M =
0〉 states, whereas the dark A peak is made mainly of |S =
1, M = ±1〉 contributions.

First of all, it can be seen that 〈Sz〉 = 0 for all the excita-
tions, including the dark ones related to the magnon channel;
this is a consequence of the symmetry between the K and
K′ valley, which contribute equally. Secondly, in principle in
a full spinorial, noncollinear, approach, all the |S, M〉 com-
ponents would be allowed to mix, while, as discussed in
Sec. IV A and shown in Ref. [5], in a collinear but spin-
polarized case, only the singlet and the M = 0 component
of the triplet are allowed to mix. The spin analysis of the
low-energy excitations shows that here we are somewhat close
to this case: the spinor states contributing to the low-energy
excitations are strongly spin-polarized, and thus the mixing
of the singlet and M = ±1 triplet components is very small.
Moreover, SOC removes the degeneracy between the single-
particle contributions pertaining to the A and B excitons,
while at the same time this SOC splitting is much larger than
the exchange contribution which couples such transitions. As

a consequence, the |S = 0, M = 0〉 and |S = 1, M = 0〉 states
are strongly mixed, and the triplet or singlet character of the
excitations is destroyed (see also Appendix E). Finally, the
fact that for the bright excitations the weights of the |S =
0, M = 0〉 and |S = 1, M = 0〉 components are not exactly
equal, as shown in Table V, is an effect of the small but
finite exchange term. As shown in [51] for MoS2, and found
here also for the remaining cases, exchange is responsible
for the intravalley mixing of the A and B single-particle
contributions.

VIII. CONCLUSIONS

In this paper, a detailed derivation of the GW and BSE
equations by including the full spinorial nature of the wave
functions is illustrated. This formulation allows us to obtain
the collinear, spin, and non-spin-polarized cases, as well as
the noncollinear cases, in a natural way. The spin-orbit inter-
action can then be included in a nonperturbative way from
the ground-state up to the excited-state simulations. Beyond
the formal derivation of all the main equations, we carry out
a systematic analysis of electronic and optical properties of
most representative group VI TMD monolayers, comparing
at the same level of numerical implementation the results
without SOC and with SOC at a perturbative and a nonper-
turbative level. While in most of the observables considered
the perturbative and nonperturbative approaches for SOC give
very similar results, the dark-bright splittings are generally
improved when the SOC is included in a nonperturbative
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TABLE V. Excitonic spin analysis: 〈S〉 and 〈Sz〉 expectation values, and the projections of the excitonic wave functions along the singlet
state and along the three components of the triplet state.

〈S2〉 〈Sz〉 |S = 0, M = 0〉 |S = 1, M = −1〉 |S = 1, M = 0〉 |S = 1, M = 1〉
WSe2

A* 1.899 0 0.034 0.466 0.034 0.466
A 0.823 0 0.464 0.007 0.522 0.007
A′ 0.776 0 0.487 0.007 0.499 0.007
B 0.748 0 0.502 0.037 0.425 0.037

WS2

A* 1.946 0 0.019 0.481 0.02 0.481
A 0.838 0 0.458 0.006 0.531 0.006
A′ 0.776 0 0.488 0.006 0.501 0.006
B 0.730 0 0.51 0.022 0.446 0.022

MoSe2

A 0.951 0 0.404 0.001 0.594 0.001
A* 1.988 0 0.004 0.496 0.004 0.496
A′/B 0.730 0 0.51 0.003 0.484 0.003
A′/B 0.635 0 0.559 0.003 0.435 0.003
B′ 0.718 0 0.516 0.005 0.474 0.005

MoS2

A* 1.991 0 0.003 0.497 0.003 0.497
A 1.011 0 0.377 0.001 0.621 0.001
B* 1.997 0 0.001 0.499 0.001 0.499
B 0.535 0 0.614 0.003 0.38 0.003
A′ 0.778 0 0.486 0.001 0.512 0.001
B′ 0.705 0 0.522 0.003 0.471 0.003

way. The exchange-driven intravalley mixing, absent by con-
struction within the perturbative approach, is found to hugely
impact the nature of the B exciton for the case of MoSe2 that is
found to be strongly mixed with the A′ exciton. Furthermore,
the spin character of all the excitons in the IR-vis region for
the four TMDs analyzed, which is impossible in a perturbative
SOC approach, and is not yet available, has been obtained and
discussed.
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APPENDIX A: SPIN-DEPENDENT EXCHANGE
CORRELATION IN A SPINORIAL BASIS

The density matrix and the xc potential can be written in
terms of the density (n) and the magnetization (m) as

ρ(x) = n(x)σ 0 + m(x) · σ , (A1a)

vxc(x) = φxc(x)σ 0 + Bxc(x) · σ , (A1b)

where we also introduced the exchange-correlation magnetic
field, �Bxc, and the density-potential, φxc.

Although known xc functionals are (local) functions of
the modulus of m alone, spin-dependent KS equations can
be solved also in the LDA for a noncollinear system. This
is obtained by calculating vKS, which depends on the LDA
only from the magnitude of the local magnetization, by rotat-
ing the magnetization vector in each point in space into the
local frame of spin-quantization and evaluating the potential
vxc(n(r), m(r)) and then rotating back to the global reference
frame.
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APPENDIX B: HEDIN’S EQUATIONS IN SPIN, SPACE,
AND TIME REPRESENTATIONS

The main ingredient of the approach is the electronic
Green’s function (GF):

G(1, 2) = −i〈T {�̂(1)�̂†(2)}〉, (B1)

where 〈· · · 〉 is the trace evaluated with the exact density
matrix, 1 = (x1, s1, t1) includes space, spin, and time, and
operators are in the Heisenberg representation.

From Eq. (13) it follows that the noninteracting Green’s
function is the KS one:

G(0)(1, 2) ≡ GKS(1, 2). (B2)

Hedin’s equations can be derived by using the functional
derivative Schwinger approach [72], where H is perturbed
with a spin-collinear time-dependent auxiliary field η(1),

Ĥη(t1) = Ĥ +
∫

dx1 η(1)�̂†(1)�̂(1). (B3)

We can safely use a collinear perturbation because, as ex-
plained in Ref. [21], this is consistent with the fact that the
Coulomb interaction is spin-independent. More elaborate aux-
iliary fields must be introduced in the case of noncollinear
electron-electron mediated interactions.

It can be easily proved [21,72] that G solves a set of self-
consistent, integrodifferential equations. The first equation is
the usual Dyson equation,

G(1, 2) = G(0)(1, 2) + G(0)(1, 3)�Hxc(3, 4)G(4, 2), (B4)

with repeated subscripts summed and repeated arguments in-
tegrated, if not explicitly written.

In Eq. (B4), �Hxc is composed of two terms:

�Hxc(3, 4) = �(3, 4) + vH (3)δ(3, 4), (B5)

with vH the Hartree potential,

vH (3) = vH (x3) = −iv(x3 − x5)G(5, 5+), (B6)

and � the exchange and correlation self-energy, also known
as the Mass operator. � can be rewritten in terms of an
irreducible vertex function �̃:

�(1, 2) = −iG(1, 3)�̃(3, 2; 4)W (4, 1), (B7)

with

�̃(1, 2; 3) = − δG−1(1, 2)

δη(3)
= δ(1, 3)δ(2, 3)

+ δ�(1, 2)

δG(4, 5)
G(4, 6)�̃(6, 7; 3)G(7, 5). (B8)

W (4, 1) is the electronic screened interaction

W (4, 1) = v(4, 1) + v(4, 5)χ̃ (5, 6)W (6, 1), (B9)

which is written in terms of χ̃ , the irreducible electronic
response function:

χ̃ (5, 6) = G(5, 7)�̃(7, 8; 6)G(8, 5). (B10)

Equations (B7)–(B10) represent the spin Hedin equations and
completely solve the many-body problem.

Starting from the equation for the response function and
the vertex, a Dyson-like equation for a response function

appears. However, due to the structure of the variables, such
an equation cannot be directly cast in terms of the two-point
response function [not even with the approximation defined in
Eq. (35)]. It must be cast in terms of the four-point function
L(1, 3; 2, 4). Defining K = ∂�/∂G and inserting Eq. (B8)
into Eq. (B10), one obtains

L(13, 24)=L0(13, 24) + L0(13, 1′3′)K (1′3′, 2′4′)L(2′4′, 24),
(B11)

where L0 = GG and L(11, 22) = χ (1, 2).

APPENDIX C: ROTATION IN THE SPINORIAL BASIS
OF THE DIFFERENT COMPONENTS

OF HEDIN’S EQUATIONS

The two maps needed to rotate Hedin’s equations in the
spinorial basis are defined in Eq. (17). The goal of the different
sections of this Appendix is to demonstrate how the two maps
follow from the manipulation of Hedin’s equations.

1. The Dyson equation

The transformation of the self-energy operator follows eas-
ily by taking Eq. (B4) and expanding both G and G(0) using
M2. It follows that

�Hxc
I1I2

(t1, t2) = φ∗
I1s1

(x1)�Hxc(1, 2)φI2s2 (x2)

= �I1I2 (t1, t2) + vH
I1I2

(t1)δ(t1 − t2). (C1)

vH
I3I2

is defined in Eq. (C3), while �I1,I2 is defined in Eq. (22b).

2. The Hartree potential

From Eq. (C1), it follows that

vH
I3I4

(t3) = φ∗
I3s3

(x3)vH (3)φI4s4 (x3). (C2)

By using Eq. (B6), we see that

vH
I3I4

(t3) = −iV
I3I4
I5I5′

GI5I5′ , (C3)

with

V
I1I2
I3I4

= φ∗
I1s1

(x1)φI1s1 (x1)v(x1 − x3)φ∗
I3s3

(x3)φI4s3 (x3). (C4)

Equation (C4) is the proof of Eq. (19c).

3. The vertex function

To rotate the vertex function, we observe that from Eq. (20)
it follows that G−1

I1I2
rotates like �I1I2 . This implies that we can

rewrite

�̃(3, 2; 4) = −φI3s3 (x3)φ∗
I2s2

(x2)
δG−1

I3I2
(t3, t2)

δηI4I5 (t5)

δηI4I5 (t5)

δη(4)
,

(C5)
where we have introduced

ηI4I5 (t5) = φI4s5 (x5)η(5)φ∗
I5s5

(x5) (C6)

and

�̃
I3I2
I4I5

(t3, t2; t4) ≡ δG−1
I3I2

(t3, t2)

δηI4I5 (t4)
. (C7)
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From Eq. (C6), the functional derivative appearing on the
right-hand side of Eq. (C5) can be easily calculated to give

�̃(3, 2; 4)

= −φI3s3 (x3)φ∗
I2s2

(x2)φI4s4 (x4)φ∗
I5s4

(x4)
δG−1

I3I2
(t3, t2)

δηI4I5 (t4)
.

(C8)

Equation (C4) is the proof of Eq. (19e).

4. The response function

The rotation of the response function follows from
Eq. (B10), after using Eqs. (17) and (C8). It follows that

χ̃ (1, 2)

= φI1s1 (x1)φ∗
I′

1s1
(x1)L̃

I1I′
1

I2I′
2

(t1, t2)φI2s2 (x2)φ∗
I′

2s2
(x2), (C9)

which, using Eq. (B9), demonstrates Eq. (24).
The response function is a particular case. Indeed,
L̃

I1I1′
I2I2′

(t1, t2) �= χ̃
I1I1′
I2I2′

(t1, t2), since χ̃
I1I1′
I2I2′

, which results

from M4 : χ̃ , can only be used to reconstruct χ̃ (1, 2) via
the inversion of M4, while L̃

I1I1′
I2I2′

(t1, t2) contains enough

information to reconstruct both χ̃ (1, 2) and L̃(1, 2). However,
when the Dyson equation for the response function is
written in the spinorial representation (or more generally
in a wave-function basis set), the contraction is not present
anymore and the matrix element of L appears.

5. The exchange-correlation self-energy operator

If now we use Eqs. (20) and (C8) to expand G and �̃ in
Eq. (B7) for �, we get

�I1,I2 (t1, t2) = − iGI1′ I3 (t1, t3)�̃
I3I2
I4I4′

(t3, t2; t4)

×[
φ∗

I1s1
(x1)φI1′ s1 (x1)W (4, 1)φ∗

I4s4
(x4)φI4s4 (x4)

]
,

(C10)

which implies Eq. (22b).

APPENDIX D: COMPUTATIONAL DETAILS

The density functional theory (DFT) simulations have been
performed using the plane-wave QUANTUM ESPRESSO code
[73]. A Perdew-Burke-Ernzerhof (PBE) exchange-correlation
functional [74] and optimized norm-conserving [75] pseu-
dopotentials have been used. A 16 × 16 × 1 Monkhorst-Pack
grid [76] of k-points is used to sample the Brillouin zone
for structural optimization runs. A kinetic energy cutoff of
140 Ry has been used. Structure relaxation is assumed at
convergence when the maximum component of the residual
forces on the ions is smaller than 10−5 Ry/Bohr. The lattice
parameters of the four systems are in very good agreement
with existing literature, being a = 3.12 Å (for MoS2), 3.25 Å
(for MoSe2), 3.12 Å (for WS2), and 3.25 Å (for WSe2). Once
the optimized atomic structures have been obtained, self- and
non-self-consistent DFT calculations have been performed to

obtain Kohn-Sham (KS) eigenvalues and eigenfunctions to
be used in the many-body simulations done by using the
many-body code YAMBO [6,77]. Specifically, we calculated
the quasiparticle (QP) energies by using the GW perturbative
one-shot method, and the optical excitation energies and the
optical spectra by solving the Bethe-Salpeter equation (BSE)
[1,72,78–80]. For GW simulations, a plasmon-pole approx-
imation for the inverse dielectric matrix has been applied
[81]; a kinetic energy cutoff of 10 Ry (60 Ry) is used for
the correlation, i.e., the �c (exchange, �x) part of the self-
energy; and the sum over the unoccupied states for �c and
the dielectric matrix is performed up to ∼30 eV above the
VBM. To speed up the convergence with respect to empty
states, we adopted the technique described in Ref. [82]. The
Bethe-Salpeter equation to obtain the optical spectrum and
exciton spatial localization has been solved within the Tamm-
Dancoff [1,83] approximation (which is generally valid for
bulk compounds to describe neutral excitations well below
the plasma frequency of the material). Two occupied and two
unoccupied states have been used to build up the excitonic
Hamiltonian. For both the GW and BSE simulations, we used
a k-grid of 33 × 33 × 1, which is enough to provide a good
convergence in the position of the A-B excitons, which are
the main focus of this paper.

APPENDIX E: PERTURBATIVE SOC AND EXCHANGE

It is important to notice that there are two different cases to
be considered for spin-conserving excitations (i.e., 
Sz = 0):

(a) The singlet-triplet splitting, i.e., the exchange splitting

ET -S

λ due to H exch, is bigger than the SOC correction.
(b) SOC is, on the one hand, small enough to be considered

a perturbation, and on the other hand, significantly bigger than
the 
ET -S

λ splitting.
In case (a), we expect the singlet and triplet excitation to

remain far apart in energy. The SOC splitting just corrects
such energies. Thus it makes sense to define the pSOC as
an energy shift in the S (and T ) channel. This is the scheme
reported in the literature and in the main text.

In case (b) instead, we expect the singlet and triplet struc-
ture to be destroyed. Neither the singlet Hamiltonian, with
H exch,S = 2V , nor the triplet one, with H exch,T = 0, should be
used, rather an average Hamiltonian with H exch = V should
be used. The resulting eigenvectors Ãλ

cvk define

�λ,s
ss′ (xc, xv ) = δs,s′

∑
cvk

Ãλ
cvkφ

0,∗
cks(xc)φ0

vks(xv ), (E1)

where now s is considered to be an approximate quantum
number. The two associated transitions would then be


ω0
λ,s ≈

∑
cvk

∣∣Ãλ
cvk

∣∣2(

εSOC

cks − 
εSOC
vks

)
. (E2)

The final result is that each peak is split into two peaks with
equal intensity both belonging to the 
Sz = 0 channel, one for
↑ - ↑ transitions and the other for ↓ - ↓ transitions. Accord-
ingly, S is no longer a good quantum number for the exciton,
and one would expect 〈Ŝ〉 �= 0, 1.
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APPENDIX F: MAPPING AND DEGENERATE STATES

In the case of degeneracy, we define the subgroups of
degenerate spaces as Gk

ms and Gk
n . We observe that the states

without SOC, |mks〉, are more degenerate than the states with
SOC, |nk〉, such that to each Gk

ms may correspond multiple Gk
n .

Then we define, for each nk,

∣∣
k
n,Gk

ms

∣∣2 =
∑

ms∈Gk
ms

∣∣
k
n,ms

∣∣2
, (F1)

Dk
n = max

Gk
ms

∣∣
k
n,Gk

ms

∣∣2
. (F2)

The mapping function is then defined as

fk(ms) = n if
∣∣
k

n,Gk
ms

∣∣2 = Dk
n , (F3)

where the mapping is done recursively, doing a loop over
the n index, and we assign n randomly to one of the states
ms ∈ Gk

ms, which has no other n assigned. Moreover, if n ∈
Gk

n , the procedure picks up the n ∈ Gk
n with maximum pro-

jection in Gk
n , which is again random. Since we are dealing

with degenerate energies, these choices do not affect the final

result. In the end, there is one |−→nk〉 state assigned to each

|−−→mks〉 state.
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